
Published as a conference paper at ICLR 2024

NEURAL NEIGHBORHOOD SEARCH FOR
MULTI-AGENT PATH FINDING

Zhongxia Yan, Cathy Wu
MIT
{zxyan,cathywu}@mit.edu

ABSTRACT

Multi-agent path finding (MAPF) is the combinatorial problem of planning op-
timal collision-avoiding paths for multiple agents, with application to robotics,
logistics, and transportation. Though many recent learning-based works have
focused on large-scale combinatorial problems by guiding their decomposition
into sequences of smaller subproblems, the combined spatiotemporal and time-
restricted nature of MAPF poses a particular challenge for learning-based guid-
ance of iterative approaches like large neighborhood search (LNS), which is al-
ready a state-of-the-art approach for MAPF even without learning. We address
this challenge of neural-guided LNS for MAPF by designing an architecture
which interleaves convolution and attention to efficiently represent MAPF sub-
problems, enabling practical guidance of LNS in benchmark settings. We demon-
strate the speedup of our method over existing state-of-the-art LNS-based methods
for MAPF as well as the robustness of our method to unseen settings. Our pro-
posed method expands the horizon of effective deep learning-guided LNS methods
into multi-path planning problems, and our proposed representation may be more
broadly applicable for representing path-wise interactions.

1 INTRODUCTION

Due to recent advances in robotics and artificial intelligence, logistics operations in warehouses
have become increasingly automated. As an example, hundreds to thousands of mobile robots work
in warehouses to transport items to their required locations. Limited warehouse space, hardware,
and time to fulfill orders provide immense challenges and opportunities to coordinate the tasks and
movements of these robots to maximize throughput and minimize congestion. Given the critical-
ity and massive throughput of modern supply chains, even small improvements in solution quality
would translate to billions of packages delivered faster annually. However, optimal coordination of
such robots in real time on a large scale, even in simplified discrete simulation, raises an intractable
discrete optimization problem: the NP-hard multi-agent path finding (MAPF) problem models the
coordination of a set of agents, each with a start location and goal location, and requests a collision-
free plan to move all agents from their start locations to their goal locations which optimizes the
aggregate delay of the agents. While MAPF naturally considers mobile agents like robots in a ware-
house or vehicles in a transportation system, other related multi-path planning problems may include
routing of circuits (Cheng et al., 2022) or pipes.

Large-neighborhood search (LNS) is a general approach for decomposing large-scale optimization
(Shaw, 1998) into a sequence of subproblems. LNS has been demonstrated to obtain state-of-the-art
solution qualities for MAPF (Li et al., 2021a; 2022). While studies have shown the effectiveness
of deep learning for guiding LNS in other combinatorial problems like integer programming (IP)
(Wu et al., 2021; Huang et al., 2023) and vehicle routing problems (VRP) (Li et al., 2021b), such an
approach has remained elusive for MAPF.

In this work, we identify the unique two-fold challenge of leveraging deep neural networks to guide
LNS for MAPF. 1) Unlike many combinatorial problems like IP and VRP with graphical structure
among variables or entities (Vinyals et al., 2015; Khalil et al., 2017; Paulus et al., 2022; Labassi
et al., 2022; Scavuzzo et al., 2022), agent-to-agent interactions in multi-path planning problems also
correspond to moments in space-time, where locality relationships must be aptly represented. 2) Due

1

Published as a conference paper at ICLR 2024

to the iterative nature of LNS and the short runtime of multi-path planners, each neural decision for
guiding LNS must be made in very limited time (typically less than 0.05s). Essentially, challenge
1 prescribes cumbersome convolutional architectures for representing MAPF subproblems, while
challenge 2 demands very low inference time. For example, to sidestep these challenges, Huang
et al. (2022) applies a linear model with hand-designed features while suggesting that a graph-
convolution-based solution is impractical due to the inference time.

Addressing these challenges in our work, our main contributions are:

1. the first deep architecture designed to enhance LNS for MAPF by selecting agent subsets,

2. runtime speedup over state-of-the-art LNS baselines for obtaining a given solution quality,

3. empirical analyses of the generalization of our architectures to unseen settings.

Full code, models, and instructions can be found on GitHub upon publication.

2 MULTI-AGENT PATH FINDING

A multi-agent path finding problem is denoted by P = (G, sA, gA), where agents A = {1, . . . , |A|}
may move within a undirected graph G with vertices and edges (V,E). Each agent a ∈ A has a start
sa ∈ V and goal ga ∈ V . Note that for conciseness, we use vectorized subscript sA = {sa | a ∈ A}.
An agent transition from vertex v ∈ V to v′ ∈ V is valid if (v, v′) ∈ E. For all v ∈ V , staying
is a valid move, i.e. (v, v) ∈ E. The path pa of agent a is a sequence of vertices with length
τ(pa) := |pa| − 1 such that all transitions (pa[t], pa[t + 1]) with 0 ≤ t ≤ τ(pa) are valid and the
path starts at sa and end at ga. The shortest distance d(v, v′) between two vertices v, v′ ∈ V is
the length of a shortest possible path p(v, v′) between v and v′. The cost of an agent’s path pa is
c(pa) = τ(pa)− d(sa, ga) which is defined to be the delay that the agent suffers. A collision occurs
if two agents a and a′ occupy the same vertex or edge at the same timestep, i.e. pa[t] = pa′ [t] or
(pa[t], pa[t+1]) = (pa′ [t+1], pa′ [t]) and time 0 ≤ t ≤ max(τ(pa), τ(pa′)), which is the common,
stay-at-goal formulation (Stern et al., 2019). A solution S = {pa|a ∈ A} is a set of agent paths
and is feasible if no conflicts exist. We consider a MAPF objective of total delay minimization:
minS c(S) =

∑
pa∈S c(pa) such that S is feasible.

3 RELATED WORK

Multi-agent Path Finding Nearly all methods for solving MAPF rely heavily on running single-
agent path planner such as A* search (Hart et al., 1968) or SIPP (Phillips and Likhachev, 2011)
multiple times, while holding paths of some set of other agents as constraints. A simple MAPF al-
gorithm is prioritized planning (PP) (Erdmann and Lozano-Perez, 1987), also known as cooperative
A* (Silver, 2005), which plans one agent path at a time in random agent order while avoiding col-
lisions with all previously planned agent paths and obstacles. Conflict-based Search (CBS) (Sharon
et al., 2015) is a seminal algorithm which relies on backtracking tree-search to recursively resolve
pairs of agent collisions. As part of our algorithm, we leverage a more scalable extension of CBS
called Priority-based Search (PBS) (Ma et al., 2019), which heuristically reduces the number of
pairwise conflicts to resolve but is suboptimal and incomplete.

Constructive vs Iterative Learning-based Methods Learning-based methods for optimizing
combinatorial problems typically can be classified as constructive or iterative Kwon et al. (2020).
Constructive methods such as Vinyals et al. (2015); Kool et al. (2019); Kwon et al. (2020) are trained
to autoregressively generate one or more feasible solutions. On the other hand, iterative methods, in-
cluding LNS-based methods in integer programming, ILP, and VRPs (Wu et al., 2021; Huang et al.,
2023; Li et al., 2021b), start from an initial (often poor but feasible) solution and iteratively modify
the solution to improve the solution quality. Constructive methods are often very fast in practice, but
could yield lesser solution qualities than iterative methods.

Large Neighborhood Search for MAPF MAPF-LNS (Li et al., 2021a) starts from an initially
feasible solution then iteratively selects heuristically constructed subsets of agent paths to reoptimize
while holding the rest constant. MAPF-ML-LNS (Huang et al., 2022) learns a linear model to rank

2

https://www.github.com/mit-wu-lab/mapf_neural_neighborhood_search

Published as a conference paper at ICLR 2024

𝑝! 𝑝"

𝑝#

𝑝$

𝑝%

𝑆& = {𝑝#, 𝑝!, 𝑝", 𝑝$, 𝑝%}

Unguided LNS
Current solution 𝑆& for iteration 𝑖

Neural LNS

⋮
𝑁𝑁

𝑁𝑁
Subproblem
𝑃(𝑆, 𝛼)

Estimated improvement
𝑐(S!) − 𝑐(𝑆!")

𝑓#

𝑆𝑜𝑙𝑣𝑒Training only

𝑆𝑜𝑙𝑣𝑒

𝑁𝑁

𝑁𝑁 𝑎𝑟𝑔𝑚𝑎𝑥
𝑃 ∈ 𝒫!

New subset paths
𝑆'(

Non-subset paths
𝑆)∖'&+# = 𝑆)∖'&

𝑈𝑛𝑖𝑜𝑛New solution 𝑆&+# for iteration 𝑖 + 1

𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡	𝑆𝑢𝑏𝑠𝑒𝑡

𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡	𝑆𝑢𝑏𝑠𝑒𝑡

𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡	𝑆𝑢𝑏𝑠𝑒𝑡

𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡	𝑆𝑢𝑏𝑠𝑒𝑡

𝑃(𝑆& , 𝛼#)

𝑃(𝑆& , 𝛼!)

𝑃(𝑆& , 𝛼,)

𝑃(𝑆& , 𝛼)

𝒫&

𝐴 = {1,2,3,4,5}
𝑆𝑜𝑙𝑣𝑒

Subproblem
𝑃 𝑆, 𝛼

𝛼 = {1,2,3}
𝐴 ∖ 𝛼 = {4,5}

Starts 𝑠!, goals 𝑔!, non-subset paths S$∖!

New
subsolution

𝑆'(

𝑔! 𝑔"
𝑠#

𝑝$

𝑝%

𝑔#

𝑠! 𝑠"

𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡	𝑆𝑢𝑏𝑠𝑒𝑡

Solution
𝑆

Uniform: uniformly sample 𝑘 agents

Agent-local: choose 1 agent,
then 𝑘 − 1 nearby agents

Intersection-local: choose an
intersection, then 𝑘 nearby agents

Subset
𝛼

Figure 1: Our neural LNS framework for MAPF (counterclockwise from top left). Dotted (solid)
arrows indicate that one (all) branch(es) must be taken. At each LNS iteration i, we have current
feasible solution Si. In unguided LNS, a subset α is constructed with either Uniform, Agent-local,
or Intersection-local heuristics. In neural LNS, J subsets are constructed, their corresponding sub-
problems are evaluated by the neural network, and the subproblem P (Si, α) with the best estimated
improvement is selected. In both cases, the subproblem P (Si, α) is then solved to obtain new sub-
solution S′

α, which forms part of the solution Si+1 at the next iteration i + 1 if its solution quality
improves upon Si

α.

the potential improvements of these subsets and prioritize which subset to reoptimize. MAPF-LNS2
(Li et al., 2022) considers infeasible starting and intermediate solutions. These LNS-based methods
obtain state-of-the-art solution qualities for problems where a feasible solution can be found, while
orthogonal recent work like LaCAM* (Okumura, 2023) instead focus on state-of-the-art feasibility
in very-dense settings. Given the orthogonality of feasibility and solution quality, we choose to
extend MAPF-LNS rather than MAPF-LNS2. Unlike MAPF-ML-LNS, we efficiently represent the
spatiotemporal problem structure with deep neural network rather than handcrafting features.

Other Learning-based Approaches for MAPF Huang et al. (2021) leverages a linear model with
handcrafted features to guide CBS in problems with at most 200 agents. Damani et al. (2021) applies
multi-agent reinforcement learning to decentrally coordinate agents based on local neighborhoods
encoded by convolutional neural networks (CNNs), rewarding each agent when it reaches a goal.
However, while this approach is scalable, its solution qualities are inferior to PBS and MAPF-LNS
due to limitations of decentralization. Ren et al. (2021) applies 2D CNN to classify the effectiveness
of solvers in small MAPF problems with less than 100 agents.

4 NEURAL LARGE NEIGHBORHOOD SEARCH FOR MAPF

We illustrate our overall framework in Figure 1. Given the MAPF problem P , let S0 be a feasible
initial solution. For each improvement iteration 0 ≤ i < I , let Si be the current (feasible) solution.

In unguided LNS, a subset of agents α ⊂ A of size k is constructed with one of three subset-
construction heuristics described in Li et al. (2021a):

1. Uniform: uniformly randomly sample k agents to construct α ⊂ A.

2. Agent-local: sample one agent with nonzero delay which has not been recently sampled,
then perform a random walk to sample k − 1 nearby agents in space and time.

3. Intersection-local: sample any vertex of degree≥ 3, then perform a random walk to sample
k agents near the intersection.

Given Si and agent subset α to reoptimize, we define the corresponding subproblem P (Si, α) =
(G, sα, gα, S

i
A\α) to be a constrained MAPF problem with k agents. The current paths Si

α for the

3

Published as a conference paper at ICLR 2024

α agents are discarded. The paths of the |A| − k non-subset agents A \ α are held constant as
spatiotemporal obstacles, essentially changing the static graph G to be a time-varying graph. The
subproblem can be solved by a MAPF solver, e.g. Priority-based Search (PBS), to obtain a new
subsolution S′

α = Solver(P (Si, α)). The solution at time i + 1 is then Si+1 ← S′
α ∪ Si

A\α if the
improvement δSolver(S

i, α) = c(Si
α)− c(S′

α) is positive, otherwise Si+1 ← Si.

In neural LNS, we heuristically construct J agent subsets {α1, . . . , αJ} corresponding to a set of
subproblems Pi = {P (Si, αj)|1 ≤ j ≤ J}. Each subproblem P (Si, αj) is evaluated with a trained
neural network fθ(P (Si, αj)) whose output is a score approximating the quality of the true solver
improvement δSolver(P (Si, αj)). The top-scored subproblem P (Si, α) = argmaxP∈Pi fθ(P) is
selected, solved, and incorporated into the full solution. As discussed in Section 3, neural LNS is
similar in structure to MAPF-LNS and MAPF-ML-LNS.

4.1 CHALLENGES OF GUIDING LNS

The key challenge of designing a deep neural network fθ for guiding LNS for MAPF is to design
a suitable representation for subproblem P (Si, α) = (G, sα, gα, S

i
A\α). Previous non-LNS-based

MAPF works (Ren et al., 2021) use 2D CNN to encode 2D spatial tensors representing obstacles in
G and starts sα and goals gα of agents. However, due to the LNS context, we must also represent
hundreds of paths Si

A\α of non-subset agents A\α as hard occupancy constraints to the subproblem.
To capture these dense spatiotemporal relationships, we utilize 3D convolutions in our architectures.
In contrast, MAPF-ML-LNS (Huang et al., 2022) designs linear summary features for Si

A\α (see
Appendix A.4); meanwhile, a similar work for VRP (Li et al., 2021b) does not need to capture the
non-subset agents A \ α at all due to the lack of space-time interactions between α and A \ α.

4.2 NAIVE PER-SUBSET ARCHITECTURE

,
Predict

improvement

𝑓!(𝑃(𝑆" , 𝛼))

Current subset paths 𝑆#" Shortest subset paths 𝑝(𝑠# , 𝑔#)

,

3D convolution, 3D pooling, ReLU

3×𝐻×𝑊×𝑇
features

Weighted average pooling
across time dimension

T

W

H

T

W

H

T

W

H

Non-subset paths 𝑆$∖#" and obstacles

Repeat with increasing channels and
decreasing height, width, time

*

W’

T’

2D convolution, 2D pooling, ReLU

Repeat with increasing channels and
decreasing height, width

H’

T’
W’

H’

Flatten

𝐴 = 1,2,3

𝛼 = 1,2
𝐴\𝛼 = {3}

Fully connected
layers

*!
Learned
weights

Current paths 𝑆" Shortest paths 𝑝(𝑠, 𝑔)

𝑝&
𝑝' 𝑝(

𝑝(𝑠!, 𝑔!)

𝑝(s", 𝑔") 𝑝(𝑠#, 𝑔#)

Figure 2: Per-Subset architecture consisting of featurized paths and obstacles, 3D convolutions,
2D convolutions, and finally a fully connected network. The current paths Si and shortest paths
p(s, g) for all agents are illustrated for reference (top right).

Intuitively, we propose to featurize Si
A\α as a 3D, one-hot encoded H ×W × T obstacle tensor,

where T is a time cutoff chosen roughly as the average path length of the agents. Specifically, for
each agent a at time 0 ≤ t ≤ min(τ(pa), T − 1) and (y, x) = pa[t], we set entry (y, x, t) in
the tensor. Similarly, for every non-moving obstacle at position (y, x), we set entry (y, x, t) in the
obstacle tensor for all 0 ≤ t < T . To maximize spatiotemporal alignment with the obstacle tensor,
we additionally one-hot encode the current subset paths Si

α into a 3D tensor, providing information
to quantify δ(P (Si, α)) = c(Si

α)−Solver(P (Si, α)). Finally, we one-hot encode the shortest subset
paths p(sα, gα) = {p(sa, ga)|a ∈ α} into a third 3D tensor, providing information on potential gains
of running the solver. Despite these features, the truncation of long paths and the one-hot encoding
of subset paths unavoidably lose some information.

We stack the three tensors into a 3×W ×H × T tensor as input into the neural network. Our con-
volutional architecture, shown in Figure 2, applies a sequence of 3D convolution blocks, aggregates
along the temporal dimension, applies a sequence of 2D convolution blocks, flattens, then applies a
fully connected network. We denote this architecture as the Per-Subset architecture.

4

Published as a conference paper at ICLR 2024

4.3 MULTI-SUBSET ARCHITECTURE

Our core design principles for an effective architecture for guiding LNS are 1) to permit trajectory-
level information to flow between any two agents with intersecting or adjacent paths, and 2) amortize
computation across multiple subproblems. While 3D convolution alone efficiently encodes spa-
tiotemporal agent-agent and agent-obstacle interactions at any point along agent paths, convolution
is inherently a local operation and cannot efficiently capture long-range trajectory-level interactions
between the agents, motivating an attention-based mechanism. We illustrate our desired inter-agent
and intra-agent interaction graph in the top left diagram in Figure 3. Additionally, as the Per-Subset
architecture encodes a single subproblem, it requires additional batching across J subproblems for
neural LNS. We hypothesize that a new architecture representing trajectory-level interactions be-
tween all agents would permit significant shared computation among the J subproblems P (Si, αj),
reducing the total computation for large J . As the representation can be disaggregated into indi-
vidual agent trajectories, we can regroup individual agent representations efficiently into arbitrary
number of subsets as required by LNS.

We propose an intra-path attention mechanism which, in alternation with 3D convolutions, achieves
the desired agent interaction graph. Intra-path attention enables information flow along each agent’s
current path; 3D convolution provides for information flow between nearby space-time. Essentially,
any two agents are two-hop neighbors in this representation if their paths both interact with some
common agent at any point. For efficiency, we implement our intra-path through a series of “gather”
and “scatter” tensor operations surrounding a Transformer self-attention (Vaswani et al., 2017).

We denote this as the Multi-Subset architecture. The input is three H ×W × T tensors correspond-
ing to all agents’ paths Si, all agents’ shortest paths p(sA, gA), and static obstacles. A series of
convolution-attention blocks is shared across all subsets. Given a particular subset of agents αj , we
extract the first temporal tensor for each agent from the last intra-path attention layer’s output, then
perform additional layers of Transformer self-attention to predict the score P (Si, αj). Therefore,
heavy 3D convolution and intra-path operations are amortized across all subsets.

...
3

33

Intra-path transformer attention
along current paths 𝑆!

𝛼" = {1, 3}

Subset transformer
attention

Fully connected
layers

Predict
improvements

𝑓#(𝑃(𝑆! , 𝛼$))

𝑓#(𝑃(𝑆! , 𝛼"))

Current paths 𝑆! Shortest paths 𝑝(𝑠, 𝑔)

,

Learned output token

𝛼$ = {1, 2}

“Same” 3D convolution

Extract 𝐽
subsets

Position embedding Time embedding

⨁C×𝐻×𝑊×𝑇
features

Desired agent
interaction graph

Repeat with increasing channels
Last layer

Convolution-attention
block

⨁

T
W

H H

W

T

T
W

H𝐴 = {1,2,3}

Intra-path attention

⨁

Obstacle embedding

H

W

*

Obstacle 2

Obstacle 1

1 2 3
T

3D convolution

Figure 3: Multi-Subset architecture is designed to encode both inter-agent interactions between
agent paths and obstacles as well as intra-path interactions for obtaining trajectory-level information
(top left). 3D convolutions encode local interactions in space-time, while intra-path attention gener-
ates trajectory-level information across an agent’s entire path. Convolution-attention blocks shared
across all subsets. The current paths Si and shortest paths p(s, g) are the same as those in Figure 2.

4.4 PAIRWISE CLASSIFICATION LOSS FUNCTION

Since the Multi-Subset architecture encodes J subsets corresponding to the same Si at the same
time, we design a pairwise classification loss: for every pair of subsets αj and αj′ , let the difference
in predicted scores be hθ(S

i, αj , αj′) = fθ(P (Si, αj))− fθ(P (Si, αj′)). A hinge loss encourages
hθ(S

i, αj , αj′) to be positive when δSolver(P (Si, αj)) > δSolver(P (Si, αj′)) and negative vice versa;
the loss is 0 when δSolver(P (Si, αj)) = δSolver(P (Si, αj′)). In summary, this loss encourages the
ordering of predicted scores to match the ordering of ground-truth improvements:

ℓ(hθ) =


max(0, 1− hθ), if δSolver(P (Si, αj)) > δSolver(P (Si, αj′)),

max(0, 1 + hθ), if δSolver(P (Si, αj)) < δSolver(P (Si, αj′)),

0, if δSolver(P (Si, αj)) = δSolver(P (Si, αj′)).

(1)

5

Published as a conference paper at ICLR 2024

5 EXPERIMENTAL SETUP

We briefly discuss experimental setup in the main text, deferring full details to Appendix A.1.

Baselines. To analyze the performance of our proposed Multi-Subset architecture, we implement the
Unguided baseline similarly as MAPF-LNS (Li et al., 2021a), the Linear baseline with features from
MAPF-ML-LNS (Huang et al., 2022), and the Per-Subset architecture baseline described above.

Floor Maps. We demonstrate our methods on floor maps, which define the undirected graph G,
from the MAPF benchmark suite Stern et al. (2019). As illustrated in Figure 4, we use the five
largest floor maps studied by Li et al. (2021a): empty-32-32, random-32-32-10, warehouse-10-20-
10-2-1, ost003d, and den520d. For readability, we annotate each floor map by their size: empty
(32x32), random (32x32), warehouse (161x63), ost003d (194x194), and den520d (256x257). Starts
and goals are each sampled uniformly without replacement from the set of non-obstacle vertices.

(a) empty (32x32) (b) random (32x32) (c) ost003d (194x194)

(d) warehouse (161x63) (e) den520d (256x257)

Figure 4: Warehouse floor maps from MAPF benchmark suite (Stern et al., 2019).

Initial Solution. The initialization algorithm does not typically affect the effectiveness of LNS-
based approaches (Li et al., 2021a), as long a feasible solution can be reliably found. Prioritized
planning (PP) (Erdmann and Lozano-Perez, 1987) typically obtains better initial solution quality
than Parallel Push and Swap (PPS) Sajid et al. (2012), but the latter more often finds a feasible
solutions (Li et al., 2021a). Thus, we use PP if it can reliably find a feasible solution for a particular
setting, and otherwise use PPS.

Solver, Problem Size, Subset Construction, Subset Size. As there are many potential combina-
tions of MAPF solvers (e.g. Priority-based Search (PBS) vs PP with a random agent order), subset
construction heuristics (Uniform vs Agent-local vs Intersection-local), and subset size k, we perform
parameter sweeps detailed in Appendix A.2 to first identify the strongest possible configuration for
the Unguided baseline. We find that PP typically has worse solution quality to time tradeoff than
the PBS. Considering the ranges of problem sizes |A| studied by MAPF-LNS (Li et al., 2021a), we
find that PBS offers better quality to time tradeoffs than PP in 2/5 of the settings for empty-32-32,
5/5 settings for random-32-32-10, and 4/5 settings for each of the other three floor maps. Our neural
experiments focus on these settings where the PBS solver is stronger, as the determinism of PBS
(PP is stochastic) can be more consistently predicted and the slower runtime of PBS benefits more
from neural guidance. For each floor map, we focus on the largest problem size |A| where PBS
is the stronger solver; typically Agent-local subsets with k = 25 is the strongest. In very-dense
highly-constrained settings, e.g. empty-32-32 with |A| ≥ 400 agents or den520d with |A| = 900,
we find that PP with very small k = 5 often is the best unguided LNS configuration. While our
method is likely applicable to these cases, we acknowledge that the overhead of the neural network
may be significant if the runtime of PP k = 5 were very short. Unlike Huang et al. (2022), we do

6

Published as a conference paper at ICLR 2024

not allow our model to select subsets with different construction heuristics or size since the runtime
of the solver on those subsets could be substantially different. Future work could additionally pre-
dict the runtime of the solver on the subset in addition to the improvement, trading-off runtime and
improvement in order to select the best subset.

Data Collection. To collect training data from a random seed, we execute LNS for 25 to 100
improvement iterations: for each iteration i, we enumerate the solver on J = 100 agent subsets and
record all triplets (Si, αj , δPBS(P (Si, αj))) as training data. To proceed to iteration i+ 1, we select
the subset with the best improvements δPBS, and move to iteration i+1. We use up to 9000 different
initial random seeds. Data collection takes around 10 to 50 hours on 48 Intel Xeon Platinum 8260
CPU cores, depending on floor map size.

Architectural Parameters. For the Per-Subset architecture, we use two 3D convolutional blocks
with 32 and 64 channels, respectively, followed by two 2D convolutional blocks with 128 channels
each. For the Multi-Subset architecture, we use eight convolution-attention blocks with 16 to 128
channels, shared across all subsets, followed by three Transformer multi-head attention blocks with
128 features for each subset. We provide additional architectural ablations in Appendix A.6. The
Linear baseline utilizes handcrafted features described in Huang et al. (2022) and Appendix A.4.

Training. Multi-Subset and Linear are trained with the pairwise classification loss in Section 4.4,
while Per-Subset utilizes a clipped regression loss described in Appendix A.1. Training takes less
than 24 hours on a single NVIDIA V100 GPU. Hyperparameters of all models are manually tuned
on one experimental setting, then replicated across all other experimental settings.

Validation and Test. We validate and test our trained models on different random seeds. The final
test results are reported as 95% confidence intervals across roughly 200 previously unseen seed
values where feasible initial solutions could be found. For all settings, we assume a planning time
limit of Tlimit = 60s unless otherwise stated. For absolute comparisons, Appendix A.7 and A.8
respectively compares sums of delays c(S) with respect to runtime and improvement iterations.

Model Overhead Reduction. As MAPF solvers are fast and any model inference time adds to the
overall stepwise runtime, we devise techniques to further reduce inference overhead. If necessary,
we pre-apply 2D spatial pooling along both W and H for all agent locations and obstacles to reduce
the floor map size. We similarly pre-apply temporal pooling if necessary to minimize redundant
information. All guided methods utilize a single NVIDIA V100 GPU with FP16 precision for
acceleration. Interestingly, we find that the CPU overhead of Linear is significant, so we instead
compute features for Linear on the GPU to reduce overhead.

Metrics. For a given seed, denote the solution cost achieved by running Unguided for 600 seconds
as cmin. We define the gap as g(S) = c(S)−cmin

c(S0)−cmin
100%, which better gauges the suboptimality of a

solution. Given a solution quality g, we define the speedup of method X over method Y as the time
for method Y to attain g divided by the time of method X to attain g. Following Li et al. (2021a),
we define the area under curve (AUC) of a method as AUC =

∫ Tlimit

0
g(Si(t)) dt, which takes into

account not only the final solution cost but also the rate of decrease. However, we instead report the
more interpretable AUC/Tlimit, the average gap. We define the Win / Loss metric as the number of
seeds where a method’s average gap is lower / higher than that of Unguided on the same seed.

6 EXPERIMENTAL RESULTS

6.1 PERFORMANCES ON ALL SETTINGS

In Table 1, we compare the performance and overheads of all methods under all floor maps. Multi-
Subset strongly outperforms all other methods in empty (32x32), warehouse (161x63), and ost003d
(194x194), and weakly outperforms Linear in random (32x32) and den520d (256x257). Multi-
Subset’s overhead is 2x less than Per-Subset for the empty and random settings, which do not pre-
apply pooling. Surprisingly, we see that pre-applying 2x temporal, 4x spatiotemporal, and 4x spa-
tiotemporal pooling for warehouse, ost003d, and den520d still allows Multi-Subset to maintain best
predictivity while keeping the model overhead low. On the other hand, when pre-applying similar
amount of pooling for the Per-Subset architecture for ost003d and den520d, the model overhead
even exceeds the solver runtime.

7

Published as a conference paper at ICLR 2024

Table 1: Performance and overhead of all methods. We report the the average solver time per step
for the Unguided overhead. All other overheads are additionally incurred by model inference. Gaps
and Win / Loss account for the model overhead already. Lower gap is better; higher Win is better.

Setting Metric Unguided Linear Per-Subset Multi-Subset

empty (32x32)
|A| = 350

Uniform k = 50

Average Gap (%) 42 ± 1 39 ± 1 46 ± 1 31 ± 1
Win / Loss 0 / 0 136 / 50 57 / 129 178 / 8

Final Gap (%) 19 ± 1 18 ± 0.8 22 ± 1 13 ± 0.7
Overhead (s) 0.1 +0.002 +0.03 +0.013

random (32x32)
|A| = 250

Agent-local k = 25

Average Gap (%) 5.3 ± 0.2 5.4 ± 0.3 6.2 ± 0.2 5 ± 0.2
Win / Loss 0 / 0 98 / 100 36 / 162 116 / 82

Final Gap (%) 0.51 ± 0.03 0.7 ± 0.05 0.72 ± 0.05 0.69 ± 0.04
Overhead (s) 0.079 +0.0018 +0.03 +0.012

warehouse (161x63)
|A| = 300

Agent-local k = 25

Average Gap (%) 14 ± 0.6 15 ± 0.7 20 ± 0.8 12 ± 0.6
Win / Loss 0 / 0 82 / 103 6 / 179 155 / 30

Final Gap (%) 1.7 ± 0.2 2.5 ± 0.3 2.5 ± 0.3 1.6 ± 0.2
Overhead (s) 0.21 +0.0025 +0.05 +0.025

ost003d (194x194)
|A| = 400

Agent-local k = 10

Average Gap (%) 43 ± 1 36 ± 1 35 ± 0.9 22 ± 1
Win / Loss 0 / 0 180 / 20 188 / 12 200 / 0

Final Gap (%) 24 ± 1 15 ± 1 16 ± 0.8 6.5 ± 0.7
Overhead (s) 0.063 +0.002 +0.09 +0.013

den520d (256x257)
|A| = 800

Agent-local k = 25

Average Gap (%) 45 ± 0.7 30 ± 0.7 48 ± 0.7 29 ± 0.7
Win / Loss 0 / 0 200 / 0 47 / 153 200 / 0

Final Gap (%) 22 ± 0.7 8.8 ± 0.4 22 ± 0.6 8.2 ± 0.5
Overhead (s) 0.15 +0.006 +0.19 +0.025

6.2 TIME VS SOLUTION QUALITY FOR EMPTY (32X32) AND DEN520D (256X257)

In Figure 5, we illustrate representative time vs gap tradeoff of all methods on the smallest and
largest floor maps. Similar plots for the remaining floor maps are found in Appendix A.3. We
observe here that Multi-Subset can offer a 1.5-4x speedup compared to Unguided, though Linear also
offers substantial speedup on den520d (256x257) in particular. The model overhead is negligible for
Linear, still noticeable for Multi-Subset, but large for Per-Subset. Optionally excluding the overhead
allows us to independently judge the predictivity of the model’s representation.

6.3 GENERALIZATION TO UNSEEN SETTINGS

In Table 2, we test the robustness of each method to unseen settings during training by examining
the zero-shot transfer performance of two models from Table 1: the model trained on empty (32x32)
with |A| = 350 Uniform k = 50 subsets and the model trained on random (32x32) with |A| = 250
Agent-local k = 25 subsets. The target settings are empty (32x32) settings with different numbers
of agents or subset construction heuristics as determined by the parameter sweep in Appendix A.2.
We find that the multi-subset architecture transfers particularly well, even better than Linear, to the
unseen settings. This is particularly surprising for transferring from the random (32x32) source task,
where the performance gap between the Linear and Multi-Subset models is small. Unfortunately,
we could not transfer from empty (32x32) to random (32x32) because the obstacle embedding is
untrained in the former setting due to lack of obstacles. Similarly, we could not transfer between
floor maps of different size due to differing spatial and temporal embeddings.

7 CONCLUSIONS

In this work, we design a neural architecture with potential for effectively guiding LNS for
MAPF, efficiently representing complex spatiotemporal and agent-to-agent interactions without
hand-designed features. While we acknowledge that fair computational resource comparisons are

8

Published as a conference paper at ICLR 2024

100 101

Time (s)

20

40

60

80

100

Ga
p

(%
)

Unguided
Linear
Per-Subset
Multi-Subset

30405060708090100
Gap (%)

1

2

3

4

5

Sp
ee

du
p

ov
er

 U
ng

ui
de

d

Linear
Per-Subset
Multi-Subset

(a) empty (32x32)

100 101

Time (s)

20

40

60

80

100

Ga
p

(%
)

Unguided
Linear
Per-Subset
Multi-Subset

2030405060708090
Gap (%)

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p

ov
er

 U
ng

ui
de

d

Linear
Per-Subset
Multi-Subset

(b) den520d (256x257)

Figure 5: Runtime vs solution quality including (solid) and excluding (dashed) model overhead in
the runtime. (left) Lower gap is better. (right) Higher speedup over Unguided is better.

Table 2: Zero-shot generalization performance. As an example, “empty, 350, A25” denotes the
empty (32x32) setting with |A| = 350 and Agent-local k = 25 subsets. Average gap (%) are re-
ported for all settings. As the solver runtime is significantly faster for easier target settings, affecting
the relative model overhead, we exclude the model overhead here to study the transferability of
model predictivity. * denotes two easier settings where all methods obtain near-zero average gaps
over Tlimit = 60s, so we instead run all methods for a shorter Tlimit = 10s.

Target Source Unguided Linear Per-Subset Multi-Subset

empty, 350, U50 empty, 350, U50 42 ± 1 39 ± 1 43 ± 1 30 ± 1
random, 250, A25 40 ± 1 41 ± 1 37 ± 1

empty, 350, A25 empty, 350, U50 42 ± 1 38 ± 1 39 ± 1 28 ± 0.8
random, 250, A25 39 ± 1 40 ± 1 37 ± 1

empty, 300, A25* empty, 350, U50 28 ± 1 36 ± 2 36 ± 2 24 ± 1
random, 250, A25 29 ± 1 27 ± 1 22 ± 0.9

empty, 250, A25* empty, 350, U50 10 ± 0.5 14 ± 1 14 ± 1 9.4 ± 0.7
random, 250, A25 11 ± 0.7 9.8 ± 0.6 8.0 ± 0.4

difficult as Unguided does not require a GPU, we believe that research into deep learning-based ac-
celeration in problems like MAPF is worthwhile due to the rapid advances in GPU technology (our
own NVIDIA V100 is two generations old). To our knowledge, despite copious research in MAPF,
there exists no other work leveraging deep learning for enhancing state-of-the-art MAPF algorithms
at our scale. In addition, our work demonstrates the potential of deep-learning-guided LNS beyond
graphical problems and encompasses problems with complex spatiotemporal constraints, where it
may serve as a blueprint for future learning-based iterative methods. Our convolution-attention
blocks may be more broadly applicable for representing pathwise interactions beyond LNS settings.
Some immediate extensions of our work include guiding stochastic solvers like prioritized plan-
ning. Furthermore, the Multi-Subset architecture may allow direct construction of subsets for LNS
rather than evaluating heuristically-constructed subsets. Finally, future work may investigate the
effectiveness of unguided and guided LNS techniques in real-world robotic warehouses.

9

Published as a conference paper at ICLR 2024

8 ACKNOWLEDGMENT

The authors acknowledge the MIT SuperCloud and Lincoln Laboratory Supercomputing Center for
providing HPC resources that have contributed to the research results reported within this paper.
This work was supported by the MIT Amazon Science Hub as well as a gift from Amazon.

REFERENCES

Ruoyu Cheng, Xianglong Lyu, Yang Li, Junjie Ye, Jianye Hao, and Junchi Yan. The policy-gradient
placement and generative routing neural networks for chip design. Advances in Neural Informa-
tion Processing Systems, 35:26350–26362, 2022.

Paul Shaw. Using constraint programming and local search methods to solve vehicle routing prob-
lems. In International Conference on Principles and Practice of Constraint Programming, pages
417–431. Springer, 1998.

Jiaoyang Li, Zhe Chen, Daniel Harabor, P Stuckey, and Sven Koenig. Anytime multi-agent path
finding via large neighborhood search. In International Joint Conference on Artificial Intelligence
(IJCAI), 2021a.

Jiaoyang Li, Zhe Chen, Daniel Harabor, Peter J Stuckey, and Sven Koenig. Mapf-lns2: fast re-
pairing for multi-agent path finding via large neighborhood search. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pages 10256–10265, 2022.

Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Learning large neighborhood search policy
for integer programming. Advances in Neural Information Processing Systems, 34:30075–30087,
2021.

Taoan Huang, Aaron M Ferber, Yuandong Tian, Bistra Dilkina, and Benoit Steiner. Searching large
neighborhoods for integer linear programs with contrastive learning. In International Conference
on Machine Learning, pages 13869–13890. PMLR, 2023.

Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. Ad-
vances in Neural Information Processing Systems, 34:26198–26211, 2021b.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural informa-
tion processing systems, 28, 2015.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial opti-
mization algorithms over graphs. Advances in neural information processing systems, 30, 2017.

Max B Paulus, Giulia Zarpellon, Andreas Krause, Laurent Charlin, and Chris Maddison. Learning to
cut by looking ahead: Cutting plane selection via imitation learning. In International conference
on machine learning, pages 17584–17600. PMLR, 2022.

Abdel Ghani Labassi, Didier Chételat, and Andrea Lodi. Learning to compare nodes in branch and
bound with graph neural networks. Advances in neural information processing systems, 2022.

Lara Scavuzzo, Feng Chen, Didier Chételat, Maxime Gasse, Andrea Lodi, Neil Yorke-Smith, and
Karen Aardal. Learning to branch with tree mdps. Advances in Neural Information Processing
Systems, 35:18514–18526, 2022.

Taoan Huang, Jiaoyang Li, Sven Koenig, and Bistra Dilkina. Anytime multi-agent path finding via
machine learning-guided large neighborhood search. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pages 9368–9376, 2022.

Roni Stern, Nathan R Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne T Walker, Jiaoyang
Li, Dor Atzmon, Liron Cohen, TK Satish Kumar, et al. Multi-agent pathfinding: Definitions,
variants, and benchmarks. In Twelfth Annual Symposium on Combinatorial Search, 2019.

Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100–107,
1968.

10

Published as a conference paper at ICLR 2024

Mike Phillips and Maxim Likhachev. Sipp: Safe interval path planning for dynamic environments.
In 2011 IEEE International Conference on Robotics and Automation, pages 5628–5635. IEEE,
2011.

Michael Erdmann and Tomas Lozano-Perez. On multiple moving objects. Algorithmica, 2:477–521,
1987.

David Silver. Cooperative pathfinding. In Proceedings of the AAAI Conference on Artificial Intelli-
gence and Interactive Digital Entertainment, volume 1, pages 117–122, 2005.

Guni Sharon, Roni Stern, Ariel Felner, and Nathan R Sturtevant. Conflict-based search for optimal
multi-agent pathfinding. Artificial Intelligence, 219:40–66, 2015.

Hang Ma, Daniel Harabor, Peter J Stuckey, Jiaoyang Li, and Sven Koenig. Searching with consistent
prioritization for multi-agent path finding. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 7643–7650, 2019.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in Neural
Information Processing Systems, 33:21188–21198, 2020.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! Inter-
national Conference on Learning Representations, 2019.

Keisuke Okumura. Improving lacam for scalable eventually optimal multi-agent pathfinding. Inter-
national Joint Conference on Artificial Intelligence (IJCAI), 2023.

Taoan Huang, Sven Koenig, and Bistra Dilkina. Learning to resolve conflicts for multi-agent path
finding with conflict-based search. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 35, pages 11246–11253, 2021.

Mehul Damani, Zhiyao Luo, Emerson Wenzel, and Guillaume Sartoretti. Primal 2: Pathfinding
via reinforcement and imitation multi-agent learning-lifelong. IEEE Robotics and Automation
Letters, 6(2):2666–2673, 2021.

Jingyao Ren, Vikraman Sathiyanarayanan, Eric Ewing, Baskin Senbaslar, and Nora Ayanian. Map-
fast: A deep algorithm selector for multi agent path finding using shortest path embeddings. arXiv
preprint arXiv:2102.12461, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Qandeel Sajid, Ryan Luna, and Kostas Bekris. Multi-agent pathfinding with simultaneous execution
of single-agent primitives. In Proceedings of the International Symposium on Combinatorial
Search, volume 3, pages 88–96, 2012.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. Liblinear: A
library for large linear classification. the Journal of machine Learning research, 9:1871–1874,
2008.

Jiaoyang Li, Wheeler Ruml, and Sven Koenig. Eecbs: A bounded-suboptimal search for multi-agent
path finding. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages
12353–12362, 2021c.

11

Published as a conference paper at ICLR 2024

A APPENDIX

CONTENTS

A.1 Setup . 1

A.2 Parameter Sweep for Solver, Subset Construction Heuristics, and Subset Size k . . 4

A.3 Runtime vs Solution Quality for All Settings . 7

A.4 Handcrafted Features for Linear Baseline . 8

A.5 Software Framework and Code . 8

A.6 Architectural Ablations . 9

A.7 Direct Comparisons with MAPF-LNS and MAPF-ML-LNS 10

A.8 Performance by Iteration . 11

A.1 SETUP

We discuss the full experimental setup here for all experiments performed in our paper, unless al-
ready discussed in Section 5.

Warehouses The MAPF benchmark suite Stern et al. (2019) is a set of empty, random, maze-like,
game-like, and city-like floor maps. Here we describe the floor maps presented in Figure 4:

1. empty-32-32: a size 32× 32 map with no static obstacles.
2. random-32-32-10: a size 32 × 32 map with randomly sampled static obstacles covering

10% of the vertices.
3. warehouse-10-20-10-2-1: a size 161 × 63 procedurally generated warehouse with static

obstacles covering 44% of the vertices.
4. ost003d: a size 194 × 194 map taken from the game Dragon Age Origin, with obstacles

covering 65% of the vertices.
5. den520d: a size 256 × 257 map taken from the game Dragon Age Origin, with obstacles

covering 57% of the vertices.

The starts and goals are each selected uniformly at random without replacement from the set of
non-obstacle vertices. All floor maps are undirected graphs

Architecture Parameters For the Per-Subset architecture, we use two 3D convolutional blocks
(convolution, batch normalization, ReLU, max pooling) with 32 and 64 channels, respectively, fol-
lowed by two 2D convolutional blocks with 128 channels each. For the Multi-Subset architecture,
we use eight convolution-attention blocks with (C =) 16, 16, 32, 32, 64, 64, 128, and 128 channels,
respectively, shared across all subsets, followed by three Transformer multi-head attention blocks
with 128 features for each subset. A time cutoff of T = 48 is used for both architectures in empty
(32x32) and random (32x32), T = 96 for warehouse (161x63), T = 192 for ost003d (194x194),
and T = 216 for den520d (256x257). Pre-applied temporal pooling with factors 3, 6, and 6 are used
for Per-Subset for warehouse, ost003d, and den520d, respectively; pre-applied temporal poooling
with factors 2, 4, 4 are used for Multi-Subset, respectively. Pre-applied spatial pooling with factors
2, 4, and 4 are used for Per-Subset, respectively. Pre-applied spatial pooling with factors 4 are used
for Multi-Subset for ost003d and den520d.

Loss Function for Per-Subset Architecture Unlike Multi-Subset and Linear, the Per-Subset
architecture cannot efficiently encode large multiples of J subproblems simultaneously. There-
fore, rather than a pairwise classification loss, we utilize a clipped mean squared error loss.
Denoting fθ := fθ(P (Si, αj)) to be the neural network’s output score for subproblem j and
δSolver := δSolver(S

i, αj) to be the ground-truth improvement, this loss function is

ℓ(fθ | Si, αj) = (fθ −min(stop grad(fθ), 0)−max(δSolver, 0))
2 (2)

1

Published as a conference paper at ICLR 2024

with gradient

−dℓ(fθ | Si, αj)

dfθ
= −2 (fθ −min(stop grad(fθ), 0)−max(δSolver, 0))

= 2


δSolver − fθ, if fθ > 0 and δSolver > 0,

−fθ, if fθ > 0 and δSolver ≤ 0,

δSolver, if fθ ≤ 0 and δSolver > 0,

0, if fθ ≤ 0 and δSolver ≤ 0,

which only encourages fθ to be non-positive rather than forcing fθ to approach δSolver when δSolver <
0; this allows extra network capacity to be dedicated to fitting positive improvements well, rather
than unnecessarily fitting negative improvements.

Additional clipping similar to that in Equation 2 is also performed for the loss in Section 4.4.

Training We train all neural models with the Adam optimizer Kingma and Ba (2014), decaying
learning rate (0.01 for Per-Subset and 0.0001 for Multi-Subset) with cosine annealing across 100000
training steps. Per-Subset architecture sees a minibatch of 512 subsets per gradient step, and Multi-
Subset architecture sees a minibatch of 16J = 1600 subsets per step. Training takes roughly 24
hours on a single NVIDIA V100 GPU. For the Linear baseline, we found the Scikit-learn Pedregosa
et al. (2011) implementation of linear support vector machine (SVM) Fan et al. (2008) with full-
batch gradient descent to outperform our minibatched gradient descent-based training loop; we sub-
sample the subsets as required to stay within the batch size limits of linear SVM (note that the total
batch size scales with J2). Training for the Linear baseline takes around 10 minutes to 1 hour on a
single 48-CPU Intel Xeon Platinum 8260 processor. Hyperparameters of all models are manually
tuned on one experimental setting, then replicated across all other experimental settings.

Validation During training, we periodically validate our learned model’s predictivity on a vali-
dation set with held-out seeds. Predictivity is measured by a collection of proxy metrics, such as
correlation between predicted scores and ground-truth improvements, rather than directly running
guided LNS with the current model checkpoint, which would take more time. The checkpoint with
the best validation performance (typically the one at the end of training) is selected, and further val-
idation may be performed for additional hyperparameter selection by guiding LNS with the selected
checkpoint.

Test The final selected model from validation is tested on 200 additional held-out random seeds
by guiding LNS. All reported results are performances on the test set.

Guiding LNS For each given seed, all methods (unguided or guided) share the same initialization
solution. The planning time limit of Tlimit = 60s is used by previous LNS-based MAPF work (Li
et al., 2021a; Huang et al., 2022) and is motivated by the short-horizon nature of MAPF and path
planning in general. We observe that learned models may often repeatedly select similar subsets
across consecutive LNS iterations, resulting in low or no improvement. As such, we design a strati-
fied sampling procedure where we filter away any subset more similar to previously selected subsets
than a randomly sampled threshold, and permit the learned model to select among the rest of the
subsets. We observe that this procedure is effective in alleviating the similarity issue.

Fitting a Proxy for Solver Runtime As the solver’s runtime is noisy to measure and heavily
depends on the current computation load of the machine, we instead collect datasets of number of
low-level search iterations by the solver as features and ideal solver runtimes as labels. For every
setting (floor map, |A|, construction heuristic, k), features and ideal solver runtimes are obtained by
running unguided LNS with no other processes on the machine. We obtain fitted linear models with
0.95-0.99 coefficient of determination across five folds of cross-validation.

Aggregating Metrics Across Seeds We always report the 95% confidence interval of the mean
across the 200 test seeds, though any seed without feasible initialization is excluded. e.g. to compute
the 95% confidence interval of the average gap at a given runtime, we perform bootstrap sampling
to obtain 1000 resampled means of 200 gaps, then take the 2.5th percentile and 97.5th percentile

2

Published as a conference paper at ICLR 2024

of those means as the 95% confidence interval. To compute the mean and confidence interval of
speedups corresponding to different seeds at a given gap, we take the geometric mean rather than
the arithmetic mean, as each speedup is a ratio. When plotting speedup vs gap, some seeds may not
reach a given gap within 10s of runtime; therefore, we only consider the range of gaps reached by
all seeds when plotting, rather than [0, 100].

3

Published as a conference paper at ICLR 2024

A.2 PARAMETER SWEEP FOR SOLVER, SUBSET CONSTRUCTION HEURISTICS, AND SUBSET
SIZE k

We perform sweeps to identify the strongest settings for Unguided LNS for the different warehouse
maps and use these settings for guided LNS. As seen in Figure 6, PBS is fairly dominant for most
empty (32x32) settings with |A| < 400. On the other hand, PP with k = 5 becomes dominant for
|A| ≥ 400. In our work, we experiment with settings where PBS is dominant, since a determin-
istic solver could be easier to predict for learning-based methods. As seen in Figure 7, PBS is the
dominant solver across a wide range of problem settings anyways.

Following Li et al. (2021a), we additionally sweep over k with Adaptive LNS (ALNS). We do not
see benefits of ALNS over the best fixed subset construction in random, empty, warehouse, and
den520d. Only ost003d benefits slightly from ALNS. This is fairly consistent with the findings of
Li et al. (2021a) Table 2. Thus, we choose to study the more controlled setting of best fixed subset
construction rather than adaptive subset construction.

Unlike Huang et al. (2022), we do not select between subsets of different sizes k. Intuitively, sub-
problems with different sizes could require significantly different amount of time to solve by the
solver. Neither our work nor MAPF-ML-LNS devises a method to account for the runtime of solv-
ing subproblems; purely selecting the subset offering the most improvement may be highly subop-
timal if the subproblem takes relatively longer to solve than other candidates. Thus, we choose to
use a fixed subset size k, assuming that subsets of the same size likely take similar amount of time
to solve. This assumption is confirmed by our iteration-based results in Appendix A.8. Our method
is likely compatible with future LNS methods designed to account for both predicted improvement
and predicted runtime of subsets.

4

Published as a conference paper at ICLR 2024

0 10 20 30 40 50 60
Time (s)

5400

5600

5800

6000

6200

6400

6600

6800

7000

Su
m

 o
f D

el
ay

s

k = 5
k = 10
k = 25
k = 50

Construction: Uniform
Construction: Intersection-local
Construction: Agent-local

Solver: PBS
Solver: PP

(a) empty (32x32) |A| = 250

0 10 20 30 40 50 60
Time (s)

6750

7000

7250

7500

7750

8000

8250

8500

8750

Su
m

 o
f D

el
ay

s

k = 5
k = 10
k = 25
k = 50

Construction: Uniform
Construction: Intersection-local
Construction: Agent-local

Solver: PBS
Solver: PP

(b) empty (32x32) |A| = 300

0 10 20 30 40 50 60
Time (s)

1250

1500

1750

2000

2250

2500

2750

3000

Su
m

 o
f D

el
ay

s

k = 5
k = 10
k = 25
k = 50

Construction: Uniform
Construction: Intersection-local
Construction: Agent-local
Construction: Adaptive

Solver: PBS
Solver: PP

(c) empty (32x32) |A| = 350

0 10 20 30 40 50 60
Time (s)

15000

20000

25000

30000

35000

40000

45000

Su
m

 o
f D

el
ay

s

k = 5
k = 10
k = 25
k = 50

Construction: Uniform
Construction: Intersection-local
Construction: Agent-local

Solver: PBS
Solver: PP

(d) empty (32x32) |A| = 450

Figure 6: Effect of solver, subset construction heuristics, and agent subset size k in unguided
LNS for empty (32x32). Colors distinguish subset sizes k, line styles distinguish construction
heuristics, and line widths distinguish solvers. The Adaptive construction heuristics adaptively
chooses between Uniform, Intersection-local, and Agent-local heuristics following Li et al. (2021a).

5

Published as a conference paper at ICLR 2024

0 10 20 30 40 50 60
Time (s)

0

250

500

750

1000

1250

1500

1750

2000

Su
m

 o
f D

el
ay

s

k = 5
k = 10
k = 25
k = 50

Construction: Uniform
Construction: Intersection-local
Construction: Agent-local
Construction: Adaptive

Solver: PBS
Solver: PP

(a) random (32x32) |A| = 250

0 10 20 30 40 50 60
Time (s)

1000

2000

3000

4000

5000

6000

Su
m

 o
f D

el
ay

s

k = 5
k = 10
k = 25
k = 50
k = 100

Construction: Uniform
Construction: Intersection-local
Construction: Agent-local
Construction: Adaptive

Solver: PBS
Solver: PP

(b) warehouse (161x63) |A| = 300

0 10 20 30 40 50 60
Time (s)

3000

4000

5000

6000

7000

8000

Su
m

 o
f D

el
ay

s

k = 5
k = 10
k = 25
k = 50
k = 100

Construction: Uniform
Construction: Intersection-local
Construction: Agent-local
Construction: Adaptive

Solver: PBS
Solver: PP

(c) ost003d (194x194) |A| = 400

0 10 20 30 40 50 60
Time (s)

6000

8000

10000

12000

14000

16000

18000

20000

Su
m

 o
f D

el
ay

s

k = 5
k = 10
k = 25
k = 50
k = 100

Construction: Uniform
Construction: Intersection-local
Construction: Agent-local
Construction: Adaptive

Solver: PBS
Solver: PP

(d) den520d (256x257) |A| = 800

Figure 7: Effect of solver, subset construction heuristics, and agent subset size k in unguided
LNS. Colors distinguish subset sizes k, line styles distinguish construction heuristics, and line
widths distinguish solvers. The Adaptive construction heuristics adaptively chooses between Uni-
form, Intersection-local, and Agent-local heuristics following Li et al. (2021a).

6

Published as a conference paper at ICLR 2024

A.3 RUNTIME VS SOLUTION QUALITY FOR ALL SETTINGS

Here, we report the full results corresponding to Figure 5 in the main text.

100 101

Time (s)

20

40

60

80

100

Ga
p

(%
)

Unguided
Linear
Per-Subset
Multi-Subset

30405060708090100
Gap (%)

1

2

3

4

5

Sp
ee

du
p

ov
er

 U
ng

ui
de

d

Linear
Per-Subset
Multi-Subset

(a) empty (32x32)

100 101

Time (s)

0

20

40

60

80

Ga
p

(%
)

Unguided
Linear
Per-Subset
Multi-Subset

020406080
Gap (%)

0.6

0.8

1.0

1.2

1.4

Sp
ee

du
p

ov
er

 U
ng

ui
de

d

Linear
Per-Subset
Multi-Subset

(b) random (32x32)

100 101

Time (s)

0

20

40

60

80

100

Ga
p

(%
)

Unguided
Linear
Per-Subset
Multi-Subset

20406080
Gap (%)

0.5

1.0

1.5

2.0

2.5

Sp
ee

du
p

ov
er

 U
ng

ui
de

d

Linear
Per-Subset
Multi-Subset

(c) warehouse (161x63)

100 101

Time (s)

0

20

40

60

80

100

Ga
p

(%
)

Unguided
Linear
Per-Subset
Multi-Subset

30405060708090
Gap (%)

1

2

3

4

Sp
ee

du
p

ov
er

 U
ng

ui
de

d

Linear
Per-Subset
Multi-Subset

(d) ost003d (194x194)

100 101

Time (s)

20

40

60

80

100

Ga
p

(%
)

Unguided
Linear
Per-Subset
Multi-Subset

2030405060708090
Gap (%)

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p

ov
er

 U
ng

ui
de

d

Linear
Per-Subset
Multi-Subset

(e) den520d (256x257)

Figure 8: Runtime vs solution quality for all considered floor maps including (solid) and exclud-
ing (dashed) model overhead in the runtime. (left) Lower gap is better. (right) Higher speedup over
Unguided is better.

7

Published as a conference paper at ICLR 2024

A.4 HANDCRAFTED FEATURES FOR LINEAR BASELINE

The features from our Linear baseline are hand-designed by Huang et al. (2022) and reiterated here.
Given current solution Si, to featurize subproblem P (Si, α), features are calculated for every agent
a ∈ A then combined into aggregate features for the subset α and the non-subset A \ α, which are
then concatenated.

Table 3 lists the 16 features (Huang et al. (2022) states 17, but only lists 16) for each agent a,
consisting of 6 static features which only depend on the problem P = (G, sA, gA) and 10 dynamic
features which depend on the current solution Si. The heat of a vertex v ∈ V is defined to be the
total number of times the vertex is occupied by an agent. The degree of a vertex v ∈ V is defined
to be the total number of edges to or from v, excluding the self-edge (v, v). The per-agent features
are then aggregated with minimum, maximum, sum, and average across α and A \ α, resulting in
4 ∗ 2 ∗ 16 = 128 total features for the subset α.

We vectorize the computation of these features to allow faster feature-computation on GPU, as the
CPU-only feature computation tends to be several times slower.

Table 3: Linear features from Huang et al. (2022) for each agent a. These features are then
aggregated by subset α and non-subset A \ α.

Description Count

Static features 6

Distance between start and goal: d(sa, ga) 1
Row and column numbers of sa and ga in graph G 4
Degree of the goal ga 1

Dynamic features 10

Delay of a: c(Sa) 1
Ratio between delay and shortest distance: c(Sa)

d(sa,ga)
1

Minimum, maximum, sum, and average of heat values along path pa 4
Number of timesteps that path pa passes a vertex with degree 1 ≤ j ≤ 4 before
reaching the goal ga

4

A.5 SOFTWARE FRAMEWORK AND CODE

A key challenge of studying learning-based approaches for MAPF, especially LNS-based, is the
low-level nature of MAPF, where the solvers must be implemented in a low-level language like
C++. Performing (especially learning-based) experiments within such a context is tedious and error-
prone for the researcher. We design a software framework which abstracts away low-level MAPF
operations into a C++ library, exposing a high-level interfaces which can be controlled through
Python via a convenient pybind11 interface while maintaining execution speed. We hope that such a
framework could prove useful for MAPF researchers in general, greatly reducing the need to interact
with low-level C++.

8

Published as a conference paper at ICLR 2024

Table 4: Architectural ablations in random (32x32) |A| = 250. Gaps and Win / Loss do not
include model overhead. Lower gap is better; higher Win is better.

Metric Unguided Linear Per-Subset Multi-Subset
(Full) (Convolution Only) (Attention Only)

Average Gap (%) 5.3 ± 0.2 5.4 ± 0.3 5.0 ± 0.2 4.6 ± 0.2 6.6 ± 0.3 5.2 ± 0.2
Win / Loss 0 / 0 106 / 92 128 / 70 151 / 47 27 / 171 112 / 86

A.6 ARCHITECTURAL ABLATIONS

To assess the importance of our proposed intra-path attention mechanism as a part of the
convolution-attention block in the Multi-Subset network, we conduct an ablation study to under-
stand the individual contributions of intra-path attention and 3D convolution in our architecture. For
Multi-Subset (3D Convolution Only), we remove the intra-path attention mechanism and double the
number of 3D convolutions to keep model capacity similar. For Multi-Subset (Intra-path Attention
Only), we remove the 3D convolution and double the number of intra-path attention layers; however
this requires us to use (C =) 128 channels at every layer (increasing the model capacity) as the intra-
path attention itself cannot change the number of channels from layer to layer. Due to the changes
in architecture, we compare performances without model overhead to focus on the predictivity of
the different architectures.

In Figure 9, we see that our intra-path attention is critical to Multi-Subset performance, while 3D
convolution also contributes moderately. Corresponding metrics are reported in Table 4.

100 101

Time (s)

0

20

40

60

80

Ga
p

(%
)

Unguided
Linear
Per-Subset
Multi-Subset
Multi-Subset (3D Convolution Only)
Multi-Subset (Intra-path Attention Only)

Figure 9: Runtime vs gap for architectural ablation in random (32x32) |A| = 250, excluding
model overhead in the runtime. Lower gap is better.

9

Published as a conference paper at ICLR 2024

Table 5: Absolute “sum of delays” comparisons with MAPF-LNS (Li et al., 2021a) and MAPF-
ML-LNS (Huang et al., 2022). LNS, LNS (ML-LNS), and Unguided denotes the best unguided
LNS as respectively reported by Li et al. (2021a), Huang et al. (2022), and our work. ML-LNS and
Linear denotes the best linear-guided LNS as respectively reported by Huang et al. (2022) and our
work.

Setting LNS LNS (ML-LNS) Unguided ML-LNS Linear Multi-Subset
empty |A| = 350 743 N/A 1302 N/A 1263 1043

random |A| = 250 3388 806 516 843 532 515
warehouse |A| = 300 1400 4719 670 3547 686 658

ost003d |A| = 400 2427 6907 2736 6584 2119 1760
den520d |A| = 800 7408 ≫12558 4637 ≫11535 2397 2229

A.7 DIRECT COMPARISONS WITH MAPF-LNS AND MAPF-ML-LNS

While our computation resources may differ from previous related works (Li et al., 2021a; Huang
et al., 2022), we attempt to provide absolute comparisons of sums of delays attained by all methods
in Table 5. The sum of delays is a measure of final solution quality: the final cost attained minus
the shortest individual cost for each agent. The sums of delays of all methods here are attained with
60s of solution time including the model overhead. Like previous work, here we use the 25 seeded
scenarios provided by the MAPF benchmark suite Stern et al. (2019). For our Unguided, Linear,
and Multi-Subset, we use the same hyperparameters as in Table 1, which represent the best fixed
subset construction heuristic and subset size k. We take the best MAPF-LNS (Li et al., 2021a) sums
of delays as the minimum of their Table 4, Table 2, and Table 1. We take MAPF-ML-LNS (Huang
et al., 2022) sums of delays from their Table 3.

We make several observations. Our numerical sums of delays here are fairly consistent with our hy-
perparameter sweeps in Appendix A.2, which uses a different set of seeds. Comparing the baselines,
MAPF-LNS’s own reported sums of delays (denoted as LNS in Table 5) are usually significantly
lower than MAPF-LNS sums of delays reported by the MAPF-ML-LNS paper (denoted as LNS
(ML-LNS) in Table 5), as seen in warehouse, ost003d, and den520d. Our Unguided sums of delays
are often significantly lower (random, warehouse, den520d) than those of MAPF-LNS, illustrating
the advantage of using PBS rather than PP as the subproblem solver, which has not been studied by
previous works; indeed, the runs with PP as the subproblem solver in our hyperparameter sweeps
in Figure 7 more closely resemble the best reported MAPF-LNS performance. Our Linear baseline
significantly outperforms MAPF-ML-LNS in all settings. Multi-Subset improves the sums of delays
over Unguided, especially in empty, ost003d, and den520d.

We point out two cases where our sums of delays are worse than MAPF-LNS. For empty |A| =
350, MAPF-LNS moderately outperforms Unguided and Multi-Subset. We hypothesize that this is
because Li et al. (2021a) uses EECBS (Li et al., 2021c) as the initialization for this particular setting
while we use PP, which is easier to implement in our codebase than EECBS (which contains many
hyperparameters itself). For ost003d |A| = 400, MAPF-LNS slightly outperforms Unguided (but
not Multi-Subset). We observe in Figure 7 that adaptive LNS slightly improves the performance
of Unguided in this setting. Nevertheless, the difference between MAPF-LNS and Unguided is
dwarved by the difference between Unguided and Multi-Subset.

Overall, we find that our methods compare reasonably with prior work. We additionally illustrate
corresponding time vs delay in Figure 10.

10

Published as a conference paper at ICLR 2024

100 101

Time (s)

1000

1500

2000

2500

3000

Su
m

 o
f D

el
ay

s

Unguided
Linear
Per-Subset
Multi-Subset

(a) empty (32x32)

100 101

Time (s)

0

2000

4000

6000

8000

10000

12000

Su
m

 o
f D

el
ay

s

Unguided
Linear
Per-Subset
Multi-Subset

(b) random (32x32)

100 101

Time (s)

1000

2000

3000

4000

5000

6000

Su
m

 o
f D

el
ay

s

Unguided
Linear
Per-Subset
Multi-Subset

(c) warehouse (161x63)

100 101

Time (s)

2000

4000

6000

8000

Su
m

 o
f D

el
ay

s

Unguided
Linear
Per-Subset
Multi-Subset

(d) ost003d (194x194)

100 101

Time (s)

5000

10000

15000

20000

Su
m

 o
f D

el
ay

s

Unguided
Linear
Per-Subset
Multi-Subset

(e) den520d (256x257)

Figure 10: Runtime vs sum of delays for all considered floor maps including model overhead in
the runtime. Lower sum of delays is better.

A.8 PERFORMANCE BY ITERATION

For the same runs studied in Appendix A.7, we demonstrate the sum of delays with respect to
number of LNS iterations in Figure 11. We see similar behavior as in Figure 10: that the Multi-
Subset architecture significantly improves the decision quality and reduces the number of iterations
needed to attain a given cost. The similarities in the plots also confirm our assumption that subsets
of the same construction heuristic and size k take roughly similar time to solve.

Note that because we run each method for 60s, the number of iterations may differ between problem
instances. As we must compute the mean and confidence interval of the performance across all seeds
for each method, we truncate all runs at the minimum number iterations across all seeds for each
method when calculating the mean and confidence interval. This choice does not have a significantly
visible effect due to the log-scale of LNS iteration in Figure 11.

100 101 102

Iteration

1500

2000

2500

3000

Su
m

 o
f D

el
ay

s

Unguided
Linear
Per-Subset
Multi-Subset

(a) empty (32x32)

100 101 102

Iteration

0

2000

4000

6000

8000

10000

12000

14000

Su
m

 o
f D

el
ay

s

Unguided
Linear
Per-Subset
Multi-Subset

(b) random (32x32)

100 101 102

Iteration

1000

2000

3000

4000

5000

6000

Su
m

 o
f D

el
ay

s

Unguided
Linear
Per-Subset
Multi-Subset

(c) warehouse (161x63)

100 101 102

Iteration

2000

3000

4000

5000

6000

7000

8000

9000

Su
m

 o
f D

el
ay

s

Unguided
Linear
Per-Subset
Multi-Subset

(d) ost003d (194x194)

100 101 102

Iteration

5000

10000

15000

20000

Su
m

 o
f D

el
ay

s

Unguided
Linear
Per-Subset
Multi-Subset

(e) den520d (256x257)

Figure 11: LNS iteration vs sum of delays for all considered floor maps. Lower sum of delays is
better.

11

	Introduction
	Multi-agent Path Finding
	Related Work
	Neural Large Neighborhood Search for MAPF
	Challenges of Guiding LNS
	Naive Per-Subset Architecture
	Multi-Subset Architecture
	Pairwise Classification Loss Function

	Experimental Setup
	Experimental Results
	Performances on All Settings
	Time vs Solution Quality for empty (32x32) and den520d (256x257)
	Generalization to Unseen Settings

	Conclusions
	Acknowledgment
	Appendix
	Setup
	Parameter Sweep for Solver, Subset Construction Heuristics, and Subset Size k
	Runtime vs Solution Quality for All Settings
	Handcrafted Features for Linear Baseline
	Software Framework and Code
	Architectural Ablations
	Direct Comparisons with MAPF-LNS and MAPF-ML-LNS
	Performance by Iteration

