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ABSTRACT

Protein backbone generation is critical for de novo protein design, yet existing
methods suffer from two key limitations: over-reliance on SE(3) modeling, which
introduces unnecessary complexity for cyclic dihedral angles, and lack of explicit
chirality control, leading to nonfunctional D-chiral outputs. We present ChiFlow,
a chirality-aware backbone generator based on flow matching on toroidal Rie-
mannian manifolds. ChiFlow models backbone dihedrals ¢, %, w as points on
T3, extending PPFlow to backbone variables and using periodicity to avoid bound-
ary artifacts. Unlike the previous SE(3)-based flows such as Frameflow and Fold-
flow2, ChiFlow operates directly on the hypertorus, simplifying computations for
angles. We also introduce a Riemannian mirroring operator and impose asymme-
try on the learned vector field to enforce L-chirality. And we extended the meth-
ods in Foldingdiff by reconstructing the 3D atomic coordinates using fixed bond
lengths and trigonometric calculations. To increase the diversity that was low-
ered by the chirality constraint, we added Stochastic Flow Matching to ChiFlow,
resulting in an increase in diversity of the generated backbone. With extensive
experiments on real-world protein datasets, ChiFlow approaches the leading flow
models in the benchmark while maintaining absolute chirality purity. Our imple-
ment detail is at https://anonymous.4open.science/r/anonyml.

1 INTRODUCTION

Proteins play a pivotal role in sustaining life, as their structural diversity underlies a wide spectrum
of biological functions. The ability to design proteins with predetermined architectures and activities
represents a major advance in biotechnology, providing systematic approaches that extend beyond
natural evolutionary processes. Progresses made by methods like AlphaFold3 (Abramson et al.,
2024) and ESM3 (Hayes et al.} 2024) carries profound significance for medicine and public health,
offering the potential to generate novel therapeutic strategies and address long-standing challenges
in disease prevention and treatment. At the core of protein design lies the generation of accurate
backbone structures (Tang et al.,[20244a)), since the backbone determines the overall fold and strongly
constrains the positioning of side chains. Figure[I|shows the comparasion between the whole protein
and the protein backbone.

Limitations of Existing Approaches: Current SE(3)-based frameworks (Fuchs et al.| 2020) repre-
sent protein backbones as sequences of SE(3) rigid frames (Yim et al.l [2023a}b; [2024; Bose et al.,
2024; Huguet et al.,[2024)), which are effective for capturing global structure but impose unnecessary
complexity when modeling cyclic dihedral angles ¢, 1), w—the primary determinants of backbone
conformation—by embedding them into SE(3)’s rotation component, thereby creating periodicity
mismatches and boundary artifacts (Zhang et al.,[2024). Moreover, natural proteins are exclusively
L-chiral, yet existing approaches (Yim et al.,[2023a3bj 2024; Bose et al.| [2024; |Fu et al.| 2023} |Song
et al.,|2023)) lack explicit chirality enforcement, and they mostly base on SE(3) which can not model
chirality (Dumitrescu et al., [2025b} |Childs et al.| [2025)), which risks generating non-physical right-
handed backbones (Childs et al.,[2025]). While torus geometry has been shown to effectively capture
periodicity for sidechain torsion angles (Huguet et al., 2024)), it has not been extended to backbone
dihedrals or coupled with chirality constraints. Therefore, there remains a critical gap for a backbone
generation framework that jointly leverages torus geometry and chirality-aware modeling.
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Figure 1: The comparasion between the original protein and the protein backbone

Proposed Method: To address these limitations, we introduce ChiFlow, a chirality-aware flow-
matching framework that operates directly on toroidal Riemannian manifolds (Chen & Lipman)
rather than SE(3) flow [2024). Unlike SE(3) FrameFlow (Yim et al. [2023a),
ChiFlow removes the burden of embedding periodic angles into rigid-body rotations; and unlike
sidechain-focused torus approache 2024a), it directly targets the backbone, the core
structural determinant of protein folds. Through this integration, we achieve both competitive des-
ignability and sampling efficiency, while uniquely delivering one hundred percent chirality pu-
rity, bridging a fundamental gap in backbone generation.

Contributions: ChiFlow introduces three key advances in protein backbone generation:
(1)Toroidal Riemannian Manifold framework that models backbone dihedrals natively on T3%,
eliminating periodicity artifacts inherent in SE(3)-based methods; (2) Chirality-Aware Flow
Matching approach via a Riemannian mirroring operator and asymmetric vector field constraint,
guaranteeing absolute L-chirality without sacrificing designability; and (3) Stochastic Flow Match-
ing on the torus that enhances conformational diversity while preserving geometric constraints.

2 BACKGROUND & PRELIMINARIES

2.1 PROTEIN BACKBONE DIHEDRALS & CHIRALITY

A protein backbone consists of N residues linked by peptide bonds
(Abdin & Kim) [2023)), with each residue’s conformation defined
by three dihedral angles : ¢ around the N-Ca bond, i around the
Ca-C bond, and w around the C-N peptide bond, which is nearly (l

;\ﬁ
fixed at 0 in the trans state or 7 in the cis state but remains cyclic. ,, é
These angles determine secondary structures such as a-helices, i %ﬂ? {F’ v
with ¢ &~ —57° and 1) &~ —47°, and (3-sheets, with ¢ ~ —130° and 9
1 ~ 120° (Ramachandran et al] [1963). And the dihedral angles

will determine the chiral of the protein backbone, note that natural Figure 2: Chirality
proteins are all inherently L-chiral 2002). A protein back-

bone is L-chiral if its dihedral angles, when mapped to 3D Ca coordinates, cannot be superimposed
on their mirror image, that is, the D-chiral configuration, via translations alone. To model this at-
tribute, let X = {z1,...,z5} € R3*" be Ca coordinates derived from dihedrals x € T3, and
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M : R?® — R? be a mirroring operator, for example M (x) = (—x1,22,73). X is L-chiral if
#b € R? such that M(X) +b = X.

2.2 TOROIDAL RIEMANNIAN MANIFOLDS

The 1-dimensional torus T can be defined as the quotient space T = R/27Z (Lipman et al., 2023),
where two real numbers a and b are equivalent if a — b = 27k for some k € Z, making it a
natural model for cyclic variables (Lin et al., [2024b) like dihedral angles. For protein backbone
dihedrals, we work on the hypertorus T? = T x T x T, where each point x = (X4, Xy Xw) € T°
represents the three dihedral angles of a residue. At a point Y, the tangent space TX’]I‘3 is endowed
with a conformal product metric grs|y (u,v) = > yc (4 4wy We(Xk)ukvr, where the smooth, 27-

periodic weights are given by wy(xx) = Extending this to IV residues that make up

1
1+sinZ(xx/2)°
the whole protein backbone yields the product metric g = |_|T]:]:1 grs, which induces the pointwise
norm [Jul|2 = g(u,u) and the volume element dvol, = y/det g(x)dx. Under this metric, the
Riemannian gradient, divergence, and Laplace-Beltrami operators are respectively V, f = g~ 1-0f,
divg X = \/%tg 9;(Vdetg X?), and Ayf = divy(Vyf), all computed componentwise due to
the product structure. For interpolation, we follow (Zhang et al., 2024) and define the geodesic
Xt : [0,1] — T3 between xg and x1 as x; = exp,, (t log, , (x1))Mathieu & Nickel| (2020), which
in the flat product metric reduces to shortest-path interpolation on each circle, meaning that each
angular coordinate evolves linearly along the minimal arc between its start and end values, with
wrapping modulo 27 to preserve periodicity.

2.3 FLOW MATCHING ON RIEMANNIAN MANIFOLDS

Riemannian Flow Matching (RFM) provides a simulation-free
framework for learning continuous normalizing flows on general
Riemannian manifolds. Given a complete, connected smooth Rie-
mannian manifold M with metric g, the goal is to learn a time-
dependent vector field v;(x) that transports an initial distribution
po to a target distribution p; by satisfying the continuity equation
O¢pr + divy(prvy) = 0 with boundary conditions p;—y = po and
pr=1 = p1|Chen & Lipman|(2024). M

The key idea is to construct conditional probability paths p;(x|z1)

that interpolate between py and Dirac distributions d,, centered at Figure 3: Torus Manifold
data points x1 ~ p;. The marginal probability path is then defined (Chen & Lipman| [2024)

as:

ple) = [ pialoa)pn (o) dvols,. 1)
M
and the target vector field is obtained by marginalizing conditional vector fields:
pe(x[z1)p1(z1)
u(x) = ug(x|x) ———————=dvoly, . 2)
@) = [ ol 2L 1

where u;(x|2z1) generates py(z|x1) from pg.

For simple geometries where closed-form geodesics are available, the conditional flow can be de-
fined using the geodesic distance d, as a premetric. With the linear scheduler x(t) = 1 — ¢, the
conditional flow is:

Ty = 1/}t(550|331) = €XPy, (t logwg (56'1)) (3)

which yields the conditional vector field:

4 log, (x1)

$$t 1—¢ 4

ug(Te|z) =

This ensures that the interpolation path follows the geodesic of the manifold, respecting its intrinsic
geometry (Bose et al.,[2024} |Chen & Lipman, 2024).
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The parametric vector field v is learned by minimizing the Riemannian Conditional Flow Matching
(RCFM) objective:

£RCFM(9) = EtNP(t)@lNPLIONPO |:H’U9(t7xt) - ut($t|l‘1)”ﬂ : ®)

where p(t) is a time weighting distribution, often chosen as p(t) < (1 — ¢)® for & > 0, and
expectations are taken over the conditional coupling induced by the geodesic interpolation (Chen &
[2024). This objective is equivalent to the marginal Riemannian Flow Matching objective
up to an additive constant, ensuring that the learned vector field generates flows that satisfy the
continuity equation in expectation.

RFM is simulation-free on simple geometries and does not require divergence computation during
training, and provides exact target vector fields without approximation errors
[2024). For general manifolds, spectral distances can be used as premetrics to maintain tractability,
ensuring broad applicability across diverse geometries.

2.4 MIRRORING OPERATOR FOR CHIRALITY

To enforce strict L-chirality in generated backbones, we introduce a Riemannian mirroring operator
M : T3N — T3N that acts residue-wise on the dihedral angles. For each residue, the operator is
defined as:

M (bn, Yn,wn) = (27 — ¢y, mod 27, 27 — 1, mod 27, wy,). (6)

This transformation corresponds to the molecular mirroring operation that converts an L-chiral back-
bone to its D-chiral enantiomer while preserving the cyclic nature of the dihedral angles. Crucially,
M is an isometric diffeomorphism on T3V equipped with the product metric g. The pushforward
M, : TXT?’N — TM(X)']I‘?’N has a constant Jacobian Jy; = diag(—1, —1, 1) per residue, satisfying

M? = I. The conformal weights wy(xx) = m satisfy wy(xr) = wg(27 — xx) for
k€ {¢,v}, and wy,(Xw) = Ww(Xw), ensuring that M preserves the metric:
9ln o (Mau, Mow) = gl (u, v). (7)

Through this, we explicitly encodes chirality awareness into the generative process, ensuring that all
sampled backbones maintain correct L-chirality while preserving the natural periodicity of dihedral
angles.

3 METHODOLOGY: CHIFLOW

Resl Res2 D-Chirality Res1 Res2
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Figure 4: ChiFlow represents protein backbone dihedrals (¢, %, w) on a toroidal manifold 7" to in-
herently preserve angular periodicity. And employs Riemannian flow matching to learn a vector field
that transports noise distributions to data distributions on this manifold. To ensure strict L-chirality,
a mirroring operator M is introduced, constraining the vector field to be asymmetric under M (i.e.,
O(Mx,t) = —M,(x, t)). Finally, 3D atomic coordinates are reconstructed deterministically from
dihedrals using fixed bond lengths and trigonometric operations via the SN-NeRF algorithm.

ChiFlow is a generative model based on flow-maching model for protein backbone generation, ad-
dressing critical flaws of SE(3)-based methods by grounding dihedral angle (¢, 1, w) modeling in
a toroidal manifold T3V (one T? per residue). Geodesic interpolation on T3V enables continuous,
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shortest-path transitions between conformations, and Riemannian operators (V4,div,, Ay) ensure
consistent calculus on the manifold. ChiFlow first uses deterministic Riemannian flow matching
to learn a vector field 9(y, t) that transports a prior distribution py to a native-like target p;, min-
imizing a L? loss Lrs. To enhance conformational diversity and model robustness, we extended
it to Stochastic Flow Matching(SFM): a torus Brownian motion (with generator o (t)?/2A,, where
o(t) is a decreasing noise schedule) defines a reference stochastic process, with noise projected
onto the manifold’s tangent spaces to preserve geometric validity. Framed as a Schrodinger bridge
(Tang et al.,|2024b)), SFM learns the optimal vector field vy via a flow matching loss Lsgv, avoiding
the computational cost of simulating the entire stochastic process. Critically, to guarantee biologi-
cally essential L-chirality, a chiral asymmetry loss Ly, enforces vg(M (x:),t) = —M.vo(xt, 1),
where M is a chirality-flipping mirroring operator. To reconstruct the protein backbone using the
dihedral angles generated by the flow model, we employed the SN-NeRF algorithm (Parsons et al.,
2005)), paired with forward kinematics using standard protein backbone bond lengths (Ca—N = 1.45
A, Ca—C =1.54 A) for efficiency and stability.

3.1 BACKBONE MODELING AND TOROIDAL FLOW MATCHING

Proteins fold into specific three-dimensional structures to perform their biological functions (Pol-
lockl [2007). The backbone dihedral angles—phi (¢), psi (¢V), and omega (w)—are crucial degrees
of freedom that define the protein’s conformational space. Unlike linear Euclidean spaces, these
angles are cyclic by nature, with values wrapping around every 27 radians (Atavin & Vilkov, 2003).
This periodicity must be respected in any meaningful mathematical model of protein structure and
dynamics. To address this, we turn to the concept of the Torus (Wiemeler, 2015). We represent the
full protein backbone as a point on a hypertorus, x = {x1,...,x~} € T3Y, where each residue n
has its own set of dihedral angles x,, = (¢n, ¥n,wy ). The 1-dimensional torus T is defined as the
quotient space T = R/27Z, which identifies points a and b whenever a — b = 27k for any integer
k. This identification effectively gather together the ends of the interval [0, 27), forming a circle and
eliminating artificial boundaries at 0 and 2. The 3-dimensional product torus T3 = T x T x T thus
naturally encodes the three dihedral angles of a single residue without introducing discontinuities.
The space T3V is not just a set of points, it is a Riemannian manifold. At a point x € T2, the tangent
space T, T? is a vector space containing all possible directions of change for the dihedral angles. We
equip this space with a conformal product metric:

g13 |y (u,v) = Z wi(xk) ugvk, Where wg(xk) = )

-2 o
ke{p,,w} 1+ sin®(xx/2)

This metric is smooth and 27-periodic in each coordinate, meaning it respects the circular nature of
the angles. The weight function wy, (%) is chosen to reflect known physical constraints; for instance,
it assigns higher cost to changes in angles when they are near regions of steric clash (Ramachandran
et al., 2011). Extending this metric to /N residues yields the product metric g = |_|g:1 grs for the
entire backbone. This metric induces a norm [|ul|> = g(u,u) on tangent vectors and a volume

element dvol, = +/det g(x) dx for integration on the manifold. On a Riemannian manifold, the
familiar calculus operations from Euclidean space generalize. The Riemannian gradient, divergence,
and Laplace—Beltrami (Zhou & Lihner} 2025) operators become:

. 1 i .
V,f =g 0f divgX = \/?tg&;(\/deth ) A f =divy(V,f). 9)

Due to the product structure of our torus, these operators can be computed componentwise, which
significantly simplifies calculations. A key geometric concept is the geodesic—the shortest path
between two points on the manifold. For interpolation between two backbone configurations o and
X1 On T3V, we follow the shortest-path geodesic (Wu et al.,|2025) on each individual angular circle:

Xt = exp,, (t log, (x1))- (10)

This operation reduces to linear interpolation along the minimal arc in each angular coordinate, with
values wrapped modulo 27. This provides a natural and continuous path between the desired protein
backbone and the origin protein backbone. Flow matching is a powerful framework for learning
probability paths between distributions on manifolds. On T3V, we seek a time-dependent vector
field ¥(x, t) that transports an initial probability distribution p; (e.g., a simple prior distribution over
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structures) to a target distribution p; (e.g., a distribution of native-like structures) by satisfying the
continuity equation:

Orpr + divg(p 0(-, 1)) = 0. (11
with boundary conditions p;—g = po and p;—1 = p1. Using the geodesic interpolation (X¢)¢c[0,1]
defined between samples xo ~ pg and x1 ~ p1, the exact conditional vector field that transports
log xt (tX1)
field © by minimizing a time-weighted Riemannian L? mismatch loss:

to x1 along the geodesic is known in closed form: u(x¢, ¢ | x1) = . We estimate the vector

‘CTS = Et"vp Ep(xo),p()ﬁ) [ Hu(Xt7t | Xl) - {)(Xht)”Z] : (12)

where p(t) o (1—t)“ is a weighting function that often puts more emphasis on later times (e.g., o« =
2), and the inner expectation is over the conditional coupling induced by the geodesic interpolation.
This geometric formulation provides a rigorous foundation for modeling protein dynamics, folding
pathways (Englander & Mayne, 2014), and for generating novel structures, as it inherently avoids the
coordinate singularities and artifacts that plague methods treating dihedral angles as linear Euclidean
variables.

3.2 STOCHASTIC FLOW MATCHING AND CHIRALITY CONTROL

To address the limitations of deterministic flow and significantly improve the sample diversity and
robustness of the ChiFlow model, we extend its framework by incorporating a Stochastic Flow
Matching (SFM) (Albergo et al.,[2023) formulation on the toroidal manifold T3N . This extension
transforms the deterministic flow into a stochastic bridge, leveraging controlled noise and optimal
transport theory.

3.2.1 STOCHASTIC DYNAMICS AND THE SCHRODINGER BRIDGE

The core of the SFM involves defining a reference stochastic process on T3V, Let A, be the
Laplace—Beltrami operator under the product metric. We consider a torus Brownian motion with

2
generator U(g) A, as the reference process, where o (t) is a carefully chosen decreasing noise sched-

ule. The dynamics of the system are then governed by the following Stratonovich stochastic differ-
ential equation (SDE) (Anderson, |1982):

dx: = ve(xs, t) dt + o(t) Mz, o dW;. (13)

Here, 1l7,, projects the standard Wiener noise dJ¥; onto the tangent space of the manifold at x¢,

ensuring that the added noise respects the geometric constraints of T3". The vector field vy, pa-
rameterized by a neural network, learns to guide this stochastic process. We seek the most efficient
stochastic path connecting the initial and target distributions relative to this reference Brownian mo-
tion. This is formulated as the Schrodinger bridge problem, an entropy-regularized optimal transport
problem on the path space:

. e (o) 112 . . o(t)?
H}}tn E/O W)Qg dt subjectto Oyp, = —divy(pius) + TAgpt. (14)
The solution to this problem yields the control u; that minimizes the expected energy required to
drive the system from pg to p; amidst the stochastic noise.

3.2.2 CHIRALITY PRESERVATION

Directly solving the Schrédinger bridge can be computationally challenging (Jing et al.| 2025)). In-
stead, we adopt a flow matching objective to efficiently learn the optimal vector field vy that ap-
proximates the solution. We define a conditional probability path (Mathieu & Nickel,2020) between
samples. The flow matching loss is constructed to regress the learned vector field vy towards a target
vector field u, that defines the desired flow:

£SFM = Exywpl,th(O,l) ||7u0'(Xt7t | Xl) - v@(th) ||!2]T3:| . (15)

This objective allows us to train the model without simulating the entire stochastic process, greatly
enhancing computational efficiency. A critical concern when introducing stochasticity is the po-
tential violation of fundamental physical symmetries. To enforce the conservation of chirality—a
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crucial property of biomolecules—we introduce the chirality penalty term into the loss function
(Ciampiconi et al., 2024). Let M denote the operator that flips the chirality of a structure. We
require the learned vector field to exhibit asymmetry under this transformation: vg(M (x¢),t) =
— M., (vg(xt,t)). This is enforced via the chiral asymmetry loss:

Leniral = Byt [lloa (M (xe), 8) + Mo (vg (x, )15, )

(16)

3.2.3 TOTAL OBJECTIVE AND SUMMARY OF IMPROVEMENTS

The overall training objective for the Stochastic Flow Matching part of ChiFlow combines the flow
matching loss and the chiral symmetry loss:

L5TM — Lopm + A Lehiral- (17)

The hyperparameter A balances the trade-off between sample diversity (achieved through SFM) and
strict geometric consistency (enforced by the chiral loss) and is defined in the config file during train-
ing between 0.1 and 2. The controlled stochastic noise enables the generation of a wider variety of
structurally plausible protein backbone. The SFM extension transforms ChiFlow into a more pow-
erful and versatile tool for generating diverse, robust, and physically accurate molecular structures
on the toroidal manifold.

3.3 Coa COORDINATE RECONSTRUCTION

We employ forward kinematics with standard protein backbone parameters (e.g., Ca—N =
145 A, Ca—C = 1.54 A) to reconstruct Ca coordinates from y; torsional angles. To
maximize computational efficiency and numerical stability, we adopt the Self-Normalizing
Natural Extension Reference Frame (SN-NeRF) algorithm [Parsons et al. (2005). This
method reduces the Cartesian coordinate conversion to 66 floating-point operations per
atom, which is fewer than classical rigid-based reconstruction methods (Yim et al., 2023b).
Angle-dependent placement: Compute initial atom position in a local
frame using bond lengths and angles.

ﬁg:(RCOS@, Rcos¢sinf, Rsin¢sinb) (18)

where R = bondcp, 0 = anglegp, ¢ = torsionpgc.

- ~.

Reference frame alignment: Transform to global coordinates via an or-
thonormal basis derived from prior atoms:

D=MDy+C (19)

M= {bb, A x be, A (20)

Y
with be = BC / |B? | and 72 as the ABC plane normal.

_______

4 EXPERIMENTS SETUP Figure 5: SN-Nerf

4.1 DATASET

We train ChiFlow on a filtered PDB (Burley et al., 2022)) dataset. The raw data was downloaded
from the RCSB (Burley et al.l |2022) in mmCIF format and we followed method proposed in
FrameDiff (Yim et al.| 2023b) to preprocess the dataset to pdb format for visualization and gener-
ated metadata.csv and clusters-by-entity-30.txt to help process the dataset more efficiently. During
training, we use different length of protein backbone such as [60,256] and [100,512], as shown in
Figure 7] Also, pair geometry is encoded via the features of protein backbone heavy atoms. What's
more, during the preprocess process of the datasets, full in-memory caching is disabled by default
to keep preprocessing lightweight.

4.2 METRIC

Designability, defined as the fraction of designs with scRMSD < 2.0 A; Novelty, evaluated by
the maximum TM-score to known PDB structures and the fraction of designs with an averaged
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maximum TM-score < 0.3 and scRMSD < 2.0 A, and Diversity, assessed by the average pairwise
TM-score and the MaxCluster fraction. Standard errors are included for both Designability and
Novelty metrics (Bose et al., [2024). And the Chirality was calculated through the Cahn-Ingold-
Prelog (CIP) rule algorithm from RDKit (Parsons et al., 2005)).

4.3 BASELINE

We compare our results to RFDiffusion (Watson et al .| [2022)), FrameDiff (Yim et al.,2023b)), Frame-
Flow (Yim et al.l[2023a)) and FoldFlow (Bose et al.,|2024) for protein backbone generation. Unlike
RFDiffusion which leverages a pre-trained folding network, both Genie and FrameDiff are diffu-
sion models that generate protein backbones without such dependency. For the flow-based models,
FrameFlow and FoldFlow, we utilize their official implementations and pre-trained weights, these
baselines are selected to illustrate the inherent trade-offs between computational speed and design
quality in state-of-the-art protein structure generation. We can tell from Table |I| that while there
still remains a gap between the golden standard(RFDiffusion) and ChiFlow, ChiFlow approaches
previous methods like FrameFlow, FrameDiff and FoldFlow in benchmark and shows no big dif-
ference. Note that the SFM greatly improved the Diversity of the protein backbone designed by
ChiFlow, even outperform the golden standard. And Figure [7| shows some of the backbone gener-
ated by ChiFlow. The ablation study [2| shows that the Riemannian mirroring operator is crucial to
the control of the Chirality of the protein backbone. And the Riemannian HyperTorus ensures that
the Flow Matching process on dihedral angles is fluent and smooth. Overperform SE(3)-only Flow
Matching method. Note: Best results are in bold. Standard errors represent variability across mul-
tiple runs. Chirality purity measures the percentage of generated backbones with correct L-chirality
configuration.

Table 1: Comprehensive experiments of Baseline over the PDB Datasets Under Various Metrics

Model Designability Novelty Diversity Chirality
Fraction 1 scRMSD | Fraction 1 avg.max TM | pairwise TM |  MaxCluster 1 Score T

RFDiffusion  0.969 + 0.034  0.650 £ 0.136  0.708 + 0.060 0.449 +0.012 0.256 +0.010 0.172 £0.015 0.94 £ 0.143
FrameDiff 0.414 £0.064 3.970 £0.436 0.181 £0.128 0.556 = 0.047 0.244 +£0.011  0.320 +0.021  0.88+ 0.094

FrameFlow  0.798 £ 0.044 — — 0.698 £ 0.033 — 0.292 £0.020  0.93 £+ 0.039
FoldFlow 0.671 £0.044 3.090 £0.285 0.449 £0.078 0.469 & 0.025 0.274 + 0.014 — 0.95 £ 0.047
ChiFlow 0.674 £0.042 2309 £0.271 0.383 £0.074 0.502+0.024 0.267 £0.013  0.295 + 0.019 1.00
ChiFlowpro 0.743 +£0.040 2.1924+0.249 0.497 +£0.068 0.409 £ 0.020 0.197 £0.010  0.302 £ 0.020 1.00

Table 2: Comprehensive ablation study of ChiFlow components. The table evaluates the contribution
of explicit chirality constraints and Stochastic Flow Matching (SFM) to the overall performance.

Method Designability Novelty Performance

Fraction 1 scRMSD (A) | Fraction 1 Avg. TM | Diversity | Chirality (%) T
ChiFlow-pro (Full) 0.743 £0.040 2.192+0.249 0.497+0.068 0.409 £0.020 0.197 +0.010 1.00
SE(3) 0.671 £0.044  3.090 £0.285 0.449 £0.078 0.469 + 0.025 0.274 £ 0.014  0.95 £ 0.047

ChiFlow(w/o Chirality) 0.7354+0.039  2.2054+0.251 0.505£0.069 0.425+0.021  0.275£0.010  0.623 £ 0.057

Configuration: The model learns a continuous vector field over the backbone torsion angles
(¢,%,w) in the 3-torus space (—m, )3, and reconstructs Cartesian coordinates (N, C,, C) via a
deterministic NeRF decoder. The system was trained for 500 epochs using Adam (Ir = 1 x 1074,
Baetault> batch size 512) with gradient norm clipping at 1.0. Distributed Data Parallel (DDP) (Li
et al.| 2020) on two A6000 GPUs was used for training, synchronizing gradients via an All-Reduce
algorithm. Sampling integrates the learned field using 100 steps of explicit Euler reverse diffusion
with torus wrapping, augmented by stochastic paths (SFM) to promote diversity. All runs were con-
figured and versioned via Hydra. And inference is executed on a single RTX 4090 GPU (24 GB
GDDR6X, 330 TFLOPS FP16).
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5 RELATED WORKS

Flow-based models. Flow models learn a time-dependent vector field and generate structures via
ODE or controlled SDE integration. SE(3)-equivariant frame flows introduced by FrameFlow target
backbone generation with fast sampling and strong designability (Yim et al.,[2023a), followed by im-
provements in conditional motif-scaffolding (Yim et al., [2024)) and added stochasticity for diversity
(Bose et al.,2024])). FoldFlow-base/OT/SFM refines flow-matching objectives and training, reporting
improved designability and throughput across variants (Bose et al., 2024)). In parallel, FoldFlow2
advances training stability and sampling efficiency through refined flow objectives and architectural
updates, achieving further gains in both accuracy and designability (Huguet et al., 2024). More
recently, PROTEINA extends flow-based generation with hierarchical representations and geometry-
aware conditioning, enabling scalable modeling of complex protein families (Geffner et al., [2025).
In general, flows sample deterministically, support direct conditioning in the vector field, and offer
faster sampling than diffusion in comparable setups.

Diffusion-based models. Diffusion models construct a stochastic forward noising process and
learn a reverse denoising dynamics to sample structures. RFDiffusion popularized diffusion in pro-
tein backbone design, enabling flexible conditional generation and motif scaffolding (Watson et al.,
2022). Subsequent motif-conditioned diffusion systems extended conditioning mechanisms for joint
sequence—structure tasks (Song et al.| 2023). Latent diffusion accelerates sampling by operating
in an autoencoded Euclidean latent space (Fu et al., [2023), trading some designability for speed.
Large-scale scaffold diffusion emphasizes dataset scale and diversity, improving novelty and cover-
age while retaining conditional control (Lin et al.,[2024b). Diffusion models are versatile and robust
but typically require more sampling steps and, when operating in SE(3) or Euclidean latents, do not
align natively with the periodic geometry of dihedral angles.

Chirality Constraints. Chirality, the property of a molecule being non-superimposable on its
mirror image, is a critical factor in chemistry and pharmacology. Enantiomers, or pairs of chiral
molecules, can exhibit vastly different biological activities; for instance, one enantiomer of a drug
can be therapeutic while the other is toxic (Dumitrescu et al., 2025a} |Gainski et al., [2023). Con-
sequently, the ability of computational models to accurately represent and predict chirality is of
paramount importance, particularly in drug discovery (Gainski et al.l 2023)). Historically viewed as
a binary property, recent work has also focused on developing mathematical methods to quantify
chirality as a continuous variable, with primary approaches based on either geometric overlap, such
as the Continuous Chirality Measure (Grieder et al., 2025)), or scalar triple products, like the Chiral-
ity Characteristic () (Abramson et al., [2024). Despite its importance, modeling chirality presents
a significant challenge for many previous models such as SE(3)-based models (Dumitrescu et al.,
20254; |Childs et al,[2025).

6 CONCLUSION

We present ChiFlow, a novel generative model for protein backbones that directly addresses the
critical challenge of protein backbone chirality preservation—a fundamental constraint overlooked
by existing SE(3)-based methods. By reformulating structure generation on a toroidal riemannian
manifold and incorporating an asymmetry constraint, ChiFlow guarantees perfect chiral consistency
without compromising performance. Furthermore, by operating natively on the space of torsion
angles, ChiFlow avoids the computational overparameterization associated with SE(3) models and
well models the dihedral angles of the protein backbone, resulting in a simpler architecture and faster
sampling. Also, by utilizing the SFM, we improve the diversity of the protein backbone generated by
ChiFlow. Despite these advantages, the torsional representation is inherently sensitive to local angu-
lar deviations, which can accumulate over very long proteins. Future work could focus on improving
the stability of the generative process for extended chains, as well as exploring conditional genera-
tion for functional motifs and multimeric assemblies. ChiFlow establishes the toroidal manifold as
an efficient way for protein backbone generation, offering a promising path toward chirality-aware
design in computational structural biology.
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A SUPPLEMENTARY PROOFS AND TECHNICAL DETAILS

A.1 SCHRODINGER BRIDGE THEORY

The Schrodinger bridge problem (SBP) finds the most likely stochastic evolution between two prob-
ability distributions given a prior stochastic evolution. It is the dynamical version of the entropy-
regularized optimal transport (OT) problem (Li et al.l 2024), where the mean square distance is
replaced by the relative entropy (Shi et al., 2025). Specifically, given a prior diffusion process Q"
(e.g., a Wiener measure with volatility ) and two endpoint marginals 7 and 71, the dynamic SBP
is defined as:
i 2l

erlgfom) DL (Q[IQ7), 2D
where D(m, 1) denotes the set of measures on path space with marginals 7 at time 0 and 7y at
time 1. The minimizing Q* is called the Schrodinger bridge, and its optimal value is the entropic
transportation cost.

The SBP admits a dual formulation through the Schrodinger system, a pair of coupled PDEs (or
integral equations in discrete settings) for potentials ¢ and ¢. For a diffusion prior with drift b, and
volatility /7, the optimal drifts of the forward and backward Schrédinger bridges are given by:

b* (t) = ’}/VIQO(£E+ (t),t), b~ (t) = yVap(x™ (t),1), (22)

where 7 and x~ are the forward and backward processes, respectively. The potentials satisfy the
boundary conditions:

dﬂ'o d7T1
dQg dQ{
with Qg and Q)] being the marginals of the prior at ¢t = 0 and ¢t = 1.

o(z,0) x (), @(x,1) x (2), (23)

A key numerical approach for solving the SBP is the iterative proportional fitting procedure (IPFP)
(Eckstein & Lakhall [2025)), also known as the Sinkhorn algorithm in the static OT setting. For
dynamic SBP, IPFP alternates between solving forward and half-bridge problems:

P = inf D (PlQi 1), 24
arg | inf kL(Pl|Qi-1) (24)

= inf D P), 25
Qi =arg  Inf k(@ P) (25)

05
which converges to the Schrodinger bridge Q*. This procedure is equivalent to an iterative scaling
algorithm in the discrete case.

Recently, (Teter et al.l 2024) proposed a regularized SBP variant with a quadratic state cost-to-go,
which incentivizes paths to stay close to a nominal level. Unlike the conventional SBP, this regu-
larization induces a state-dependent rate of killing and creation of probability mass. Remarkably,
they showed that this regularized SBP is exactly solvable even for non-Gaussian endpoints, by de-
riving the Markov kernel of the associated reaction-diffusion PDE in closed form. Their solution
recovers the heat kernel (and hence the conventional Schrodinger bridge) as a special case when the
regularization vanishes.

The SBP also extends to quantum channels, where the goal is to scale a completely positive operator
@ to a quantum channel R such that R(«) = f for given density matrices o and 3. This is the
quantum analog of the classical SBP and can be solved using fixed-point methods.

A.2 SE(3)-INVARIANT FEATURE DISTRIBUTIONS CANNOT ENCODE CHIRALITY

We formalize why standard E(3) / SE(3)-invariant (or equivariant) architectures based purely on Eu-
clidean distances and inner products cannot distinguish mirror-image molecular or protein backbone
configurations. This limitation motivates our explicit asymmetry constraint on dihedral torus flows.

Proposition A.1 (Inability of E(3)-invariant point-cloud distributions to distinguish enantiomers).
Let py be a distribution over point clouds M = (my,...,my) € (R*)N parameterized only
through features that are invariant under the action of the Euclidean group E(3) (translations +
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rotations) and depend exclusively on pairwise distances ||m; — m;|| and/or inner products of cen-
tered coordinates. Then for any enantiomeric pair (M, M') related by an improper orthogonal
transformation (a reflection), we have

pe(M) = pg(M'). (26)

Consequently, py cannot enforce or prefer a single molecular chirality.

Sketch of proof. Any collection of features constructed from (i) pairwise Euclidean distances
dij = |[m; — m;||, (ii) dot products of centered vectors (m; — m,m; — my), or (iii) higher-order
tensor contractions thereof is invariant under the full orthogonal group O(3), because both distances
and inner products are preserved by any orthogonal matrix Q with Q7' Q = I, including reflections
(det @ = —1). A reflection that maps M to its mirror image M’ lies in O(3)\ SO(3). Thus all such
features take identical values on M and M’ (Dumitrescu et al.,2025b). strengthen this by showing
that for functions of at most n input vectors, SE(n)-invariance already implies reflection invariance
via centering arguments and Householder reflections; hence SE(3)- invariant parameterizations can-
not break mirror symmetry. Therefore any likelihood or density model pg expressed purely in those
invariants assigns equal probability to both enantiomers.

Implication for ChiFlow. To obtain chirality selectivity, one must either (a) augment invariant
features with orientation-sensitive pseudoscalars (e.g., triple products) or (b) impose explicit asym-
metric constraints under a mirroring isometry, as we do via the torsional mirroring operator M and
the chiral penalty (Section [2.4).

A.3 PROOF OF PROPOSITION 3.1 (CONDITIONAL DRIFT UNDER TORUS INTERPOLATION)

We give a concise proof for the closed form of the conditional target drift on the torus under the
time-dependent affine interpolation used in ChiFlow. Let 7 € T? denote a generic angle vector
(componentwise on the circle), and consider an interpolation of the form

7 = (e (1) + 04(71) €) mod 2, t€0,1], 27)

where p; and o; > 0 are smooth in ¢ (and may depend on the endpoint 71), and ¢ is time-invariant
along the conditional path. Differentiating 7, w.r.t. ¢ in the tangent yields

d . .
uy(r | 11) = 7t = et (28)
By rearranging the interpolation, we have the (componentwise, principal-branch) identity on the
circle
. _ wrap(r — m)y (29)

Ot
so substituting eliminates € and expresses the drift as a function of (7, t):
wrap(7e — pe) | . G¢(71)

u(r|mn) = 6 ——————=+ju = wrap(7 — pe(71)) + f1e(71), (30)
(o4 Ut(ﬁ)

where all operations are taken componentwise on T? using the shortest-arc difference wrap(-) €
(=, w]. This is the claimed expression.

A.4 PROOF OF PROPOSITION 3.2 (UNBIASEDNESS VIA DISINTEGRATION ON T¢)

We show the equivalence between the conditional objective and its marginal counterpart by dis-
integration of measures on the product torus and Fubini’s theorem (Rosestolatol 2018]). Let
T¢ = S x --- x S' and assume the endpoint distributions py, p; € P(T?) factorize across angles
(orthogonality/independence of torsions), hence the interpolant p, admits the same disintegration.
Define

pe(7 | 10, 71)

pt(T) ut(T ‘ TOle):|a (31)

ut(T) = ETONI)0771NP1|:

and consider the objective difference

Vo (Erpirirmetiroms) [1007) = wal7 |70, 7)I2] = Era [lun) = w(@IE] ), 32

14



Under review as a conference paper at ICLR 2026

where (-, -)4 and || - || ; denote the Riemannian inner product and norm induced by the product metric
g on T?. Expanding squares and canceling like terms reduces this to

2V, (ETM,TN,,,,(,‘TM) We(7), ue (7 | 70, 71))g — Brrop, (04(7), ut(7)>g). (33)
Using the definition of u;(7) and changing the order of integration,
Brwpe (0e(7), (7)) g = /(vt(T),ut(T»gpt(T) dr (34)
= /<”t(7)»Em,n {%Utﬁ | 70771)}> pi(T)dr (35)
g
= // <vt(7'),ut(7' | 7'0,71)>gpt(7' | 70,71) po(10) p1(71) dT d19 dT1 (36)
=K po, ri~pr, rrope (lro,m) (Ve (T), we (T | T0,71)) g 37)

Hence the two expectations are equal, and the gradient of their difference is zero. This establishes
that optimizing the conditional objective is an unbiased surrogate for the marginal objective on T¢
under the stated disintegration assumptions.

A.5 PROOF THAT THE MIRRORING OPERATOR M IS AN ISOMETRIC DIFFEOMORPHISM ON T*

We show that the mirroring map M : T? — T3 defined componentwise by
M(¢,,w) = (2 — ¢ mod 27, 27 — 1 mod 27, w) (38)

is an isometric diffeomorphism under the conformal product metric introduced in Section [2] (the
extension to T3V follows by the product structure, since M acts residuewise).

1) M is a diffeomorphism. Smoothness: Each component of M is the composition of a smooth
linear map on the circle (e.g., ¢ — 27w — ¢) with the canonical identification modulo 27 that defines
the smooth structure of the torus. Hence M is smooth. Invertibility: M is an involution, i.e.,
Mo M =id, so M~ = M. Since M is smooth, so is M ~'. Therefore M is a diffeomorphism on
T?3; by independence across residues, the product map on T>¥ is also a diffeomorphism.

2) M is an isometry for the metric grs. Recall the metric

gmrslx(u,v): Z wy (Xx) Uk Vk, wi (k) = (39)

ke{¢,w}

Let X' = M(x) and let M, : T, T®> — T, T? be the pushforward of M. By differentiation of
the component maps, the Jacobian of M is Jy; = diag(—1,—1,1), hence for any u € T, T we
have M, u = Jyru with components (M, u)g = —ug, (Mu)y = —ty, (Miu), = u,. Using the
trigonometric identity sin(m — 6) = sin 6, we obtain for k € {¢, ¥}

1 1

1+ sin®(xx/2)

wr (X)) = 1t sin? (27— x1)/2) =7 s (e /2) = wr(xx), and wy,(x,,) = Wo(Xw)-
(40)

Therefore, for any u,v € T, T3,
grs|  (Mou, Mov) = > wie(xh) (Maw)y, (M) (41)

ke{p,h,w}

= we (Xp) (—ue) (—vg) +wy (X5) (—uy) (—vy) + wo (X, uwve  (42)
= w¢(X¢)U¢U¢ + ww(X¢)“¢“w + Wy (Xw)uwvw (43)
= gT3|X(u,v). (44)

which proves that M preserves the metric, hence is an isometry. The product argument yields the
same conclusion on T3,
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A.6 THE USE OF LARGE LANGUAGE MODELS

In this paper, we used Deepseek to polish our writing and made use of copilot to help debug our
code.
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