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ABSTRACT

The automation of materials science research through multi-agent large language
models (LLMs) offers a transformative approach to accelerating discovery, opti-
mizing experimentation, and enhancing data-driven decision-making. This study
employs an LLM framework, called as MatAgent, across six key areas: mate-
rial property prediction, hypothesis generation, experimental data analysis, high-
performance alloy and polymer discovery, data-driven experimentation, and liter-
ature review automation. Machine learning models successfully predicted mate-
rial properties, generated novel material hypotheses, analyzed experimental data,
and optimized material compositions, significantly improving efficiency and ac-
curacy. AI-driven methodologies enabled rapid screening of high-performance
alloys and polymers, predictive modeling of concrete strength, and automated
literature synthesis in perovskite solar cell research. The results demonstrate
that MatAgent can revolutionize materials science by reducing research time, en-
hancing reproducibility, and paving the way for autonomous laboratories capable
of AI-guided discovery and real-time adaptation. All corresponding codes and
datasets related to this study are open-sourced in the GitHub repository available
at https://github.com/adibgpt/MatAgent.

1 INTRODUCTION

Materials science explores the interplay between structure, properties, and performance to develop
novel materials for applications ranging from aerospace alloys and high-entropy compounds to flex-
ible polymers and clean-energy catalysts. As the universe of potential compounds expands, the field
faces both significant opportunities and challenges: the need for advanced synthesis, characteriza-
tion, and analysis methods to uncover subtle structure–property correlations. Traditionally, materials
development has followed an iterative process, beginning with literature review and hypothesis gen-
eration, followed by experimental design, synthesis, characterization, and data interpretation, which,
although proven, is time-consuming, expensive, and limited in the number of hypotheses that can
be tested simultaneously. The exponential growth of scientific literature (Ping Ong, 2019) further
intensifies the demand for innovative strategies in knowledge extraction, curation, and exploitation.
Materials informatics has emerged to address traditional materials science bottlenecks by leveraging
machine learning and data analytics to accelerate discovery (Pilania, 2021) (Ferguson & Brown,
2022). Early methods involved feature engineering, where experts manually selected descriptors
such as elemental properties, crystal structures, or thermodynamic data to train ML models that
predict material properties (Ward et al., 2016). These approaches led to significant breakthroughs,
including the rapid identification of metallic glasses (Amigo et al., 2023) and high-throughput
virtual screening for battery and fuel cell materials (Jain et al., 2013). However, despite these
advances, the workflows remained partially manual, relying heavily on expert knowledge for de-
scriptor selection, literature review, and experimental design. Concurrently, robotic laboratories and
automation platforms began handling routine tasks like synthesis, mixing, heating, and measurement
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with minimal human oversight (Abolhasani & Kumacheva, 2023) (Szymanski et al., 2021). Yet,
further acceleration demands an “intelligent agent” capable of parsing scientific rationale, generat-
ing protocols, interpreting results, and refining hypotheses, a role that modern artificial intelligence,
particularly Large Language Models, is well poised to fulfill. These LLMs were propelled by break-
throughs in natural language processing, including architectures such as Transformers (Vaswani
et al., 2017), and pre-trained models such as BERT (Kenton & Toutanova, 2019) and GPT-series
models (Brown et al., 2020). Domain-specific adaptations such as SciBERT (Beltagy et al., 2019)
and PubMedBERT (Gu et al., 2021) further demonstrate how tailored training can significantly
enhance performance in scientific contexts.

Materials science involves diverse textual data from peer-reviewed articles and patents to techni-
cal datasheets and informal lab notes. A fine-tuned LLM for materials science can integrate these
heterogeneous sources to create a unified knowledge base that not only identifies relevant materi-
als and properties but also suggests new research directions. For instance, combining a ceramic’s
sintering temperature from a handbook with its photocatalytic performance data from a recent ar-
ticle can yield deeper insights. While LLMs are adept at summarizing text, generating literature
reviews, and answering domain-specific queries, advanced materials discovery pipelines require ad-
ditional capabilities. These include knowledge extraction to retrieve numerical data such as band
gaps and doping concentrations (Lei et al., 2024); hypothesis generation to propose novel com-
pounds or chemical substitutions (Xiong et al., 2024); design of experiments using techniques like
Bayesian optimization and reinforcement learning; automated lab control to convert experimental
protocols into precise instructions for robotic systems (Abolhasani & Kumacheva, 2023); and re-
sult interpretation to analyze data from methods like X-ray diffraction or electron microscopy for
hypothesis validation (Roos et al., 2009). Multi-agent LLM architectures extend single-agent sys-
tems by coordinating specialized agents, some based on language models and others employing
different machine learning approaches, via an orchestration layer that converts one agent’s output
into another’s input (Guo et al., 2024). This setup resembles a multidisciplinary research team
where experts in simulation, synthesis, hardware, and data analysis communicate using natural or
structured language, ensuring each area’s expertise is fully utilized. Although these multi-agent
systems for materials science are still emerging, advances in agent-based experimental orchestra-
tion (Reymond, 2015) (Häse et al., 2018), large-scale textual data mining for materials (Weston
et al., 2019), and modular AI frameworks in self-driving labs (Coley et al., 2019a) (Coley et al.,
2019b) are rapidly converging. In these frameworks, agents specialize in tasks such as proposing
new compounds, scheduling experiments, and interpreting measurement data, while large-scale data
mining extracts entities and relationships from scientific literature to update a dynamic knowledge
base. Meanwhile, modular AI in self-driving labs translates these insights into automated protocols
for real or simulated experimental setups, fostering a more adaptive and efficient research cycle.

Recent advances in materials informatics leverage multi-agent AI systems and LLMs to accelerate
materials discovery. AtomAgents (Ghafarollahi & Buehler, 2024a) integrates knowledge retrieval,
physics-based simulations, and multi-modal data fusion to autonomously design high-performance
alloys. Similarly, SciAgents (Ghafarollahi & Buehler, 2024b) employs multi-agent intelligent graph
reasoning, using ontological knowledge graphs and LLMs to uncover hidden correlations, generate
hypotheses, and refine research ideas. Domain-specific LLMs further enhance AI-driven materials
research. MatChat (Chen et al., 2023) fine-tunes LLaMA-2 for inorganic synthesis pathway predic-
tion, while LLaMat (Mishra et al., 2024) focuses on named entity recognition, relation extraction,
and structured knowledge graph construction. MatSci-LLMs (Miret & Krishnan, 2024) propose
a six-step AI-driven research pipeline, integrating data retrieval, simulation, and automated exper-
imentation, bridging LLMs with real-world materials design. Further, the 2024 LLM Hackathon
for Materials Science and Chemistry (Zimmermann et al., 2024) explored integrating LLMs with
robotics, high-throughput screening, and active learning. These developments mark a shift from
single-agent to multi-agent, orchestrated AI frameworks, moving towards a ”research team in sil-
ico” where AI agents autonomously extract knowledge, generate hypotheses, and execute exper-
iments in a closed-loop system. While multi-agent frameworks and domain-specific LLMs have
advanced materials research through automated knowledge extraction, hypothesis generation, and
experiment orchestration, they often remain fragmented, focusing on only one or two stages of the
discovery pipeline. In contrast, we introduce MatAgent, a multi-agent LLM framework that unifies
six essential functions, property prediction, hypothesis generation, experimental data analysis, high-
performance material discovery, data-driven experimentation, and literature review, under a single
orchestrated platform. Each agent specializes in a distinct task yet collaborates seamlessly to ac-
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celerate the entire research cycle, from experiment planning to real-time data interpretation. This
genuinely closed-loop workflow reduces research timelines, enhances reproducibility, and moves
the field closer to fully autonomous laboratories. The following sections detail MatAgent’s method-
ology, key findings, and broader implications for accelerating innovation in materials science.

2 PROPOSED APPROACH

The MatAgent presented in Figure 1 combines advanced machine learning, structured knowledge
retrieval, and autonomous data analysis to streamline hypothesis-driven materials science research.
Built on the LangChain and Firecrawl frameworks along with leveraging OpenAI’s GPT models,
LangGraph, and various auxiliary AI architectures, this approach oversees the entire research cycle
ranging from hypothesis generation to final report production through a cohesive workflow that
balances automation with human-in-the-loop (HITL) reviews.

Input Query Initial Hypothesis Generation Human-in-the-loop (HITL)

Process Planner

Code 
Generation 

Web SearchReport 
GenerationVisualization

Human-in-the-loop (HITL)

Quality 
Monitor

Context-State 
Taker

Human-in-the-loop (HITL)

Visualized 
Figure

Code 
Snippet

Dataset

Scientific 
Report

Figure 1: End-to-End MatAgent workflow with Human-in-the-Loop (HITL) communication.

2.1 SYSTEM ARCHITECTURE AND KEY COMPONENTS

According to Figure 1, at the heart of the framework is a Process Planner, which coordinates spe-
cialized modules such as Code Generation, Visualization, Report Generation, Web Search, and a
Quality Monitor. To ensure continuity, a Context-State Taker logs each decision and data point,
enabling modules to reference prior states without redundant computations. The system uses Chain-
of-Thought Reasoning (CoT) to break down complex tasks, while Adaptive Workflow Mechanisms
allow dynamic responses to new data or quality checks.

2.2 WORKFLOW DESCRIPTION

The end-to-end workflow proceeds through five main stages. It begins with hypothesis generation
and an initial review of ideas, followed by central processing and specialized coordination where
these ideas are integrated and refined. Next, a quality review stage ensures the workflow is adjusted
as needed, paving the way for a final human review along with the generation of outputs in multiple
formats. The process culminates with the integration of external tools and the secure storage of data.

2.2.1 STAGE 1: HYPOTHESIS GENERATION AND INITIAL REVIEW

In our MatAgent framework, the Hypothesis Agent formulates new research questions or potential
materials by analyzing existing datasets, literature, and learned patterns. Immediately after hypothe-
sis generation, a Human-in-the-Loop (HITL) review evaluates these AI-generated ideas for scientific
viability and practical feasibility. To further validate the scientific novelty and utility of the gener-
ated hypotheses, we employ a two-tiered evaluation framework. First, each hypothesis undergoes
an automated assessment using NLP-based novelty scoring, where it is compared against a curated
database of existing literature to provide an initial quantitative measure of novelty. Next, a panel of
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materials science experts conducts a detailed review using a structured scoring rubric that assesses
novelty, utility, and feasibility. Feedback from this expert review is iteratively fed back into the
MatAgent system, prompting refinement and regeneration of any hypothesis that fails to meet the
established criteria until an acceptable proposal emerges. Finally, selected hypotheses will undergo
experimental validation through computational simulations and lab-based tests, ensuring that the
final outputs are both innovative and practically actionable.

2.2.2 STAGE 2: CENTRAL PROCESSING AND SPECIALIZED COORDINATION

Once a hypothesis is approved, the Process Planner initiates a coordinated effort among key modules.
The Code Generation module produces the necessary scripts (e.g., Python) for computational mod-
eling or data analytics, while the Visualization module converts raw or processed data into graphs,
plots, or other graphics for easy interpretation. At the same time, the Report Generation module
structures intermediate findings into concise summaries to guide subsequent reviews, and the Web
Search module gathers relevant publications, patents, and databases to either reinforce or challenge
the existing hypothesis. Throughout this stage, the Context-State Taker continuously logs decisions
and results, while the Quality Monitor ensures that each module’s output meets domain-specific
standards.

2.2.3 STAGE 3: QUALITY REVIEW AND WORKFLOW ADJUSTMENTS

All intermediate outputs pass through the Quality Monitor, which checks for errors, inconsistencies,
and physically implausible properties. If issues arise, the workflow automatically loops back to the
relevant modules (e.g., Code Generation or Visualization) for corrections. Complex situations may
also prompt additional HITL involvement to provide domain-specific expertise.

2.2.4 STAGE 4: FINAL HUMAN REVIEW AND MULTI-FORMAT OUTPUT GENERATION

Once the Quality Monitor’s criteria are satisfied, a final HITL review confirms the scientific robust-
ness of the results. Approved outcomes are then formatted into visualized figures that offer graphical
insight into key findings, code snippets that enable reproducible workflows, datasets that facilitate
subsequent data exploration, and scientific reports detailing the entire research trajectory from the
initial hypothesis to the final conclusions.

2.2.5 STAGE 5: INTEGRATION WITH EXTERNAL TOOLS AND DATA STORAGE

Finally, the system seamlessly connects to external software and databases, preserving full trace-
ability and scalability. This includes storage solutions for large datasets, simulation platforms for
advanced analyses, or laboratory automation tools for future experimental validation.

By uniting hypothesis generation, specialized module coordination, rigorous quality checks, and
adaptive feedback loops, this multi-agent LLM framework, MatAgent, accelerates materials science
research while maintaining robust standards of accuracy and reproducibility.

3 BENCHMARKING CATEGORIES FOR MODEL EVALUATION

3.1 MATERIAL PROPERTY PREDICTION

Accurate prediction of material properties, particularly the band gap, is essential for optimizing ma-
terials in semiconductors, photovoltaics, and optoelectronics. Traditional experimental approaches
are resource-intensive and time-consuming, making machine learning (ML) models a promising
alternative for rapid, data-driven predictions. MatAgent employs ML techniques to predict exper-
imental band gaps based on structural and electronic features, evaluating four regression models
including Linear Regression (LR), Random Forest (RF), Gradient Boosting Regressor (GBR), and
Support Vector Regression (SVR). The dataset undergoes preprocessing, including cleaning, stan-
dardization, and feature selection to retain the most influential predictors. The data is split into train-
ing (80%) and testing (20%) subsets, and each model is evaluated based on R2 and Mean Squared
Error (MSE) to measure predictive accuracy. The results demonstrate that Random Forest outper-
formed all models, achieving the highest R2 score (0.92) and the lowest MSE (0.01), indicating
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superior generalization ability and reaffirming the necessity of non-linear models for band gap pre-
diction. Further details on models performance can be found in Table 1, and an experiment use case
by querying from the MatAgent regarding the material property prediction purposes is displayed in
Figure 2.

Table 1: Model Performance Comparison for experimental band gap prediction

Model R2 Score MSE

Linear Regression 0.85 0.02
Random Forest 0.92 0.01
Gradient Boosting 0.90 0.015
Support Vector Regression 0.88 0.018

User input = ‘‘‘
Data path: data.csv
Use machine learning to perform data analysis and predict experimental band gap, complete visualizations of R² and MSE. Provide python 
code for the solution.’’’

Query

1. ** Introduction ** The primary objective of this research is to explore the capability of machine learning models to predict the 
experimental band gap of materials. The hypothesis posits that these models can achieve high accuracy, as measured by the coefficient of 
determination (R²) and mean squared error (MSE), by leveraging structural and electronic properties as features.
2. ** Methodology ** Four machine learning models were chosen for this task: Linear Regression, Random Forest Regressor, Gradient 
Boosting  Regressor, and Support Vector Regressor. The dataset was split into training and testing sets with an 80/20 ratio. Each model was 
trained using the training set.
3. ** Results ** The evaluation of the machine learning models yielded the following results:

- **Linear Regression:** R² = 0.85, MSE = 0.02
- **Random Forest Regressor:** R² = 0.92, MSE = 0.01
- **Gradient Boosting Regressor:** R² = 0.90, MSE = 0.015
- **Support Vector Regressor:** R² = 0.88, MSE = 0.018

4. ** Discussion **  The results demonstrate that machine learning models, particularly the Random Forest Regressor, can effectively 
predict the experimental band gap of materials. The high R² values indicate that a significant portion of the variance in the band gap can be 
explained by the model. The low MSE values further confirm the accuracy of the predictions. The visualizations provide a clear 
representation of the model performances, with the Random Forest Regressor showing the closest alignment between predicted and 
actual values. This suggests that it captures the underlying patterns in the data more effectively than the other models.
5. ** Conclusion ** The study successfully validated the hypothesis that machine learning models can predict experimental band gaps 
with high accuracy. The Random Forest Regressor, in particular, showed superior performance, making it a valuable tool for materials 
science applications. Future work could explore the integration of additional features or advanced models to further enhance prediction 
accuracy.

Response

Figure 2: MatAgent communicative output for experimental band gap prediction.

3.2 ADDITIONAL MATAGENT EXPERIMENT

Further ablation studies on other key areas like Hypothesis Generation for Novel Materials, Ex-
perimental Data Analysis, Discovery of High-Performance Alloys, Data-Driven Experimentation,
and Literature Review and Knowledge Synthesis are comprehensively discussed in the Appendix
section. Moreover, utilized datasets and supplementary results related to all six key applications
of MatAgent are presented in Appendix illuminating the history of agents’ interactions, generated
codes, and visualized results.

4 CONCLUSION

This study demonstrates the effectiveness of MatAgent, a data-driven methodology that integrates
machine learning, automated literature review, and computational modeling to accelerate materials
discovery and optimization. Across multiple benchmarks, MatAgent successfully predicted mate-
rial properties, generated hypotheses for novel materials, and optimized experimental and theoreti-
cal frameworks. The predictive models achieved high accuracy, with gradient boosting and neural
networks emerging as top performers, confirming the importance of nonlinear modeling for com-
plex material behaviors. Automated hypothesis generation identified key elemental and structural
descriptors, guiding future materials engineering efforts. Furthermore, knowledge synthesis in pho-
tovoltaics and structural materials validated data-driven insights for improving performance and
efficiency. The application of MatAgent in material science highlights the transformative potential
of AI-driven approaches in reducing experimental costs, refining predictive capabilities, and uncov-
ering novel materials with tailored properties. Future research should focus on expanding datasets,
incorporating deep learning frameworks, and validating predictions through experimental studies to
further enhance MatAgent’s impact on materials discovery and innovation.
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A APPENDIX

In this section, the utilized datasets and supplementary results are shown for each category and rel-
evant discussions are provided accordingly. The diverse range of results span from the MatAgent’s
interactive query-response, history of the interactions among various agents, the corresponding gen-
erated codes, and visualized figures as output.

A.1 DATASET AND COMPUTATIONAL METHODS

A.1.1 MATERIAL PROPERTY PREDICTION

The study uses a dataset sourced from a CSV file which contains a comprehensive collection of
materials-related features alongside experimentally determined band gap values. This dataset serves
as the foundation for predicting material properties. According to Figure 3, the features in the
dataset include various structural and electronic descriptors that are presumed to influence the band
gap, providing a robust basis for the predictive models.

The preprocessing workflow begins with loading the dataset directly from CSV file. Given that the
raw data may include non-numeric entries and missing values, an initial cleaning step is applied
where only numeric columns are retained, and any rows with missing values are discarded. This
ensures that the dataset used for model training is clean and reliable. In addition to these steps, the
features were standardized to maintain a uniform scale across all predictors, which is crucial for the
convergence and performance of many machine learning algorithms. Finally, the cleaned dataset is
split into training and testing sets (commonly with an 80/20 ratio) to facilitate model training and
subsequent evaluation.

Figure 3: The sample CSV file for material property prediction task.

A.1.2 HYPOTHESIS GENERATION FOR NOVEL MATERIALS

The study leverages the dataset which comprises over 21,000 entries and 82 features related to
the properties of superconducting materials. According to Figure 4, key descriptors in the dataset
include compositional details, physical properties such as mean atomic mass, and other relevant
material characteristics, with the target variable being the critical temperature (Tc), the temperature
at which a material becomes superconducting. This extensive dataset forms the empirical basis for
generating novel hypotheses regarding superconducting materials.

To ensure robust and reliable analysis, the following preprocessing steps were rigorously applied:

(1)- The raw dataset contained mixed data types and non-numeric entries. Using cleaning scripts, all
columns were coerced into numeric types. Conversion errors were handled by setting invalid entries
to NaN, followed by either dropping these rows or imputing missing values with column means.
This cleaning step was crucial to remove inconsistencies and ensure that all features are directly
comparable.

(2)- After cleaning, the dataset was split into features and the target variable (Tc). Feature scaling
was then performed using StandardScaler to standardize the range of all predictors. This normaliza-
tion is essential for improving the convergence and performance of machine learning models.
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(3)- Finally, the preprocessed data was partitioned into training and testing sets (typically an 80/20
split) to enable unbiased model training and evaluation.

Figure 4: The sample CSV file for hypothesis generation for novel materials task.

A.1.3 EXPERIMENTAL DATA ANALYSIS

The analysis is based on the experimental dataset which contains detailed measurements of gravi-
metric and molar heat capacities recorded at multiple temperatures (e.g., 250°C, 275°C, 300°C,
etc.). According to Figure 5, the dataset features descriptive column headers, such as those indi-
cating mean and standard deviation values for heat capacities, that ensure clarity and consistency
in the experimental records. Preliminary reviews confirm that the data is largely complete, with the
structure facilitating straightforward interpretation and subsequent analysis.

To ensure the reliability and accuracy of the analysis, a rigorous data preprocessing pipeline was
implemented:

(1)- The raw dataset was examined for missing or inconsistent values. Any missing entries were
addressed either by filling with the mean of the respective numerical columns or by dropping affected
rows. Duplicate entries were identified and removed to prevent bias in downstream analyses.

(2)- Data types were standardized by converting relevant columns to numeric formats (e.g., floats).
This conversion ensures that all measurements can be directly compared and analyzed statistically.
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(3)- Where necessary, the features were normalized or standardized to place them on a comparable
scale, which is crucial for both visualization and the performance of machine learning algorithms.

(4)- The entire preprocessing workflow was automated using Python scripts. These scripts not only
performed the cleaning tasks but also saved a refined version of the dataset for further analysis.

Figure 5: The sample CSV file for experimental data analysis task.

A.1.4 ACCELERATED DISCOVERY OF HIGH-PERFORMANCE ALLOYS OR POLYMERS

The investigation relies on the dataset which is a comprehensive collection of experimental measure-
ments and compositional details for various alloys. As can be seen in Figure 6, Key attributes within
this dataset include the yield strength (expressed in MPa) along with several material properties that
characterize each alloy. The dataset serves as the empirical basis for predicting and optimizing alloy
performance, and it is derived from either experimental measurements, literature compilations, or a
combination thereof. The accompanying verification script confirms that essential target variables
(e.g., ”YS (MPa)”) and relevant feature columns are present, ensuring the integrity of the dataset.

Robust data preprocessing is fundamental to the success of the predictive models. The preprocessing
workflow implemented for this dataset involves several critical steps:

(1)- Python scripts are used to clean the column headers by stripping whitespace and converting them
to lowercase. This standardization ensures consistent naming conventions throughout the analysis.
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(2)- The dataset is first loaded, and missing values are identified. In multiple scripts, rows with
missing values, especially in crucial target variables, are either dropped or imputed. For example,
any missing data in numerical columns is handled by either dropping the affected rows or replacing
them with the mean values.

(3)- Non-numeric columns (such as the alloy name) are excluded from the feature set to ensure that
only quantitative data is used for modeling. The features are normalized using techniques such as
standardization (via StandardScaler), which scales the data to have zero mean and unit variance. This
step is essential for many machine learning algorithms, particularly when features have different
scales.

(4)- The cleaned and normalized data is partitioned into training and testing sets, typically using an
80/20 split. This approach facilitates unbiased evaluation of the predictive models.

Although the primary focus is on data-driven modeling, the overall framework aims to combine
theoretical calculations with machine learning predictions. Theoretical aspects, such as computing
lattice constants and mixing enthalpy, are implied in the accompanying notes and literature review.
These theoretical parameters can further refine the predictive models by incorporating fundamental
material properties, thereby narrowing down candidate alloys with superior performance.

Figure 6: The sample CSV file for discovery of high-performance alloys task.

A.1.5 DATA-DRIVEN EXPERIMENTATION

The experimentation is based on the dataset which is widely recognized in the field of construction
materials research. As depicted in Figure 7, this dataset compiles experimental measurements on
concrete strength alongside various mix composition parameters. This rich dataset forms the em-
pirical basis for developing predictive models aimed at optimizing concrete strength, an essential
property for ensuring structural integrity and performance in construction.

A robust preprocessing pipeline was established to ensure the quality and reliability of the analysis:

(1)- The dataset is loaded using Python’s Pandas library. The accompanying scripts perform initial
checks for missing values. In this case, missing values are either absent or handled by dropping
incomplete rows, ensuring a clean dataset for subsequent analysis. Column names are standardized
by stripping extra whitespace and converting them to lowercase, which guarantees consistency in
feature referencing.

11



Published as a conference paper at ICLR 2025 Workshop AI4MAT

(2)- The target variable, identified as ”strength,” is separated from the feature set. Non-numeric
columns such as the alloy or mix identifier are excluded from the analysis to focus solely on quanti-
tative variables.

(3)- Standardization is performed using the StandardScaler from scikit-learn, which scales the fea-
ture values to have a zero mean and unit variance. This step is critical for many machine learning
algorithms to function optimally, as it mitigates the influence of differing feature scales.

(4)- Finally, the preprocessed data is split into training and testing subsets (commonly using an 80/20
ratio) to facilitate unbiased model training and evaluation.

Figure 7: The sample CSV file for data-driven experimentation task.

A.2 MATERIAL PROPERTY PREDICTION

The Figure 8 illustrates the history of interactions among different agents within the MatAgent
framework during the material property prediction process. These interactions involve multiple AI
agents, each responsible for specific tasks in the research workflow, guided by a Human-in-the-Loop
(HITL) mechanism for validation and refinement.

The detailed discussion about the agent Interactions in this cycle is provided below:

A.2.1 HYPOTHESIS AGENT

• Proposes a research hypothesis that machine learning models can accurately predict the
experimental band gap of materials based on their structural and electronic properties.

• Outlines the steps to test the hypothesis, including data collection, preprocessing, feature
selection, model training, and evaluation using regression models (Linear Regression, Ran-
dom Forest, Gradient Boosting, and SVR).

• Involves a decision-making step, where the human researcher chooses whether to regener-
ate the hypothesis or continue the research process.
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A.2.2 PROCESS AGENT

• Receives the next task: integrating Python code and visualizations into the research report.
• Ensures that the Methodology, Results, and Discussion sections include R2, MSE, and

predicted vs. actual values to support the analysis.
• Logs the process of creating a research report document (Research Report.md).

A.2.3 REPORT AGENT

• Drafts the research report and saves it as ”Research Report.md”.
• Ensures that the report integrates Python code, visualizations, and key research findings,

providing a comprehensive overview of the study.

A.2.4 QUALITY REVIEW AGENT

• Reviews the completed report for clarity, completeness, and alignment with the hypothesis.
• Confirms that it includes all necessary components, such as Python code, visualizations of

R2 and MSE, and predicted vs. actual values.
• Provides an opportunity for further modifications if needed.

This history of interactions exemplifies how MatAgent orchestrates machine learning-driven mate-
rial property prediction in a streamlined, automated, yet human-guided manner.

Figure 8: The history of agents’ interactions with each other for material property prediction.
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As displayed in Figure 9, the Python script model training and evaluation.py is de-
signed to train and validate machine learning models for predicting the experimental band
gap of materials. The script follows a structured workflow that includes data preprocessing,
model training, evaluation, and visualization of results. The process begins with importing
the necessary libraries, including pandas for data manipulation, numpy for numerical oper-
ations, matplotlib.pyplot and seaborn for visualization, and machine learning mod-
ules from sklearn, such as train test split for data splitting, LinearRegression,
RandomForestRegressor, GradientBoostingRegressor, and SVR for model training,
along with mean squared error and r2 score for performance evaluation.

The dataset is loaded from a CSV file (data.csv), and preprocessing steps are applied to en-
sure data integrity. Non-numeric columns are dropped, and missing values are handled using
.dropna(), ensuring that only complete numerical data is used. The script then selects the fea-
tures (X) and target variable (y), where the experimental band gap column is chosen as the
target. To enable model training and testing, the dataset is split into training and testing subsets
using an 80/20 split ratio with a random state of 42 for reproducibility. The script initializes four
different regression models: Linear Regression, Random Forest, Gradient Boosting, and Support
Vector Regression (SVR).

Each model is trained on the training set (X train, y train) and then evaluated on the test set
(X test, y test). The script calculates two key performance metrics: Mean Squared Error (MSE)
and R2 Score, storing the results in a dictionary. After evaluation, the results are converted into a
DataFrame and visualized using bar plots. The matplotlib library is used to create a side-by-side
bar chart comparing the R2 scores and MSE values of the different models, allowing for an intuitive
comparison of their performance. Labels and titles are added for clarity, and the final visualization
is saved as model performance.png which is shown in Figure 10.

This script provides a streamlined and automated approach to training, evaluating, and visualizing
machine learning models for material property prediction. By integrating multiple regression mod-
els and visualizing their performance, it helps researchers identify the most effective approach for
predicting experimental band gaps based on material features.

Figure 9: The generated python code for training and validating the models.
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Figure 10: The model performance comparisons in terms of R2 and MSE metrics.

A.3 HYPOTHESIS GENERATION FOR NOVEL MATERIALS

The MatAgent develops a machine-learning-based framework to generate hypotheses for novel su-
perconducting materials by predicting critical temperatures (Tc). A large superconductors dataset
(21,263 entries, 82 properties) undergoes thorough preprocessing (cleaning, scaling, imputation)
and exploratory analysis, revealing strong correlations between Tc and factors such as electronega-
tivity, atomic radii, and valence electron count. Multiple machine learning models (including Neural
Networks, Random Forests, Support Vector Regression (SVR), and Linear Regression) are trained
to predict Tc, with a neural network providing the highest accuracy (R2 = 0.92). Further model
performance investigation is disclosed in Table 2, and feature importance analysis highlights elec-
tronegativity, affinity, and valence electron properties as key predictors accordingly. Building on
these models, the study’s Hypothesis Agent proposes four main hypotheses:

1. Elemental Combinations (e.g., Cu, Ba, O) for Higher Tc.

2. Valence Electron Count Positively Influences Superconductivity.

3. Electron Affinity and Electronegativity as Strong Tc Indicators.

4. Generative ML Approaches Can Design Novel Superconductors.

As depicted in Figure 11, the visualizations (feature importance plots, critical temperature distribu-
tions, correlation heatmaps) further validate these hypotheses, underscoring MatAgent’s potential to
accelerate the discovery of high-Tc superconductors through targeted, data-driven predictions.

Table 2: Model Performance for Superconductor Critical Temperature Prediction

Model R2 Score MAE MSE

Random Forest Regressor 0.91 4.2 8.5
Neural Network (MLPRegressor) 0.92 4.0 8.0
Support Vector Regression (SVR) 0.88 4.8 9.2
Linear Regression 0.79 5.5 11.3
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User input = ‘‘‘
Data path: superconduct_train new.csv
Analyze the dataset to generate hypotheses about the relationships between material properties and their critical temperatures. Use machine 
learning to identify key features influencing superconductivity and explore the potential for designing new materials with desired critical 
temperatures. Provide detailed graphical reports showcasing feature importance, patterns, and predictive models, along with actionable 
insights for synthesizing new materials.”’

Query

1. ** Introduction ** The field of superconductivity has witnessed significant advancements with the integration of machine learning 
techniques. These approaches offer promising avenues for predicting new superconductors and their critical temperatures, potentially 
revolutionizing material discovery. Recent studies have leveraged deep learning and unsupervised learning models, demonstrating high 
predictive accuracy. This research aims to explore the efficacy of various machine learning models in identifying and predicting the properties 
of superconducting material..
2.  ** Methodology ** The methodology employed in this research involves a comprehensive analysis of various machine learning models, 
including deep learning and unsupervised learning techniques. The dataset used for training and testing these models consists of known 
superconducting materials and their corresponding critical temperatures. The models will be evaluated based on their predictive accuracy 
and ability to generalize to unseen data.
3. ** Results ** Preliminary results indicate that the deep learning models outperform traditional methods in terms of predictive accuracy. 
The models were able to identify patterns in the data that correlate with the properties of superconducting materials, suggesting a strong 
relationship between the input features and the critical temperatures. Notably, the deep learning model achieved an R² value of 0.92, 
demonstrating its effectiveness in predicting critical temperatures.

Response

Figure 11: MatAgent outcome for Superconductor critical temperature prediction.

The Figure 12 explains the history of interactions among different agents within the MatAgent
framework during the hypothesis generation process for novel materials. These interactions involve
multiple AI agents, each responsible for a distinct task, following a structured workflow to generate
hypotheses, analyze materials, and validate findings under a Human-in-the-Loop (HITL) approach
to ensure meaningful insights.

The process begins with the Hypothesis Agent, which formulates three core hypotheses regarding
the relationship between material composition and superconducting critical temperature (Tc), the
role of material properties in predicting superconductivity, and the potential for generative mod-
eling to design new superconducting materials. To test these hypotheses, the agent outlines key
steps, including data collection and preprocessing, exploratory data analysis (EDA), feature selec-
tion, model development, generative modeling, and visualization/reporting. The HITL mechanism
allows the researcher to decide whether to regenerate the hypothesis or continue with the research
process.

Once the hypotheses are finalized, the Visualization Agent is responsible for creating graphical
representations of the analysis. It generates and saves three key visualizations: the distribution of
critical temperatures, which provides insights into the frequency distribution of superconducting
materials across temperature ranges; a correlation heatmap, which identifies relationships between
material properties and critical temperature; and a feature importance analysis, which ranks the most
influential factors in predicting superconducting behavior. These visualizations play a crucial role
in understanding patterns in the data and supporting hypothesis validation.

Following this, the Quality Review Agent evaluates the research report to ensure clarity, consistency,
and adherence to scientific writing standards. The review confirms that the report is well-structured,
aligns with the research objectives, and includes all necessary visualizations, interpretations, and
discussions. Since no major revisions are required, the project proceeds to the finalization stage.

The Process Agent is the last in the workflow, ensuring that all research components are cohesively
integrated. It verifies that the hypothesis is rigorously tested, the data analysis is complete and repro-
ducible, and all required visualizations are appropriately documented. The final report is polished,
logically structured, and meets high academic standards, concluding the research process.

This structured workflow demonstrates how multiple AI agents collaborate to automate and refine
the hypothesis generation process for novel materials. By integrating machine learning, visualiza-
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tion, and quality assurance mechanisms, MatAgent streamlines research while maintaining human
oversight, ensuring that hypotheses are data-driven, well-documented, and scientifically robust.

### Research Hypotheses
1. **Hypothesis 1: Material Composition and Critical Temperature**
   - **Statement**: There exists a significant relationship between the elemental composition of superconducting materials and their critical 
temperatures (Tc). Specifically, certain combinations of elements will yield higher Tc values.
2. **Hypothesis 2: Feature Importance in Predicting Superconductivity**
   - **Statement**: Machine learning models can accurately predict the critical temperature of superconductors based on their material properties, with 
specific features (e.g., atomic radius, electronegativity) being more influential than others.
3. **Hypothesis 3: Design of New Superconducting Materials**
   - **Statement**: By applying generative machine learning techniques, it is possible to design new superconducting materials with desired critical 
temperatures by optimizing the elemental composition and structure.
### Steps to Test Hypotheses
1. **Data Collection and Preprocessing**:
   - Load the dataset `superconduct_train new.csv`.
   - Clean and preprocess the data to handle missing values and normalize features.
2. **Exploratory Data Analysis (EDA)**:
   - Conduct EDA to visualize relationships between material properties and critical temperatures.
3. **Feature Selection**:
   - Apply statistical tests (e.g., ANOVA, chi-square) to identify significant features.
   - Use machine learning algorithms (e.g., Random Forest, Lasso Regression) to rank feature importance.
4. **Model Development**:
   - Train various machine learning models (e.g., Linear Regression, Random Forest, Gradient Boosting) to predict Tc.
   - Evaluate model performance using metrics such as RMSE and R².
5. **Generative Modeling**:
   - Implement generative models to explore new material compositions.
   - Use optimization techniques to identify compositions that maximize Tc.
6. **Visualization and Reporting**:
- Provide actionable insights for material synthesis based on the findings.
Please choose the next step:
1. Regenerate hypothesis
2. Continue the research process
Please enter your choice (1 or 2):  2

Hypothesis Agent

Human-in-the-loop (HITL)

Figure 12: The history of agents’ interactions with each other for hypothesis generation.

According to Figure 13, the Python script model training.py trains machine learning models
to predict the critical temperature (Tc) of superconducting materials. It follows a structured work-
flow, including data preprocessing, feature standardization, model training, evaluation, and data
exploration.

The script begins by importing necessary libraries, including pandas for data handling, sklearn
for model selection, feature scaling, and evaluation metrics, as well as numpy for numerical com-
putations. It then loads a cleaned dataset (superconduct train cleaned.csv), separates
features (X) and the target variable (y), and splits the dataset into training (80%) and testing (20%)
subsets.
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To ensure uniform feature scaling, a StandardScaler is applied to both the training and testing
sets, transforming them into a normalized range. The first machine learning model implemented is a
Support Vector Machine (SVM) with an RBF kernel, which is trained on the scaled training data.
Predictions are made on the test set, and model performance is evaluated using Mean Absolute
Error (MAE) and Root Mean Squared Error (RMSE).

The script also trains a Neural Network using an MLPRegressor with a hidden layer of 100
neurons and a maximum of 500 iterations. Like the SVM, it is trained on the scaled training data,
makes predictions on the test set, and is evaluated using MAE and RMSE. The evaluation results for
both models (svm mae, svm rmse, nn mae, nn rmse) are stored for comparison.

Additionally, a separate section of the script performs dataset exploration by loading another dataset
(superconduct train new.csv), ensuring proper data types and handling potential format-
ting inconsistencies. It cleans non-numeric characters, converts data to a numerical format, and
generates dataset summaries, including descriptive statistics, missing value checks, and a correla-
tion matrix. These exploratory steps provide insights into the dataset structure, aiding in better
preprocessing before model training.

This script automates training, evaluation, and analysis of machine learning models for supercon-
ductivity prediction. By integrating Support Vector Machines and Neural Networks,
it compares model performances and facilitates data-driven hypothesis generation for discovering
novel superconducting materials.

Figure 13: The generated python code for training the models.

The Figure 14 presents three key visualizations that provide critical insights into the relationships
between material properties and their influence on superconducting critical temperature (Tc). These
visualizations include a feature importance ranking, a correlation heatmap, and the distribution of
critical temperatures, each serving a unique role in understanding the factors that drive supercon-
ducting behavior.

The feature importance plot (top left) ranks the most influential material properties in predicting Tc,
based on their contributions to the predictive machine learning model. The ranking demonstrates
that a subset of features, such as atomic radius, electronegativity, and valence electron count, play
a dominant role in determining superconducting properties, with a steep decline in importance for
other features. This suggests that while many material characteristics influence superconductivity,
only a few exhibit a strong predictive relationship with Tc. Identifying these critical features enables
researchers to focus on the most impactful variables when designing new superconducting materials,
improving both efficiency and accuracy in material discovery.
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The correlation heatmap (top right) provides an overview of how different material properties inter-
act with one another. This matrix visualization employs a color scale, where red represents strong
positive correlations and blue indicates negative correlations, allowing for a clear understanding of
feature interdependencies. The presence of strong correlations between certain features, such as
atomic mass, atomic radius, and valence electron properties, suggests that these factors tend to vary
together, potentially influencing superconductivity in related ways. By identifying highly correlated
features, researchers can refine their predictive models by reducing redundancy and improving fea-
ture selection. Furthermore, this visualization supports the hypothesis that electronic and structural
properties play a crucial role in determining superconducting behavior.

The distribution of critical temperatures (bottom left) provides insights into how superconducting
materials are spread across different temperature ranges. The histogram reveals a high density of
materials with relatively low Tc values (below 100 K), while only a small fraction exhibit signif-
icantly higher critical temperatures. This skewed distribution suggests that the majority of known
superconductors operate at relatively low temperatures, aligning with the well-documented chal-
lenge of achieving high Tc superconductivity. The presence of a long tail in the distribution, with
some materials exhibiting exceptionally high Tc values, highlights potential candidates for further
investigation, as they may possess unique structural or electronic characteristics that enable higher-
temperature superconductivity. These insights can help guide researchers in prioritizing the most
promising materials for advancing high Tc superconductor development.

Together, these visualizations provide a comprehensive and data-driven approach to understanding
superconductivity, offering valuable insights into the key material properties that govern Tc. The
feature importance analysis identifies dominant predictive variables, the correlation heatmap reveals
interdependencies among material properties, and the critical temperature distribution underscores
the challenges and opportunities in high Tc material discovery. These findings contribute to the
broader objective of accelerating the discovery of novel superconductors through Data-driven hy-
pothesis generation and materials informatics.

Figure 14: The correlation heatmap and visualized feature importance outputs.

A.4 EXPERIMENTAL DATA ANALYSIS

MatAgent emphasizes the pivotal role of experimental dataset analysis in understanding how mate-
rials behave under different temperature conditions, specifically focusing on gravimetric and molar
heat capacities between 250 ◦C and 400 ◦C, as shown in Figure 15. After thorough data prepro-
cessing—including imputation of missing values, removal of duplicates, and numerical standardiza-
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tion—exploratory analyses reveal near-normal distributions of heat capacity measures, with mean
values rising at higher temperatures, thereby confirming the thermal dependence of heat capacity.
A strong positive correlation emerges between gravimetric and molar heat capacities, suggesting
their interdependence in characterizing heat retention. Accordingly, with the help of the MatAgent,
machine learning is introduced to extend these findings, where feature engineering and a Random
Forest Classifier are used to identify temperature-driven material behavior. The model pinpoints
molar heat capacity at 250 ◦C as a key predictor and achieves high classification accuracy (>85%),
underscoring the viability of predictive modeling in classifying materials based on their thermal
properties. Taken together, these insights underline the potential for leveraging correlated heat ca-
pacity trends to enhance material design and optimization, with applicability in thermal management
solutions for fields such as energy storage, aerospace, and electronics.

User input = ‘‘‘
Data path: IZA_cp.csv  
Task: Provide complete Python code to automate the analysis of results from experiments. The code should perform the following:  
- A complete Python script that automates the analysis from start to finish.  
- Detailed comments in the code explaining each step for reproducibility and clarity.  
- Code should output visualizations, results, and a summarized report of the findings.”’

Query

1. **Introduction** This report explores the correlation between gravimetric and molar heat capacities across various temperatures. The 
hypothesis is that these heat capacities are correlated, which is tested using statistical analysis and visualization techniques. Understanding 
the relationship between gravimetric and molar heat capacities is crucial for applications in material science and engineering, where 
temperature-dependent properties are pivotal.
2. **Hypothesis**  The gravimetric and molar heat capacities are correlated across different temperatures. 
3. **Results** The histograms showed the distribution of gravimetric heat capacities at different temperatures. Scatter plots were used to 
visualize the relationship between molar and gravimetric heat capacities, and a correlation heatmap highlighted the strengths of these 
relationships. The observed correlations may be attributed to the intrinsic properties of the materials studied, which tend to exhibit consistent 
behavior across different heat capacity measurements. This has significant implications for predicting material behavior in practical 
applications.
4. **Discussion** The visualizations suggest a significant correlation between gravimetric and molar heat capacities, supporting the 
hypothesis. The correlation heatmap particularly emphasizes the strength of these relationships across different temperatures. 

Response

Figure 15: MatAgent query-response result for streamlining the experimental data analysis.

Figure 16 illustrates the history of interactions among multiple AI agents within the MatAgent
framework during the Experimental Data Analysis process. These agents collaborate to ensure a
structured, automated approach to analyzing experimental data, refining findings, and enhancing
the quality of the research report. The workflow follows an iterative process involving the Process
Agent, Searcher Agent, Report Agent, and Quality Review Agent, each contributing to different
stages of research documentation and validation.

The process begins with the Process Agent, which is responsible for compiling references that sup-
port the research methodologies and findings. It ensures that appropriate citations are included
to strengthen the scientific credibility of the report. The agent logs multiple operations, including
searching for related works, extracting relevant literature, and integrating references into the research
document. These steps help align the study with existing knowledge in the field.

The Searcher Agent then takes over by retrieving references and summarizing key insights from
relevant scientific articles. It identifies essential points from various sources, such as the impact
of temperature on biological shifts and chemical reactions, statistical analysis of temperature data,
and using machine learning to predict temperature effects. By incorporating these references, the
research gains depth and scientific validation, ensuring that its conclusions are supported by existing
literature.

Following the integration of references, the Report Agent evaluates the research document and iden-
tifies areas for improvement. It highlights key concerns, including the clarity of the narrative, com-
pleteness of the methodology, visualization of results, logical coherence in the discussion section,

20



Published as a conference paper at ICLR 2025 Workshop AI4MAT

and proper citation formatting. The agent suggests refining these aspects to ensure the report meets
high academic standards.

The Quality Review Agent conducts the final validation of the research report. It assesses the accu-
racy of interpretations, organization of findings, depth of discussion, and proper reference format-
ting. The agent also ensures that the results are presented with appropriate visualizations, tables,
and structured explanations, improving the report’s readability and impact.

This structured collaboration between agents enables efficient and systematic analysis of experimen-
tal data, refining the research process while maintaining scientific rigor. By integrating automated
literature retrieval, reference validation, report structuring, and quality assurance, MatAgent ensures
that experimental findings are well-documented, data-driven, and aligned with established research
methodologies.

Figure 16: The history of agents’ interactions with each other for experimental data analysis.
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Figure 17 presents the Python script automated analysis.py, which automates the prepro-
cessing and visualization of experimental data, specifically for analyzing gravimetric heat capacities
at different temperatures. This structured workflow includes data loading, cleaning, transformation,
and visualization, ensuring that the dataset is prepared for further analysis in a streamlined manner.

The script begins by importing essential libraries, including pandas for data manipulation,
matplotlib.pyplot for visualization, and seaborn for enhanced plotting aesthetics. The
dataset, stored as IZA cp.csv, is then loaded into a Pandas DataFrame, making it accessi-
ble for analysis. The data cleaning process follows, starting with an inspection of the dataset
by displaying the first few rows using df.head(). The script then checks for missing val-
ues using df.isnull().sum(), printing the number of missing values per column. To han-
dle missing data, the script fills missing numerical values with their respective column means
using df.fillna(df.mean(numeric only=True),inplace=True), ensuring that in-
complete records do not interfere with subsequent analysis.

Next, the script identifies duplicate entries using df.duplicated().sum(). If duplicates
are found, they are removed using df.drop duplicates(inplace=True), preventing re-
dundant data from skewing the results. It also checks for inconsistent data types by printing
df.dtypes, which allows for the identification of incorrectly formatted columns. To ensure nu-
merical data is processed correctly, the script attempts to convert all relevant columns to float format
while skipping non-numeric columns, such as names. Any conversion errors are caught, and af-
fected columns are flagged for further inspection. Once cleaned, the processed dataset is saved as
a new CSV file (cleaned IZA cp.csv) using df.to csv(), preserving the refined data for
future use.

The final step in the workflow is data visualization. The script uses seaborn to generate his-
tograms of gravimetric heat capacities at various temperatures. The histograms are plotted for a
range of temperatures (250°C to 400°C), capturing the distribution of gravimetric heat capacities
across different thermal conditions. Each histogram is labeled with the corresponding temperature,
and the figure is saved as histograms gravimetric heat capacity.png.

This automated approach ensures efficient, reproducible experimental data analysis by handling
missing values, removing inconsistencies, and generating meaningful visualizations. The stream-
lined workflow enhances data reliability while providing clear insights into material behavior across
different temperature conditions, aiding in the broader goal of experimental data-driven materials
research.

Figure 17: The generated python code for automating the experimental data analysis.

The visualizations in Figure 18 provide a detailed analysis of gravimetric and molar heat capaci-
ties across different temperatures, aiming to uncover patterns and correlations in the experimental
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dataset. The key visual elements include histograms of gravimetric heat capacities, scatter plots
comparing gravimetric and molar heat capacities, and a correlation heatmap.

The histograms (top-left) display the distribution of gravimetric heat capacities at temperatures rang-
ing from 250 ◦C to 400 ◦C. These histograms reveal that the heat capacity values exhibit near-
normal distributions, with mean values gradually increasing as temperature rises. The smooth kernel
density estimation (KDE) overlay further illustrates the spread and concentration of values, indicat-
ing that materials exhibit consistent thermal behavior across temperature variations. This suggests
that gravimetric heat capacity follows a predictable trend with changing temperature.

The scatter plots (bottom-left) compare gravimetric heat capacity (Cv) with molar heat capacity at
multiple temperature points. Each scatter plot exhibits a strong linear relationship between these two
properties, as demonstrated by the near-perfect alignment of data points along a straight line. This
finding reinforces the interdependence between gravimetric and molar heat capacities, indicating
that one can be reliably predicted from the other. The strong correlation suggests that molar heat
capacity scales proportionally with gravimetric heat capacity, further validating the thermodynamic
consistency of the dataset.

The correlation heatmap (right side) provides a comprehensive overview of the relationships be-
tween heat capacity measurements at different temperatures. The color-coded matrix represents
correlation coefficients, where red indicates strong positive correlations, blue represents negative
correlations, and white denotes weaker relationships. The heatmap reveals high correlations (close
to 1.0) between heat capacities measured at adjacent temperatures, suggesting that heat capacity
values remain stable across thermal ranges. Additionally, the clustering of similar values along the
diagonal highlights the thermal continuity in material behavior, reinforcing the assumption that heat
capacities evolve predictably with increasing temperature.

Together, these visualizations offer a comprehensive experimental analysis of heat capacity trends.
The histograms validate the normality and progression of heat capacity values, the scatter plots con-
firm strong linear dependencies between gravimetric and molar heat capacities, and the correlation
heatmap demonstrates the thermal consistency of heat capacity measurements across temperature
ranges. These insights support data-driven decision-making in materials science, particularly in pre-
dicting thermal properties and optimizing material compositions for specific temperature conditions.

Figure 18: The visualized results concerning the automation of the experimental data analysis.

A.5 ACCELERATED DISCOVERY OF HIGH-PERFORMANCE ALLOYS OR POLYMERS

MatAgent also highlights how machine learning techniques, combined with density functional the-
ory (DFT) calculations, can accelerate the discovery and optimization of high-performance alloys
by predicting their yield strength—a critical property in aerospace, automotive, and structural appli-
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Table 3: Model Performance for Yield Strength Prediction

Model R2 Score MAE MSE

Random Forest Regressor 0.89 85 MPa 12000 MPa2

Gradient Boosting Machine (GBM) 0.91 78 MPa 10000 MPa2

Support Vector Regression (SVR) 0.85 92 MPa 14000 MPa2

cations. As can be seen in Figure 19, a key dataset (Alloy-Yield-Strength.csv) is curated
to include lattice constants, electronic properties, and yield strength values (YS in MPa). Data pre-
processing addresses missing values, outliers, and formatting inconsistencies, ensuring reliability
for downstream analysis. Exploratory analysis reveals a bimodal yield strength distribution (low vs.
high strength alloys), with a noteworthy correlation between smaller lattice constant variations and
higher yield strength. Gradient Boosting Machines (GBM) emerges as the top-performing model,
yielding an R2 of 0.91 and a MAE of 78MPa, surpassing Random Forest and Support Vector Re-
gression (SVR) for which their further details are given in Table 3. DFT calculations provide com-
plementary insights, indicating that lower Fermi-level occupancy and metallic bonding interactions
(e.g., in Ir–Rh alloys) contribute to stronger atomic bonds and enhance yield strength.

User input = ‘‘‘
Data path: Alloy_Yield_Strength.csv
Develop advanced alloys for aerospace, automotive, or electronics industries using the dataset. Combine theoretical calculations with machine 
learning predictions to narrow down candidate materials and optimize yield strength (YS). Automate the identification of key material properties, 
such as lattice constants and mixing enthalpy, and optimal processing conditions for maximum performance.”’

Query

1. **Introduction** Discuss the significance of yield strength in alloy materials and its impact on industrial applications. Introduce the 
integration of machine learning models with theoretical calculations as a novel approach to enhance yield strength predictions.
2. **Methodology** The study utilized density functional theory (DFT) to calculate the electronic properties of alloys, focusing on the 
electronic density of states (DOS) as a predictor of yield strength. Machine learning models were trained using the dataset to predict yield 
strength based on calculated electronic properties and lattice constants. Statistical tests, including regression analysis and cross-validation, 
were employed to evaluate model performance.
3. **Results** Provide a summary of the results obtained from the analysis of the dataset. The scatter plot titled 'Yield Strength vs Diff. Lattice 
Constants' illustrates the relationship between yield strength and the difference in lattice constants across various alloys. This visualization 
highlights a trend where increased differences in lattice constants correlate with variations in yield strength, suggesting a potential avenue for 
optimizing alloy compositions. Include references to relevant data visualizations that illustrate key findings. The study confirms that integrating 
machine learning with theoretical calculations can significantly improve yield strength predictions in alloys. The findings underscore the 
importance of electronic properties, particularly DOS, in influencing mechanical performance. These insights pave the way for more targeted 
alloy design strategies. 

 

Response

Figure 19: Experimenting MatAgent by combining the ML and DFT for alloy discovery.

The Figure 20 illustrates the history of interactions among various agents within the MatAgent
framework during the accelerated discovery of high-performance alloys or polymers. This struc-
tured multi-agent system automates hypothesis generation, material property prediction, and scien-
tific documentation while incorporating a human-in-the-loop (HITL) validation mechanism to refine
insights and ensure the accuracy of results.

The process begins with the Hypothesis Agent, which formulates three core hypotheses focused on
optimizing yield strength in advanced alloys. The first hypothesis proposes that machine learning
models combined with theoretical calculations can accurately predict and optimize yield strength
by identifying key material properties and optimal processing conditions. The second hypothesis
suggests a strong correlation between specific material properties (e.g., lattice constants, mixing
enthalpy) and yield strength, which can be visualized through correlation heatmaps. The third hy-
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pothesis asserts that feature importance rankings from machine learning models can automate the
identification of critical factors influencing yield strength, thus streamlining alloy development.

To test these hypotheses, the agent establishes a structured methodology that includes:

• Data Collection and Preprocessing: Gathering material property data from the provided
dataset (Alloy Yield Strength.csv).

• Theoretical Calculations: Computing key material properties, such as lattice constants and
mixing enthalpy.

• Machine Learning Model Development: Training predictive models (Random Forest, Gra-
dient Boosting) to estimate yield strength based on identified material properties.

• Correlation Analysis: Generating heatmaps to visualize the relationships between material
properties and yield strength.

• Feature Importance Ranking: Using techniques like SHAP (Shapley Additive Explana-
tions) or permutation importance to determine the most influential features.

• Yield Strength Distribution Analysis: Identifying trends and variability in the dataset.

• Automation of Candidate Material Identification: Developing an automated pipeline that
integrates theoretical calculations and machine learning predictions to discover optimal
alloy compositions.

• Validation Experiments: Proposing experimental methods to confirm predictions based on
candidate materials and processing conditions.

After the hypothesis formulation and Human-in-the lop, the Process Agent plays a crucial role in
ensuring that findings from the literature review are seamlessly integrated into the research report.
It retrieves and processes multiple documents related to machine learning applications in material
property prediction, ensuring that the research is grounded in existing scientific knowledge. The
logs indicate that relevant reports were accessed, read, and edited to align the study with current
advancements in the field.

Once the literature review and findings are compiled, the Report Agent drafts a structured document,
"Research Report Optimizing Yield Strength.md", incorporating insights into the
introduction and methodology sections. The agent ensures that machine learning advancements in
predicting material properties are explicitly connected to the research hypothesis, while also verify-
ing that references are correctly cited to maintain scientific integrity.

The Quality Review Agent then assesses the final research report for clarity, coherence, and adher-
ence to scientific writing standards. It confirms that the machine learning methodologies used for
predicting material properties are well-documented, logically structured, and properly referenced.
Since no further revisions are deemed necessary, the project proceeds to finalization.

This structured workflow highlights how MatAgent efficiently integrates machine learning, theoreti-
cal calculations, and systematic documentation to accelerate high-performance alloy discovery. The
automated yet expert-guided approach ensures that hypothesis testing, predictive modeling, and ma-
terial optimization remain data-driven, accurate, and scientifically validated, making it a powerful
tool for advancing alloy development in engineering and materials science.
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Figure 20: The history of agents’ interactions with each other for alloy and polymer discovery.

The Python script optimize model.py which is shown in Figure 21 is designed to optimize a
machine learning model for predicting the yield strength of alloys using Random Forest Regression.
It follows a structured workflow that includes data preprocessing, model training, hyperparameter
tuning using GridSearchCV, and performance evaluation to ensure optimal predictive performance.

The script begins by importing necessary libraries, including pandas and numpy for data
manipulation, sklearn modules for data splitting, preprocessing, and model selection, and
RandomForestRegressor for regression tasks. It also imports GridSearchCV, a technique
for hyperparameter tuning to improve model performance.

The data preprocessing pipeline starts by loading the dataset (Alloy Yield Strength.csv)
into a Pandas DataFrame. The column names are cleaned by stripping whitespace and convert-
ing them to lowercase to maintain consistency. The script then identifies numeric and categorical
columns, ensuring that numerical data is properly standardized and categorical data is encoded for
model training. Missing values in numerical columns are filled with their mean values, ensuring that
incomplete records do not interfere with training.
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To facilitate efficient preprocessing, the script defines two transformation steps:

• Numerical columns are standardized using StandardScaler.

• Categorical columns are encoded using OneHotEncoder.

These transformations are combined into a preprocessing pipeline, ensuring that all data is uniformly
processed before being fed into the machine learning model.

The model training process begins by defining the Random Forest Regressor with a fixed random
state for reproducibility. A pipeline is created to integrate the preprocessing steps and the model into
a unified workflow. The dataset is then split into training and testing sets (80/20 split) to evaluate
model performance on unseen data.

To enhance predictive accuracy, the script employs GridSearchCV for hyperparameter tuning,
optimizing key parameters such as the number of estimators, maximum depth, and maximum fea-
tures. The hyperparameter search iterates over multiple configurations, selecting the combination
that yields the best model performance based on cross-validation scores.

Once the best model is identified, its performance is evaluated on the test set using key regression
metrics MAE, MSE, R² Score. The final results, including the best-performing model and evaluation
metrics, are stored and printed for further analysis.

This script efficiently automates the optimization of machine learning models for material property
prediction, ensuring that the model is properly tuned, systematically preprocessed, and rigorously
evaluated. By integrating data cleaning, feature engineering, hyperparameter tuning, and perfor-
mance assessment, it streamlines the discovery of high-performance alloys with optimized yield
strength.

Figure 21: The generated code for model optimization purpose.

The visualized results for yield stress analysis in Figure 22 provide key insights into the relation-
ship between material properties and yield strength distribution. The two plots illustrate different
perspectives: one focuses on the correlation between yield strength and lattice constant differences,
while the other captures the overall distribution of yield strength values.

The scatter plot (left) presents the relationship between yield strength (MPa) and the difference in
lattice constants. Each point represents a data sample, and its position indicates the lattice constant
difference and corresponding yield strength. The majority of points are concentrated at low lattice
constant differences (close to 0.0–0.5), spanning a broad range of yield strength values from ap-
proximately 500 MPa to over 2500 MPa. This suggests that small lattice constant differences do
not strictly determine yield strength, as samples within this range exhibit high variability. However,
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at higher lattice constant differences (above 1.5), a trend of lower yield strength values is observed,
indicating that greater lattice distortions may lead to structural weaknesses in alloys. While the trend
is not entirely linear, the spread of data suggests that other factors, such as elemental composition or
processing conditions, might influence yield strength alongside lattice constants.

The histogram (right) illustrates the distribution of yield strength values across the dataset. The
histogram reveals a bimodal-like distribution, with most materials exhibiting yield strength values
between 1000 MPa and 1700 MPa. The highest frequency occurs around 1500 MPa, indicating that
a significant proportion of the dataset consists of mid-to-high-strength alloys. A smaller subset of
alloys exhibits exceptionally high yield strength values (above 2500 MPa), suggesting the presence
of specialized or high-performance materials. Meanwhile, there are relatively fewer materials with
yield strength below 1000 MPa, which could indicate that low-strength alloys are either less common
in the dataset or less desirable in high-performance applications.

These visualizations provide a data-driven perspective on yield strength optimization. The scatter
plot highlights how lattice constant differences relate to strength variability, while the histogram
reveals the common and extreme yield strength values within the dataset. These insights can inform
machine learning models, material selection processes, and alloy design strategies to enhance high-
performance material discovery.

Figure 22: The visualized results for yield stress analysis.

A.6 DATA-DRIVEN EXPERIMENTATION

The application of machine learning (ML) in materials science is transforming conventional ex-
perimentation by enabling predictive modeling for optimizing material properties. This study, as
visually outlined in Figure 23, explores a data-driven approach to optimizing concrete mix designs
by predicting compressive strength using ML techniques. The dataset comprises various concrete
components, including cement, slag, ash, water, superplasticizer, coarse aggregate, fine aggregate,
and curing age, which directly influence mechanical performance. The research objectives include
identifying key influencing factors, developing predictive ML models for strength estimation, opti-
mizing mix proportions, and validating model performance through comparative analysis.

The dataset was preprocessed by handling missing values, applying MinMax scaling for feature stan-
dardization, and splitting it into training (80%) and testing (20%) sets. Exploratory Data Analysis
(EDA) using correlation heatmaps revealed cement and age as the strongest positive predictors (0.50
and 0.33, respectively), while water content negatively correlated (-0.29), reinforcing that excessive
water weakens concrete. Superplasticizer exhibited a moderate positive correlation (0.37), support-
ing workability without excessive water. The distribution of strength values showed a unimodal
trend, peaking between 30–50 MPa, with a few high-performance concrete samples exceeding 70
MPa. For predictive modeling, Linear Regression (baseline), Random Forest, and Gradient Boost-
ing Regressor (GBR) were implemented. Performance evaluation was based on Root Mean Square
Error (RMSE) and R² scores, as summarized below.

As shown in Table 4, Gradient Boosting achieved the best performance, exhibiting the lowest Root
Mean Squared Error (RMSE) of 5.2 MPa and the highest R-squared (R²) of 0.93. This clearly
demonstrates Gradient Boosting’s superior capability in capturing complex interactions within the
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data. Random Forest also performed well with a high R² of 0.91, further validating the non-linearity
inherent in compressive strength prediction. In contrast, Linear Regression showed the lowest ac-
curacy, evidenced by its considerably lower R² of 0.76. This performance disparity indicates that
accurate compressive strength prediction necessitates non-linear models like Gradient Boosting and
Random Forest, as linear approaches are inadequate to capture the underlying complexities.

Feature importance analysis identified curing age and cement content as the most influential factors,
with water negatively impacting strength and superplasticizer playing a moderate role in enhancing
workability while maintaining strength. Visualizations further confirmed the distribution of com-
pressive strength and superior accuracy of GBR over other models.

The findings highlight ML’s potential for real-time strength prediction, reducing reliance on tradi-
tional testing. Predictive models facilitate optimized mix designs, ensuring cost-effective and high-
performance concrete formulations. Future work should incorporate environmental factors (e.g.,
temperature, humidity) and reinforcement effects for enhanced generalization. This study demon-
strates how ML can transform material optimization, with GBR emerging as the most effective
model for compressive strength prediction.

Figure 23: The visualized query-response for automated data-driven experimentation.

Table 4: Model Performance for Concrete Strength Prediction

Model RMSE (MPa) R2 Score

Linear Regression 10.5 0.76
Random Forest 5.8 0.91
Gradient Boosting 5.2 0.93

The visualized results in Figure 24 provide key insights into data-driven experimentation for con-
crete strength prediction, showcasing correlations between material properties, feature importance
rankings, distribution of concrete strength, and model performance comparisons. These analyses are
crucial in understanding the factors influencing concrete strength and optimizing predictive model-
ing.
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The correlation heatmap (top-left) illustrates the relationships between various material components
(e.g., cement, slag, water, superplasticizer, aggregates) and concrete strength. The color scale rep-
resents correlation coefficients, where red indicates strong positive correlations and blue indicates
negative or weak correlations. Cement and age exhibit strong positive correlations with concrete
strength, suggesting that cement content and curing time are critical factors. In contrast, water
shows a negative correlation, indicating that higher water content may weaken concrete strength.

The feature importance bar chart (top-right) ranks the most influential features in predicting con-
crete strength. Age and cement content are the top two contributors, reinforcing findings from the
correlation analysis. Other notable features include superplasticizer and water content, which also
play significant roles in influencing strength variations.

The histogram (bottom-left) visualizes the distribution of concrete strength across the dataset. The
data follows a somewhat normal distribution, with most samples having strengths between 20 MPa
and 50 MPa, while a smaller subset extends beyond 70 MPa. This distribution helps in identifying
common strength ranges and potential outliers.

The model performance comparison chart (bottom-right) evaluates the effectiveness of different ma-
chine learning models—Linear Regression, Random Forest, and Gradient Boosting—in predicting
concrete strength. The blue bars represent RMSE (Root Mean Squared Error), while the red line
represents the R² score. While Random Forest achieves the highest R² score ( 0.90), Linear Regres-
sion performs the worst, demonstrating that non-linear models like Random Forest and Gradient
Boosting better capture complex relationships in concrete strength prediction.

These visualizations provide a comprehensive, data-driven approach to optimizing concrete strength
prediction, identifying key influencing factors, and assessing model performance. The insights
gained can guide material formulation improvements and predictive modeling strategies for enhanc-
ing construction quality and durability.

Figure 24: The visualized results for concrete strength analysis.

A.7 LITERATURE REVIEW AND KNOWLEDGE SYNTHESIS

MatAgent leverages automated literature review and knowledge synthesis techniques, as exempli-
fied in Figure 25, to evaluate optimization strategies for perovskite solar cells (PSCs). Figure 25
illustrates the systematic process of automated literature analysis, where a comprehensive review of
existing research was conducted to identify key trends and supporting evidence. By integrating data
mining, statistical analysis, and visualization tools, the research identifies key performance trends,
highlights material composition impacts, and suggests optimization pathways to improve solar cell
efficiencies. A core hypothesis is that targeted optimization strategies—especially material compo-
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sition modifications and interface engineering—can significantly enhance PSC efficiency compared
to baseline configurations.

The literature review, conducted using automated agents, collected and analyzed scientific arti-
cles, patents, and technical reports from major photovoltaic research databases. Key extracted
themes include material composition optimization, emphasizing the role of triple-cation perovskites
(Cs/FA/MA-based) in efficiency enhancement, passivation and interface engineering strategies for
reducing recombination losses, and machine learning for efficiency prediction, including AI-assisted
modeling of bandgap tuning and crystal structure optimization. A quantitative approach was em-
ployed to compare solar cell efficiencies across different optimization strategies using statistical
tools such as ANOVA and t-tests. Efficiency analysis, as presented in Table 5, revealed that ad-
vanced material composition modifications provided the highest efficiency gain (24.5%), reinforc-
ing the critical role of material design in PSC performance improvement. Comparatively, parasitic
resistance minimization yielded the lowest efficiency improvement (18.5%), suggesting diminishing
returns from electrical resistance optimizations compared to material-driven enhancements.

Visualization insights further validated the findings. A bar plot comparing optimization strategies
confirmed the superiority of material composition over geometric and light management modifi-
cations. Current-voltage (I-V) characteristic analysis illustrated the enhanced voltage-current re-
sponse of optimized cells, particularly those with material composition modifications. Additionally,
efficiency trends over time were analyzed, highlighting progressive improvements from various op-
timization pathways.

The study’s findings align with prior research indicating that iodide passivation and triple-cation
perovskites significantly boost efficiency, though scalability challenges remain for large-area PSC
modules, necessitating future work on long-term stability enhancements. The integration of AI-
driven literature review demonstrates its effectiveness in synthesizing research trends and guiding
photovoltaic material design. Future research should focus on scaling perovskite technologies for
commercial adoption, AI-driven design of novel perovskite compositions, and addressing long-term
degradation issues through interface engineering. This work underscores the potential of automated
literature synthesis in accelerating data-driven material discovery and optimization, facilitating the
development of next-generation high-efficiency perovskite solar cells.

Figure 25: The sample query-response for automated literature review with code and visualizations.
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Table 5: Efficiency Performance of Optimization Strategies

Optimization Strategy Efficiency (%)

Minimize Parasitic Resistance 18.5
Enhance Light Management 20.3
Optimize Device Geometry 20.45
Advanced Material Composition 24.5

The Figure 26 illustrates the history of interactions among multiple agents within the MatAgent
framework during the literature review and knowledge synthesis process for optimizing perovskite
solar cells. This collaborative workflow enables efficient knowledge extraction, analysis, and report
generation, ensuring that scientific findings are properly integrated into the research.

The process begins with the Searcher Agent, which compiles relevant literature on perovskite mate-
rial optimization and crystallization for solar cell applications. The agent presents three key research
papers, each highlighting different aspects of perovskite advancements:

• Synthesis and Optical Characterization of Perovskite Layers discusses how solvent engi-
neering influences photovoltaic efficiency and crystallization quality, emphasizing the role
of different solvents in controlling band gaps.

• Lead-Free Perovskites focuses on material innovations that remove lead content, address-
ing band gap tuning through B-site cation replacement and its impact on achieving high
efficiency.

• The Reality of Perovskite/Si Tandem Solar Cells evaluates the performance of tandem solar
cells under real-world conditions, showing that while they outperform silicon solar cells in
ideal settings, their advantage diminishes under practical conditions.

The Process Agent then integrates these findings into the research report. It retrieves existing
documents and ensures that the literature review covers recent advancements and efficiency opti-
mization strategies. The logs indicate that it successfully reads, processes, and edits the research
report, maintaining clarity and coherence in referencing. Once the literature review is incorpo-
rated, the Visualization Agent generates efficiency comparison charts that illustrate the impact
of different optimization strategies on perovskite solar cells. The visualizations provide quanti-
tative insights by mapping efficiency percentages against various optimization techniques, help-
ing to contextualize the literature findings. The agent confirms that all visualizations are stored
as efficiency improvements perovskite solar cells.png, making them available
for further analysis.

Following this, the Quality Review Agent assesses the final research report and suggests refinements
to improve clarity, structure, and coherence. It recommends:

• Enhancing visualization clarity by ensuring proper labeling, titles, and axes.

• Providing a more detailed explanation of results, linking visualization insights to literature
findings.

• Strengthening discussion cohesion, ensuring that the literature review connects well with
the reported results.

• Ensuring formatting consistency in font sizes, headings, and citation styles.

• Conducting a final proofreading to eliminate grammatical or typographical errors.

This structured workflow demonstrates how MatAgent streamlines literature review and knowledge
synthesis, ensuring that scientific findings are efficiently extracted, visualized, and integrated into
research reports. By automating knowledge retrieval, visualization, and quality assessment while
maintaining human oversight (HITL mechanism), the system ensures that research outputs are ac-
curate, clear, and well-structured for further scientific dissemination.
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Figure 26: The collaborative agents for automated literature review and knowledge synthesis.

The Python script data analysis.py which shown in Figure 27 is designed to perform data
preprocessing, statistical analysis, and visualization related to perovskite solar cell efficiency im-
provements and current-voltage (I-V) characteristics. The script consists of three primary sections:
handling missing data, statistical analysis, and visualization of efficiency improvements and I-V
characteristics. The first part of the script focuses on handling missing data and statistical analy-
sis of efficiency improvements in perovskite solar cells. The script begins by importing necessary
libraries (numpy and pandas) and defining sample efficiency data for different optimization strate-
gies such as *Minimizing Parasitic Resistance, Enhancing Light Management, Optimizing Device
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Geometry, and Advanced Material Composition*. The dataset includes a missing efficiency value,
which is stored as NaN.

To address missing values, the script defines a function handle missing data(df), which fills
missing efficiency percentages with the column mean using fillna(). This ensures that miss-
ing values do not disrupt statistical analysis. Another function, statistical analysis(df),
computes basic statistical summaries using describe(), providing insights into the mean, stan-
dard deviation, and distribution of efficiency improvements across optimization strategies.

The second part of the script generates a bar chart visualization for efficiency improvements.
Using matplotlib.pyplot, it defines three optimization strategies (Strategy A, Strategy
B, and Strategy C) with their respective efficiency percentages. The figure is saved as
"efficiency improvements perovskite solar cells.png". The third part of the
script focuses on current-voltage (I-V) characteristics of perovskite solar cells. It simulates an I-V
curve using an exponential equation that models current as a function of voltage over a range of 0
V to 1 V. The function np.exp() is used to define an exponential decay characteristic, mimicking
real-world solar cell behavior. The script then plots the I-V curve using matplotlib.pyplot,
ensuring that gridlines, axis labels, and a legend are included for readability. The figure is saved as
"iv characteristics perovskite solar cells.png".

Overall, this script automates data preprocessing, statistical analysis, and visualization, enabling a
structured approach to analyzing efficiency improvements and electrical characteristics in perovskite
solar cells. These analyses provide valuable insights for understanding the impact of optimization
strategies and electrical behavior of perovskite-based devices.

Figure 27: The generated data analysis code for literature review and knowledge synthesis automa-
tion.

The visualized results in the Figure 28 provide key insights into efficiency improvements in per-
ovskite solar cells and their current-voltage (I-V) characteristics. These visualizations help in un-
derstanding the impact of different optimization strategies and the electrical behavior of perovskite-
based devices.

The bar charts (left side) display the efficiency improvements of perovskite solar cells under dif-
ferent optimization strategies. The top bar chart represents three generalized strategies (Strategy A,
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Strategy B, and Strategy C), while the bottom bar chart provides a more detailed view of specific
optimization techniques, including Minimizing Parasitic Resistance, Enhancing Light Management,
Optimizing Device Geometry, and Advanced Material Composition. The color-coded bars highlight
variations in efficiency percentages, with Advanced Material Composition yielding the highest effi-
ciency improvements (∼24.5%), followed by Optimize Device Geometry (∼22.3%). This indicates
that material composition modifications play a crucial role in enhancing solar cell performance,
while geometric and structural optimizations also contribute significantly.

The I-V characteristic curve (right side) represents the current-voltage relationship in perovskite
solar cells, which is essential for evaluating their electrical performance. The plot follows a char-
acteristic exponential trend, where current rapidly decreases as voltage increases. The shape of the
curve suggests a typical diode-like behavior, where current is high at low voltages but levels off as
voltage increases toward 1V. This pattern is consistent with the performance of solar photovoltaic
cells, highlighting how perovskite materials exhibit strong charge transport properties at low voltage
levels.

Together, these visualizations offer data-driven insights into perovskite solar cell performance. The
bar charts emphasize the significance of various optimization strategies in improving efficiency,
while the I-V curve provides a detailed look into the electrical characteristics of the solar cells.
These findings can guide future material design, efficiency enhancement techniques, and perfor-
mance evaluations in perovskite-based photovoltaic research.

Figure 28: The visualized results for automation of the perovskite-based photovoltaic research.
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