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Abstract

Neural network calibration is an essential task in deep learning to ensure consistency be-
tween the confidence of model prediction and the true correctness likelihood. In this paper,
we propose a new post-processing calibration method called Neural Clamping, which em-
ploys a simple joint input-output transformation on a pre-trained classifier via a learnable
universal input perturbation and an output temperature scaling parameter. Moreover, we
provide theoretical explanations on why Neural Clamping is provably better than temper-
ature scaling. Evaluated on BloodMNIST, CIFAR-100, and ImageNet image recognition
datasets and a variety of deep neural network models, our empirical results show that Neu-
ral Clamping significantly outperforms state-of-the-art post-processing calibration methods.
The code is available at anonymous.4open.science/r/NCToolkit.

1 Introduction

Deep neural networks have been widely deployed in real-world machine learning empowered applications such
as computer vision, natural language processing, and robotics. However, without further calibration, their
confidence made by model prediction usually deviates from the true correctness likelihood (Guo et al., 2017).
The issue of poor calibration in neural networks is further amplified in high-stakes or safety-critical decision
making scenarios requiring accurate uncertainty quantification and estimation, such as disease diagnosis
(Jiang et al., 2012; Esteva et al., 2017) and traffic sign recognition systems in autonomous vehicles (Shafaei
et al., 2018). Therefore, calibration plays an important role in trustworthy machine learning (Guo et al.,
2017; Kumar et al., 2019; Minderer et al., 2021).

Recent studies on neural network calibration can be mainly divided into two categories: in-processing and
post-processing. In-processing involves training or fine-tuning neural networks to mitigate their calibration
errors, such as in Müller et al. (2019); Liang et al. (2020); Tian et al. (2021). Post-processing involves post-
hoc intervention on a pre-trained neural network model without changing the given model parameters, such
as adjusting the data representations of the penultimate layer (i.e., the logits) to calibrate the final softmax
layer’s output of prediction probability estimates. As in-processing calibration tends to be time-consuming
and computationally expensive, in this paper, we opt to focus on post-processing calibration.

Current post-processing calibration methods are predominately shed on processing or remapping the output
logits of neural networks, e.g., Guo et al. (2017); Kull et al. (2019); Gupta et al. (2020); Tian et al. (2021).
However, we aim to provide a new perspective and show that joint input-output model calibration can further
improve neural network calibration. The rationale is that active adjustment of data inputs will affect their
representations in every subsequent layer, rather than passive modification of the output logits.

In this paper, we propose a new post-processing calibration framework for neural networks. We name this
framework Neural Clamping because its methodology is based on learning a simple joint input-output
transformation for calibrating a pre-trained (frozen) neural network classifier. Figure 1 illustrates the entire
procedure of Neural Clamping. We consider a K-way neural network classifier fθ(·) ∈ RK with fixed model
parameters θ. The classifier outputs the logits for K classes and uses softmax on the logits to obtain the final
confidence on class predictions (i.e., probability scores). To realize joint input-output calibration, Neural
Clamping adds a trainable universal perturbation δ to every data input and a trainable temperature scaling
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parameter T at the output logits. The parameters δ and T are jointly learned by minimizing the focal loss Lin
et al. (2017) with a weight-decay regularization term trained on a calibration set {xi, yi}n

i=1 for calibration.
The focal loss assigns non-uniform importance on {xi}n

i=1 during training and includes the standard cross
entropy loss as a special case. Finally, in the evaluation (testing) phase, Neural Clamping appends the
optimized calibration parameters δ∗ and T ∗ to the input and output of the fixed classifier fθ(·), respectively.
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Figure 1: Overview of Neural Clamping: a joint input-output post-processing calibration framework.

Our main contributions are summarized as follows:

• We propose Neural Clamping as a novel joint input-output post-processing calibration framework for
neural networks. Neural Clamping learns a universal input perturbation and a temperature scaling
parameter at the model output for calibration. It includes temperature scaling as a special case,
which is a strong baseline for post-processing calibration.

• We develop theoretical results to prove that Neural Clamping is better than temperature scaling
in terms of constrained entropy maximization for uncertainty quantification. In addition, we use
first-order approximation to optimize the data-driven initialization term for the input perturbation,
improving the stability of Neural Clamping in our ablation study. Furthermore, we leverage this
theoretical result to design a computationally efficient algorithm for Neural Clamping.

• Evaluated on different deep neural network classifiers (including ResNet (He et al., 2016), Vision
Transformers (Dosovitskiy et al., 2020), and MLP-Mixer (Tolstikhin et al., 2021)) trained on Blood-
MNIST (Yang et al., 2023), CIFAR-100 (Krizhevsky et al., 2009), and ImageNet-1K (Deng et al.,
2009) datasets and three calibration metrics, Neural Clamping outperforms state-of-the-art post-
processing calibration methods. For instance, when calibrating the ResNet-110 model on CIFAR-
100, the expected calibration error is improved by 34% when compared to the best baseline.

2 Background and Related Work

In this section, we begin by introducing the problem formulation for calibration and describing the notations
used in this paper. Furthermore, we define different metrics used to measure calibration error and conclude
this section with an overview of the post-processing calibration methods.
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2.1 Probabilistic Characterization of Neural Network Calibration

Assume a pair of data sample and label (x, y) is drawn from a joint distribution D ⊂ X×Y, where x ∈ X is a
data sample, and y ∈ Y = {1, ..., K} is the ground-truth class label. Let fθ : X → RK denote a K-way neural
network classifier parametrized by θ, where z = fθ(x) = [z1, . . . , zK ] is the model’s output logits of a given
data input x. Following the convention of neural network implementations, the prediction probability score
of x is obtained by applying the softmax function σ on z, denoted as σ(z) ∈ [0, 1]K . The k-th component of
σ(z) is defined as σ(z)k = exp(zk)/

∑K
k′=1 exp(zk′), which satisfies

∑K
k=1 σ(z)k = 1 and σ(z)k ≥ 0. Suppose

the model predicts a most likely class ŷ = arg maxk σ(z)k with confidence p̂ = σ(z)ŷ. Formally, the model
fθ is called calibrated if

P(y = ŷ|p = p̂) = p̂, (1)
where P denotes probability and p denotes the true likelihood. Equation (1) only considers the prediction
confidence of the most likely (top-1) class. We can extend it to consider the prediction confidence of every
class. Let the class-wise prediction confidence be p̂i = σ(z)i for i = {1, ..., K}, the network is called
classwise-calibrated if

P(y = i|pi = p̂i) = p̂i, ∀ i ∈ Y (2)
where pi is the true likelihood for class i.

2.2 Calibration Metrics

Expected Calibration Error (ECE). Calibration error aims to compute the difference between confidence
and accuracy as

E(x,y)∼D [|P(y = ŷ|p = p̂)− p̂|] (3)
Unfortunately, this quantity cannot be exactly computed from equation (3) if the underlying data distribution
D is unknown. The most popular metric to measure calibration is the Expected Calibration Error (ECE)
(Guo et al., 2017; Naeini et al., 2015). ECE approximates the calibration error by partitioning predictions
into m intervals (bins) {Bi}m

i=1. The calibration error is calculated by first taking the difference between the
confidence and accuracy in each bin and then computing the weighted average across all bins, i.e.,

ECE =
M∑

i=1

|Bi|
n
|acc(Bi)− conf(Bi)| (4)

where |Bi| is the number of samples in bin Bi, n is the total number of data, and acc(Bi) and conf(Bi) is
the accuracy and confidence in Bi, respectively.

Adaptive Expected Calibration Error (AECE) (Mukhoti et al., 2020). Since most data for a trained
model fall into the highest confidence bins, these bins mostly determine the value of the ECE. Instead of
pre-defined intervals for bin partitioning, in AECE, adaptive interval ranges ensure each bin has the same
number of samples. AECE is defined as

AECE =
M∑

i=1

|Bi|
n
|acc(Bi)− conf(Bi)|

subject to |Bi| = |Bj | ∀i, j

(5)

where |Bi| is the number of samples in bin Bi, n is the total number of data, and acc(Bi) and conf(Bi) is
the accuracy and confidence in Bi, respectively.

Static Calibration Error (SCE) (Nixon et al., 2019). ECE does not take into account the calibration
error for all classes. It only calculates the calibration error of the top-1 class prediction. SCE extends ECE
and considers multi-class predictions based on Equation (2):

SCE = 1
K

K∑
k=1

M∑
i=1

∣∣Bk
i

∣∣
n
|acc(i, k)− conf(i, k)| (6)
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where K is the number of classes,
∣∣Bk

i

∣∣ is the number of samples in bin i of class k, n is the total number of
data, and acc(i, k) and conf(i, k) is the accuracy and confidence in Bk

i , respectively.

2.3 Post-Processing Calibration Methods

Temperature Scaling (Guo et al., 2017). Temperature scaling is the simplest variant of Platt scaling
(Platt et al., 1999), which is a method of converting a classifier’s output into a probability distribution over
all classes. Specifically, all classes have the same scalar parameter (i.e., temperature) T > 0 in the softmax
output such that q̂ = σ(z/T ), where q̂ ∈ [0, 1]K denotes the calibrated probability scores. It is worth noting
that by definition temperature scaling only changes the confidence but not the class prediction. Moreover,
the entropy of q̂ increases with T when T ≥ 1. The temperature T is optimized via the Negative Log
Likelihood (NLL) over a calibration training set {xi}n

i=1, where NLL is defined as −
∑n

i=1 log(q̂i,yi) and q̂i,yi

is the prediction on the correct class yi for the i-th sample.

Vector Scaling and Matrix Scaling (Guo et al., 2017). They are two extensions of Plat scaling (Platt
et al., 1999). Let z be the output logits for an input x. Vector Scaling and Matrix Scaling adopt linear
transformations on z such that q̂ = σ(W z + b), where W ∈ RK×K and b ∈ RK for both settings. Vector
scaling is a variation of matrix scaling when W is restricted to be a diagonal matrix. The parameters W
and b are optimized based on NLL.

MS-ODIR and Dir-ODIR (Kull et al., 2019). The authors in Kull et al. (2019) proposed Dirichlet
calibration and ODIR term (Off-Diagonal and Intercept Regularization). The difference between matrix
scaling and Dirichlet calibration is that the former affects logits while the latter modifies pseudo-logits
through q̂ = σ(W ln(σ(z)) + b), where ln(·) is a component-wise natural logarithm function. The results
in Guo et al. (2017) indicated poor matrix scaling performance, because calibration methods with a large
number of parameters will over-fit to a small calibration set. Therefore, Kull et al. (2019) proposed a new
regularization method called ODIR to address the overfitting problem, i.e. ODIR = 1

K(K−1)
∑

j ̸=j wj,k +
1
K

∑
j bj , where wj,k and bj are elements of W and b, respectively. MS-ODIR applies Matrix Scaling (Guo

et al., 2017) with ODIR, while Dir-ODIR uses Dirichlet calibration (Kull et al., 2019).

Spline-Fitting (Gupta et al., 2020). Spline-fitting approximates the empirical cumulative distribution
with splines to re-calibrate network outputs for calibrated probabilities. However, this method is limited
to calibration on the top-k class prediction but cannot be extended to all-class predictions. Therefore, this
method is beyond our studied problem of all-class post-processing calibration.

3 Neural Clamping

Based on the proposed framework of Neural Clamping as illustrated in Figure 1, in this section we provide
detailed descriptions on the joint input-output calibration methodology, the training objective function, the
influence of hyperparameter selection, and the theoretical justification on the improvement over temperature
scaling and the date-driven initialization.

3.1 Joint Input-Output Calibration

To realize joint input-output calibration, Neural Clamping appends a learnable universal perturbation δ at
the model input and a learnable temperature scaling parameter T for all classes at the model output. In
contrast to the convention of output calibration, Neural Clamping introduces the notion of input calibration
by applying simple trainable transformations on the data inputs prior to feeding them to the model. In
our implementation, the input calibration is simply a universal additive perturbation δ. Therefore, Neural
Clamping includes temperature scaling as a special case when setting δ = 0.

Modern neural networks often suffer from an overconfident issue, resulting in a lack of well-calibration and
low output entropy (Guo et al., 2017; Mukhoti et al., 2020). Calibrating neural networks, a common approach
to address the overconfident issue, typically results in increased entropy as a byproduct. In the seminal work
on neural network calibration by Guo et al. (2017), it is noted that adjusting the temperature parameter to
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improve calibration aligns with the objective of maximizing the entropy of the output probability distribution
under additional constraints.

Building upon this notion, we extend the problem formulation presented in Guo et al. (2017), which utilizes
entropy to study output calibration. We evaluate this problem on a calibration set {xi, yi}n

i=1 with an input
perturbation δ. The objective is to find the best-calibrated output q∗ that maximizes the entropy of q∗ while
satisfying the specified calibration constraints:

Maximizeq∈RK −
n∑

i=1
q(zi)⊤ log(q(zi))

subject to q(zi)(k) ≥ 0 ∀i ∈ {1, . . . , n} and k ∈ {1, . . . , K}∑n
i=1 1⊤q(zi) = 1∑n
i=1 z⊤

i e(yi) =
∑n

i=1 z⊤
i q(zi)

(7)

where ·⊤ denotes vector transpose, zi = fθ(xi + δ) is the logit of xi + δ, 1 is an all-one vector, e(yi) is an
one-hot vector corresponding to the class label yi, and log(·) is an element-wise log operator. The first two
constraints guarantee that q is a probability distribution, whereas the third constraint restricts the range of
possible distributions, which stipulates that the average true class logit equals to the average weighted logit.

To motivate the utility of joint input-output calibration, the following lemma formally states that the pro-
posed form of joint input perturbation and temperature scaling in Neural Clamping is the unique solution
q∗ to the above constrained entropy maximization problem.
Lemma 3.1 (optimality of joint input-output calibration). For any input perturbation δ, let fθ(·) =
[f (1)

θ , . . . , f
(K)
θ ] be a fixed K-way neural network classifier and let z be the output logits of a perturbed data

input x + δ. Then the proposed form of joint input-output calibration in Neural Clamping is the unique
solution q∗(z)(k) = exp[f(k)

θ
(x+δ)/T ]∑K

j=1
exp[f(j)

θ
(x+δ)/T ]

, ∀k ∈ {1, . . . , K}, to the constrained entropy maximization problem

in equation 7.

Proof. The proof is given in Appendix B.

3.2 Training Objective Function in Neural Clamping

Neural Clamping uses the focal loss (Lin et al., 2017) and a weight-decay regularization term as the overall
objective function for calibration. It has been shown that the focal loss is an upper bound of the regularized
KL-divergence (Charoenphakdee et al., 2021; Mukhoti et al., 2020). Therefore, minimizing the focal loss
aims to reduce the KL divergence between the groundtruth distribution and the predicted distribution while
increasing the entropy of the predicted distribution. Focal loss is an adjusted cross entropy loss with a
modulating factor (1− p̂i,yi

)γ and γ ≥ 0, where p̂i,yi
is the prediction probability given by a neural network

on the correct class yi for the i-th sample. When γ = 0, focal loss reduces to the standard cross entropy loss.
Formally, it is defined as

Lγ
F L(fθ(xi), yi) = −(1− p̂i,yi

)γ log(p̂i,yi
) (8)

Given a calibration training set {xi, yi}n
i=1, the optimal calibration parameters δ and T in Neural Clamping

are obtained by solving

δ∗, T ∗ = arg min
δ,T

n∑
i=1
Lγ

F L(fθ(xi + δ)/T, yi) + λ ∥δ∥2
2 (9)

Like other post-processing calibration methods, Neural Clamping only appends a perturbation at the model
input and a temperature scaling parameter at the model output. It does not require any alternations on the
given neural network for calibration.
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Figure 2: Neural Clamping on ResNet-50/ResNet-110 and Wide-ResNet-40-10 with different γ values and
the resulting expected calibration error (ECE), training loss, and entropy on BloodMNIST and CIFAR-100.
When γ = 0, focal loss reduces to cross entropy loss. The experiment setup is the same as Section 4.

3.3 How to Choose a Proper γ Value in Focal Loss for Neural Clamping?

The focal loss has a hyperparameter γ governing the assigned importance on each data sample in the
aggregated loss. To understand its influence on calibration, in Figure 2 we performed a grid search of γ
value between 0 and 1 with an interval of 0.05 to calibrate Wide-Resnet-40-10 (Zagoruyko & Komodakis,
2016) and DenseNet-121 (Huang et al., 2017) models trained on CIFAR-100 (Krizhevsky et al., 2009) dataset.
While the entropy continues to increase as the gamma value increases, ECE attains its minimum at some
intermediate γ value and is better than the ECE of using cross entropy loss (i.e., γ = 0). This observation
verifies the importance of using focal loss for calibration. In our implementation, we select the best γ value
that minimizes ECE of the calibration dataset from a candidate pool of γ values with separate runs.

3.4 Theoretical Justification on the Advantage of Neural Clamping

Here we use the entropy after calibration as a quantifiable metric to prove that Neural Clamping can further
increase this quantity over temperature scaling. Note that temperature scaling is a special case of Neural
Clamping when there is no input calibration (i.e., setting δ = 0). For ease of understanding, we define gi as
the gradient of the output entropy H(σ(fθ(·)/T )) with respect to the input data xi = [x(1)

i , . . . , x
(m)
i ] ∈ [α, β],

where [α, β] ⊂ Rm × Rm means the bounded range of all feasible data inputs (e.g., every image pixel value
is within [0, 255]). We further define ℓ ∈ Rm and µ ∈ Rm as the lower bound and the upper bound over all
calibration data {xi}n

i=1 on each input dimension. That is, their j-th entry is defined as ℓj = mini∈{1,...,n} x
(j)
i

and µj = maxi∈{1,...,n} x
(j)
i , respectively.

With the use of first-order approximation, the following theorem shows that given the same temperature
value T , Neural Clamping increases the entropy of temperature scaling by δ⊤g, demonstrating the advantage
of involving input calibration. Furthermore, based on our derivation and the data-driven bounds ℓ and µ, we
can obtain a closed-form first-order optimal solution δ̃ for maximizing the entropy increment δ⊤g. We call
δ̃ the data-driven initialization for the input perturbation δ. We will perform an ablation study to compare
the performance and stability of data-driven versus random initialization in Section 4.3. In the following
theorem, the notation | · |, sign, and ⊙ denote element-wise absolute value, sign operation (i.e., ±1), and
product (i.e., Hadamard product), respectively.

Theorem 3.2. (provable entropy increment and data-driven initialization) Let [α, β] be the feasible
range of data inputs and g =

∑n
i=1 gi = [g(1), . . . , g(K)] be the sum of local input gradients. Define η ∈ Rm

element-wise such that ηj = ℓj − αj if g(j) < 0, ηj = βj − µj if g(j) > 0, and ηj = 0 otherwise, for
every j ∈ {1, . . . , m}. Approaching by first-order approximation and given the same temperature value T ,
Neural Clamping increases the entropy of temperature scaling by δ⊤g. Furthermore, the optimal value δ̃ for
maximizing δ⊤g is δ̃ = sign(g)⊙ η.

Proof. The proof is given in Appendix C.
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Table 1: Comparison with various calibration methods on BloodMNIST with ResNet-50. The reported re-
sults are mean and standard deviation over 5 runs. The best/second-best method is highlighted by blue/green
color. On ECE/AECE, the relative improvement of Neural Clamping to the best baseline is 31% and 28%,
respectively.

ResNet-50
Method Accuracy (%) Entropy ↑ ECE (%) ↓ AECE (%) ↓ SCE (×10−2) ↓
Uncalibration 85.79 0.2256 5.77 5.76 1.7003
Temperature Scaling 85.79 ±0 0.3726 ±0 1.77 ±0 1.66 ±0 1.1067 ±0
TS by Grid Search 85.79 ±0 0.3684 ±0 2.13 ±0 1.68 ±0 1.1041 ±0
Vector Scaling 85.79 ±0.05 0.3653 ±0.0023 1.97 ±0.11 1.94 ±0.06 0.9264 ±0.0574
Matrix Scaling 85.79 ±0.38 0.2984 ±0.0161 4.96 ±0.65 4.86 ±0.71 1.4665 ±0.1314
MS-ODIR 85.79 ±0.04 0.3726 ±0.0001 1.94 ±0.01 1.70 ±0.03 0.9099 ±0.0101
Dir-ODIR 85.79 ±0.02 0.3748 ±0.0002 1.55 ±0.04 1.71 ±0.09 0.8366 ±0.0034
Neural Clamping (CE) 85.79 ±0.02 0.3820 ±0.0005 1.54 ±0.02 1.57 ±0.05 1.1100 ±0.0103
Neural Clamping (FL) 85.82 ±0.03 0.4204 ±0.0004 1.05 ±0.03 1.19 ±0.06 1.0797 ±0.0042

Table 2: Comparison with various calibration methods on CIFAR-100 with different models. The reported re-
sults are mean and standard deviation over 5 runs. The best/second-best method is highlighted by blue/green
color. On ECE, the relative improvement of Neural Clamping to the best baseline is 34/5 % on ResNet-
110/Wide ResNet-40-10, respectively.

ResNet-110
Method Accuracy (%) Entropy ↑ ECE (%) ↓ AECE (%) ↓ SCE (×10−2) ↓
Uncalibration 74.15 0.4742 10.74 10.71 0.2763
Temperature Scaling 74.15 ±0 0.8991 ±0 1.71 ±0 1.63 ±0 0.1711 ±0
TS by Grid Search 74.15 ±0 0.9239 ±0 1.35 ±0 1.38 ±0 0.1717 ±0
Vector Scaling 73.81 ±0.05 0.8698 ±0.0008 2.29 ±0.07 2.15 ±0.15 0.1949 ±0.0046
Matrix Scaling 62.03 ±0.31 0.1552 ±0.0026 31.85 ±0.29 31.85 ±0.29 0.6842 ±0.0057
MS-ODIR 74.07 ±0.03 0.9035 ±0.0001 1.79 ±0.04 1.75 ±0.03 0.1797 ±0.0006
Dir-ODIR 74.10 ±0.04 0.9160 ±0.0002 1.36 ±0.05 1.31 ±0.03 0.1780 ±0.0014
Neural Clamping (CE) 74.17 ±0.07 0.8928 ±0.0061 1.67 ±0.16 1.63 ±0.19 0.1709 ±0.0020
Neural Clamping (FL) 74.16 ±0.09 0.9707 ±0.0049 0.89 ±0.06 1.01 ±0.11 0.1754 ±0.0015

Wide-ResNet-40-10
Method Accuracy (%) Entropy ↑ ECE (%) ↓ AECE (%) ↓ SCE (×10−2) ↓
Uncalibration 79.51 0.4210 7.63 7.63 0.2188
Temperature Scaling 79.51 ±0 0.7420 ±0 2.30 ±0 2.17 ±0 0.1627 ±0
TS by Grid Search 79.51 ±0 0.8359 ±0 1.75 ±0 1.54 ±0 0.1659 ±0
Vector Scaling 79.08 ±0.09 0.7079 ±0.0012 2.52 ±0.07 2.35 ±0.05 0.1818 ±0.0032
Matrix Scaling 68.48 ±0.16 0.1371 ±0.0023 26.13 ±0.15 26.12 ±0.15 0.5657 ±0.0024
MS-ODIR 79.15 ±0.03 0.7529 ±0.0002 1.90 ±0.07 1.95 ±0.03 0.1705 ±0.0008
Dir-ODIR 79.51 ±0.01 0.7707 ±0.0001 1.81 ±0.03 1.98 ±0.01 0.1625 ±0.0004
Neural Clamping (CE) 79.53 ±0.01 0.7461 ±0.0030 2.27 ±0.03 2.20 ±0.03 0.1624 ±0.0004
Neural Clamping (FL) 79.53 ±0.04 0.8626 ±0.0033 1.67 ±0.14 1.66 ±0.12 0.1683 ±0.0014

4 Performance Evaluation

In this section, we conducted extensive experiments to evaluate the performance of our proposed Neural
Clamping calibration method using the calibration metrics introduced in Section 2.2. We compared our
method to several baseline and state-of-the-art calibration methods. All experiments are evaluated on three
popular image recognition datasets (BloodMNIST, CIFAR100, ImageNet-1K) and six trained deep neural
network models (e.g. ResNet, Vision Transformer (ViT), and MLP-Mixer). An ablation study on Neural
Clamping is presented at the end of this section.

4.1 Evaluation and Implementation Details

Experiment setup. We used ResNet-50 (He et al., 2016) on BloodMNIST (Yang et al., 2023); ResNet-110
(He et al., 2016) and Wide-ResNet-40-10 (Zagoruyko & Komodakis, 2016) models on CIFAR-100 (Krizhevsky
et al., 2009); ResNet-101 (He et al., 2016), ViT-S/16 (Dosovitskiy et al., 2020), and MLP-Mixer B/16
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Table 3: Comparison with various calibration methods on ImageNet with different models. The reported re-
sults are mean and standard deviation over 5 runs. The best/second-best method is highlighted by blue/green
color. On ECE, the relative improvement of Neural Clamping to the best baseline is 11/6/13 % on ResNet-
101/ViT-S16/MLP-Mixer B16, respectively.

ResNet-101
Method Accuracy (%) Entropy ↑ ECE (%) ↓ AECE (%) ↓ SCE (×10−3) ↓
Uncalibration 75.73 0.6608 5.88 5.88 0.3180
Temperature Scaling 75.73 ±0 0.9376 ±0 1.88 ±0 1.91 ±0 0.3117 ±0
TS by Grid Search 75.73 ±0 0.9244 ±0 2.02 ±0 1.97 ±0 0.3108 ±0
Vector Scaling 75.67 ±0.07 1.0463 ±0.0017 2.04 ±0.12 1.92 ±0.07 0.3192 ±0.0009
Matrix Scaling 51.97 ±0.30 0.0593 ±0.0008 45.61 ±0.28 45.60 ±0.28 0.9037 ±0.0052
MS-ODIR 70.71 ±0.10 0.9904 ±0.0016 3.29 ±0.06 3.28 ±0.06 0.3448 ±0.0011
Dir-ODIR 70.72 ±0.03 0.9841 ±0.0007 3.47 ±0.05 3.47 ±0.05 0.3480 ±0.0013
Neural Clamping (CE) 75.73 ±0.01 0.9429 ±0.0240 1.89 ±0.13 1.88 ±0.11 0.3114 ±0.0007
Neural Clamping (FL) 75.73 ±0.01 1.0103 ±0.0245 1.68 ±0.04 1.71 ±0.03 0.3128 ±0.0001

ViT-S/16
Method Accuracy (%) Entropy ↑ ECE (%) ↓ AECE (%) ↓ SCE (×10−3) ↓
Uncalibration 79.90 0.7161 1.28 1.30 0.2808
Temperature Scaling 79.90 ±0 0.7314 ±0 1.08 ±0 1.09 ±0 0.2817 ±0
TS by Grid Search 79.90 ±0 0.7791 ±0 0.82 ±0 0.80 ±0 0.2852 ±0
Vector Scaling 80.02 ±0.03 0.9410 ±0.0014 2.62 ±0.02 2.69 ±0.03 0.2985 ±0.0015
Matrix Scaling 53.99 ±0.29 0.0646 ±0.0010 43.36 ±0.30 43.36 ±0.29 0.8811 ±0.0054
MS-ODIR 75.94 ±0.09 0.9810 ±0.0018 0.87 ±0.10 0.92 ±0.10 0.3163 ±0.0023
Dir-ODIR 75.93 ±0.09 0.9788 ±0.0007 0.93 ±0.06 0.86 ±0.09 0.3149 ±0.0018
Neural Clamping (CE) 79.98 ±0.01 0.7898 ±0.0028 0.81 ±0.03 0.77 ±0.04 0.2801 ±0.0005
Neural Clamping (FL) 79.97 ±0.01 0.7934 ±0.0038 0.77 ±0.01 0.72 ±0.03 0.2804 ±0.0004

MLP-Mixer B/16
Method Accuracy (%) Entropy ↑ ECE (%) ↓ AECE (%) ↓ SCE (×10−3) ↓
Uncalibration 73.94 0.6812 11.55 11.55 0.3589
Temperature Scaling 73.94 ±0 1.2735 ±0 4.94 ±0 4.98 ±0 0.3188 ±0
TS by Grid Search 73.94 ±0 1.6243 ±0 2.60 ±0 2.60 ±0 0.3258 ±0
Vector Scaling 73.24 ±0.06 1.1474 ±0.0089 6.91 ±0.17 6.88 ±0.20 0.3321 ±0.0027
Matrix Scaling 40.96 ±0.31 0.1137 ±0.0010 54.50 ±0.28 54.50 ±0.28 1.0979 ±0.0041
MS-ODIR 73.16 ±0.02 1.8049 ±0.0016 4.65 ±0.08 4.73 ±0.05 0.3477 ±0.0018
Dir-ODIR 73.13 ±0.05 1.8083 ±0.0013 4.68 ±0.09 4.76 ±0.09 0.3480 ±0.0018
Neural Clamping (CE) 74.14 ±0.01 1.7952 ±0.0302 2.43 ±0.16 2.51 ±0.18 0.3054 ±0.0020
Neural Clamping (FL) 74.12 ±0.00 1.7673 ±0.0269 2.27 ±0.13 2.34 ±0.14 0.3029 ±0.0018

Table 4: Ablation study with ResNet-110 on CIFAR-100. The best result is highlighted by blue color.

Method Accuracy (%) Entropy ↑ ECE (%) ↓ AECE (%) ↓ SCE (×10−2) ↓
No Calibration 74.15 0.4742 10.74 10.71 0.2763
Input Calibration w/ δ∗ 74.16 ±0.09 0.4775 ±0.03 10.62 ±0.10 10.61 ±0.10 0.2776 ±0.0019
Output Calibration w/ T ∗ 74.15 ±0 0.9648 ±0.46 1.18 ±0.05 1.35 ±0.01 0.1731 ±0.0003
Neural Clamping 74.16 ±0.09 0.9707 ±0.49 0.89 ±0.06 1.01 ±0.11 0.1754 ±0.0015

(Tolstikhin et al., 2021) models on ImageNet-1K (Deng et al., 2009). Blood MNIST, a recognized medical
machine learning benchmark, features 11,959/1,712/3,421 samples for training/validation/evaluation. For
CIFAR-100 and ImageNet, lacking default validation data, we divided CIFAR-100’s training set into 45,000
training images and 5,000 calibration images. For ImageNet, 25,000 test images were reserved for calibration,
and the remaining 25,000 were for evaluation. Uniform calibration dataset and test set were shared across
all methods. Our experiments ran on an Nvidia Tesla V100 with 32GB RAM and Intel Xeon Gold CPU.

Comparative methods. We compared our method to all the post-processing calibration methods in-
troduced in Section 2.3, including Temperature Scaling (Guo et al., 2017), Vector Scaling, Matrix Scaling,
Matrix scaling with ODIR (MS-ODIR) (Kull et al., 2019), and Dirichlet Calibration (Dir-ODIR) (Kull et al.,
2019). For temperature scaling, we considered two implementations: (a) learning the temperature by mini-
mizing NLL loss via gradient decent on the calibration dataset, and (b) taking a grid search on temperature
over 0 to 5 with a resolution of 0.001 and then reporting the lowest ECE and its corresponding tempera-
ture, for which we call TS (Grid Searched). For MS-ODIR and Dir-ODIR, we trained their regularization
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coefficient with 7 values from 10−2 to 104 and chose the best result on the calibration dataset (See Section
4.1 in (Kull et al., 2019)). All methods were trained with 1000 epochs with full-batch gradient descent with
learning rate 0.001. In addition to Neural Clamping with the focal loss (FL), we also compared Neural
Clamping with the cross entropy (CE) loss.

Neural Clamping implementation. The hyperparameters λ and γ in equation (9) are determined by
the best parameter minimizing the ECE on the calibration dataset. The choice of γ was already discussed
in Sec 3.3. The default value of γ is set to 1 because we find it to be stable across models and datasets.
Regarding the choice of λ, its purpose is to aid in regularization. Our default approach is to set this term
to be 1/10 of the initial loss. The input calibration parameter δ and the output calibration parameter T are
optimized using the stochastic gradient descent (SGD) optimizer with learning rate 0.001, batch size 512,
and 100 epochs. For initialization, δ uses random initialization and T is set to 1. The detailed algorithmic
procedure of Neural Clamping is presented in Appendix A.

Evaluation metrics. We reported 5 evaluation measures on the test sets: Accuracy, Entropy, ECE, AECE,
and SCE. All three calibration metrics are defined in Section 2.2 and 15 bins were used. In all experiments,
we report the average value and standard deviation over 5 independent runs.

4.2 BloodMNIST, CIFAR-100, and ImageNet Results

BloodMNIST. BloodMNIST is an 8-class microscopic peripheral blood cell image recognition task. The
calibration results with ResNet-50 are shown in Table 1. Compared to the best existing method, Neural
Clamping shows an additional 31%/28% reduction in ECE/AECE.

CIFAR-100. The experimental results on CIFAR-100 are presented in Table 2, which is divided into two
sections corresponding to different models: ResNet-110 and Wide-ResNet-40-10. Our method consistently
achieves the lowest ECE and either the lowest or second lowest AECE and SCE when compared to other
existing methods. Notably, in the ResNet-110 experiment, Neural Clamping reduced ECE and AECE by
34% and 23%, respectively, compared to the best existing method. It is important to highlight that our
method not only reduces calibration error but also improves accuracy, which sets it apart from existing
approaches.

ImageNet-1K. Table 3 presents the experimental results on ImageNet, where the table is divided into three
sections containing ResNet-101, ViT-S/16, and MLP-Mixer B/6. Neural Clamping consistently outperforms
the compared methods by achieving the lowest ECE, AECE, and either the lowest or second-lowest SCE
in all cases, similar to the CIFAR-100 experiments. Particularly, in the ResNet-101 experiment, Neural
Clamping reduces ECE and AECE by 11% compared to the best existing method. Moreover, our method
concurrently improves accuracy while reducing the calibration error for all three models, demonstrating its
effectiveness in calibration for various model architectures.

Additionally, We also provide experimental results of different bins number in Appendix D, which clearly
demonstrates the same conclusion of the outstanding calibration performance of Neural Clamping over the
baselines. To further compare how our method differs from the baselines, we also visualize the ECE results
via plotting the reliability diagrams in Appendix E.

4.3 Additional Analysis of Neural Clamping

Data-driven vs. random initialization for input perturbation δ. There are two initialization methods
for the input calibration δ in Neural Clamping: data-driven initialization as derived from Theorem 3.2
and random initialization. In scrutinizing these two initialization methods, we found that the data-driven
initialization managed to consistently deliver stable calibration results. Figure 3 shows that across all metrics,
both initialization methods have similar mean values across 5 runs, while the data-driven initialization has a
smaller variation and standard deviation. As a result of the experiment, it can be concluded that data-driven
value can not only offer a more reliable solution but also slightly improved outcomes. We also used this data-
driven initialization to devise a computationally efficient Neural Clamping variant. Under a similar run-time
constraint, our approach can attain a better calibration performance than temperature scaling. Please see
Appendix F for details.

9



Under review as submission to TMLR

(a) Entropy (b) ECE (c) AECE (d) SCE

mean=0.9707
std=0.0049

mean=0.9723
std=0.0018

mean=0.0089
std=0.0006

mean=0.0088
std=0.0001

mean=0.0101
std=0.0011

mean=0.0096
std=0.0006

mean=0.0017
std=1.5e-05

mean=0.0017
std=8.6e-06

Figure 3: Comparison of random (blue) and data-driven (green) initializations for input calibration δ in
Neural Clamping. The reported results are (a) Entropy, (b) ECE, (c) AECE, and (d) SCE of ResNet-
110 on CIFAR-100 over 5 runs. This boxplot graphically demonstrates the spread groups of numerical data
through their quartiles. The data-driven initialization shows better stability (smaller variation) than random
initialization.

Ablation study with input calibration δ∗ and output calibration T ∗. After calibration, Neural
Clamping learns δ∗ for input calibration and T ∗ for output calibration. In Table 4 we performed an ablation
study to examine the effects of input calibration and output calibration separately with their jointly trained
parameters δ∗ and T ∗. For input calibration, we inferred testing data with only the learned input pertur-
bation δ∗; for output calibration, we tested the result with only the learned temperature scaling parameter
T ∗. One noteworthy finding from this exercise is that while output calibration alone already trims the
ECE and AECE materially, a further 25% reduction in ECE and AECE can be achieved when it is paired
with input calibration (i.e. Neural Clamping). Input calibration alone is less effective because it does not
directly modify the prediction output. This ablation study corroborates the necessity and advantage of joint
input-output calibration.

5 Conclusion

In this paper, we present a new post-processing calibration method called Neural Clamping, which offers
novel insights into joint input-output calibration and significantly improves calibration performance. We also
develop theoretical analysis to justify the advantage of Neural Clamping. Our empirical results on several
datasets and models show that Neural Clamping outperforms state-of-the-art post-processing calibration
methods. We believe our method delivers a practical tool that can contribute to neural network based
technology and applications requiring accurate calibration.

Impact Statements.

We see no ethical or immediate negative societal consequence of our work, and it holds the potential for
positive social impacts. By improving the accuracy of machine learning models’ prediction probabilities, our
research can benefit various domains.
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Appendix

A Algorithmic Descriptions of Neural Clamping

Algorithm 1 Neural Clamping
1: Input: Fixed K-way image classifier fθ(·), calibration dataset {xi, yi}n

i=1, learning rate ϵ, focal loss
hyperparameter γ, and weight-decay regularization hyperparameter λ

2: Output: The optimal input perturbation δ and temperature T
3: Initialize

δ ← initialization (random or data-driven)
T ← 1
Loss← Lγ

F L and λ according to equation 9
4: while not converged do
5: Sample data batch batches(xi, yi) ∼ {xi, yi}n

i=1
6: for batches(xi, yi) do
7: Update δ ← δ − ϵ∇δLoss(fθ(xi + δ)/T, yi)
8: Update T ← T − ϵ∇T Loss(fθ(xi + δ)/T, yi)
9: end for

10: end while
11: return δ, T

In our implementation, we set the hyperparameters λ and γ in equation (9) by the best parameter minimizing
the ECE on the calibration dataset. The selection of λ/γ sweeps from 0.001 to 10 and 0.01 to 5. with an
increment of 0.001/0.01, respectively.

The input calibration parameter δ and the output calibration parameter T are optimized using the stochastic
gradient descent (SGD) optimizer with learning rate 0.001, batch size 512, and 100 epochs. For initialization,
δ use randomly initialized (Gaussian distribution with mean=0 and variance=0.01) and T is set to 1.

B Proof for Lemma 3.1

Lemma 3.1 (optimality of joint input-output calibration) For any input perturbation δ, let fθ(·) =
[f (1)

θ , . . . , f
(K)
θ ] be a fixed K-way neural network classifier and let z be the output logits of a perturbed data

input x + δ. Then the proposed form of joint input-output calibration in Neural Clamping is the unique
solution q∗(z)(k) = exp[f(k)

θ
(x+δ)/T ]∑K

j=1
exp[f(j)

θ
(x+δ)/T ]

, ∀k ∈ {1, . . . , K}, to the constrained entropy maximization problem

in equation 7.

Proof. Without loss of generality, the following proof assumes a vectorized input dimension. Our proof
extends the theoretical analysis on temperature scaling in the supplementary materials S.2 of Guo et al. (2017)
to consider an input perturbation δ. We use the method of Lagrange multipliers to solve the constrained
entropy maximization problem in equation 7. Let λ0 ∈ R and λ1, λ2, ..., λn ∈ R be the Lagrangian multipliers
for the constraint

∑n
i=1 z⊤

i e(yi) =
∑n

i=1 z⊤
i q(zi) and

∑n
i=1 1⊤q(zi) = 1, ∀i, respectively. We will show the

optimal solution automatically satisfies the first constraint (nonnegativity) q(zi)(k) ≥ 0 for all i and k later.
Then we define

L = −
n∑

i=1
q(zi)⊤ log(q(zi)) + λ0

n∑
i=1

[
z⊤

i q(zi)− zi · e(yi)
]

+
n∑

i=1
λi

[
1⊤q(zi)− 1

] (10)

Taking the partial derivative of L with respect to q(zi) gives
∂

∂q(zi)
L = −log(q(zi))− 1 + λ0zi + λi1 (11)
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Let the partial derivative of L equal 0, then we can get

q(zi) =


exp[λ0z

(1)
i + λi − 1]

...
exp[λ0z

(K)
i + λi − 1]

 (12)

Note that this expression suggests q(zi)(k) ≥ 0 and thus the first constraint is satisfied. Due to the constraint∑n
i=1 1⊤q(zi) = 1 for all i, the solution q(zi) must be

q(zi)(k) = exp[λ0z
(k)
i ]∑K

j=1 exp[λ0z
(j)
i ]

(13)

By setting T = 1
λ0

, we can get the unique solution

q∗(z)(k) = exp[f (k)
θ (x + δ)/T ]∑K

j=1 exp[f (j)
θ (x + δ)/T ]

, ∀k ∈ {1, . . . , K}. (14)

C Proof for Theorem 3.2

Theorem 3.2 (provable entropy increment and data-driven initialization) Let [α, β] be the feasible range
of data inputs and g =

∑n
i=1 gi = [g(1), . . . , g(K)] be the sum of local input gradients. Define η ∈ Rm

element-wise such that ηj = ℓj − αj if g(j) < 0, ηj = βj − µj if g(j) > 0, and ηj = 0 otherwise, for
every j ∈ {1, . . . , m}. Approaching by first-order approximation and given the same temperature value T ,
Neural Clamping increases the entropy of temperature scaling by δ⊤g. Furthermore, the optimal value δ̃ for
maximizing δ⊤g is δ̃ = sign(g)⊙ η.

Proof. For ease of understanding, let Ĥ(x) = H(σ(fθ(x)/T )) denote the entropy of the classifier fθ (with
softmax as the final output layer) after calibration. We have Taylor series expansion of Ĥ at a point x0 as:

Ĥ(x) = Ĥ(x0) + (x− x0)⊤∇Ĥ(x0)

+ 1
2(x− x0)⊤∇2Ĥ(x0)(x− x0) + · · ·

(15)

Adding input perturbation δ to input data point x and applying the first-order approximation on Ĥ(x), we
can get

Ĥ(x + δ) = Ĥ(x) + [(x + δ)− x]⊤∇Ĥ(x) + · · ·
≈ Ĥ(x) + δ⊤∇Ĥ(x)

(16)

Then we can use above approximation to compute the average output entropy for all data {xi}n
i=1:

1
n

n∑
i=1

Ĥ(xi + δ) = 1
n

n∑
i=1

Ĥ(xi) + 1
n

n∑
i=1

δ⊤∇Ĥ(xi) (17)

Let gi = ∇Ĥ(xi) = ∇H(σ(fθ(xi)/T )) is the input gradient with respect to xi, and g is the average input
gradient 1

n

∑n
i=1gi. The first term is the original entropy value, namely the entropy of temperature scaling.

The second term is the additional entropy term caused by introducing the input perturbation. The latter
can be rewritten as:

△Ĥ(xi + δ) = 1
n

n∑
i=1

δ⊤∇Ĥ(xi) = δ⊤

n

n∑
i=1

gi = δ⊤g (18)
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Therefore, Neural Clamping increases the entropy of temperature scaling by δ⊤g.

Maximizing the scalar product δ⊤g under the constraint xi + δ ∈ [α, β] for all i is equivalent to maximizing
an inner product over an L∞ ball, where [α, β] ⊂ Rm × Rm means the bounded range of all feasible data
inputs, e.g., every image pixel value is within [0, 255].
Due to the constraint, we further define ℓ ∈ Rm and µ ∈ Rm as the lower bound and the upper bound over all
calibration data {xi}n

i=1 on each input dimension. That is, their j-th entry is defined as ℓj = mini∈{1,...,n} x
(j)
i

and µj = maxi∈{1,...,n} x
(j)
i , respectively. Then we can find available range value η ∈ Rm for δ to maximize

the scalar product δ⊤g according to the direction of input gradient, η can be defined as:

ηj =


ℓj − αj if g(j) < 0
βj − µj if g(j) > 0
0 otherwise

(19)

Finally, we can get the optimal δ̃ for maximizing the scalar product δ⊤g, i.e.,

δ̃ = sign(g)⊙ η (20)

D Result with Varying Bin Numbers

Calibration error measurements are known to be influenced by the number of bins. In order to account for
the influence of bin numbers on calibration error measurements, we present additional results using different
bin configurations. Specifically, we evaluate the results of the BloodMNIST experiment with bin numbers
10 and 20, which are displayed in Table 5 and Table 6, respectively. Furthermore, we provide the results of
the CIFAR-100 experiment with bin numbers 10 and 20 in Table 7 and Table 8, respectively. Lastly, the
results of the ImageNet-1K experiment with bin numbers 10 and 20 can be found in Table 9 and Table 10,
respectively. By examining the results across different bin configurations, we gain a more comprehensive
understanding of the performance of our approach in different scenarios.

Table 5: Comparison with various calibration methods on BloodMNIST with ResNet-50 (calibration metric
bins=10). The reported results are mean and standard deviation over 5 runs. The best/second-best method
is highlighted by blue/green color. On ECE/AECE, the relative improvement of Neural Clamping to the
best baseline is 21% and 28%, respectively.

ResNet-50
Method Accuracy (%) Entropy ↑ ECE (%) ↓ AECE (%) ↓ SCE (×10−2) ↓
Uncalibration 85.79 0.2256 5.77 5.76 1.6217
Temp. Scaling 85.79 ±0 0.3726 ±0 1.32 ±0 1.43 ±0 1.0148 ±0
TS by Grid Search 85.79 ±0 0.3726 ±0 1.86 ±0 1.59 ±0 1.0134 ±0
Vector Scaling 85.79 ±0.05 0.3653 ±0.0023 1.80 ±0.09 1.87 ±0.17 0.8355 ±0.0688
Matrix Scaling 85.79 ±0.38 0.2984 ±0.0161 4.93 ±0.67 4.85 ±0.72 1.3964 ±0.1345
MS-ODIR 85.79 ±0.04 0.3726 ±0.0001 1.59 ±0.03 1.65 ±0.05 0.7277 ±0.0021
Dir-ODIR 85.79 ±0.02 0.3748 ±0.0002 1.94 ±0.07 1.39 ±0.04 0.7435 ±0.0141
NC (CE) 85.79 ±0.02 0.3820 ±0.0005 1.20 ±0.04 1.32 ±0.04 1.0131 ±0.0063
NC (FL) 85.82 ±0.03 0.4204 ±0.0004 1.04 ±0.04 0.99 ±0.04 0.9744 ±0.0031

E Reliability Diagrams

To visually compare the ECE results (15 bins) to each method with the groundtruth, we present reliabil-
ity diagrams. These diagrams offer a comprehensive view of the calibration performance. The reliability
diagrams of BloodMNIST, CIFAR-100, and ImageNet are presented in Figure 4, Figure 5, and Figure 6,
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Table 6: Comparison with various calibration methods on BloodMNIST with ResNet-50 (calibration metric
bins=20). The reported results are mean and standard deviation over 5 runs. The best/second-best method
is highlighted by blue/green color. On ECE/AECE, the relative improvement of Neural Clamping to the
best baseline is 26% and 22%, respectively.

ResNet-50
Method Accuracy (%) Entropy ↑ ECE (%) ↓ AECE (%) ↓ SCE (×10−2) ↓
Uncalibration 85.79 0.2256 5.77 5.76 1.7247
Temp. Scaling 85.79 ±0 0.3726 ±0 1.62 ±0 1.49 ±0 1.1978 ±0
TS by Grid Search 85.79 ±0 0.3726 ±0 2.00 ±0 1.66 ±0 1.1644 ±0
Vector Scaling 85.79 ±0.05 0.3653 ±0.0023 2.11 ±0.15 2.09 ±0.10 1.0276 ±0.0798
Matrix Scaling 85.79 ±0.38 0.2984 ±0.0161 5.00 ±0.63 4.94 ±0.66 1.5581 ±0.1318
MS-ODIR 85.79 ±0.04 0.3726 ±0.0001 2.08 ±0.06 2.32 ±0.06 0.9422 ±0.0107
Dir-ODIR 85.79 ±0.02 0.3748 ±0.0002 2.05 ±0.07 1.50 ±0.02 0.9563 ±0.0206
NC (CE) 85.79 ±0.02 0.3820 ±0.0005 1.83 ±0.13 1.43 ±0.05 1.2076 ±0.0116
NC (FL) 85.82 ±0.03 0.4204 ±0.0004 1.19 ±0.08 1.17 ±0.06 1.1905 ±0.0031

respectively. Pink color is the perfectly calibrated, and purple color is the actual probability of the output.
By examining these diagrams, we gain graphical insights into the effectiveness of each method’s calibration
performance.

No Calibration Temperature Scaling
Temperature Scaling

(Grid search) Vector Scaling Matrix Scaling

MS-ODIR Dir-ODIR Neural Clamping (CE) Neural Clamping (FL)

Figure 4: Reliability diagram of ResNet-50 on BloodMNIST with 15 bins ECE metric

F Computationally Efficient Neural Clamping

We utilize our Theorem 1 to develop a Computationally Efficient Neural Clamping approach, referred to as
NC (Eff.). NC (Eff.) adopts the data-driven initialization δ̃ for the input perturbation (input gradient w.r.t.
entropy as discussed in Sec. 3.4), followed by temperature scaling (TS) with grid search (TS-Grid). This
lightweight version spares the need for training input perturbation, requires only one additional backpropa-
gation, and does not add additional hyperparameter tuning.

To demonstrate the effectiveness of NC (Eff.), we present two examples: ResNet-50 on BloodMNIST and
ResNet-110 on CIFAR-100, in Table 11. We observed similar results across other examples as well. In our
paper, the resolution for temperature scaling (grid search) was set to 0.001, and we included a comparison
group with a resolution of 0.01 for analysis purposes. The table clearly shows that regardless of the res-
olution used, NC (Eff.) consistently outperforms temperature scaling (grid search) in terms of ECE, with
improvements of up to 33.7 %. Notably, even with lower resolution, NC (Eff.) can still achieve better results
than high-resolution temperature scaling in terms of both speed and ECE.
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No Calibration Temperature Scaling
Temperature Scaling

(Grid search) Vector Scaling Matrix Scaling

MS-ODIR Dir-ODIR Neural Clamping (CE) Neural Clamping (FL)

(a) ResNet-110

No Calibration Temperature Scaling
Temperature Scaling

(Grid search) Vector Scaling Matrix Scaling

MS-ODIR Dir-ODIR Neural Clamping (CE) Neural Clamping (FL)

(b) Wide ResNet-40-10

Figure 5: Reliability diagram of (a) ResNet-110 and (b) Wide ResNet-40-10 on CIFAR-100 with 15 bins
ECE metric
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No Calibration Temperature Scaling
Temperature Scaling

(Grid search) Vector Scaling Matrix Scaling

MS-ODIR Dir-ODIR Neural Clamping (CE) Neural Clamping (FL)

(a) ResNet-101

No Calibration Temperature Scaling
Temperature Scaling

(Grid search) Vector Scaling Matrix Scaling

MS-ODIR Dir-ODIR Neural Clamping (CE) Neural Clamping (FL)

(b) ViT-S/16

No Calibration Temperature Scaling
Temperature Scaling

(Grid search) Vector Scaling Matrix Scaling

MS-ODIR Dir-ODIR Neural Clamping (CE) Neural Clamping (FL)

(c) MLP-Mixer B/16

Figure 6: Reliability diagram of (a) ResNet-101, (b) ViT-S/16, and (c) MLP-Mixer B/16 on ImageNet with
15 bins ECE metric
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Table 7: Comparison with various calibration methods on CIFAR-100 with different models (calibration
metric bins=10). The reported results are mean and standard deviation over 5 runs. The best/second-best
method is highlighted by blue/green color. On ECE, the relative improvement of Neural Clamping to the
best baseline is 26/2 % on ResNet-110/Wide ResNet-40-10, respectively.

ResNet-110
Method Accuracy (%) Entropy ↑ ECE (%) ↓ AECE (%) ↓ SCE (×10−2) ↓
Uncalibration 74.15 0.47430 10.707 10.714 0.26065
Temperature Scaling 74.15 ±0 0.8991 ±0 1.37 ±0 1.48 ±0 0.1443 ±0
TS by Grid Search 74.15 ±0 0.9239 ±0 1.08 ±0 1.26 ±0 0.1425 ±0
Vector Scaling 73.81 ±0.05 0.8698 ±0.0008 2.16 ±0.14 2.13 ±0.18 0.1683 ±0.0031
Matrix Scaling 62.03 ±0.31 0.1552 ±0.0026 31.86 ±0.29 31.85 ±0.29 0.6749 ±0.0060
MS-ODIR 74.07 ±0.03 0.9035 ±0.0001 1.67 ±0.04 1.79 ±0.03 0.1555 ±0.0009
Dir-ODIR 74.10 ±0.04 0.9160 ±0.0002 1.16 ±0.03 1.19 ±0.08 0.1501 ±0.0008
Neural Clamping (CE) 74.17 ±0.07 0.8928 ±0.0061 1.60 ±0.19 1.50 ±0.11 0.1427 ±0.0012
Neural Clamping (FL) 74.16 ±0.09 0.9707 ±0.0049 0.80 ±0.12 0.86 ±0.07 0.1486 ±0.0015

Wide-ResNet-40-10
Method Accuracy (%) Entropy ↑ ECE (%) ↓ AECE (%) ↓ SCE (×10−2) ↓
Uncalibration 79.51 0.4211 7.63 7.63 0.2009
Temperature Scaling 79.51 ±0 0.7421 ±0 2.17 ±0 2.18 ±0 0.1369 ±0
TS by Grid Search 79.51 ±0 0.8359 ±0 1.65 ±0 1.48 ±0 0.1417 ±0
Vector Scaling 79.08 ±0.09 0.7079 ±0.0012 2.49 ±0.08 2.33 ±0.07 0.1612 ±0.0033
Matrix Scaling 68.48 ±0.16 0.1372 ±0.0023 26.14 ±0.14 26.13 ±0.15 0.5563 ±0.0020
MS-ODIR 79.15 ±0.03 0.7529 ±0.0002 1.90 ±0.04 1.95 ±0.03 0.1501 ±0.0005
Dir-ODIR 79.51 ±0.02 0.7707 ±0.0001 1.74 ±0.02 1.98 ±0.01 0.1366 ±0.0007
Neural Clamping (CE) 79.53 ±0.01 0.7462 ±0.0030 2.15 ±0.06 2.22 ±0.03 0.1368 ±0.0003
Neural Clamping (FL) 79.53 ±0.04 0.8626 ±0.0033 1.61 ±0.10 1.61 ±0.10 0.1445 ±0.0008

Table 8: Comparison with various calibration methods on CIFAR-100 with different models (calibration
metric bins=20). The reported results are mean and standard deviation over 5 runs. The best/second-best
method is highlighted by blue/green color. On ECE, the relative improvement of Neural Clamping to the
best baseline is 26/6 % on ResNet-110/Wide ResNet-40-10, respectively.

ResNet-110
Method Accuracy (%) Entropy ↑ ECE (%) ↓ AECE (%) ↓ SCE (×10−2) ↓
Uncalibration 74.15 0.4743 10.74 10.71 0.2937
Temperature Scaling 74.15 ±0 0.8991 ±0 1.72 ±0 1.68 ±0 0.1943 ±0
TS by Grid Search 74.15 ±0 0.9240 ±0 1.62 ±0 1.51 ±0 0.1938 ±0
Vector Scaling 73.81 ±0.05 0.8699 ±0.0008 2.31 ±0.19 2.25 ±0.21 0.2155 ±0.0027
Matrix Scaling 62.03 ±0.31 0.1552 ±0.0026 31.86 ±0.29 31.86 ±0.29 0.6914 ±0.0060
MS-ODIR 74.07 ±0.03 0.9035 ±0.0001 1.89 ±0.08 1.82 ±0.02 0.2031 ±0.0010
Dir-ODIR 74.10 ±0.04 0.9160 ±0.0002 1.48 ±0.07 1.44 ±0.20 0.2046 ±0.0020
Neural Clamping (CE) 74.17 ±0.07 0.8929 ±0.0061 1.78 ±0.18 1.62 ±0.12 0.1937 ±0.0029
Neural Clamping (FL) 74.16 ±0.09 0.9941 ±0.0049 1.09 ±0.16 1.20 ±0.17 0.2003 ±0.0029

Wide-ResNet-40-10
Method Accuracy (%) Entropy ↑ ECE (%) ↓ AECE (%) ↓ SCE (×10−2) ↓
Uncalibration 79.51 0.4211 7.63 7.63 0.2351
Temperature Scaling 79.51 ±0 0.7421 ±0 2.22 ±0 2.21 ±0 0.1818 ±0
TS by Grid Search 79.51 ±0 0.8359 ±0 1.74 ±0 1.75 ±0 0.1900 ±0
Vector Scaling 79.08 ±0.09 0.7079 ±0.0012 2.59 ±0.09 2.47 ±0.08 0.2020 ±0.0032
Matrix Scaling 68.48 ±0.16 0.1372 ±0.0023 26.14 ±0.14 26.13 ±0.15 0.5728 ±0.0013
MS-ODIR 79.15 ±0.03 0.7529 ±0.0002 1.95 ±0.04 1.96 ±0.03 0.1915 ±0.0006
Dir-ODIR 79.51 ±0.01 0.7707 ±0.0001 1.94 ±0.02 1.99 ±0.01 0.1834 ±0.0008
Neural Clamping (CE) 79.53 ±0.01 0.7462 ±0.0030 2.20 ±0.03 2.24 ±0.04 0.1816 ±0.0003
Neural Clamping (FL) 79.53 ±0.04 0.8626 ±0.0033 1.63 ±0.06 1.70 ±0.14 0.1916 ±0.0019
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Table 9: Comparison with various calibration methods on ImageNet with different models (calibration metric
bins=10). The reported results are mean and standard deviation over 5 runs. The best/second-best method
is highlighted by blue/green color. On ECE, the relative improvement of Neural Clamping to the best
baseline is 17/1/11 % on ResNet-101/ViT-S16/MLP-Mixer B16, respectively.

ResNet-101
Method Accuracy (%) Entropy ↑ ECE (%) ↓ AECE (%) ↓ SCE (×10−3) ↓
Uncalibration 75.73 0.6608 5.88 5.88 0.2808
Temperature Scaling 75.73 ±0 0.9376 ±0 1.97 ±0 1.91 ±0 0.2677 ±0
TS by Grid Search 75.73 ±0 0.9244 ±0 2.04 ±0 1.97 ±0 0.2683 ±0
Vector Scaling 75.67 ±0.07 1.0463 ±0.0017 1.99 ±0.09 1.91 ±0.05 0.2775 ±0.0009
Matrix Scaling 51.97 ±0.30 0.0593 ±0.0008 45.60 ±0.29 45.60 ±0.28 0.8997 ±0.0052
MS-ODIR 70.71 ±0.10 0.9904 ±0.0016 3.28 ±0.06 3.28 ±0.06 0.2990 ±0.0009
Dir-ODIR 70.72 ±0.03 0.9841 ±0.0007 3.47 ±0.05 3.47 ±0.05 0.3016 ±0.0024
Neural Clamping (CE) 75.73 ±0.01 0.9429 ±0.0240 1.91 ±0.16 1.89 ±0.12 0.2682 ±0.0004
Neural Clamping (FL) 75.73 ±0.01 1.0103 ±0.0245 1.63 ±0.06 1.62 ±0.05 0.2700 ±0.0014

ViT-S/16
Method Accuracy (%) Entropy ↑ ECE (%) ↓ AECE (%) ↓ SCE (×10−3) ↓
Uncalibration 79.90 0.7161 1.28 1.31 0.2460
Temperature Scaling 79.90 ±0 0.7314 ±0 1.06 ±0 1.12 ±0 0.2462 ±0
TS by Grid Search 79.90 ±0 0.7791 ±0 0.73 ±0 0.83 ±0 0.2481 ±0
Vector Scaling 80.02 ±0.03 0.9410 ±0.0014 2.62 ±0.03 2.68 ±0.04 0.2598 ±0.0008
Matrix Scaling 53.99 ±0.29 0.0646 ±0.0010 43.36 ±0.29 43.36 ±0.29 0.8765 ±0.0055
MS-ODIR 75.94 ±0.09 0.9810 ±0.0018 0.86 ±0.10 0.90 ±0.10 0.2722 ±0.0019
Dir-ODIR 75.93 ±0.09 0.9788 ±0.0007 0.86 ±0.06 0.81 ±0.08 0.2721 ±0.0014
Neural Clamping (CE) 79.98 ±0.01 0.7898 ±0.0028 0.73 ±0.02 0.88 ±0.04 0.2475 ±0.0004
Neural Clamping (FL) 79.97 ±0.01 0.7934 ±0.0038 0.72 ±0.05 0.79 ±0.04 0.2474 ±0.0002

MLP-Mixer B/16
Method Accuracy (%) Entropy ↑ ECE (%) ↓ AECE (%) ↓ SCE (×10−3) ↓
Uncalibration 73.94 0.6812 11.56 11.55 0.3316
Temperature Scaling 73.94 ±0 1.2735 ±0 4.92 ±0 4.91 ±0 0.2847 ±0
TS by Grid Search 73.94 ±0 1.6243 ±0 2.60 ±0 2.74 ±0 0.2844 ±0
Vector Scaling 73.24 ±0.06 1.1474 ±0.0089 6.87 ±0.17 6.81 ±0.13 0.3022 ±0.0017
Matrix Scaling 40.96 ±0.31 0.1137 ±0.0010 54.50 ±0.28 54.50 ±0.28 1.0897 ±0.0042
MS-ODIR 73.16 ±0.02 1.8049 ±0.0016 4.48 ±0.03 4.73 ±0.05 0.3006 ±0.0011
Dir-ODIR 73.13 ±0.05 1.8083 ±0.0013 4.51 ±0.07 4.75 ±0.08 0.3009 ±0.0009
Neural Clamping (CE) 74.14 ±0.01 1.7952 ±0.0302 2.51 ±0.21 2.50 ±0.18 0.2937 ±0.0022
Neural Clamping (FL) 74.12 ±0.01 1.7673 ±0.0269 2.31 ±0.16 2.32 ±0.13 0.2916 ±0.0016
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Table 10: Comparison with various calibration methods on ImageNet with different models (calibration
metric bins=20). The reported results are mean and standard deviation over 5 runs. The best/second-best
method is highlighted by blue/green color. On ECE, the relative improvement of Neural Clamping to the
best baseline is 12/6/12 % on ResNet-101/ViT-S16/MLP-Mixer B16, respectively.

ResNet-101
Method Accuracy (%) Entropy ↑ ECE ↓ AECE ↓ SCE (×10−3) ↓
Uncalibration 75.73 0.6608 5.93 5.88 0.3482
Temperature Scaling 75.73 ±0 0.9376 ±0 1.98 ±0 1.91 ±0 0.3404 ±0
TS by Grid Search 75.73 ±0 0.9244 ±0 2.09 ±0 1.97 ±0 0.3401 ±0
Vector Scaling 75.67 ±0.07 1.0463 ±0.0017 2.05 ±0.13 1.99 ±0.08 0.3502 ±0.0013
Matrix Scaling 51.97 ±0.30 0.0593 ±0.0008 45.61 ±0.28 45.60 ±0.28 0.9058 ±0.0053
MS-ODIR 70.71 ±0.10 0.9904 ±0.0016 3.29 ±0.04 3.28 ±0.06 0.3795 ±0.0011
Dir-ODIR 70.72 ±0.03 0.9841 ±0.0007 3.49 ±0.05 3.47 ±0.05 0.3842 ±0.0017
Neural Clamping (CE) 75.73 ±0.01 0.9429 ±0.0240 1.96 ±0.14 1.89 ±0.12 0.3405 ±0.0004
Neural Clamping (FL) 75.73 ±0.01 1.0103 ±0.0245 1.74 ±0.03 1.64 ±0.03 0.3434 ±0.0018

ViT-S/16
Method Accuracy (%) Entropy ↑ ECE ↓ AECE ↓ SCE (×10−3) ↓
Uncalibration 79.90 0.7161 1.32 1.31 0.3079
Temperature Scaling 79.90 ±0 0.7314 ±0 1.13 ±0 1.12 ±0 0.3084 ±0
TS by Grid Search 79.90 ±0 0.7791 ±0 0.88 ±0 0.97 ±0 0.3101 ±0
Vector Scaling 80.02 ±0.03 0.9410 ±0.0014 2.62 ±0.03 2.72 ±0.03 0.3269 ±0.0012
Matrix Scaling 53.99 ±0.29 0.0646 ±0.0010 43.36 ±0.29 43.36 ±0.29 0.8835 ±0.0056
MS-ODIR 75.94 ±0.09 0.9810 ±0.0018 0.92 ±0.09 0.98 ±0.09 0.3504 ±0.0022
Dir-ODIR 75.93 ±0.09 0.9788 ±0.0007 0.97 ±0.09 0.91 ±0.10 0.3485 ±0.0016
Neural Clamping (CE) 79.98 ±0.01 0.7898 ±0.0028 0.82 ±0.10 1.00 ±0.08 0.3115 ±0.0005
Neural Clamping (FL) 79.97 ±0.01 0.7934 ±0.0038 0.84 ±0.09 0.91 ±0.01 0.3117 ±0.0004

MLP-Mixer B/16
Method Accuracy (%) Entropy ↑ ECE ↓ AECE ↓ SCE (×10−3) ↓
Uncalibration 73.94 0.6812 11.56 11.55 0.3781
Temperature Scaling 73.94 ±0 1.2735 ±0 5.04 ±0 4.91 ±0 0.3450 ±0
TS by Grid Search 73.94 ±0 1.6243 ±0 2.71 ±0 2.74 ±0 0.3553 ±0
Vector Scaling 73.24 ±0.06 1.1474 ±0.0089 6.91 ±0.17 6.84 ±0.13 0.3552 ±0.0017
Matrix Scaling 40.96 ±0.31 0.1137 ±0.0010 54.50 ±0.28 54.50 ±0.28 1.1024 ±0.0042
MS-ODIR 73.16 ±0.02 1.8049 ±0.0016 4.71 ±0.08 4.73 ±0.05 0.3821 ±0.0018
Dir-ODIR 73.13 ±0.05 1.8083 ±0.0013 4.73 ±0.09 4.77 ±0.09 0.3821 ±0.0011
Neural Clamping (CE) 74.14 ±0.01 1.7952 ±0.0302 2.55 ±0.18 2.53 ±0.18 0.3672 ±0.0028
Neural Clamping (FL) 74.12 ±0.01 1.7673 ±0.0269 2.36 ±0.13 2.36 ±0.13 0.3644 ±0.0021

Table 11: Time comparison with Computationally Efficient Neural Clamping (NC (Eff.)) and temperature
scaling by grid search.

ResNet-50 on BloodMNIST
Method Resolution Acc. (%) Entropy ↑ ECE (%) ↓ Time (s)
Uncalibration N/A 85.79 0.2256 5.77 N/A
TS-Grid 0.01 85.79 0.3654 2.16 1.5
TS-Grid 0.001 85.79 0.3684 2.13 11.9
NC (Eff.) 0.01 85.79 0.3953 1.47 5.8
NC (Eff.) 0.001 85.79 0.3953 1.43 16.2
NC (FL) N/A 85.79 0.4204 1.05 35.0

ResNet-110 on CIFAR-100
Method Resolution Acc. (%) Entropy ↑ ECE (%) ↓ Time (s)
Uncalibration N/A 74.15 0.4742 10.74 N/A
TS-Grid 0.01 74.15 0.9268 1.36 2.2
TS-Grid 0.001 74.15 0.9239 1.35 13.0
NC (Eff.) 0.01 74.19 0.9371 1.23 7.2
NC (Eff.) 0.001 74.19 0.9342 1.23 18.0
NC (FL) N/A 74.16 0.9707 0.89 227.0
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