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Abstract

Lately, there has been a surge in interest surrounding generative modeling of
time series data. Most existing approaches are designed either to process short
sequences or to handle long-range sequences. This dichotomy can be attributed
to gradient issues with recurrent networks, computational costs associated with
transformers, and limited expressiveness of state space models. Towards a uni-
fied generative model for varying-length time series, we propose in this work to
transform sequences into images. By employing invertible transforms such as
the delay embedding and the short-time Fourier transform, we unlock three main
advantages: i) We can exploit advanced diffusion vision models; ii) We can re-
markably process short- and long-range inputs within the same framework; and iii)
We can harness recent and established tools proposed in the time series to image
literature. We validate the effectiveness of our method through a comprehensive
evaluation across multiple tasks, including unconditional generation, interpolation,
and extrapolation. We show that our approach achieves consistently state-of-the-art
results against strong baselines. In the unconditional generation tasks, we show
remarkable mean improvements of 58.17% over previous diffusion models in the
short discriminative score and 132.61% in the (ultra-)long classification scores.
Code is at https://github.com/azencot-group/ImagenTime.

1 Introduction

Generative modeling of real-world information such as images [72], texts [13], and other types of
data [99, 55, 8] has drawn increased attention recently. In this work, we focus on the setting of
generative modeling (GM) of general time series information. There are several factors that govern
the complexity required from sequential data generators including the sequence length, its number of
features, the appearance of transient vs. long-range effects, and more. Existing generative models for
time series are typically designed either for multivariate short-term sequences [44, 19] or univariate
long-range data [103], often resulting in separate and completely different neural network frameworks.
However, a natural question arises: Can one develop a unified framework equipped to handle both
high-dimensional short sequences and low-dimensional long time series?

Earlier approaches for processing time series based on recurrent neural networks (RNNs) handled
short sequences well [62, 3, 43, 76], however, modeling long-range dependencies turned out to
be significantly more challenging. Particularly, RNNs suffer from the well-known vanishing and
exploding gradient problem [9, 70] that prevents them from learning complex patterns and long-range
dependencies. To address long-context modeling and memory retention, extensive research is devoted
to approaches such as long short-term memory (LSTM) models [42], unitary evolution RNNs [5]
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and Lipschitz RNNs [24]. A different approach for processing sequential information is based on
the Transformer [93], eliminating any recurrent connections. Recent remarkable results have been
obtained with transformers on natural language processing [13] and time series forecasting [96, 104,
68] tasks. Alas, transformers are underexplored as generative models for long-range time series
data. This may be in part due to their computational costs that scale quadratically as O(L2) with the
sequence length L, and in part because transformer forecasters are inferior to linear tools [101].

Beyond RNNs and the Transformer, recent works have considered the state space model (SSM) for
modeling long-range time series information. For instance, the structured SSM (S4) [36] employed a
parameterization that reduced computational costs via evaluations of Cauchy kernels. Further, the
deep linear recurrent unit (LRU) is inspired by the similarities between SSMs and RNNs, and it
demonstrated impressive performance in modeling long-range dependencies (LRD). Still, generative
modeling of long-range sequential data via state space models remains largely underexplored. Recent
work suggested LS4 [103], a latent time series generative model that builds upon linear state space
equations. LS4 utilizes autoregressive dependencies to expressively model time series (potentially
non-stationary) distributions. However, this model struggles with short-length sequences as we show
in our study, potentially due to limited expressivity of linear SSMs.

To overcome gradient issues of recurrent backbones, temporal computational costs of transformers,
and expressivity problems of SSMs, we represent time series information via small-sized images.
Transforming raw sequences to other encodings has been useful for processing audio [34] as well
as general time series data [95, 38, 56]. Moreover, a similar approach was employed to generative
modeling of time series with generative adversarial networks (GANs) [12, 39]. However, unstable
training dynamics and mode collapse negatively affect the performance of GAN-based tools [59]. In
contrast, transforming time series to images is underexplored in the context of generative diffusion
models. There are several fundamental advantages to our approach. First, there have been remarkable
advancements in diffusion models for vision data that we can exploit [81, 40, 86, 45]. Second, using
images instead of sequences elegantly avoids the challenges of long-term modeling. For instance, a
moderately-sized 256× 256 image corresponds to a time series of length up to 65k, as we show in
Sec. 3. Finally, there is a growing body of literature dealing with time series as images on generative,
classification, and forecasting tasks, whose results can be applied in our work and in future studies.

In this work, we propose a new diffusion-based framework for generative modeling of general time
series data, designed to seamlessly process both short-, long-, and ultra-long-range sequences. To
evaluate our method, we consider standard benchmarks for short to ultra-long time series focusing on
unconditional generation. Our approach supports efficient sampling, and it attains state-of-the-art
results in comparison to recent generative models for sequential information. As far as we know,
there are no existing tools handling both short and long sequence data. In addition to its strong
unconditional generation capabilities, our approach is also tested in conditional scenarios involving
the interpolation of missing information and extrapolation. Overall, we obtained state-of-the-art
results in such cases with respect to existing tools. We further analyze and ablate our technique to
motivate some of our design choices. The contributions of our work can be summarized as follows:

1. We view generative modeling of time series as a visual challenge, allowing to harness advances in
time series to image transforms as well as vision diffusion models.
2. We develop a novel generative model for time series that scales from short to very long sequence
lengths without significant modifications to the neural architecture or training method.
3. Our approach achieves state-of-the-art results in comparison to strong baselines in unconditional
and conditional generative benchmarks for time series of lengths in the range [24, 17.5k]. Particularly,
we attain the best scores on a new challenging benchmark of very long sequences that we introduce.

2 Related work

Time series to image works. Motivated by the success of convolutional neural networks on vision
data, several works have transformed time series to images using Gramian Angular Fields [95],
Recurrence Plots [38], and Line Graphs [56]. This innovation allows leveraging computer vision
techniques, tested on tasks such as time series classification and imputation. In speech analysis and
processing, the short-time Fourier transform (STFT) stands out as a widely used method [1, 2, 94, 26].
It tracks the changes in frequency components over time, making it essential for analyzing and
understanding audio and speech data. Recent research [71, 17] has explored mel-spectrogram
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transforms within diffusion models, including integration with advanced latent diffusion spaces [58].
Furthermore, combining time series images and Wasserstein GANs [12, 39] have been considered for
generative modeling. Yet, representing general time series as images within diffusion models for tasks
such as unconditional generation, interpolation, and extrapolation, remains largely underexplored.
The goal of this work is to make a step toward bridging this gap.

Diffusion models. Both denoising diffusion probabilistic models (DDPM) [81, 40] and score-based
generative models [84, 85] have demonstrated their effectiveness across diverse domains including
images [74, 41], audio [15, 52], and graphs [69, 97, 10]. Song et al. [86] showed that DDPM
and score-based models can be both interpreted as stochastic differential equations (SDE). Further
works focused on improving generation quality by using latent diffusion processes in autoencoder
architectures [74]. Another research direction deals with lowering the number of neural function
evaluations (NFEs), which originally ranged from hundreds to thousands NFEs. For instance, Karras
et al. [45] obtain a low Fréchet inception distance (FID) with only 35 evaluations, whereas the recent
consistency models [82] achieved comparable results with only a single function evaluation.

Generative modeling of time series. Generative adversarial networks (GANs) [31] have shown
remarkable success in generating realistic data across various domains. Specifically, their application
to time series information by joint optimization of supervised and adversarial objectives via TimeGAN
captured the inherent dynamics of real-world signals [99]. Similarly, GT-GAN [44] utilizes diverse
tools including ordinary differential equations (DE) [16], neural controlled DE [51], and continuous
time-flow processes to model both regularly- and irregularly-sampled data [21]. Nevertheless, GANs
suffer from challenges, primarily due to unstable training dynamics and mode collapse [59]. Beyond
GANs, variational autoencoders (VAEs) have been also considered for generative modeling of
sequential data [22, 54, 73], where the work [66] achieved strong results using Koopman-based
approaches [7, 6, 65, 11]. To process long-range dependencies and stiff dynamics [79], Zhou et
al. [103] introduced LS4, a latent generative model based on linear state space equations. Following
the success of diffusion models in other domains, there is a growing desire to adapt them for
time series data. However, this adaption is not straightforward and entails the design of a suitable
backbone [88, 57, 19, 100, 67]. Other approaches focused on regression problems [49], based on
manifold learning tools [47, 48]. Instead, we propose a new framework for generative modeling of
time series by transforming such data to images and using existing strong diffusion vision models.

3 Background

In what follows, we state the problem, we mention two effective time series to image transformations,
and we briefly discuss the essentials of diffusion-based generative modeling.

Problem statement. We address the problem of generating time series (TS), sampled from a
learned distribution p̃(x) that is similar to an unknown distribution p(x), for which we have a set
of observed TS data. The given observations include data samples x ∈ RL×K , where L represents
the sequence length and K denotes the number of features. Formally, the generative modeling
task is often termed "unconditional generation" [37], and it entails learning a model M capable of
sampling unseen time series x̃ from p̃(x). Additionally, our work addresses a secondary problem
known as "conditional generation". In this setting, given an additional signal c, we learn the unknown
(conditional) distribution p(x|c). For example, the signal c can be an observed part from the TS. This
conditional modeling proves useful for tasks such as time series interpolation and extrapolation.

Time series to image transforms. We focus in our study on two invertible time series to image
transformations: 1) the delay embedding; and 2) the short time Fourier transform. We provide below
a brief overview of these transforms and their inverse. We consider additional transforms and we
discuss more details in App. A. Fig. 3 illustrates a time series signal and its related images.

Delay embeddings [87] transform a univariate time series x1:L ∈ RL to an image by arranging the
information of the series in columns and pad if needed. Let m,n be two user parameters representing
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the skip value and the column dimension, respectively. We construct the following matrix X ,

X =

x1 xm+1 . . . xL−n

...
... . . .

...
xn xn+m+1 . . . xL

 ∈ Rn×q , (1)

where q = ⌈(L− n)/m⌉. The image ximg is created by padding with zeros to fit the neural network
input constraints. Given ximg, the original time series x1:L can be extracted in multiple ways. For
instance, if m = 1, then x1:L is formed by concatenating the first row and last column of ximg. The
delay embedding scales naturally to long sequences, e.g., setting m = n = 256 allows to encode 65k
sequences with 256× 256 images.

Short Time Fourier Transform (STFT) [35] is a well-known transformation that maps a signal from
its original domain into the frequency domain. To preserve the temporal structure, STFT applies a
rolling window on the time axis, extracting time series segments for which the fast Fourier transform
(FFT) is applied. Given an input signal x ∈ RL×K , STFT produces an image ximg ∈ R2K×H×W ,
where the channels are doubled to store the real and imaginary parts, and H,W are derivatives of
user parameters. STFT requires a minimum window length, and thus, short sequences may require
a linear interpolation to match length constraints. Remarkably, the short time Fourier transform is
invertible via reverse STFT with a negligible loss of information. Importantly, in contrast to the
common practice in audio processing, we do not further compute the spectrogram of STFT, avoiding
non-trivial inverse transformations.

Diffusion models. Diffusion processes gradually add noise to an image, following a predefined
noise scheduling scheme. Generating new images is possible by learning a model that removes noise.
The diffusion process {x(t)}Tt=0 is the path of a stochastic differential equation (SDE) [86], where an
initial sample x(0) is drawn from the data distribution p0(x). The initial sample is modified to x(T ),
sampled from a simple prior distribution such as a normal Gaussian N (0, I). Formally, the forward
process is governed by an SDE of the form,

dx = f(x, t)dt+ gdw , (2)

where f(·, t) : Rd → Rd represents the drift coefficient, g ∈ R is the diffusion scalar, and w denotes a
standard Wiener process. To facilitate sampling, we need to derive the reverse SDE. It is well-known
that the reverse process [4] is given by,

dx = [f(x, t)− g2∇x log pt(x)]dt̄+ gdw̄ , (3)

where t̄ denotes reverse time and w̄ is a reverse Wiener process. Given Eq. (3), one can derive a
deterministic process, characterized by trajectories that share identical marginal probability densities.
Formally, we obtain the following ordinary differential equation (ODE),

dx = f(x, t)− g2∇x log pt(x) . (4)

Diffusion models compute an estimator sθ(x, t) to approximate the infeasible ∇x log pt(x) via

min
θ

Et{Ex0,xt
|sθ(x, t)−∇x log p0t(xt|x0)|22} , (5)

where p0t denotes the joint distribution of the initial data and noisy sample. In practice, minimizing
Eq. (5) is done by learning the noise pattern of input images. For a more comprehensive discussion
regarding score-based models, we refer to [86, 45]. We specify in Sec. 4 the particular diffusion
model employed in this work, along with further additional details.

4 Method

Our approach to generative modeling of time series information is based on the following simple
observation and straightforward idea. We observe that diffusion models for vision have demonstrated
remarkable progress and results recently [40, 74, 72]. Therefore, our idea is to transform sequences
to images, allowing their processing using established diffusion vision models. Fortunately, there are
several efficient time series to image maps with effective inverse transforms [87, 35, 95, 56]. Our
computational pipeline is composed of three main building blocks: 1) a time series to image module;
and 2) a diffusion model; and 3) an image to time series component. The diffusion model is the
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Figure 1: Our training pipeline (top) involves transforming a time series signal to its e.g., delay
embedding image, process the image with a diffusion model, and output its cleaned version. During
inference (bottom), we sample from a standard normal distribution and obtain a clean image using
the trained diffusion model. Finally, we transform the image back to the time series domain.

only learnable parameter-based part of our neural network. We illustrate our generative modeling
framework for time series information in Fig. 1, depicting the above building blocks with proper
notations for inputs and outputs. Formally, given an input time series x ∈ RL×K with L the sequence
length and K the number of features, we transform it to an image ximg ∈ RC×H×W . Noise is added
to the latter image yielding the tensor ximg(t) which is processed with our diffusion model, whose
output s(ximg, t) ∈ RC×H×W represents the cleaned image. During inference, noise ximg(T ) is
sampled from N (0, I), iterated backward to ximg(0) and transformed to a time series x̃ ∈ RL×K .

There are several options to choose from regarding the time series to image (ts2img) transform,
T : RL×K → RC×H×W . While all transforms are applicable in our framework, we opt for ts2img
maps that are efficient to compute, provide informative images, scalable across short and long
sequences, and have a closed-form inverse. For instance, line graphs [56] are efficient with a closed-
form inverse, however, they produce images that are mostly non-informative as they contain blank
pixels. Similarly, the Gramian angular field transform [95] essentially stores the sequence in its
main diagonal, and thus, it is not straightforward to apply it to long-range data. In this work, we
focus on using the delay embedding and short time Fourier transforms. Both ts2img maps satisfy
all requirements above. Moreover, our empirical ablation analysis in Sec. 5.5 highlights that these
transformations attain the best results on average. The inverse transforms T −1 for delay embedding
and STFT are parameter-less, deterministic, and highly efficient. See Sec. 3 and App. A.

At the heart of our ImagenTime framework lies the generative diffusion model backbone. Diffusion
models for vision data have enjoyed increased attention over the past few years, with strong techniques
appearing at an unprecedented rate [81, 84, 40, 85, 86, 74]. One limitation, shared among all diffusion
models, is the requirement to iteratively denoise the image during inference, resulting in costly neural
function evaluations (NFEs). While multiple works focused on alleviating this issue [77, 83, 28, 82],
the work by Karras et al. [45] offers an enhanced score-based model with a good balance between
rapid sampling and high-quality generations. Specifically, they presented a clearer design space
for the factors that determine the performance of diffusion models, and they suggested EDM that
employs a second-order ODE for the reverse process, yielding low FID images in 35 NFEs. Thus, we
utilize in this work the EDM diffusion model as our generative backbone.

We conclude by briefly discussing the training and inference procedures. During training, we process
batches of time series data X , for which we apply T using either delay embedding or STFT to obtain
a batch of images, i.e., Ximg = T (X). Subsequently, we employ the training procedure of EDM to
learn the score function sθ(Ximg, t). For inference, we use the trained EDM model and we compute
the reverse ODE in Eq. (4) for sampling new data points. In practice, we follow the same inference
procedure specified in [45]. Finally, given a batch of sampled images, X̃img, we apply the inverse
transform T −1 to achieve a batch of generated time series samples, i.e., X̃ = T −1(X̃img).

5 Experiments

We use standard unconditional and conditional quantitative and qualitative benchmarks to extensively
validate our framework’s ability to generate high-quality time series samples. First, we test our
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Table 1: Error measures for the short time series unconditional discriminative and prediction tasks.
Stocks Energy MuJoCo

Method disc↓ pred↓ disc↓ pred↓ disc↓ pred↓
KoVAE .009 ± .006 .037± .000 .143± .011 .251± .000 .076± .017 .038± .002
DiffTime .050± .017 .038± .001 .101± .019 .250± .003 .059± .009 .042± .000
GT-GAN .077± .031 .040± .000 .221± .068 .312± .002 .245± .029 .055± .000
TimeGAN .102± .021 .038± .001 .236± .012 .273± .004 .409± .028 .082± .006
RCGAN .196± .027 .040± .001 .336± .017 .292± .004 .436± .012 .081± .003
C-RNN-GAN .399± .028 .038± .000 .449± .001 .483± .005 .412± .095 .055± .004
T-Forcing .226± .035 .038± .001 .483± .004 .315± .005 .499± .000 .142± .014
P-Forcing .257± .026 .043± .001 .412± .006 .303± .005 .500± .000 .102± .013
WaveNet .232± .028 .042± .001 .397± .010 .311± .006 .385± .025 .333± .004
WaveGAN .217± .022 .041± .001 .363± .012 .307± .007 .357± .017 .324± .006
LS4 .199± .065 .068± .013 .474± .003 .251± .000 .333± .029 .062± .006

Ours .037± .006 .036 ± .000 .040 ± .004 .250 ± .000 .007 ± .005 .033 ± .001

framework on short-term and long-term standard time series unconditional generation benchmarks
(Sec. 5.1, Sec. 5.2). Then, we introduce a novel benchmark for ultra-long sequences (above 10k steps)
and evaluate our method in comparison to strong baselines (Sec. 5.3). Then, we consider interpolation
and extrapolation benchmarks, similar to [78], to test our model on conditional generation tasks
(Sec. 5.4). Further, we extended these benchmarks with additional short- and ultra-long setups, which
test the framework’s robustness to lengths. Finally, we conclude with an extensive ablation of our
framework (Sec. 5.5). More details on the experimental settings can be found in App. B.

5.1 Short-Term Unconditional Generation

Data, baselines, and metrics. We employ our framework on the unconditional generation bench-
mark reported in [19]. The benchmark includes four synthetic and real-world datasets with a fixed
length of 24. The first dataset, Stocks, consists of daily historical Google stock data from 2004 to
2019, comprising six channels: high, low, opening, closing, and adjusted closing prices, as well as
volume. This data lacks periodicity and is dominated by random walks. The second dataset, Energy,
is a multivariate appliance energy prediction dataset [14], featuring 28 channels with correlated
features, and it exhibits noisy periodicity and continuous-valued measurements. The third dataset,
MuJoCo (Multi-Joint dynamics with Contact), serves as a versatile physics generator for simulating
TS data with 14 channels [89]. We report results on the simple synthetic Sine dataset of sine functions
in App. C.1. Our framework is compared with state-of-the-art short-term time series generative
models. KoVAE [66], DiffTime [19], GT-GAN [44], TimeGan [99], RCGAN [25], C-RNN-GAN
[64], T-Forcing [33], P-forcing [32], WaveNet [91], WaveGAN [23], and LS4 [103], which is the
state-of-the-art generative model for modeling long sequences. The benchmark employs two metrics:
1) The Predictive (pred) metric assesses the utility of the generated data. 2) The Discriminative (disc)
metrics gauge the similarity of distributions using a proxy discriminator. For all experiments, we used
the delay embedding transform with an embedding of n = 8 and a delay of m = 3, yielding a 8× 8
image. We use 18 sampling steps with the EDM model [45] as the diffusion generative backbone.

Quantitative and qualitative results. The results for the short-term unconditional benchmark
are shown in Tab. 1. Our framework achieves state-of-the-art results on all datasets and metrics.
Particularly, we note MuJoCo, where we improved the second-best method by 88% and 21% in the
discriminative and predictive scores. In general, the second-best approach is DiffTime. Importantly,
while LS4 performs well on long sequences, our results indicate that it struggles with short sequences.
In comparison, we will show below that in addition to obtaining SOTA results on short-term time
series, we also achieve strong results in the long-term case (Sec. 5.2). We also evaluate our method
using two common qualitative tests [99]. First, we compute a two-dimensional t-SNE [92] embedding
for real and synthetic data. The desired outcome is that both datasets span similar regions and shapes
in 2D. We plot the embeddings of the real data, ours and GT-GAN in Fig. 2A, highlighting that
our generated point clouds are closer to the real data in comparison GT-GAN. Tab. 11 reports the
Wasserstein distances between the t-SNE embeddings of the generated data and the real data, showing
that our approach is superior to GT-GAN. Second, we estimate the probability density functions in
Fig. 2D. Our approach generates densities similar to the real densities, whereas GT-GAN introduces
noticeable errors. The rest of the short-term datasets’ qualitative analysis appears in App. C.3.
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Figure 2: We plot the 2D t-SNE embeddings of synthetic data generated with our method and SOTA
tools vs. the real data (top). Then, we compare their probability density functions (bottom).

Table 2: Long time series unconditional marginal, classification, and prediction tasks’ results.
Method FRED-MD NN5 Daily Temp Rain

marg↓ class ↑ pred ↓ marg↓ class ↑ pred ↓ marg↓ class ↑ pred ↓
RNN-VAE .132 .036 1.47 .137 .000 .967 .017 .000 159
GP-VAE .152 .016 2.05 .117 .002 1.17 .183 .000 2.31
ODE2VAE .122 .028 .567 .211 .001 1.19 1.83 .000 1.13
Latent ODE .042 .327 .013 .107 .000 1.04 .011 .000 145
TimeGAN .081 .029 .058 .040 .001 1.34 .498 .003 1.96
SDEGAN .084 .501 .677 .085 .085 1.01 .990 .017 2.46
SaShiMi .048 .001 .232 .020 .045 .849 .758 .000 2.12
LS4 .022 .544 .037 .007 .636 .241 .083 .976 .521

Ours .021 .862 .009 .005 1.02 .393 .409 5.80 .377

5.2 Long-Term Unconditional Generation

Data, baselines, and metrics. We utilize the long-term time series benchmark presented in [103].
It includes three long-term real-world time series datasets obtained from the Monash Time Series
Forecasting Repository [29]: FRED-MD, NN5 Daily, and Temperature Rain. We omit Solar Weekly
as it is short-term. These datasets were chosen based on their average 1-lag autocorrelation metric,
measuring their correlation over time. Their 1-lag values range from 0.38 to 0.98, highlighting a
diverse range of temporal dynamics that present challenges for generative learning tasks. Each dataset
contains approximately 750 time steps. We compare our method with state-of-the-art long-term
generative methods: LS4 [103], SaShiMi [30], SDEGAN [50], TimeGAN [99], Latent ODE [75],
ODE2VAE [98], GP-VAE [27] and RNN-VAE [18]. Three different metrics are used to evaluate the
generative performance: Marginal (marg), Classification (class), and Prediction (pred). Marginal
scores measure the absolute difference between the empirical probability density functions of two
distributions. Classification scores use a sequence model to classify samples as real or generated; high
scores indicate less distinguishable samples. Prediction scores utilize a train-on-synthetic-test-on-real
sequence-to-sequence model to predict future steps; lower scores indicate higher predictability. We
used the STFT transform in all our experiments, creating a 32 × 32 size image. The number of
sampling steps is 18 and we use the EDM model [45] as the diffusion generative backbone.

Quantitative and qualitative results. We present the results in Tab. 2. LS4 performs well across
most datasets and metrics. In comparison, our method outperforms LS4 and the other techniques in
almost all cases. On NN5 Daily pred and on Temp Rain marg we achieve inferior results. Notably,
Zhou et al. [103] discuss the challenge of measuring the marginal score for the Temp Rain dataset
due to frequent zero values. We highlight that our approach substantially improves the classification
and prediction scores for the Temp Rain dataset. Additionally, our framework achieves strong results
in the classification scores for the FRED-MD and NN5 Daily datasets. We report our results with
standard deviations in App. C.4; the results emphasize the statistical significance improvement our
framework achieves. Our qualitative results are shown in Fig. 2(B, D) and in App. C.3.
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5.3 Ultra-long Term Unconditional Generation

Data, baselines, and metrics. We conclude our unconditional generation evaluation by considering
the challenging setting of ultra-long sequences. As far as we know, this setup is underexplored in the
literature, and moreover, considering short, long, and ultra-long time series for a single framework
is novel to our work. Specifically, we use the following real-world datasets from the Monash Time
Series Forecasting Repository [29]: San Francisco Traffic (Traffic) [53] and KDD-Cup 2018 (KDD-
Cup) [61]. The datasets’ lengths are 17544 and 10920, respectively. Traffic includes an hourly time
series detailing the road occupancy rates on the San Francisco Bay Area freeways from 2015 to 2016.
KDD-Cup represents the air quality level from 2017 to 2018 estimated by 59 stations across two
cities, Beijing (35 stations) and London (24 stations), measured in an hourly rate. We process Traffic
with the delay embedding transform (n = 144,m = 136), yielding 144× 144 images. KDD-Cup is
transformed by STFT, resulting in 112× 112 images. The sampling steps are 36 in both datasets.

Table 3: Ultra-long unconditional generation.
Traffic KDD-Cup

Method pred ↓ class ↑ marg ↓ pred ↓ class ↑ marg ↓
Latent-ODE 1.01 .000 .180 .079 .013 .009
LS4 .170 .630 .002 .049 .488 .002
Ours .138 .684 .001 .001 .842 .001

Quantitative and qualitative results. As
shown in Tab. 3, our method consistently
achieves superior results in all cases. Notably, it
attains on KDD-Cup a pred score of .001 com-
pared to LS4’s second-best score of .049. These
results highlight our framework’s scalability
to very long sequences, demonstrating impres-
sive performance across all sequence lengths as
we demonstrated in the previous sections. We
also report results with standard deviations in
App. C.6, emphasizing the statistical significance of our framework. Finally, our qualitative results
for this setting are shown in Fig. 2(C, E) and in App. C.3.

5.4 Conditional Generation of Time Series

In addition to the unconditional generation benchmark we consider above, we also evaluate our
approach on conditional generation tasks. We focus on the imputation (interpolation) and forecasting
(extrapolation) tasks, following the experimental setup in [75, 78]. Our approach can be adapted
to solve these tasks via a simple modification. For instance, in the interpolation task, the goal is
to generate the missing values. Thus, we apply our diffusion model only in the missing locations
using a corresponding mask. The rest of the values are left unchanged. A similar mechanism can be
applied to extrapolation. Generally, this approach is similar to image inpainting techniques [60]. In
the interpolation task, we randomly mask 50% of the sequence values, whereas in the extrapolation
challenge, we split the sequence in half, where the second half represents the target values. In this
benchmark, we consider short, long, and ultra-long sequences. Our comparison focuses on generative
methods that can handle long-range dependencies including ODE-RNN [75], Latent ODE [75], CRU
[78], and LS4 [103]. Further details about the experiments can be found in App. B.

Datasets. In the short-term setting, we use ETT* datasets [102], that contain electricity loads of
various resolutions (ETTh1, ETTh2, and ETTm1, ETTm2) from two electricity stations. The sequence
length is 96. For the long-term case, we utilize an established benchmark [75, 78, 103], including
the Physionet and USHCN datasets. The Physionet dataset [80] includes health measurements of 41
sensors collected from 8000 ICU patients within the first 48 hours of admission. The United States
Historical Climatology Network (USHCN) [63] consists of daily measurements from 1218 weather
stations across the United States, including data on precipitation, snowfall, snow depth, and minimum
and maximum temperatures. For the ultra-long setting, we use the datasets mentioned in Sec. 5.3.

Results. The results of the conditional generation benchmark are detailed in Tab. 4. Values represent
the mean squared error (MSE), and thus, lower is better. MSE values are multiplied by ×10−3 and
×10−2 for Physionet and USHCN, respectively, in both experiments. We denote in bold the best
method per dataset. The short, long, and ultra-long results are placed at the top, middle, and bottom
sections of the table. Overall, our method presents stellar results in all settings, except for ETTm1
where it is second-best. Notably, we mention that in the short interpolation, our results are ≈ 4
times better than the second-best method, CRU. Similarly, we improve the SOTA by ≈ 30% in the
short extrapolation. Our results are particularly strong in the long interpolation setting, where we
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Table 4: Interpolation and extrapolation results on datasets of varying lengths. The asterisk (*)
denotes non-converging runs, running for over seven days.

Interpolation Extrapolation
Dataset ODE-RNN Latent ODE CRU LS4 Ours ODE-RNN Latent ODE CRU LS4 Ours

ETTh1 .210 .671 .283 .642 .069 - 1.02 1.02 3.42 .701
ETTh2 .182 .712 .368 3.40 .058 - 1.17 1.09 3.83 .667
ETTm1 .762 .502 .086 .114 .038 - .592 .643 3.05 .634
ETTm2 .116 .247 .179 .488 .049 - .414 .378 3.64 .348

Physionet 2.30 2.12 1.82 .620 .004 3.01 4.21 6.29 4.94 1.34
USHCN 8.31 17.9 .160 .050 .006 1.96 2.03 1.27 4.36 1.20

Traffic .404 .985 ∗ .990 .090 - 1.01 ∗ 2.23 .221
KDD-Cup .205 .847 .190 .970 .144 - .696 .723 6.51 .368

improve by two- and one-orders of magnitude on Physionet and USHCN, respectively. Finally, we
also highlight our ultra-long interpolation results which are ≈ 4 times better than ODE-RNN. We
conclude that our approach shows robustness to varying sequence lengths, presenting extremely
strong results across several datasets and in comparison to state-of-the-art generative models.

5.5 Ablation Studies

We conclude our empirical section by thoroughly inspecting different components of our framework.
Specifically, we show that our approach is robust to different image resolutions (App. C.8). We also
experiment with a range of hyper-parameters (App. C.9), demonstrating the stability of our approach.
Our performance evaluation highlights that our method is comparable to LS4 in terms of training
and inference time (App. C.10). Below, we ablate the effect of various image transforms on the
performance in the unconditional test. We evaluate our model using four different transforms: folding,
Gramian angular field (GAF), delay embedding (DE) and STFT, and we detail the results in Tab. 5.
While DE and STFT are slightly better on short and long sequences, respectively, we emphasize that
all other transforms perform reasonably well across the various datasets and metrics. GAF does not
scale to long sequences as it produces huge images, and thus, it is omitted from the long-term test.
We conclude that our framework is robust to the choice of image transformation.

Table 5: Short- and long-term ablation of various image transforms using several datasets and metrics.
Energy MuJoCo FRED-MD NN5 Daily

disc↓ pred ↓ disc↓ pred ↓ marg↓ class ↑ pred ↓ marg↓ class ↑ pred ↓
Folding .074 .250 .017 .031 .012 1.67 .021 .010 .776 .436
GAF .349 .269 .049 .034 - - - - - -
DE .040 .250 .007 .033 .017 1.65 .021 .007 .871 .394
STFT .271 .256 .071 .033 .021 .862 .009 .005 .822 .307

6 Conclusion

While new generative models for general time series data appear rapidly, the majority of existing
frameworks are specifically designed to process either short or long sequences. The lack of a unified
framework for varying lengths time series can be justified by the shortcomings of current available
tools: gradient issues of recurrent networks, temporal computational costs of transformers, and limited
expressiveness of state space models. In this work, we address this problem by introducing a novel
generative model for time series based on signal-to-image invertible transforms and a vision diffusion
backbone. The benefit of our approach is threefold: we exploit advanced diffusion models for vision,
we seamlessly process short-to-ultra-long sequences, and we can utilize tools from the signal-to-
image literature. We extensively evaluate our framework in the unconditional and conditional settings
using short, long, and ultra-long sequences, considering multiple datasets, and in comparison to
state-of-the-art models. Our experiments show the superiority of our framework, setting new SOTA
results. Further, we demonstrate the robustness of our method through several ablation studies. Our
approach requires slightly higher computational resources, which we leave for further consideration
and future work. Finally, we believe that the proposed framework has the potential to be applicable in
additional tasks including classification, anomaly detection, few-shot learning, and more generally,
serve as a foundation model.
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Figure 3: We plot above a time series signal (A), and its image transformations via the Gramian
angular field (B), STFT (C), and the delay embedding (D).

A Domain Transformations

We give a detailed description for each domain transformation and its corresponding forward and
inverse processes. We present in Fig. 3 a visual example of a time series and its various different
image transformations.

Folding is a simple naïve transformation. Given a time series x, we fold it into an image ximg by
starting from the first row on the left and continuing to the right, jumping to a new row whenever
reaching the end of a row. Finally, if needed, we pad with zeroes at the end of the image. The inverse
transformation back to the time series is simply taking the in-padded area of the image and unfolding
it back to the time series. Although it is simple, this transformation can scale to very long sequences.
Folding can be viewed as a particular example of delay embedding, as we detail below.

Gramian Angular Field is introduced in [95] for subsequent imputation and classification tasks. It
depicts a time series within a polar coordinate system rather than the usual Cartesian coordinates.
In the Gramian matrix, each element corresponds to the cosine of the sum of angles. The inverse
action, from the image to the time series, is to take the main diagonal. While being a very informative
transformation, a major constraint of this transformation is that the height and the width are linear
with the size of the time series, preventing it from scaling to long sequences.

Delay Embedding [87] transforms a univariate time series x1:L ∈ RL into an image by organizing
the series’ information into columns and padding as necessary. The hyperparameters for this transfor-
mation are m and n, where m represents the skip value and n is the column dimension. For a given
arbitrary channel of a time series, the transformation constructs the matrix X as follows:

X =

x1 xm+1 . . . xL−n

...
... . . .

...
xn xn+m+1 . . . xL

 ∈ Rn×q ,

where q = ⌈(L − n)/m⌉. The image ximg is created by padding with zeros to meet the neural
network input requirements. The example presented here is for a single channel; scaling to multiple
dimensions is straightforward by concatenating each matrix X along another channel. Given an input
signal x ∈ RL×K , the transformation produces an output ximg ∈ RK×n×q. We pad the image with
zeroes right after to create an ximg ∈ RK×n×n.

The original time series x1:L can be reconstructed from ximg by taking each marginal progression
from the columns of the matrix X . There are various methods to reverse the transformation. For
instance, if m = 1, x1:L is formed by concatenating the first row and the last column of ximg. The
delay embedding naturally scales to long sequences; for example, setting m = n = 256 allows
encoding 65k sequences with 256× 256 images.

Short Time Fourier Transform (STFT) [35] is a widely used transformation that converts a
signal from its original time domain into the frequency domain. The process of computing STFT
involves dividing a time-domain signal into shorter, fixed-length segments and then applying the
Fourier transform to each segment individually. Given an input signal x ∈ RL×K , the STFT produces
an output ximg ∈ R2K×H×W . In this output, the number of channels is doubled to store both the
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real and imaginary parts of the transformed signal, and H and W are determined by user-defined
parameters. These parameters include n_fft, which specifies the size of the Fourier transform, and
hop_length, which defines the distance between successive sliding window frames. Unlike typical
audio processing practices, we do not compute the magnitude spectrogram from the STFT output.
Instead, we retain both the real and imaginary components within the image, thereby avoiding the
need for additional complex spectrogram estimation. This approach maintains the integrity of the
full spectral information. After obtaining the STFT images, we normalize them to the range [−1, 1],
ensuring that the data is scaled appropriately for subsequent processing.

B Experimental Setting

We use the same architectural backbone for all experiments: EDM [45]. We use the AdamW optimizer
and train for 1000 epochs, although in practice, all models converged in the range 300-500 epochs. For
each task, we elaborate on specific variations in settings and hyperparameters and provide additional
information on the training and evaluation protocol.

B.1 Short-term unconditional generation.

Data. For the short-term unconditional generation (Sec. 5.1), we utilize four synthetic and real-
world datasets with a fixed length of 24: Stocks, consisting of daily historical Google stock data from
2004 to 2019, comprising six channels: high, low, opening, closing, and adjusted closing prices,
as well as volume. This data lacks periodicity and is dominated by random walks. The second
dataset, Energy, is a multivariate appliance energy prediction dataset [14], featuring 28 channels with
correlated features, and it exhibits noisy periodicity and continuous-valued measurements. The third
dataset, MuJoCo (Multi-Joint dynamics with Contact), serves as a versatile physics generator for
simulating TS data with 14 channels [89]. The last dataset, Sine, is a multivariate simulated dataset,
where each sample xi

t(j) is defined as sin(2πηt+ θ), where η is sampled from a uniform distribution
[0, 1] and θ is sampled from a uniform distribution [−π, π], with five channels for j.

Hyperparameters. We describe below in Tab. 6 the different hyperparameters used in our frame-
work. For all datasets, we used the same default sampler of EDM [45], and we mention the
hyperparameters of their U-net model that we tune in our work. Please see [45] for further details
about the U-net model hyperparameters.

Table 6: Short-term unconditional generation hyperparameters including short time Fourier transform
(STFT), delay embedding (DE) hyperparameters and diffusion hyperparameters

Stocks Energy MuJoCo Sine
General
image size 8× 8 8× 8 8× 8 8× 8
learning rate 10−4 10−4 10−4 10−4

batch size 128 128 128 128

DE
embedding (n) 8 8 8 8
delay (m) 3 3 3 3

STFT
n_fft - - - -
hop_length - - - -

Diffusion
U-net channels 128 128 64 128
in channels [1, 2, 2, 2] [1, 2, 2, 4] [1, 2, 2, 2] [1, 2, 2, 2]
sampling steps 18 18 18 18

Evaluation. We utilize the benchmark proposed in [99] to evaluate short-term unconditional
generation and adhere to its evaluation protocol. This protocol comprises two scores: a predictive
score and a discriminative score. The predictive score assesses the utility of the generated data by
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training an independent prediction model on the generated data; superior generations result in better
prediction scores for this model. The discriminative score evaluates the similarity of distributions
using a proxy discriminator trained to distinguish between generated and original samples; higher
scores indicate that the generative model has accurately captured the underlying distribution of the
data. For more details about the evaluation protocol, please refer to [19] or [99].

B.2 Long-term unconditional generation.

Data. In our exploration of long-term unconditional generation, we employ the benchmark for long-
term time series data as presented in [103]. This benchmark encompasses three extensive real-world
time series datasets from the Monash Time Series Forecasting Repository [29]: FRED-MD, NN5
Daily, and Temperature Rain. These datasets were meticulously selected based on their average 1-lag
autocorrelation metric, which quantifies the 1-step correlation over time. The 1-lag values, ranging
from 0.38 to 0.98, exemplify a broad spectrum of temporal dynamics, thereby presenting significant
challenges for generative learning models. To ensure uniformity in the NN5 Daily and FRED-MD
datasets, each sequence within these datasets is normalized such that each trajectory is centered at its
mean and adheres to a normal distribution. This normalization approach is advantageous for datasets
like NN5 Daily, where the minimum and maximum values can vary substantially across different data
points. For the Temperature Rain dataset, sequences are scaled to the [0, 1] range, considering the
data’s consistently positive values and its tendency to cluster around the x-axis with occasional sharp
spikes. Each dataset comprises approximately 750 time steps, providing a robust basis for evaluating
long-term generative performance.

Hyperparameters. We describe below in Tab. 7 the different hyperparameters used in our frame-
work. For all datasets, we used the same default sampler of EDM [45], and we mention the
hyperparameters of the U-net model that we tune in our work, please see [45] for more details about
these hyperparameters. In addition, For all long-term experiments, we use the AdamW optimizer
with a weight decay of 10−5.

Table 7: Long-term unconditional generation hyperparameters including short time Fourier transform
(STFT), delay embedding (DE) hyperparameters and diffusion hyperparameters

Fred-MD Temperature Rain NN5 Daily
General
image size 32× 32 32× 32 32× 32
learning rate 10−4 10−4 10−4

batch size 32 64 32

DE
embedding(n) − − −
delay(m) − − −
STFT
n_fft 63 63 63
hop_length 23 23 25

Diffusion
U-net channels 128 128 128
in channels [1, 2, 4, 4] [1, 2, 4, 4] [1, 2, 4, 4]
sampling steps 18 18 18

Evaluation. To assess model performance, we follow the benchmark used in [103]. Our evaluation
comprises classification and prediction models, each employing linear encoders and decoders with a
single S4 layer having 16 hidden state dimensions. In the classification model, the encoder maps data
dimensions to 16 hidden states. The S4 layer’s output sequence is averaged before being passed to
the decoder, which produces logits for binary classification using cross-entropy loss. Similarly, the
prediction model’s encoder maps input to a 16-dimensional hidden state, while the decoder maps it
back to the original data dimension, predicting k = 10 future steps. Both models are trained using
the AdamW optimizer, which has a learning rate of 0.01 over 100 epochs and a batch size of 128.
The optimizer generates samples equal to testing data points to train the models together.
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B.3 Ultra-long-term unconditional generation.

Data. For the ultra-long-term unconditional task, we introduce a novel benchmark consisting of
two datasets: San Francisco Traffic (Traffic) [53] and KDD-Cup 2018 (KDD-Cup) [61]. The datasets’
lengths are 17544 and 10920, respectively. Traffic includes an hourly time series detailing the road
occupancy rates on the San Francisco Bay Area freeways from 2015 to 2016. KDD-Cup represents
the air quality level from 2017 to 2018 estimated by 59 stations across two cities, Beijing (35 stations)
and London (24 stations), measured in an hourly rate. We follow the same normalization procedure
applied to Fred-MD and NN5 daily, as described in B.2.

Hyperparameters. In Tab. 8 below, we outline the various hyperparameters used in our framework.
For all datasets, we employed the default sampler of EDM [45], and we specified the U-net model hy-
perparameters that we tuned in our study. For more information on the U-net model hyperparameters,
please refer to [45].

Table 8: Ultra-long-term unconditional generation hyperparameters including short time Fourier
transform (STFT), delay embedding (DE) hyperparameters and diffusion hyperparameters

Traffic KDD-Cup
General
image size 144× 144 112× 112
learning rate 10−4 10−4

batch size 8 16

DE
embedding(n) 144 −
delay(m) 136 −
STFT
n_fft − 223
hop_length − 98

Diffusion
U-net channels 128 128
in channels [1, 2, 4, 4] [1, 2, 4, 4]
sampling steps 18 18

Evaluation. For the ultra-long-term unconditional generation task, we follow the same procedure
outlined in B.2. We use the same classification and prediction models, as they effectively distinguish
between low- and high-quality ultra-long-term generations.

B.4 Conditional generation

Data. For short-term interpolation and extrapolation benchmarks (Sec. 5.4), we use the ETT*
datasets [102], each with a fixed length of 96. The ETT datasets are crucial indicators for long-term
electric power deployment, containing two years of data from two separate counties in China. The
datasets are divided into ETTh1 and ETTh2 for 1-hour intervals, and ETTm1 and ETTm2 for 15-minute
intervals. Each data point includes the target value "oil temperature" and six power load features.

For long-term interpolation and extrapolation, we employ a well-established benchmark [75, 78, 103],
incorporating the Physionet and USHCN datasets. The data extraction for the USHCN dataset follows
the procedure detailed by [20]. Notably, both datasets exhibit sparsity across many features and
contain numerous zero values. The Physionet dataset [80] includes health measurements from 41
sensors collected from 8,000 ICU patients within the first 48 hours of admission. The United States
Historical Climatology Network (USHCN) [63] provides daily measurements from 1,218 weather
stations across the United States, covering precipitation, snowfall, snow depth, and minimum and
maximum temperatures. For the conditional tasks, we strictly follow the training and evaluation
procedures described by [78], and we refer readers to this work for a comprehensive explanation of
the evaluation protocol. Both datasets span approximately 1,000 to 2,000 time steps.
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For the ultra-long-term conditional generation task, we utilize the same data used in the ultra-long-
term unconditional generation benchmark, and we refer to App. B.3 for more details about the
datasets.

Hyperparameters. We describe below in Tab. 9 the different hyperparameters used in our frame-
work. The hyperparameters are similar for both tasks. Therefore, we present them in a unified table.
For all datasets, we used the same default sampler of EDM[45]; we also present the hyperparameters
of the U-net model; for further details about them, please see [45].

Table 9: Conditional generation hyperparameters including short time Fourier transform (STFT),
delay embedding (DE) hyperparameters and diffusion hyperparameters

ETTh1 ETTh2 ETTm1 ETTm2 Physionet USHCN Traffic KDD-Cup
General
image size 32× 32 32× 32 32× 32 32× 32 32× 32 32× 32 144 128
learning rate 10−4 10−4 10−5 30−5 10−5 10−4 10−4 10−4

batch size 32 32 16 64 8 8 8 8

DE
embedding(n) 32 32 32 32 32 32 144 128
delay(m) 3 3 3 3 30 30 122 86

STFT
n_fft − − − − − − − −
hop_length − − − − − − − −
Diffusion
U-net channels 128 128 64 128 128 128 128 128
in channels [1, 2, 2, 2] [1, 2, 2, 4] [1, 2, 4, 8] [1, 2, 4, 8] [1, 2, 4, 4] [1, 2, 4, 4] [1, 2, 4, 4] [1, 2, 4, 4]
sampling steps 18 18 18 18 18 18 36 36

Evaluation. For the short-term and ultra-long-term datasets (ETT*, Traffic, KDD-Cup), we follow
the next procedure. In the interpolation task, we randomly mask 50% of the input data and train the
models to predict the missing masked 50%. In the extrapolation task, we mask the second half of
the sequence and train the models to predict this missing half. We measure the distance between
the models’ generated outcomes and the ground truth using MSE loss. Accurate generation will
lead to a smaller distance between the prediction and the ground truth, thus indicating the models’
interpolation and extrapolation capabilities. For the long-term datasets, we follow a similar procedure
as above; however, since the data is sparse and irregularly sampled, the masking is slightly different.
We adhere to the exact interpolation and extrapolation processes described in [78] and refer to that
source for more details.

C Additional Experiments and Analysis

C.1 Short-term unconditional generation

Due to space constraints in the main paper, we report the rest of the benchmark here. In Tab. 10, we
show our model performance on the simple toy Sine dataset.

C.2 Wasserstein distance analysis

In Tab. 11, we present the Wasserstein distances calculated between our generated 2D point cloud
and the actual data. A lower score indicates greater similarity between the clusters, meaning that a
lower score is preferable. Our approach yields the best scores across all datasets in comparison to
GT-GAN on short sequences and LS4 on long and ultra-long time series.

C.3 Short-term unconditional generation qualitative analysis

We include the Stocks, Energy and the MuJoCo qualitative t-SNE evaluation (Fig. 4(A,B,C)) and
density analysis (Fig .4(D, E, F)). In addition, we show in Tab. 11 a quantitative evaluation of the
t-SNE clusters Wasserstein distance. Both the visual results and the quantitative results demonstrate
our framework’s ability to learn the true distribution across multiple datasets.
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Table 10: Short time series unconditional generation task on the Sine dataset.

Method Sine
disc↓ pred↓

KoVAE .005 ± .003 .093 ± .000
DiffTime .013± .006 .093 ± .000
GT-GAN .012± .014 .097± .000
TimeGAN .011± .008 .093± .019
RCCGAN .022± .0068 .097± .001
C-RNN-GAN .229± .040 .127± .004
WaveNet .158± .011 .117± .008
WaveGAN .277± .013 .134± .013
LS4 .342± .007 .132± .011

Ours .014± .009 .094± .000

Table 11: We calculate the Wasserstein distances between the original cluster, our generated samples
cluster the other method cluster shown in Figs. 4, 5 and 6.

Method Stocks Energy MuJoCo Temp Rain NN5 Daily Traffic KDD-Cup

GT-GAN 6.20 3.35 3.83 - - - -
LS4 - - - 3.27 5.23 4.63 11.84
Ours 2.84 3.20 1.05 2.85 5.21 3.19 6.59
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Figure 4: We plot the 2D t-SNE embeddings of synthetic data generated with our method and SOTA
tools vs. the real data (top). Then, we compare their probability density functions (bottom).

C.4 Long-term unconditional generation with standard deviation

In Tab. 12, we present the results of our method on unconditional generation of long sequences with
standard deviation. The results demonstrate our method’s statistical significance compared to the
state-of-the-art method LS4.

Table 12: Long time series unconditional generation task with standard deviation.
LS4 Ours

marg↓ class ↑ pred ↓ marg↓ class ↑ pred ↓
FRED-MD .022 .544 .037 .021 ± .000 .862 ± .227 .009 ± .003
NN5 Daily .007 .636 .241 .005 ± .000 .822 ± .157 .307± .037
Temp Rain .083 .976 .521 .409± .000 5.80 ± .974 .377 ± .022
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C.5 Long-term unconditional generation qualitative analysis

We include the qualitative t-SNE evaluation for Temp Rain and NN5 Daily (Fig. 5(A, B)) and their
density analysis (Fig. 5(D, E)). Additionally, we provide in Tab. 11 the quantitative evaluation of the
t-SNE clusters using the Wasserstein distance. Our results indicate the superiority of our approach in
comparison to other techqniques.
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Figure 5: We plot the 2D t-SNE embeddings of synthetic data generated with our method and SOTA
tools vs. the real data (top). Then, we compare their probability density functions (bottom).

C.6 Ultra-long time series unconditional generation with standard deviation

In Tab. 13, we present the results of our method for unconditional generation of ultra-long sequences,
including standard deviations. These results demonstrate the statistical significance of our method
compared to the state-of-the-art competitive methods.

Table 13: Ultra-long unconditional generation with standard devation
Method Traffic KDD-Cup

pred ↓ class ↑ marg ↓ pred ↓ class ↑ marg ↓
Latent ODE 1.01± .412 .000± .000 .180± .000 .079± .055 .013± .020 .009± .000
LS4 .170± .030 .630± .060 .002± .000 .049± .046 .488± .164 .002± .000
Ours .138 ± .014 .684 ± .019 .001 ± .000 .001 ± .000 .842 ± .245 .001 ± .000

C.7 Ultra-long-term unconditional generation qualitative analysis

We include the qualitative t-SNE evaluation for Traffic and KDD-Cup (Fig. 6(A, B)) and the density
analysis (Fig. 6(D, E)). Additionally, we provide in Tab. 11 the quantitative evaluation of the t-SNE
clusters using the Wasserstein distance. Our results highlight our method ability to handle very long
sequences.

C.8 Image size ablation

Given the significant impact of image size on the computational resources required by our method,
we investigate whether varying image size influences different transformations. We explore the
effect of different image sizes on our framework, utilizing long-term datasets with short time Fourier
transform (STFT) and short-term datasets with delay embedding. For short time series consisting
of 24 time steps, we test image sizes of 8 and 16, as we observe that scaling to larger sizes may not
yield benefits. For long time series of approximately 750 steps, we experiment with sizes of 32, 64,
and 128. Notably, 32 is the minimum size required to contain enough pixels for representing the
long sequence adequately. We present the results in Tab. 14. While most results demonstrate high
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Figure 6: We plot the 2D t-SNE embeddings of synthetic data generated with our method and SOTA
tools vs. the real data (top). Then, we compare their probability density functions (bottom).

competitiveness compared to other methods, inconclusive experimental results indicate that image
size does not significantly affect generation quality. Therefore, it is reasonable to use the minimum
length that a transformation can accommodate to benefit from minimum computational costs.

Table 14: Image size ablation study.
Image Size FRED-MD NN5 Daily Energy MuJoCo

marg↓ class ↑ pred ↓ marg↓ class ↑ pred ↓ disc↓ pred ↓ disc↓ pred ↓
Short Series
8 x 8 - - - - - - .040 .250 .007 .033
16 x 16 - - - - - - .059 .250 .036 .032

Long Series
32 x 32 .021 .862 .009 .005 .822 .307 - - - -
64 x 64 .021 1.82 .021 .008 .829 .440 - - - -
128 x 128 .016 1.65 .023 .012 .733 .430 - - - -

C.9 Hyeprparameters Ablation

Ablation study on diffusion sampling steps. While [45] demonstrate an improvement in FID
score with a larger number of steps in their work, we do not observe the same trend in our framework.
The results are presented in Tab. 15 in the first section, indicating an unclear trend across different
datasets and metrics.

Ablation study on batch size. The results in Tab. 15 in the middle section demonstrate that our
framework is unaffected by different batch sizes. This is a positive indication of our framework’s
adaptability to various computational environments, whether with low memory or high memory
capabilities.

Ablation study on learning rate. In our examination of the learning rate, we have made an
intriguing observation. We have found that when the learning rate equals or exceeds 10−3, the
diffusion backbone [45] tends to collapse, resulting in the generation of irrelevant signals. This
phenomenon is clearly demonstrated in Tab. 15 in the middle section. With a learning rate of 10−3,
the disc scores are .256 and 0.499 for the MuJoCo and Energy datasets, respectively, indicating
random generation. However, when the learning rate is lowered, we have not observed any such
collapse of the backbone on any dataset or task.
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Table 15: Hyperparameters ablation study. We study the effect of different hyperparameters on our
framework. We utilize four short and long-term datasets.
Hyperparameter FRED-MD NN5 Daily Energy MuJoCo

marg↓ class ↑ pred ↓ marg↓ class ↑ pred ↓ disc↓ pred ↑ disc↓ pred ↑
Diffusion Sampling Steps
18 .021 .862 .009 .005 .822 .307 .040 .250 .007 .033
36 .015 1.33 .020 .009 .829 .399 .052 .250 .017 .032
72 .017 1.36 .022 .009 .836 .395 .057 .250 .025 .031
144 .018 1.32 .024 .010 .836 .397 .058 .250 .025 .030

Batch Size
16 .022 1.41 .023 .009 .804 .403 .060 .250 .012 .032
32 .018 1.31 .021 .010 .850 .396 .059 .250 .009 .032
64 .019 1.32 .021 .009 .842 .394 .050 .250 .019 .032

Learning Rate
10−3 .019 1.02 .025 .012 .827 .415 .499 .252 .256 .043
10−4 .021 1.54 .024 .010 .813 .401 .065 .249 .007 .033
10−5 .021 1.16 .025 .007 1.01 .421 .056 .250 .020 .031

C.10 Computational Resources Comparison

In this section, we compare the computational resources required by our proposed method and the LS4
method, focusing on training and inference wall-clock runtime and model size in terms of parameters,
and we analyze the FLOPs used per method. Although our method, which utilizes image transforms
and diffusion models, has a larger model size in terms of parameters, it remains comparable to LS4
regarding training and inference time. Despite the larger model size, our method achieves similar
training and inference efficiency, making it a viable and scalable solution for large-scale time series
generation tasks as shown in Tab.16. Furthermore, the rapid advancements and growing research
interest in faster sampling techniques for diffusion models [82] present an opportunity to further
enhance our method’s efficiency. Leveraging these developments, our approach can integrate even
more optimized diffusion models, potentially reducing the computational time and resources required
for training and inference, thus improving scalability for large-scale time series generation tasks.
Finally, we analyze the FLOPs used in our method compared to LS4 and DiffTime on the Stock,
nn5daily and KDD Cup datasets in Tab. 17.

Table 16: Computational resources in terms of training wall-clock runtime (WCR) in minutes(m) or
hours(h), and model parameters (MP) in millions (M)

Method Stocks Energy NN5 Daily Temp Rain
WCR MP WCR MP WCR MP WCR MP

TimeGAN 2h 59m 48K 3h 37m 1M - - - -
GT-GAN 12h 20m 41K 10h 39m 57k - - - -
DiffTime 52m 240k - - 46m 32M - -
LS4 5h 30m 2.7M 2h 2.1M 53m 2.1M 27h 2.3M
Ours 1h 10m 575K 1h 2M 58m 5.9M 30h 6.4M

C.11 Scaling Laws Analysis

In this section, we investigate how the performance of our proposed method scales with the size
of the underlying image diffusion model. Specifically, we evaluate the impact of increasing the
model size from a few thousand parameters to several hundred million on various time-series
datasets. Additionally, we compare this trend with other state-of-the-art time-series generative
models, analyzing how their performance is affected by model size increments. Interestingly, merely
increasing the model parameters does not improve their performance. It demonstrates that simply
enlarging previous methods does not necessarily enhance their generation capabilities. Moreover, in
the case of LS4 on the KDD Cup dataset, increasing the model’s parameters to 100 million results

23



Table 17: FLOPs analysis on DiffTime, LS4 and Our method
#Params DiffTime LS4 Ours

Stocks nn5daily KDD Cup Stocks nn5daily KDD Cup Stocks nn5daily KDD Cup

500k 0.057G 0.751G 14.485G 0.003G 0.107G 1.480G 0.009G 0.123G 1.480G
1M 0.037G 1.301G 24.394G 0.007G 0.233G 3.225G 0.014G 0.217G 2.624G
5M 0.747G 4.289G 99.402G 0.048G 1.594G 22.015G 0.070G 1.084G 13.21G
25M 3.838G 20.864G 414.15G 0.191G 6.299G 86.966G 0.291G 4.683G 57.25G
50M 7.996G 41.060G 711.04G 0.352G 11.602G 160.172G 0.633G 10.06G 123.0G
100M 14.544G 80.198G 1387.3G 0.759G 25.040G − 1.335G 21.27G 260.3G
150M 22.407G 118.865G 1874.5G 1.084G 35.739G − 1.890G 31.58G 386.6G
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Figure 7: Scaling analysis of different models on Stocks data. A lower discriminative score is better.

in memory collapse, making it infeasible to run a batch size of one with the current resources used
for training all models. We present the results for our method in Tab. 18, for LS4 in Tab. 19 and the
results for DiffTime, in Tab. 20 and Tab. 21. Finally, we add a visualization of the results for the
Stocks dataset in Fig. 7.
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Table 18: Our framework scaling laws
Stocks Energy nn5daily

#P disc↓ pred↓ disc↓ pred↓ marg↓ class↑ pred↓
0.5M .009± .006 .036± .000 .100± .009 .253± .000 .012 .765± .275 .407± .640
1M .009± .005 .036± .000 .087± .005 .251± .000 .010 1.10± .315 .421± .076
2M .009± .005 .036± .000 .04± .006 .250± .000 .006 1.03± .263 .389± .056
4M .011± .006 .036± .000 .053± .004 .250± .000 .005 .859± .368 .443± .117
10M .009± .006 .036± .000 - - .006 .859± .153 .428± .032
15M .010± .004 .036± .000 - - - - -
25M .009± .005 .036± .000 - - - - -
50M .032± .007 .036± .000 - - .005 .420± 0.021 .884± 0.223

Table 19: LS4 scaling laws
Energy Stocks nn5daily

#P disc↓ pred↓ disc↓ pred↓ marg↓ class↑ pred↓
0.69M .498± .000 .374± .019 .427± .047 .047± .0045 .061 .002± .003 1.97± 1.17
2.1M .474± .003 .251± .000 .199± .065 .068± .013 .011 .719± .138 .305± .054
7.3M .488± .002 .311± .003 .306± .071 .058± .001 .067 .005± .009 1.33± .288
16.2M .489± .003 .262± .001 .238± .066 .038± .000 .011 .733± .344 .335± .105
26.8M .494± .002 .311± .003 .312± .029 .054± .001 .019 .213± .167 .275± .034
35.4M − − .323± .099 .071± .003 .008 .771± .225 .294± .069
43.2M − − .302± .022 .067± .000 − − −
49.5M .497± .001 .294± .002 .354± .020 .037± .000 − − −
102.4M .497± .001 .276± .001 − − .090 .006± .000 7.07± 2.21
152.7M .498± .000 .296± .005 − − .165 .001± .000 2.02± .897

Table 20: DiffTime scaling laws
#P Stocks nn5 daily

disc↓ pred↓ marg↓ class↑ pred↓
240k .153± .008 .037± .037 .030 .179± .131 4.33± 1.54
440k .142± .050 .038± .038 .026 .284± .252 2.79± .591
757k .108± .015 .038± .038 .015 .421± .316 1.92± .941
1.4M .179± .010 .037± .037 .021 .525± .410 11.43± 19.03
2.7M .117± .007 .039± .039 .016 .279± .217 .981± .207
5.9M .027± .012 .037± .037 .006 .324± .160 .666± .199
10M .185± .013 .037± .037 .016 .272± .135 .939± .224
14M .097± .010 .037± .037 .011 .308± .199 10.53± 7.06
20M .166± .008 .037± .037 .017 .312± .147 .441± .084
28M .085± .016 .039± .039 .019 .134± .097 .583± .086
39M .182± .025 .042± .042 .021 .182± .155 .681± .187
53M .128± .012 .037± .037 .008 .140± .160 .896± .598
103M – – .015 .345± .132 .584± .211
156M – – .018 .675± .744 1.700± 1.161
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C.12 Other Image Generative Models

Our goal in this paper is to leverage recent advancements in computer vision to develop an elegant
and robust solution for time-series data, addressing different sequence lengths and setting a baseline
for handling short, long, and ultra-long sequences. We aim to take advantage of the fact that image
architectures are more thoroughly explored. We hypothesize that the improvements we observe
are largely due to the more advanced development of image architectures compared to time-series
architectures. To further investigate this, we used NVAE [90], and StyleGAN [46], instead of the
diffusion model. We observe the results in Tab. 22. The results imply that using recently better-
explored architecture yields better results when using the same transformations. This understanding
strengthens our hypothesis for the robustness and efficiency of diffusion models.

Table 21: DiffTime scaling laws, KDD Cup
#P KDD Cup

marg↓ class↑ pred↓
3.4M .026 .001± .000 1103.27± 753.21
13.5M .022 .001± .000 902.77± 632.74
54M .024 .000± .000 930.83± 607.39
104M .024 .001± .000 970.21± 693.19
121M .024 .000± .000 968.18± 611.15

Table 22: Other image generative models resutls
Models/Datasets KDD NN Daily Stocks

Marginal ↓ Classifier ↑ Predictor ↓ Marginal ↓ Classifier ↑ Predictor ↓ Disc ↓ Pred ↓
Style GAN 0.020 0.001 0.233 0.020 0.091 2.100 0.276 0.042
NVAE 0.008 0.031 0.107 0.020 0.089 0.600 0.081 0.049
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The experiment section, related work and method section support the main
claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The conclusion section discusses the shortcomings of our framework and
future improvements.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All models and hyperparameters are extensively reported in the appendix. In
addition, the code will be publicly available at the end of the double-blind process.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: All datasets are public, and the code will be publicly available at the end of the
double-blind process.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Experimental Setting section in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: On the main table and if note, reported in the appendix due to space constraints
and convince reasons.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

29

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Appendix computational resources analysis
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Appendix
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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