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Abstract

The Privacy Preserving Federated Learning Document VQA (PFL-DocVQA) com-1

petition challenged the community to develop provably private and communication-2

efficient solutions in a federated setting for a real-life use case: invoice processing.3

The competition introduced a dataset of real invoice documents, along with associ-4

ated questions and answers requiring information extraction and reasoning over the5

document images. Thereby, it brings together researchers and expertise from the6

document analysis, privacy, and federated learning communities. Participants fine-7

tuned a pre-trained, state-of-the-art Document Visual Question Answering model8

provided by the organizers for this new domain, mimicking a typical federated9

invoice processing setup. The base model is a multi-modal generative language10

model, and sensitive information could be exposed through either the visual or11

textual input modality. Participants proposed elegant solutions to reduce commu-12

nication costs while maintaining a minimum utility threshold in track 1 and to13

protect all information from each document provider using differential privacy14

in track 2. The competition served as a new testbed for developing and testing15

private federated learning methods, simultaneously raising awareness about privacy16

within the document image analysis and recognition community. Ultimately, the17

competition analysis provides best practices and recommendations for successfully18

running privacy-focused federated learning challenges in the future.19

1 Introduction20

Automatic document image processing has become a highly active research field in recent years [Ap-21

palaraju et al., 2024, Lee et al., 2023, Tito et al., 2023a], with invoices being one of the most frequently22

processed document types [Šimsa et al., 2023]. In a typical real-life invoicing scenario, business sup-23

pliers produce invoices for their services and send them to their customers. These documents contain24

sensitive information, such as consumer/purchaser identity, transaction details, purpose, date, phone25

numbers, amount paid, account information for payment, etc. The customers (document users) need26

∗This analysis is jointly written by organizers and participants. See author contributions in Appendix A.1.
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to extract this information and take the corresponding actions (i.e. reject, or make a payment against27

the invoice). In automated pipelines, these documents would be sent to AI technology providers,28

typically offered in the form of cloud services2, which automatically extract all required information29

from the documents, and return it to the document users.30

A generic approach to extract information from invoices is DocVQA [Mathew et al., 2020]. The31

extraction is done by asking questions in a natural language form to get specific information as32

answers, using a deep learning model. However, training an accurate DocVQA model requires a33

considerable amount of data, that is rarely held by a single entity. One solution is to train this model34

collaboratively by aggregating and centralizing data from a set of clients that face the same problem.35

But, documents often cannot be freely exchanged due to the sensitive information they contain.36

Federated Learning (FL) is a learning paradigm that purports to solve this problem [McMahan et al.,37

2017b]. Rather than exchanging privately-held data, participating entities (known as clients) train38

models on their data in a decentralized fashion, exchanging only the local model updates with a39

central server. However, even though FL is more private than the centralized approach, a significant40

amount of information can still be inferred from the updates shared during training, or from the41

parameters of the resulting trained model, whether by an adversarial server, client, or downstream42

user [Sikandar et al., 2023].43

Differential Privacy (DP) [Dwork et al., 2016] is considered the gold standard in terms of privacy44

preservation and can be used to provide provable privacy guarantees. DP formally quantifies the45

maximum information leakage from the inclusion of any one individual record in a dataset. Deep46

learning models can be trained under DP by clipping parameter updates and adding noise to them [Ra-47

jkumar and Agarwal, 2012, Song et al., 2013, Abadi et al., 2016]. However, this introduces a trade-off48

between privacy and utility. Stronger privacy guarantees require introducing more noise, which49

proportionately degrades model accuracy.50

Another drawback of FL is the high communication cost [Kairouz et al., 2021]. At each federated51

round, the global model is transmitted by the server to selected clients (downstream step) to be trained52

on their local data, and then the update of this model is sent by these selected entities back to the server53

(upstream step). For models with millions or even billions of parameters, this requires significant54

bandwidth, multiplied by the number of federated rounds required to reach model convergence.55

In this paper, we present an analysis of the NeurIPS 2023 competition on privacy preserving FL56

DocVQA that we designed to expose the above challenges and invite the community to design novel57

creative solutions for this real-life use case. It brought together researchers and expertise from the58

document analysis, privacy, and FL communities. Additionally, it added a realistic use case for59

privacy and FL researchers as well as expanding the scope of document analysis to DP solutions.60

2 Related Work61

Document Visual Question Answering (DocVQA) DocVQA has been an evolving field during62

the last few years. This is due to the emerging datasets that address different document domains.63

For instance, industry documents [Mathew et al., 2020, 2021, Tito et al., 2021b, 2023a], infograph-64

ics [Mathew et al., 2022], multidomain [Landeghem et al., 2023a,b], open-ended questions [Tanaka65

et al., 2021], multilingual [Qi et al., 2022], multipage [Tito et al., 2023a] or collections of docu-66

ments [Tito et al., 2021a]. However, these datasets are often small and highly domain-specific, which67

limits generalizability.68

Federated Learning (FL) FL [Shokri and Shmatikov, 2015, McMahan et al., 2017b] addresses69

this issue, and has seen practical use in both research and industrial applications [Li et al., 2020],70

particularly in domains where sensitive data is common, such as medicine [Dayan et al., 2021] and71

finance [Long et al., 2020]. FL carries a trade-off between model utility, data privacy, and communi-72

cation efficiency [Zhang et al., 2023], and requires specific consideration of client data heterogeneity,73

2Automatic document processing services offered by large corporations (AWS Intelligent Document Process-
ing, Google Cloud Document AI, Microsoft Azure Form Recognizer, etc) or specialized providers.
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scalability, and fault tolerance. Much recent work in FL focuses on mitigating these problems,74

primarily through developments in aggregation algorithms [Moshawrab et al., 2023, Elkordy and75

Avestimehr, 2022, So et al., 2022, Nguyen et al., 2022], but also in parameter compression [Tang76

et al., 2019] and quantization [Xu et al., 2022].77

Privacy Attacks While FL offers privacy advantages, it remains vulnerable to various attacks that78

jeopardize client dataset privacy. In the federated architecture, both the server and clients can79

potentially act as adversaries. Gradient updates in FL have the potential to disclose information about80

the training data, making them susceptible to "gradient inversion attacks" [Zhu et al., 2019, Zhao81

et al., 2020, Fu et al., 2022, Wainakh et al., 2022, Li et al., 2022b, Geiping et al., 2020, Melis et al.,82

2019, Li et al., 2022d], which enable accurate data reconstruction. Moreover, adversaries can execute83

"membership inference attacks" [Nasr et al., 2019, Melis et al., 2019, Suri et al., 2022, Shokri et al.,84

2017, Choquette-Choo et al., 2021, Li and Zhang, 2021, Hu et al., 2022b] to infer the inclusion of85

specific data points in other participants’ datasets, as well as "property inference attacks" [Melis et al.,86

2019] to deduce subgroup statistics despite secure aggregation [Kerkouche et al., 2023, Pejó and87

Biczók, 2023]. FL inherently lacks protection against these threats, necessitating explicit mitigation88

strategies to safeguard client data from adversaries.89

Differential Privacy (DP) (ϵ, δ)-DP [Dwork et al., 2006] has a privacy budget consisting of ϵ ≥ 090

and δ ∈ [0, 1], where smaller values correspond to a stronger privacy guarantee. Especially relevant91

to our setting is group-level DP, which preserves privacy leakage from the inclusion or exclusion92

of groups of datapoints [Galli et al., 2023, Marathe and Kanani, 2022], such as multiple records93

associated with a specific user. We refer to Dwork and Roth [2014] for a comprehensive intro to DP.94

High utility models under DP Currently, many works improve the utility-privacy trade-off through95

transfer learning [Yosinski et al., 2014] assuming the availability of non-sensitive public data for96

pre-training and only utilizing DP to protect sensitive downstream data during fine-tuning. We97

would like to refer to Tramèr et al. [2022a] for a discussion on the drawbacks of these assumptions.98

Transfer learning is highly effective for both language [Li et al., 2022c, Yu et al., 2022a] and vision99

tasks [Cattan et al., 2022, De et al., 2022, Kurakin et al., 2022, Tobaben et al., 2023]. In particular,100

parameter-efficient fine-tuning [Houlsby et al., 2019] with adaptation methods such as LoRA [Hu101

et al., 2022a] have been demonstrated to yield improved utility-privacy trade-offs for DP, as have102

quantization [Youn et al., 2023] or compression of model updates [Kerkouche et al., 2021a,b, Miao103

et al., 2022]. All these methods reduce the size of the updates, and thereby reduce the amount of104

noise addition required. The same strategies often yield competitive performance for FL.105

3 General Competition Information106

This section describes general information about the competition that is common to both tracks.107

These are the dataset, metrics, model, starter kit and the participation statistics.108

3.1 PFL-DocVQA Dataset109

For this competition, we created PFL-DocVQA [Tito et al., 2023b], the first dataset for private110

federated DocVQA. The dataset is created using invoice document images gathered from the DocILE111

dataset [Šimsa et al., 2023]. For every image, we provide the OCR transcription and form a set112

of question/answer pairs. The competition’s version of PFL-DocVQA contains a total of 336,842113

question-answer pairs framed on 117,661 pages of 37,669 documents from 6,574 different invoice114

providers. PFL-DocVQA is designed to be used in two tasks, and so is divided into two subsets. For115

the first task of training and evaluating machine learning privacy-preserving solutions on DocVQA in116

a FL fashion, a base subset of PFL-DocVQA called the “BLUE” data is used. In the second task,117

membership inference attacks are designed to assess the privacy guarantees of the DocVQA models118

that were trained with the base data. These attacking approaches are to utilize a second subset called119

the “RED” data. In this competition, we focus on the first task, thus, we use only the “BLUE” data.120

For more details on the full PFL-DocVQA datasets, refer to Tito et al. [2023b].121
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PFL-DocVQA aims to train and evaluate DocVQA systems that protect sensitive document infor-122

mation. In our scenario, sensitive information encompasses all information originating from each123

invoice provider. Therefore, an effective model must prevent the disclosure of any details associated124

with these providers (such as provider names, emails, addresses, logos, etc.) across diverse federated125

clients. Following this, the base data used in this competition consists of a training set divided among126

N clients (we use N = 10), a validation set and a test set. (See Figure A.1). The training set of each127

of the N clients contains invoices sampled from a different subset of providers, resulting in a highly128

non-i.i.d. distribution. In the validation and test sets, we include documents both from the providers129

that were seen during training, and from a set of providers that were not seen, to better evaluate the130

generalizability of the models.131

3.2 Evaluation Metrics132

In the PFL-DocVQA Competition three main aspects are evaluated: The model’s utility, the commu-133

nication cost during training and the DP privacy budget spent through training the model.134

Utility To evaluate the visual question answering performance of the participants’ methods we135

use accuracy and ANLS (Average Normalized Levenshtein Similarity), a standard soft version of136

accuracy extensively used in most of the text-based VQA tasks [Biten et al., 2019a,b, Mathew137

et al., 2020, Tito et al., 2021b, Mathew et al., 2021, Tito et al., 2021a, Mathew et al., 2022, Tito138

et al., 2023a, Landeghem et al., 2023b,a]. This metric is based on the normalized Levenshtein139

Distance [Levenshtein, 1966] between the predicted answer and the ground truth, allowing us to140

assess the method’s reasoning capabilities while smoothly penalizing OCR errors.141

Communication cost We measure the efficiency of the communications as the total amount of142

information transmitted between the server and the clients in Gigabytes (GB) in both directions. The143

initial transmission of the pre-trained model to the clients is not included in the communication cost.144

Privacy The methods of track 2 are required to comply with a DP privacy budget of no more than145

a pre-defined ϵ ∈ {1, 4, 8} at δ = 10−5. We provided a script within the starter kit detailed in146

Section 3.4 to compute the required noise multiplier given the target (ϵ, δ). Participants may need to147

adjust the script to their algorithms. Moreover, we required the participants to upload a theoretical148

privacy proof of their methods, which was manually reviewed by the competition organizers.149

3.3 Pre-trained Model150

The participants were asked to implement their solutions starting from the same pre-trained model.151

The architecture chosen is Visual T5 (VT5), it is a multimodal generative network consisting of152

a simplified version of Hi-VT5 [Tito et al., 2023a], which was originally proposed for multi-page153

DocVQA. VT5 exploits the image and text modalities, which is beneficial to perform the DocVQA154

task. However, this dual-modality approach also presents a more complex challenge: safeguarding155

private information across both modalities, compared to handling just one. Moreover, VT5 is a156

generative model based on the T5 [Raffel et al., 2020] language model. Language models can suffer157

hallucinations [Rawte et al., 2023], leading to the potential leakage of private information.158

The architecture VT5 consists of an encoder-decoder model based on T5. The input of the model159

is the question, the OCR tokens of the document (text and spatial information), and the encoded160

document image using the DiT [Li et al., 2022a] vision transformer model. These three inputs are161

concatenated and fed to the VT5 to output the answer following the autoregressive mechanism.162

We also provide pre-trained weights for VT5. First, the language backbone T5 is initialized with the163

pre-trained weights on the C4 dataset [Raffel et al., 2020], and the visual DiT with the pre-trained164

weights on the document classification task. After that, the full model is fine-tuned on the single-page165

DocVQA task, using the SP-DocVQA dataset [Mathew et al., 2020, 2021] for 10 epochs.166
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Table 1: Participation Statistics as of May 31, 2024.

Registrations to platform Downloads Countries Submissions Track 1 Submissions Track 2
382 494 21 13 6

3.4 Starter Kit167

The starter kit includes the pre-trained model checkpoint, the fine-tuning dataset, code for running the168

baselines and instructions on how to run and modify the code. The code itself is based on established169

libraries such as PyTorch [Paszke et al., 2019] and the FL framework Flower [Beutel et al., 2020].170

Besides the training code, the starter kit includes functions for computing the privacy parameters171

based on the hyperparameters and for logging the communication between server and clients. We172

tested the installation and execution of the baseline on various clusters across different institutions173

and provided support to participants if they encountered any difficulties. The starter kit is openly174

available: https://github.com/rubenpt91/PFL-DocVQA-Competition.175

3.5 Participation Statistics176

Refer to Table 1 for the participation statistics. Our competition has gained interest across the177

communities and remains an open benchmark in the future: https://benchmarks.elsa-ai.eu/178

?ch=2&com=introduction. In Section 6.2 we discuss measures to lower the participation threshold.179

180

4 Track 1: Communication Efficient Federated Learning181

Track 1 focuses on training high utility models while reducing the communication cost in federated182

learning. We describe the task, the organizers’ baseline and two submitted approaches (See Table 2).183

4.1 Task Formulation184

The objective of track 1 is to reduce the communication used (# bytes), while achieving a comparable185

utility (ANLS) with the organizers’ baseline. The baseline achieved a validation ANLS of 0.8676186

and we define a comparable utility to the baseline as 0.8242 ANLS (5% w.r.t. the baseline). Any187

submission that achieves at least that ANLS is valid, thus the deciding factor for winning the188

competition is the communication efficiency, which is measured using a single metric. We opted189

for scoring using a single metric as the trade-off between utility and communication is not linear.190

Furthermore, in real world applications less communication efficiency will lead to higher monetary191

costs or longer training times that need to be considered in contrast to changes in model utility.192

Participants are required to use the VT5 baseline model with the initial pre-trained weights and utilize193

only the PFL-DocVQA dataset for fine-tuning. Further the participants are not allowed to change194

the PFL-DocVQA data distribution. Additionally, participants are required to upload a log of the195

communication between the clients and the central party (# bytes) and the final model checkpoint.196

The organizers evaluate the model utility on a secret test set and thus the model architecture needs197

to be the same as the initial baseline. While this makes some solutions such model distillation198

more challenging, the track is open to a wide range of possible solutions. Participants could, e.g.,199

utilize parameter-efficient fine-tuning, compression of the FL updates, lower precision or better200

hyper-parameters to achieve higher communication efficiency while maintaining a comparable utility.201

4.2 Baseline Solution Track 1202

The baseline solution for track 1 fine-tunes all parameters of the pre-trained model but the visual203

module. It essentially uses Federated Averaging (FedAvg) [McMahan et al., 2017a]. In each global204

round, the central server samples K = 2 clients out of all N = 10, and each of these clients computes205
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Table 2: Competition Winners Track 1 (Communication efficient federated learning)

Rank Team Method Communication ↓ ANLS ↑
1 Muhamed et al. (Section 4.3) LoRA 0.38 GB (-99.14%) 0.8566 (-3.45%)
2 Niwa et al. (Section 4.4) FedShampoo 10.01 GB (-77.37%) 0.8891 (+0.20%)
- Organizers (Section 4.2) Baseline 44.65 GB 0.8873

the weight updates locally across multiple local rounds. The central server aggregates the client206

updates and communicates the updated model to the sampled clients in the next round.207

4.3 Winner Track 1: Muhamed, Kuo, and Smith208

We considered three orthogonal methods to reduce communication (LoRA, tuning FL hyperpa-209

rameters, and quantization). The winning solution for Track 1 uses only LoRA (100× reduction).210

Combining all methods can achieve a 5200× reduction. For complete details, see Appendix C.211

1 MB
2 MB

4 MB
8 MB

16 MB
32 MB

64 MB
128 MB

256 MB
512 MB

1.02 GB
2.05 GB

4.1 GB
8.19 GB

16.4 GB
32.8 GB

65.5 GB

Communication (log scale)

Full finetuning

LoRA

Tuned HPs

Quantization

40.05 GB

0.38 GB

55 MB

7.7 MB

39.67 GB    (-99.04%)

0.33 GB    (-99.86%)

47 MB    (-99.98%)

1. LoRA. Low-Rank Adaptation trains low-rank adapters while freezing the rest of the model [Hu212

et al., 2022a]. We use LoRA to reduce the number of trainable parameters to 3.4M (1.37% from 250M).213

Using 2 clients per round, we reach the target ANLS in 7 rounds (0.38 GB total communication).214

2. Tuning FL hyperparameters. On top of 1. LoRA, we sample 1 client per round (default: 2) and215

train for 16 local epochs (default: 1), which respectively reduces communication and improves utility.216

With these adjustments, we reach the target ANLS in 2 rounds (55 MB total communication).217

3. Quantization is a lossy compression approach which we use to reduce the size of the communicated218

LoRA updates. We use NF4 (4-bit) quantization which reduces the message size by ∼ 8× while219

achieving the target ANLS with the same configuration as 2. (7.7 MB total communication).220

4.4 Runners-up Track 1: Niwa, Ishii, Yamasaki, Fukami, Tyou, and Yokota221

We briefly present our methods and experimental results. For more detailed information can be found222

in Appendix D. We aimed to achieve faster convergence of training for local models with fewer223

communication rounds. To achieve this, we utilized Shampoo [Gupta et al., 2018], a second-order224

optimization method, in local update rules by multiplying the local preconditioning matrix to the225

local stochastic gradient. The update rules of our method, named FedShampoo, are outlined in Alg.226

1 in Appendix D.1. Shampoo enables smooth local updates by geometrically rotating and scaling227

stochastic gradients. To reduce the memory footprint in computing large-scale preconditioning228

matrices, we approximated them by employing layer-wise block-diagonalization. Notably, the local229

preconditioning matrices (approximated by sub-matrices) were not transmitted to the central server,230

thus avoiding excess communication costs. Furthermore, we excluded the embedding layer from231

the optimization target, resulting in a reduction of approximately 26 % in communication per round232

compared to whole parameters3.233

In Table 2, FedShampoo achieved the target ANLS score with 10.01 GB communication cost. Refer234

to Figure A.3 in Appendix D.1 for convergence curves using validation loss, ACC and ANLS. We235

submitted the model after only R = 3 communication rounds, surpassing the target ANLS score of236

0.8873 and resulting in an approximately 30 % reduction of the communication cost compared with237

the baseline method (using solely AdamW-based optimizer). Furthermore, FedShampoo achieved238

higher ACC and ANLS scores compared with the baseline method after exceeding the ANLS target239

3We submitted a model applying LoRA to FedShampoo; however, it did not exceed the target ANLS score.
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score (after 3 communication rounds). This provides as empirical evidence of FedShampoo’s faster240

convergence, which benefits from applying the preconditioning matrix to the stochastic gradient. The241

detailed experimental configurations, such as hyperparameter tunings of learning rate and clipping242

threshold, are summarized in Appendix D.1.243

5 Track 2: Differentially Private Federated Learning244

Track 2 focuses on training as high utility models as possible while preserving all information from245

each document provider in the training set through DP. We describe the task, the organizer’s baseline246

and two submitted approaches (See Table 3).247

5.1 Track 2 Task Formulation248

The objective of track 2 is to achieve the best utility possible while protecting all information249

from each document provider in the training set, which could be exposed through textual (provider250

company name) or visual (logo, presentation) information. Participants are required to train under251

DP at different levels from medium DP (ϵ = 1) to weak DP (ϵ = 8) to mitigate the risk of provider252

information being leaked. Ultimately, the goal is to achieve the best utility while complying to253

the privacy budgets of ϵ ∈ {1, 4, 8} at δ = 10−5. The definition of DP critically depends on the254

concept of adjacency of datasets. We seek to protect the privacy of providers and thus the typical255

document-level adjacency definition would be too weak, as there are many documents from the256

same provider and combining them could leak private information. Instead we use provider-level257

add/remove adjacency, where adjacent training datasets can be obtained by adding or removing all258

documents from one provider. Prior work denotes this as group-level DP [Marathe and Kanani, 2022,259

Galli et al., 2023].260

Participants are required to follow the same rules regarding the pre-trained model and fine-tuning261

data as in track 1. Besides uploading the final model checkpoint solutions, they are required to262

submit a theoretical privacy proof and description. The requirement for a theoretical privacy proof263

in track 2 ensures that the solutions proposed by participants are rigorously validated for their264

adherence to differential privacy principles. This proof demonstrates that the final model maintains265

the privacy of all information from each document provider by offering a quantifiable measure of266

privacy loss. Additionally, a thorough description and code submission are necessary to facilitate267

reproducibility and allow for independent verification of the privacy claims, ensuring transparency268

and trustworthiness in the solutions provided.269

5.2 Baseline Solution Track 2270

The baseline solution for track 2 utilizes DP stochastic optimization. The optimization of the model271

is done in multiple global rounds. In each round, the central server first samples a set of clients272

from all N = 10 clients. Each selected client runs a local instance of federated learning where each273

provider acts as the training data of a virtual client within the real client. The client randomly selects274

providers, clips the per-provider updates and the adds an appropriate amount of noise so that the275

update aggregated by the server is differentially private with respect to all providers over all clients4276

The privacy loss of the baseline follows the usual analysis of DP stochastic optimisation consisting of277

compositions of sub-sampled Gaussian mechanisms. The loss depends on the number of iterations278

Tcl, sub-sampling rate q (both over clients and providers) and noise scale σ [Mironov et al., 2019,279

Balle et al., 2020]. (See more details in Appendix A.4 and the privacy analysis in Appendix B).280

5.3 Winner Track 2: Ragul N and Kutum281

Similar to the winning solution for track 1, our method also uses LoRA. We choose LoRA for the282

following two reasons: First, it significantly reduces the communication cost as shown in Section 4.3.283

4Note when no clients are sampled in a FL round the server still needs to add noise.
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Table 3: Competition Winners Track 2 (Differential Private Federated Learning)

Rank Team Method ANLS ↑
at ϵ = 1 at ϵ = 4 at ϵ = 8

1 Ragul N and Kutum (Section 5.3) LoRA 0.5854 0.6121 0.6225
2 Fukami et al. (Section 5.4) DP-CLGECL 0.5724 0.6018 0.6033
- Organizers (Section 5.2) Baseline 0.4832 0.5024 0.5132

Second, empirical results have shown that differentially private adaptation of language models using284

parameter-efficient methods such as LoRA outperforms full fine-tuning in centralized settings [Yu285

et al., 2022b]. These methods reduce the overall noise added by only updating a small proportion286

of the parameters in the model, thereby increasing the utility of the model. The communication287

efficiency of LoRA also allowed us to increase the number of FL rounds from 5 in the baseline288

method to 30 in our method without increasing communication costs. With these changes to the289

baseline, our method improved the ANLS by 10-11 percentage points across all privacy settings.290

5.4 Runners-up Track 2: Fukami, Yamasaki, Niwa, and Tyou291

We briefly present our methods and experimental results. More detailed information can be found292

in Appendix D. It is well-known that applying DP to FedAVG with a relatively high privacy level293

often stagnates the model training process due to local parameter drift. This is mainly caused by i)294

noise addition in DP and ii) data heterogeneity among clients. To address these issues, we propose295

DP-CLGECL, which incorporates the DP’s Gaussian mechanism into CLGECL Tyou et al. [2024].296

The update rules in DP-CLGECL are derived by solving a linearly constrained loss-sum minimization297

problem, resulting in robustness against local gradient drift due to data heterogeneity, and this would298

also be effective in addressing the drift issue due to DP’s Gaussian mechanism. Note that the DP299

analysis of the private baseline detailed in Appendix B is applicable to our DP-CLGECL. More300

details about our methodologies are provided in Appendix D.2.301

As indicated in Table 3, ANLS showed significant improvement with the use of our DP-CLGECL302

compared with the baseline method for each ε. Associated experimental results, including conver-303

gence curves in Figure A.4 are summarized in Appendix D.2. After passing the competition deadline,304

we observed a negative impact of using AdamW optimizer in the baseline method. The norm of305

stochastic gradient, preconditioned by AdamW, often increased, and the gradient clipping used to306

ensure the pre-defined DP levels led to a loss of valuable information in model parameter training.307

To address this issue, we replaced AdamW with momentum in the local update of DP-CLGECL,308

resulting in further improved ANLS. Although more details can be found in Figure A.5, the ANLS309

was then 0.5918 for ε = 1 using DP-CLGECL with momentum.310

6 Lessons Learnt and Recommendations for Future FL and DP Competitions311

In this section we present lessons learnt from organizing this competition and discuss best practices312

that could be considered for organizing competitions in the future.313

6.1 Ensuring that the Track 2 Submissions Are DP314

The track 2 of this competition required participants to provide a model checkpoint trained under315

DP. Additionally, we asked the participants to provide a privacy proof outlining how their method is316

formally differential private and requested the source code.317

Formal privacy proof Asking for a privacy proof from the participants results in two things: (i) The318

organizers can check that a new proposed method is DP; and (ii) The participating team can reflect319

on ensuring that their method is actually DP. Insufficient formal analysis in prior work has lead to320

response papers [Carlini et al., 2021, 2022] that corrected the wrong analysis.321

Ensuring that the implementations are DP While the privacy proof ensures that theoretically322

the submissions are DP, even small mistakes in the implementation of DP methods can invalidate323
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or severely weaken the DP guarantees [Tramèr et al., 2022b]. Among these are the clipping of324

the updates, the correct noise addition and scaling as well as the subsampling. Thus, members of325

the organizing team have inspected the implementations of the best scoring methods but this is a326

manual process that does not scale to competitions with a large number of participants. The code327

reviews could be complemented with automatic tests that increase the chance of finding bugs in the328

implementation. Established DP libraries such as Opacas [Yousefpour et al., 2021] use unit tests but329

these tests are custom to the implementation that are testing and writing new tests requires much more330

manual labour than plain code reviews. Using only established implementations (e.g., like Opacus)331

for critical parts of the code would reduce the risk of bugs but also limit the possible solutions.332

Automation of the validation of DP methods and implementations When scaling up the participant333

numbers of a competition, processes need to be automated. One example for that is our automatic334

utility evaluation on the secret test set. Automating the validation of DP methods and implementations335

is less straightforward: There are methods for auditing DP implementations [Jagielski et al., 2020,336

Nasr et al., 2023] but they are computationally expensive. Recent advancements have significantly337

reduced the cost of DP auditing [Steinke et al., 2023]. One option would be auditing new submissions338

to assist in DP validation but it is unclear how computationally costly that would be. Auditing cannot339

conclusively prove something DP, so it should only be used to complement privacy proofs and code340

checks, not replace them.341

6.2 Lowering the Threshold for Participation342

Referring to Table 1 one can see that the competition has received some interest. Also, it led to the343

data set being adopted in the privacy community [Wu et al., 2024] and increased the awareness in the344

document intelligence community [Biescas et al., 2024]. Participants were required to be able to train345

a state-of-the-art Document Visual Question Answering model in a federated learning setting (under346

DP). The number of potential participants that have the required skill set is not as high as in other347

challenges. Thus it is important that the threshold for participation is as low as possible. We discuss348

measures that we took to lower the threshold for participation.349

Starting Kit All solutions that are described in this analysis report utilized the provided starting kit350

to some extent. Based on the feedback from the participants, we think that the starting kit was crucial351

for them to participate. We can recommend to future organizers to test and document the starting kit352

extensively and include convenience functions (e.g., to compute communication cost or DP noise).353

Computational Cost Simulating the FL setting and even just fine-tuning large pre-trained models354

requires a significant amount of compute. This is especially true under DP as the privacy/utility trade-355

off can be improved by training longer [Ponomareva et al., 2023] and using larger batch sizes [Räisä356

et al., 2024]. We aimed to lower the threshold for participation by reducing the size of the client357

datasets and utilizing not the largest pre-trained model available. Still, executing the baselines with358

consumer hardware is hard if not impossible. One possible avenue for the future would be to open359

separate tracks for consumer hardware and provide cloud compute to teams that could otherwise not360

participate. The recent NeurIPS 2023 challenge on LLMs5 introduced some of these measures.361

7 Conclusion & Outlook362

The challenge is a benchmark and remains open for future submissions. In the future, we will host a363

red team challenge, where teams run privacy attacks against models from this challenge.364

Broader Impact This challenge invited the community to design novel creative solutions for real-life365

use cases. This has significant positive impact on users training ML models on personal data. The366

best practices and our setup can be used to improve further challenges.367

Limitations This challenge only focused on training models but does not focus on other parts of368

machine learning systems that may be vulnerable to privacy attacks as well [Debenedetti et al., 2023].369

5LLM Efficiency Challenge: 1LLM+1GPU+1Day:https://llm-efficiency-challenge.github.io/
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(b) Did you include complete proofs of all theoretical results? [Yes] We discussed the736

privacy analysis of the baseline of Track 2 in Appendix B. The participants base their737

analysis on the same proofs. In Appendix D.2 more theorectical analysis is supplied.738

3. If you ran experiments (e.g. for benchmarks)...739

(a) Did you include the code, data, and instructions needed to reproduce the main exper-740

imental results (either in the supplemental material or as a URL)? [Yes] We refer to741

the main results code using urls, refer to the dataset in Appendix A.2 and specify the742

instructions in Appendices A.4, C and D.743

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they744

were chosen)? [Yes] The training details are specified in Appendices A.4, C and D.745

The dataset is described in Section 3.1.746

(c) Did you report error bars (e.g., with respect to the random seed after running exper-747

iments multiple times)? [No] Due to the computational cost (see Section 6.2), the748

competition only considered one model checkpoint per track and participant (and749

privacy level).750

(d) Did you include the total amount of compute and the type of resources used (e.g., type751

of GPUs, internal cluster, or cloud provider)? [Yes] This information is detailled in752

Appendices A.4, C and D.753

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...754

(a) If your work uses existing assets, did you cite the creators? [Yes] We cited all creators755

where applicable.756

(b) Did you mention the license of the assets? [Yes] We mention the license of the757

pre-trained model in Appendix A.3 and the datasets in Appendix A.2.758

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]759

The codes are included via URLs.760

(d) Did you discuss whether and how consent was obtained from people whose data you’re761

using/curating? [N/A] We only use already published data sets and do not publish new762

data.763

(e) Did you discuss whether the data you are using/curating contains personally identifiable764

information or offensive content? [N/A] We only use already published data sets and765

do not publish new data.766

5. If you used crowdsourcing or conducted research with human subjects...767

(a) Did you include the full text of instructions given to participants and screenshots, if768

applicable? [N/A] We did not use crowdsourcing or conducted research with human769

subjects.770

(b) Did you describe any potential participant risks, with links to Institutional Review Board771

(IRB) approvals, if applicable? [N/A] We did not use crowdsourcing or conducted772

research with human subjects.773

(c) Did you include the estimated hourly wage paid to participants and the total amount774

spent on participant compensation? [N/A] We did not use crowdsourcing or conducted775

research with human subjects.776

A General Appendix777

A.1 Author contributions778

In this section we list the author contributions. The participants wrote the Sections 4.3, 4.4, 5.3779

and 5.4.780

Organizers of the challenge:781
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Marlon Tobaben1, Mohamed Ali Souibgui2, Rubèn Tito2, Khanh Nguyen2, Raouf Kerkouche3,782

Kangsoo Jung4, Joonas Jälkö1, Lei Kang2, Andrey Barsky2, Vincent Poulain d’Andecy5, Aurélie783

JOSEPH5, Josep Llados2, Ernest Valveny2, Antti Honkela1, Mario Fritz3, Dimosthenis Karatzas2784

785

1University of Helsinki, 2Computer Vision Center, Universitat Autònoma de Barcelona, 3CISPA786

Helmholtz Center for Information Security, 4INRIA, 5Yooz787

Winners Track 1:788

Aashiq Muhamed6, Kevin Kuo6, Virginia Smith6789

6Carnegie Mellon University790

Track 1 runners-up:791

Kenta Niwa7, Hiro Ishii8, Yusuke Yamasaki7, Takumi Fukami7, Iifan Tyou7, Rio Yokota8792

7NTT, 8Tokyo Institute of Technology793

Winners Track 2:794

Ragul N9, Rintu Kutum9795

9Asoka University796

Track 2 runners-up:797

Takumi Fukami7, Yusuke Yamasaki7 , Kenta Niwa7 , Iifan Tyou7798

7NTT799

A.2 Dataset800

This section contains additional information regarding the dataset. The data set is described in more801

detail in Tito et al. [2023b] and is available to download on the ELSA benchmark platform https:802

//benchmarks.elsa-ai.eu/?ch=2&com=downloads. The Dataset is created using images from803

the DocILE dataset [Šimsa et al., 2023], which was published under the MIT License. For PFL-804

DocVQA we created new annotations for these images. The created annotations are the OCR805

transcriptions (using Amazon Textract) and the pairs of question/answer. The question/answer pairs806

are generated using key/value pairs extracted by Amazon Textract and then manually verified. For807

each key, a question is formed to ask about it, and the answer is the corresponding value. These808

questions are generated semi-automatically by creating multiple templates for each key and then809

using a language model OpenAI [2023] to rephrase them, achieving linguistic diversity. Our dataset810

is published under the Licence CC-BY-4.0.811

Dataset Client (Subset) Provider Document Page Question/Answer

Train

0 400 2224 5930 19465
1 418 2382 6694 22229
2 404 2296 6667 21673
3 414 2358 6751 22148
4 429 4543 12071 32472
5 423 2378 6984 22361
6 423 2700 7406 23801
7 416 1951 5617 18462
8 401 1932 5421 17868
9 421 2136 6353 20840

Valid - 2231 3536 9150 30491

Test In-Distribution 1390 2875 8088 25603
Out-of-Distribution 977 1912 5375 17988

Table A1: Statistics on the base PFL-DocVQA Dataset in terms of number of
Providers/Documents/Pages/Question-Answers.
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Figure A.1: Data split of the PFL-DocVQA dataset.

A.3 Additional information on the model812

The pre-trained model [Tito et al., 2023a] can be found at https://huggingface.co/rubentito/813

vt5-base-spdocvqa. It is licensed under the gpl-3.0 license.814

A.4 Training details for baselines815

The hyperparameters for the baseline were chosen using a combination of grid search and manual816

search. The assumption for the baselines is not to have optimal hyperparameters but rather reasonable817

baselines.818

We utilize two NVIDIA A40 (40 GB VRAM each) and train for some hours to obtain the baselines.819

The exact runtime depends on the hyperparamters being used.820

A.4.1 Track 1821

This baseline achieves 0.8676 of ANLS and 77.41 accuracy on the validation set after 10 FL Rounds.822

It transmits 1.12GB constantly for each communication stream, which results in a total of 44.66GB823

during the entire training process. We sample K = 2 clients at every federated round.824

A.4.2 Track 2825

The baseline is obtained through 5 FL Rounds. It transmits 1.12GB constantly for each communication826

stream, which results in a total of 22.32GB during the entire training process. We sample K = 2827

clients per round and M = 50 providers on each client. The updates are clipped to a norm of 0.5 and828

the Gaussian noise is computed so that the privacy budgets of ϵ ∈ {1, 4, 8} at δ = 10−5.829

B Privacy Analysis830

The privacy analysis of our differentially private baseline is discussed in this section. The provided831

python script to compute the privacy budget ε is derived from the following analysis.832

B.1 Definitions833

Definition B.1 (Differential Privacy Dwork and Roth [2014]). A randomized mechanismM with834

range R satisfies (ε, δ)-differential privacy, if for any two adjacent datasets E and E′, i.e., E′ =835
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E ∪ {x} for some x in the data domain (or vice versa), and for any subset of outputs O ⊆ R, it holds836

that837

Pr[M(E) ∈ O] ≤ eε Pr[M(E′) ∈ O] + δ (A1)

Intuitively, DP guarantees that an adversary, provided with the output ofM, can draw almost the838

same conclusions (up to ε with probability larger than 1 − δ) about any group no matter if it is839

included in the input ofM or not Dwork and Roth [2014]. This means, for any group owner, a840

privacy breach is unlikely to be due to its participation in the dataset.841

In Federated Learning, the notion of adjacent (neighboring) datasets used in DP generally refers to842

pairs of datasets differing by one client (client-level DP), or by one group of one user (group-level843

DP), or by one data point of one user (record-level DP). Our challenge focuses on the group-level844

DP Galli et al. [2023], where each group refers to a provider.845

We use the Gaussian mechanism to upper bound privacy leakage when transmitting information from846

clients to the server.847

Definition B.2. (Gaussian Mechanism Dwork and Roth [2014]) Let f : Rn → Rd be an arbitrary848

function that maps n-dimensional input to d logits with sensitivity being:849

S = max
E,E′
∥f(E)− f(E′)∥2 (A2)

over all adjacent datasets E and E′ ∈ E . The Gaussian MechanismMσ, parameterized by σ, adds850

noise into the output, i.e.,851

Mσ(x) = f(x) +N (0, σ2I). (A3)

852

As in Abadi et al. [2016], Mironov et al. [2019], we consider the Sampled Gaussian Mechanism853

(SGM) —a composition of subsampling and the additive Gaussian noise (defined in B.5)— for privacy854

amplification. Moreover, we first compute the SGM’s Renyi Differential Privacy as in Mironov855

et al. [2019] and then we use conversion Theorem B.8 from Balle et al. [2020] for switching back to856

Differential Privacy.857

Definition B.3 (Rényi divergence). Let P and Q two distributions on X defined over the same858

probability space, and let p and q be their respective densities. The Rényi divergence of a finite order859

α ̸= 1 between P and Q is defined as follows:860

Dα (P ∥ Q)
∆
=

1

α− 1
ln

∫
X
q(x)

(
p(x)

q(x)

)α

dx .

Rényi divergence at orders α = 1,∞ are defined by continuity.861

Definition B.4 (Rényi differential privacy (RDP)). A randomized mechanismM : E → R satisfies862

(α, ρ)-Rényi differential privacy (RDP) if for any two adjacent inputs E, E′ ∈ E it holds that863

Dα (M(E) ∥ M(E′)) ≤ ρ

In this work, we call two datasets E,E′ to be adjacent if E′ = E ∪ {x} (or vice versa).864

Definition B.5 (Sampled Gaussian Mechanism (SGM)). Let f be an arbitrary function mapping865

subsets of E to Rd. We define the Sampled Gaussian mechanism (SGM) parametrized with the866

sampling rate 0 < q ≤ 1 and the noise σ > 0 as867

SGq,σ
∆
= f ({x : x ∈ E is sampled with probability q}) +N (0, σ2Id),

where each element of E is independently and randomly sampled with probability q without replace-868

ment.869
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As for the Gaussian Mechanism, the sampled Gaussian mechanism consists of adding i.i.d Gaussian870

noise with zero mean and variance σ2 to each coordinate value of the true output of f . In fact,871

the sampled Gaussian mechanism draws vector values from a multivariate spherical (or isotropic)872

Gaussian distribution which is described by random variable N (0, σ2Id), where d is omitted if it is873

unambiguous in the given context.874

B.2 Analysis875

The privacy guarantee of FL-GROUP-DP is quantified using the revisited moment accountant Mironov876

et al. [2019] that restates the moments accountant introduced in Abadi et al. [2016] using the notion877

of Rényi differential privacy (RDP) defined in Mironov [2017].878

Let µ0 denote the pdf of N (0, σ2) and let µ1 denote the pdf of N (1, σ2). Let µ be the mixture of879

two Gaussians µ = (1 − q)µ0 + qµ1, where q is the sampling probability of a single record in a880

single round.881

Theorem B.6. Mironov et al. [2019]. Let SGq,σ be the Sampled Gaussian mechanism for some882

function f and under the assumption ∆2f ≤ 1 for any adjacent E,E′ ∈ E . Then SGq,σ satisfies883

(α, ρ)-RDP if884

ρ ≤ 1

α− 1
logmax(Aα, Bα) (A4)

where Aα
∆
= Ez∼µ0

[(µ(z)/µ0(z))
α
] and Bα

∆
= Ez∼µ[(µ0(z)/µ(z))

α
]885

Theorem B.6 states that applying SGM to a function of sensitivity (Equation B.2) at most886

1 (which also holds for larger values without loss of generality) satisfies (α, ρ)-RDP if ρ ≤887
1

α−1 log(max{Aα, Bα}). Thus, analyzing RDP properties of SGM is equivalent to upper bounding888

Aα and Bα.889

From Corollary 7. in Mironov et al. [2019], Aα ≥ Bα for any α ≥ 1. Therefore, we can reformulate890

A4 as891

ρ ≤ ξN (α|q) := 1

α− 1
logAα (A5)

To compute Aα, we use the numerically stable computation approach proposed in Mironov et al.892

[2019] (Sec. 3.3) depending on whether α is expressed as an integer or a real value.893

Theorem B.7 (Composability Mironov [2017]). Suppose that a mechanismM consists of a sequence894

of adaptive mechanismsM1, . . . ,Mk whereMi :
∏i−1

j=1Rj × E → Ri. If all the mechanisms in895

the sequence are (α, ρ)-RDP, then the composition of the sequence is (α, kρ)-RDP.896

In particular, Theorem B.7 holds when the mechanisms themselves are chosen based on the (public)897

output of the previous mechanisms. By Theorem B.7, it suffices to compute ξN (α|q) at each step898

and sum them up to bound the overall RDP privacy budget of an iterative mechanism composed of899

single DP mechanisms at each step.900

Theorem B.8 (Conversion from RDP to DP Balle et al. [2020]). If a mechanismM is (α, ρ)-RDP901

then it is ((ρ+ log((α− 1)/α)− (log δ + logα)/(α− 1), δ)-DP for any 0 < δ < 1.902

Theorem B.9 (Privacy of FL-GROUP-DP). For any 0 < δ < 1 and α ≥ 1, FL-GROUP-DP is903

(minα(Tcl · ξ(α|q) + log((α− 1)/α)− (log δ + logα)/(α− 1)), δ)-DP, where ξN (α|q) is defined904

in Eq. A5, q = C·|M|
mink |Gk| .905

The proof follows from Theorems B.6, B.7,B.8 and the fact that a group (provider) is sampled in906

every federated round if (1) the corresponding client is sampled, which has a probability of C, and907

(2) the batch of groups sampled locally at this client contains the group, which has a probability of at908

most |M|
mink |Gk| . Therefore, a group is sampled with a probability of q = C·|M|

mink |Gk| .909

21



C Supplementary Information of Section 4.3910

Here, we present details for reproducing the results from Section 4.3. In all experiments, clients911

perform local fine-tuning with batch size = 16 and learning rate = 2e-4. In our code, we train one912

model at a time using data parallelism. Specifically, we split each batch over 8 GPUs, resulting in913

a batch size of 2 per GPU (we used 8 GeForce GTX 1080 Ti GPUs). Our code will be shared on914

Github: https://github.com/imkevinkuo/PFL-DocVQA-Competition.915

C.1 Communication cost916

Since all messages have an identical size in this FL setting, the total communication cost is simply a917

product of the a) size of communicated messages and b) number of messages sent. In the table below,918

we break down each method’s cost using the following equations:919

‘Total’ = ‘Message Size’ × ‘Messages’
where ‘Message Size’ =

(
‘LoRA’ (#params) + ‘Base (#params)’

)
× ‘Bits’ (per param)

and ‘Messages’ = ‘C’ (clients per round) × ‘R’ (FL rounds) × 2 (up and down)

Message Size Messages Total ANLS

Method LoRA Base Bits Bytes C R Bytes Val Test

Baseline - 250M 32 1.11 GB 2 10 40 GB .8676 .8873
LoRA (rank=6) 660K 2.75M 32 13.7 MB 2 7 380 MB .8400 .8566
Tuned HPs 660K 2.75M 32 13.7 MB 1 2 55 MB .8467 .8683
Quantization 660K 2.75M 4.5 1.92 MB 1 2 7.7 MB .8444 .8673

Table A2: We summarize the three methods used. LoRA reduces the number of trainable parameters,
tuning HPs reduces the number of messages, and quantization reduces the parameter bitwidth.

920

LoRA. While the VT5 architecture contains both a language backbone (T5) and vision backbone921

(DiT), we only use LoRA on the language backbone and insert 110K new parameters per LoRA rank.922

For the vision backbone (‘Base’), we directly fine-tune the spatial encoder (2.16M params) and visual923

embedding projection head (0.59M params). All other parameters in the entire model are frozen.924

Although LoRA changes the model architecture during training, it can be merged with the pretrained925

architecture after training is complete, which allowed us to make valid submissions.926

The ∼ 110K parameters (0.44 MB) per LoRA rank r come from applying LoRA to the query and927

value projections in each attention layer of the language backbone. Each projection matrix has928

dimension 768× 768, so its two adapter matrices A,B will both have dimension 768× r. There are929

36 attention layers which contain a query and value projection, giving the final value:930

36 (layers) × 2 (query and value)× 2 (A and B) × 768 × r (rank) = 110, 592 ≈ 110K× r

We note that LoRA typically takes more iterations to train than full fine-tuning. While the full931

fine-tuning baseline provided by the organizers achieves .8242 validation ANLS in 4 rounds (this is932

5% below the .8676 ANLS at 10 rounds), we find that LoRA takes 7 rounds (↑ 2×) to achieve the933

same ANLS. However, the parameter reduction from LoRA (↓ 100×) greatly offsets this cost. For all934

experiments in this section, we use LoRA with rank r = 6.935

C.2 Tuned FL Hyperparameters936

We find that extended local fine-tuning on a single client is very helpful, as it increases utility with no937

additional communication cost. In Table A3, we show that training only on a single client can achieve938

.8242 ANLS. We also find that sampling a single client is more efficient than averaging multiple939

clients each round. In Table A4, ‘1 Client’ usually outperforms ‘2 Clients’ when given double the940

number of rounds.941
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Client ID
Epochs 0 1 2 9

1 .7648 .7638 .7577 .7552
2 .7893 .7912 .7904 .7797
4 .8111 .8108 .8039 .8089
8 .8247 .8219 .8231 .8176

16 .8337 .8345 .8329 .8307

Table A3: Extended local training on a single
client greatly improves validation ANLS.

FL Rounds
1 Client 1 2 4 8

1 Epoch .7419 .7875 .8083 .8331
2 Epochs .7719 .8061 .8206 .8382

2 Clients (2× communication cost)

1 Epoch .7493 .7899 .8232 .8400
2 Epochs .7696 .8083 .8355 .8513

Table A4: Sampling one client and training for
double the rounds achieves a higher validation
ANLS than sampling two clients.

One surprising takeaway from our experiments is that the data from a single client is adequate to train942

a competitive model. However, there are many limitations with limiting the client subsample, which943

we briefly outline. First, in cross-device FL settings which consider a large network (up to millions) of944

clients, extreme subsampling can lead to low-quality global updates. Next, since subsampling slows945

down convergence, the model will take more rounds and thus more wall-clock time to train. Finally,946

in the context of privacy, sampling fewer clients makes it more difficult to bound the sensitivity of the947

aggregate update with respect to any individual client’s data, which results in greater privacy loss.948

C.3 Quantization949

By default, each parameter is communicated as a 32-bit floating-point value (FP32). We reduce this950

to 4.5 bits (↓ 7×) by using NF4 (normal-float) quantization [Dettmers et al., 2023]. While NF4951

proposes using LoRA on top of a quantized backbone, we use quantization to reduce the size of952

all communicated parameters (in both LoRA and the backbone). Similar recent FL methods have953

generally explored combining LoRA with parameter compression to reduce communication [Yadav954

et al., 2023, Kuo et al., 2024].955

In NF4, each parameter is stored using 4 bits (16 unique values) and each block of k = 64 parameters956

shares an FP32 normalization factor. This adds up to 4 + (32/k) = 4.5 bits per parameter, as957

shown in Table A2. Parameters are quantized only before communication, while finetuning and958

aggregation are all done in full precision. As we show in Table A5, quantization slightly harms model959

performance, but this cost is greatly offset by the reduction in communication.

Full-precision Quantized
Round Stage 1 Client 2 Clients 1 Client 2 Clients

1 Download Initialize weights using shared RNG seed
Finetuning .8337 .8341 .8337 .8341

Upload - - .8301 .8313
Aggregation - .8255 - .8253

2 Download - - - .8253
Finetuning .8467 .8437 .8448 8445

Upload - - .8444 .8524
Aggregation - .8520 - .8518

Total Communication 55 MB 110 MB 7.7 MB 15.4 MB

Table A5: We track the validation ANLS after each stage of communication-efficient FL. When
sampling ‘2 Clients’ per round, ‘Finetuning’ and ‘Upload’ refer to the average ANLS over the two
client models. ‘-’ indicates that the same model(s) are evaluated as the cell above e.g. full-precision
‘Upload’ and ‘Download’ do not change the model(s).

960
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D Supplementary Information of Sections 4.4 and 5.4961

D.1 FedShampoo for Track 1962

Update rules of FedShampoo: First, we explain the update rule using Shampoo Gupta et al. [2018].963

As discussed in Sec. 4.4, Shampoo is a second-order optimization method that involves multiplying964

the preconditioning matrix with the (stochastic) gradient, and the preconditioning technique in965

Shampoo is introduced in the local model update in our FedShampoo, which is summarized in Alg.966

1.967

In the optimization of models in the form of neural networks, it is typical for model parameters to968

be described by a stack of matrices/tensors to transform each layer’s input and output. Although969

we have focused on formulating the update rules in a matrix manner (since we will mainly focus970

on Transformer-based model), it is not a loss of generality. For all clients i ∈ [N ] and each layer971

b ∈ [B], let W (t)
i,b ∈ Rdout,b×din,b be the model parameter in the b-th layer of the neural network, and972

G
(t)
i,b ∈ Rdout,b×din,b be the stochastic gradient of the local loss function with respect to W

(t)
i,b . The973

local model update rule using Shampoo is given by974

L
(t+1)
i,b = L

(t)
i,b +G

(t)
i,b

[
G

(t)
i,b

]⊤
,

R
(t+1)
i,b = R

(t)
i,b +

[
G

(t)
i,b

]⊤
G

(t)
i,b ,

W
(t+1)
i,b = W

(t)
i,b − η

[
L
(t)
i,b

]−1/4

G
(t)
i,b

[
R

(t)
i,b

]−1/4

, (A6)

where η denotes the learning rate, and L
(t)
i ∈ Rdout,b×dout,b and R

(t)
i ∈ Rdin,b×din,b are the precondi-975

tioning matrices for the gradient and the weight matrix, respectively.976

In Eq. equation A6, the local preconditioning matrices, Li,b and Ri,b, are multiplied to both sides977

of the stochastic gradient in a matrix form Gi,b. This process can be interpreted as mitigating978

changes in the local gradient of loss function through model parameter updates by multiplying local979

preconditioning matrices. This supports mitigating the negative effects of complex loss landscape in980

the loss function using neural networks, and it can lead to fast convergence to the stationary point.981

Thanks to the Shampoo application in a layer-wise manner, it is possible to track Li,b and Ri,b for982

each layer, which significantly reduces the memory footprint. Specifically, while the full-matrix983

version of AdaGrad Duchi et al. [2010] requires memory linearly proportional to the number of984

model parameters O(d2out,bd
2
in,b), Shampoo only requires memory with O(d2out,b + d2in,b) for each985

layer. Furthermore, the inversion of the preconditioning matrices can be efficient, since it takes986

O(d3out,b + d3in,b) rather than O(d3out,bd
3
in,b) in terms of computational complexity.987

Additionally, element-wise clipping was used in the local model update rule, which is a de-facto988

standard for stable optimization of the Transformer-based models, as mentioned in e.g., Zhang et al.989

[2020]. Due to the heavy-tailed noise in stochastic gradient, the magnitude of updates in model990

parameters has significantly changed, leading to unstable convergence. To address this issue, we991

effectively alleviated this phenomenon by incorporating the clipping of the magnitude of each element992

of gradients into adaptive updates using Shampoo.993

Finally, as noted in Sec. 4.4, to reduce the amount of communication per round, the embedding layer994

was excluded from the optimization target. This results in a reduction of around 26 % amount of995

parameters, rather than transmitting whole parameters.996

In the following, experimental setups are explained.997

Compared methods: In our experiment, we utilized two methods with differing local update998

rules: 1) the baseline method using AdamW optimizer, and 2) FedShampoo using Shampoo-based999

preconditioner to the Stochastic Gradient Descent (SGD).1000

Hyperparameter Tuning: To ensure a fair comparison of the two methods, several hyperparameters1001

(learning rate η and element-wise clipping threshold C) were empirically tuned. This was done while1002
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Algorithm 1 Update rules of FedShampoo
1: ▷ Initialization wi, Li,b = I, Ri,b = I, ρL = ρR = 1e−4

2: for r ∈ {1, . . . , R} (Outer loop round) do
3: ▷ (i) Global model update in central server
4: ▷ Averaging of aggregated local models

w̄ = 1
K

∑K
i=1 wi

5: ▷ Transmit global model to clients
Transmitserver→client(w̄)

6: ▷ (ii) Local model updates in each client
7: for i ∼ [N ] (K = 2 client sampling) do
8: ▷ Initialization of local model

wi ← w̄
9: for t ∈ {1, . . . , T} (Inner loop iteration) do

10: ▷ Local stochastic gradient gi ∈ Rd

11: for b ∈ {1, . . . , B} (Layer-wise iteration) do
12: ▷ Reshaping elements of gi regarding b-th layer to be a matrix form

Gi,b ∈ Rdin,b×dout,b

13: if mod(t, 10) == 0 then
14: ▷ Local update of preconditioning matrices using moving average

Li,b ← Li,b +Gi,b[Gi,b]
⊤, Ri,b ← Ri,b + [Gi,b]

⊤Gi,b

15: end if
16: if mod(t, 100) == 0 then
17: ▷ Computing of local preconditioning matrices

L̃i,b ← [Li,b + ρLI]
−1/4

R̃i,b ← [Ri,b + ρRI]
−1/4

18: end if
19: ▷ Local model update using element-wise clipping

Wi,b ←Wi,b − η Clip(L̃i,bGi,bR̃i,b, C)
20: end for
21: end for
22: ▷ Reshaping model in a matrix form into a vector

wi ← Vec([Wi,1, . . . ,Wi,B ])
23: ▷ Transmit local model to central server

Transmitclientk→server(wi)
24: end for
25: end for

maintaining fixed values for the total communication rounds R = 10, the number of inner loops for1003

local update L = 5000, and the number of client sampling K = 2. In Fig. A.2, a summary of our1004

hyperparameter tuning for FedShampoo is provided. After performing empirical trials, we selected1005

η = 2e−4 and C = 0.2.1006

Computing environment: We used a server with 8 GPUs (NVIDIA A6000 for NVLink 40GiB1007

HBM2) and 2CPUs (Xeon).1008

Experiment results: The best validation accuracy and ANLS were achieved with the proposed1009

FedShampoo (with freezing embedding layer). As depicted with two lines, there was a confirmed1010

difference between the two methods.1011
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Figure A.2: Hyperparameter tuning for FedShampoo

Figure A.3: Convergence curves for the global model using (Left) validation loss, (Center) validation
accuracy, and (Right) validation ANLS.
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D.2 DP-CLGECL for Track 21012

Firstly, we provide a brief explanation of the formulation of CLGECL Tyou et al. [2024]. For FL1013

consisting of n local clients and a central server, we aim to solve a loss-sum minimization problem1014

with linear constraints on local parameters {wi}ni=1:1015

min
{wi}n

i=1

1

n

n∑
i=1

f i(wi) s.t. wi = wj (∀i ∈ N, j ∈ Ei), (A7)

where f i represents the local loss function and {1, . . . , n} ∈ N, {1, . . . , i − 1, i + 1, . . . , n} ∈ Ei.1016

The derivation details can be found in Tyou et al. [2024]. A solver for equation A7 over the centralized1017

network is referred to as CLGECL. Due to the constraint of identical local parameters, CLGECL1018

is expected to be robust to gradient drift. For this competition, we propose DP-CLGECL, which1019

introduced AdamW as a local update, client sampling, and Gaussian mechanism in DP for CLGECL,1020

as summarized in Alg. 2.1021

To follow the regulation of this competition task, we specified this operation as follows: First, we1022

assume that each client’s data set Dk is partitioned into a set Gk of disjoint and pre-defined groups,1023

and each client has different groups. The server randomly selects a subset K of n clients in each1024

round to update the global model. Each client receives the global model from the server for each1025

round. The client selects a random subset M of groups, calculates the gradient ∆wG
t by SGD with1026

momentum for each group, and the gradient ∆wG
t is updated with the dual variables λ, clipping it1027

into clipped the gradient ∆ŵG
t to have a bounded L2 norm of S, where S denotes the sensitivity1028

of the gradient ∆wG
t . The sum of ∆ŵG

t for all groups is calculated and perturbed by the Gaussian1029

mechanism. Finally, the k clients selected by the central server calculate the model update difference1030

w′ − wt−1, send it to the server, and update the dual variable λ.1031

Algorithm 2 Update rules of DP-CLGECL
1: Server:
2: Initialize common model w0

3: for t = 1 to R do
4: Select set K of clients randomly
5: for each client k in K do
6: uk

t = Clientk(wt−1)
7: end for
8: wt = wt−1 +

1
|K|
∑

k u
k
t

9: end for
10: Output: Global model wt

11: Clientk(wt−1):
12: Gk is a set of predefined disjoint groups of records in Dk

13: Select M ⊆ Gk randomly
14: if t == 1 then
15: Randomly initialize λ0

16: else
17: λt−1 ← λt−2 + wt−1 − w′

t−2.
18: end if
19: for each group G in M do
20: w′ = wt−1

21: ∆wG
t = AdamW(G,w′, Tgd)− wt−1 + λt−1

22: ∆ŵG
t = wG

t /max(1,
∥wG

t ∥2

S )
23: end for
24: w′

t = wt−1 +
1

|M|
(∑

G ∆ŵG
t +N (0, Iσ2)

)
25: Output: Client model w′

t − wt−1

Privacy analysis: In the privacy analysis of DP-CLGECL, we aim to determine ε and σ that ensure1032

that ∆wG
t + N (0, σ2I) guarantees (α, ε)-RDP. We then apply the composition on the RDP, and1033
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convert the RDP to DP. The privacy analysis of FL-GROUP-DP[Marathe and Kanani, 2022, Galli1034

et al., 2023] demonstrates a a method to guarantee (α, ε)-RDP for ∆wG
t +N (0, σ2I). This analysis1035

can be applied to our FL-GROUP-DP.1036

DP-CLGECL can guarantee (ε, δ)-DP if σ is used, satisfying the following1037

ε = min
α

(R · ξN (α | q) + log((α− 1)/α)− (log δ + logα)/(α− 1)) , (A8)

where1038

ξN (α | q) =



1

α− 1
log

(
α∑

k=0

(
α

k

)
(1− q)α−kqk exp

(
k2 − k

2σ2

))
, (Integerα),

1

α− 1
log

( ∞∑
k=0

Γ(α+ 1)

Γ(k + 1)Γ(α− k + 1)
(1− q)α−kqk

1

2
exp

(
k2 − k

2σ2

)
erfc

(
k − z1√

2σ

))

+
1

α− 1
log

( ∞∑
k=0

Γ(α+ 1)

Γ(k + 1)Γ(α− k + 1)
(1− q)kqα−k 1

2
exp

(
k2 − k

2σ2

)
erfc

(
z1 − k√

2σ

))
,

(Fractional α).

and a group is sampled with a probability of q = C·|M|
mink|Gk| , C is probability of client sampling.1039

Compared methods: In our testing, we mainly compared: 1) the baseline method based on FedAVG1040

and 2) DP-CLGECL. We also tested their variant versions, such as replacing AdamW with momentum.1041

Experiment results: The best ANLS for all ε was achieved by DP-CLGECL. By tuning the1042

hyperparameter, the baseline method given by the competition organizers was also able to achieve a1043

higher ANLS than the baseline presented.1044

The ANLS of DPCLGECL was further improved by using momentum instead of AdamW, as shown1045

in Fig. A.5. This could be due to the clipping radius not being well-matched with the stochastic1046

gradient using AdamW. A larger clipping radius can degrade the performance due to noise, thus, it1047

seems better to use momentum than AdamW. In this competition, mitigating the gradient drift with1048

CLGECL was also effective in improving performance. However, calculating the stochastic gradient1049

that matches the clipping radius was the most effective in improving performance.1050
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Figure A.4: convergence curve evaluating using the global model. (a) validation ANLS at ε = 1,
(b) validation ANLS at ε = 4, (c) validation ANLS at ε = 8. We used clipping radius S = 0.5, the
number of client sampling C = 2, the learning rate η = 0.0002, and the number of communication
round R = 14 for hyperparameter selection.

Figure A.5: convergence curve evaluating using the global model at ε = 1. (Left) Validation accuracy,
(right) Validation ANLS. We used clipping radius S = 0.5, the number of client sampling C = 2,
learning rate η = 0.0004, and the number of communication round R = 12.
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