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ABSTRACT

Bayesian optimization (BO) is a widely popular approach for the hyperparameter
optimization (HPO) of machine learning algorithms. At its core, BO iteratively
evaluates promising configurations until a user-defined budget, such as wall-clock
time or number of iterations, is exhausted. While the final performance after
tuning heavily depends on the provided budget, it is hard to pre-specify an optimal
value in advance. In this work, we propose an effective and intuitive termination
criterion for BO that automatically stops the procedure if it is sufficiently close
to the global optima. Across an extensive range of real-world HPO problems, we
show that our termination criterion achieves better test performance compared to
existing baselines from the literature, such as stopping when the probability of
improvement drops below a fixed threshold. We also provide evidence that these
baselines are, compared to our method, highly sensitive to the choices of their own
hyperparameters. Additionally, we find that overfitting might occur in the context of
HPO, which is arguably an overlooked problem in the literature, and show that our
termination criterion mitigates this phenomenon on both small and large datasets.

1 INTRODUCTION

While the performance of machine learning algorithms crucially depends on their hyperparameters,
setting them correctly is typically a tedious and expensive task. Hyperparameter optimization (HPO)
emerged as a new sub-field in machine learning that tries to automatically determine how to configure
a machine learning algorithm. One of the most successful strategies for HPO is Bayesian optimization
(BO; Močkus, 1975; Chen et al., 2018; Snoek et al., 2012; Melis et al., 2018) which iteratively trains
a probabilistic model on the evaluations of the tuned algorithm. to select the most promising next
candidate point that trades-off exploration and exploitation.

In practice, the quality of the final solution found by BO heavily depends on a user defined budget,
such as wall-clock time or the number of iterations, which needs to be defined in advanced. If this
budget is too small, BO might return hyperparameters that result in a poor predictive performance.
If the budget is too large, compute resources will be wasted and, in some cases, it may result in
overfitting as we will show in our experiments. Automatically stopping BO is a rather under-explored
topic in the literature. A simple baseline is to stop if BO has not found a better solution than the
current best incumbent for some successive iterations, which is in the same vein as early stopping
for neural network training. Another approach is to track probability of improvement (Lorenz et al.,
2016) or expected improvement (Nguyen et al., 2017), and stop the optimization process once it
falls below a given threshold. However, determining this threshold may in practice be less intuitive
than setting the number of iterations or the wall-clock time. Instead of stopping BO completely,
McLeod et al. (2018) propose to switch to local optimization when the global regret is smaller than a
pre-defined target. This condition can also be used to terminate BO early, but it comes with additional
complexity such as identifying a (convex) region for local optimization and again a predefined budget.

In this work, we propose a simple and interpretable automatic termination criterion for BO. In our
criterion, we construct high-probability confidence bound on the regret (i.e., the difference of our
current solution to the global optimum) exploiting the probabilistic model of the objective. Thus, users
are now asked to specify a desired tolerance that defines how accurate should the final solution be
compared to global optimum. In addition, we propose to determine the threshold via a cross-validation
estimate of the generalization error. This choice takes into account the irreducible discrepancy between
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the actual objective and the target function optimized via BO, namely the difference between the per-
formance on new data (i.e., the population risk) and the validation error. Our extensive empirical evalu-
ation on a variety of HPO and NAS benchmarks suggests that our method is more robust and effective
in maintaining the final solution quality than common baselines (Lorenz et al., 2016; Nguyen et al.,
2017). We also surface overfitting effects in HPO on both small and large datasets, arguably an over-
looked problem in the literature, and demonstrate that our termination criterion helps to mitigate it.

2 BACKGROUND

Bayesian optimization (BO) refers to methods of optimizing a black-box objective f : Γ → R in
an iterative manner. At every step t, a learner selects an input γt ∈ Γ and observes a noisy output

yt , f(γt) + εt,

where εt is typically assumed to be i.i.d. (sub)-Gaussian noise with some variance (proxy) σ2
ε . The

decision of the next input to evaluate depends on a probabilistic model, used to approximate the
objective f , and an acquisition function, which determines the decision rule. A popular choice for
the probabilistic model is a Gaussian process (GP): f ∼ GP (µ, κ) (Rasmussen & Williams, 2006),
specified by some mean function µ : Γ → R and some kernel κ : Γ × Γ → R. As observations
y1:t = [y1, . . . , yt]

> for the selected inputs Gt = {γ1, . . . , γt} are being collected, they are used to
update the posterior belief of the model defined by the posterior mean µt(γ) and variance σ2

t (γ) as:

µt(γ) = κt(γ)T (Kt + σ2
εI)−1y1:t (1)

σ2
t (γ) = κ(γ, γ)− κt(γ)>(Kt + σ2

εI)−1κt(γ), (2)

where (Kt)i,j = κ(γi, γj) and κt(γ)T = [κ(γ1, γ), . . . , κ(γt, γ)]T . The next input to query is
determined by an acquisition function that aims to trade off exploration and exploitation. Common
choices include probability of improvement (Kushner, 1963), entropy search (Hennig & Schuler,
2012), GP upper-confidence bound (Srinivas et al., 2010), to name a few.

The convergence of BO can be quantified via (simple) regret, i.e., the sub-optimality in function value:

rt := f(γ∗t )− f(γ∗), (3)

where γ∗ is the global optimizer of f and γ∗t = arg minγ∈Gt
f(γ). Specifying adequate tolerance

that defines how small the regret should be to terminate BO is of high importance as it determine
both the quality and the cost of the solution. However, this criterion cannot be directly evaluated
in practice, as the input γ∗ and the optimum f(γ∗) are not known.

Hyperparameter optimization (HPO) is a widely considered application for BO. Consider a su-
pervised learning setting training a machine learning model (e.g., a neural network)M on some
feature-response data points D = {(xi, yi)}ni=1 sampled i.i.d. from some unknown data distribution
P . The model is obtained by running a training algorithm (e.g., optimizing the weights of the neural
network via SGD) on D, and the model returned also depends on hyperparameters γ (e.g., learning
rates used, batch size, etc.). We use the notationMγ(x;D) to refer to the prediction that the model
produced byM makes for an input x, when trained with hyperparameters γ on data D. Given some
loss function `(·, ·), the population risk of the model on unseen data points is given by the expected
loss EP [`(y,Mγ(x,D))]. The main objective of HPO is to identify hyperparameters γ, such that the
resulting model minimizes the population risk:

f(γ) = EP
[
`
(
y,Mγ(x,D)

)]
, γ∗ = arg min

γ∈Γ
f(γ). (4)

In practice, however, the population risk cannot be evaluated since P is unknown. Thus, typically,
it is estimated on a separate finite validation set DV drawn from the same distribution P . As the
result, practical HPO focuses on minimizing the empirical estimate f̂(γ) of the expected loss f(γ)
leading to (probably different) optimizer γ∗D:

f̂(γ) =
1

|DV |
∑

xi,yi∈DV

`
(
yi,Mγ(xi,D)

)
, γ∗D = arg min

γ∈Γ
f̂(γ). (5)
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At its core, BO-based HPO evaluates noisy empirical estimate f̂(γt) for promising hyperparameters
γt for some finite number of iterations and the final performance after termination heavily depends
on that number. Alternatively, one can also terminate BO when sufficiently close to the global optima,
i.e., using an analogue to the simple regret rt for the validation loss f̂(γ) and f̂(γ∗t ) = min

γ∈Gt

f̂(γ):

r̂t := f̂(γ∗t )− f̂(γ∗D). (6)

Inconsistency in the optimization objective. Importantly, the true HPO objective f(γ) in Eq. (4)
and the empirical surrogate f̂(γ) in Eq. (5) used for tuning by BO generally do not coincide. Therefore,
existing BO approaches may yield sub-optimal solutions to the population risk minimization, even if
they succeed in globally optimizing f̂(γ). This issue, however, is typically neglected in practical HPO.
In contrast, we propose a termination condition for BO motivated by the discrepancy in the objectives.

3 TERMINATION CRITERION FOR HYPERPARAMETER OPTIMIZATION

This section firstly motivates why early termination of HPO can be beneficial and then addresses the
following two questions: (1) How to estimate the unknown simple regret and (2) What threshold of
the simple regret can be used to stop HPO.

3.1 MOTIVATION FOR THE TERMINATION CRITERION

We start by analysing the true discrepancy of interest: between the population risk f(γ∗t ) at some
input γ∗t and true optimum f(γ∗). We then observe that this discrepancy sums from the statistical
error of the empirical BO objective f̂(γ) as well the sub-optimality of the BO candidates (encoded
in the simple regret r̂t). The key insight of the following proposition is that iterative reducing of
r̂t to 0 may not bring any benefits if the statistical error dominates.

Proposition 1. Consider the expected loss f and its estimator f̂ defined in Eqs. (4) and (5), respec-
tively, and assume the statistical error of the estimator is bounded as ||f̂−f ||∞ ≤ εst for some εst ≥ 0.
Let γ∗ and γ∗D be their optimizers: γ∗ = arg minγ∈Γ f(γ) and γ∗D = arg minγ∈Γ f̂(γ). Let γ∗t be
some candidate solution to minγ∈Γ f̂(γ) with sub-optimality in function value r̂t := f̂(γ∗t )− f̂(γ∗D).
Then the gap in generalization performance f(γ∗t )− f(γ∗) can be bounded as follows:

f(γ∗t )− f(γ∗) ≤ f(γ∗t )− f̂(γ∗t )︸ ︷︷ ︸
≤εst

+ f̂(γ∗t )− f̂(γ∗D)︸ ︷︷ ︸
=r̂t

+ f̂(γ∗D)− f̂(γ∗)︸ ︷︷ ︸
≤0

+ f̂(γ∗)− f(γ∗)︸ ︷︷ ︸
≤εst

≤ 2εst + r̂t.

Moreover, without further restrictions on f , f̂ , γ∗t and γ∗, the upper bound is tight.

Proof: While the second inequality is due to the definition of γ∗t , the others can proved as follows:

f(γ∗t )− f̂(γ∗t ) ≤ |f(γ∗t )− f̂(γ∗t )| ≤ max
γ∈Γ
|f(γ)− f̂(γ)| = ||f̂ − f ||∞ ≤ εst,

γ∗D = arg min
γ∈Γ

f̂(γ) −→ ∀γ ∈ Γ : f̂(γ∗D)− f̂(γ) ≤ 0 −→ f̂(γ∗D)− f̂(γ∗) ≤ 0. �

The proposition provides the discrepancy bound in terms of the statistical error εst and simple regret
r̂t. This naturally incites terminating HPO at a candidate γ∗t for which the simple regret r̂t is of the
same magnitude as the statistical error εst (as further reduction in r̂t may not improve notably the
true objective). However, neither of the quantities εst and r̂t is known.

Below, we propose a termination criterion that relies on estimates of both quantities. Firstly, we
show how to use confidence bounds on f̂(γ) to obtain high probability upper bounds on the simple
regret r̂t Srinivas et al. (2010); Ha et al. (2019). Secondly, we estimate the statistical error εst in the
case of cross-validation (Stone, 1974; Geisser, 1975) where the model performance is defined as an
average over several training-validation runs. To this end, we rely on the statistical characteristics (i.e.,
variance or bias) of such cross-validation-based estimator that are theoretically studied by Nadeau &
Bengio (2003); Bayle et al. (2020). When cross validation is not used, one could define an intuitive
threshold in advance due to the usage of interpretable upper bound of simple regret.
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(a) Key ingredients of the termination criterion
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Figure 1: (a) Visualization of the upper bound for r̂t. The gap between green and orange lines is the es-
timate of the upper bound for r̂t (b) Illustration of automated BO termination when tuning MLP on the
naval dataset from HPO-Bench (Klein & Hutter, 2019) with the BORE optimizer (Tiao et al., 2021).

3.2 BUILDING BLOCKS OF THE TERMINATION CRITERION

Upper bound for the simple regret r̂t. The key idea behind bounding r̂t is that, as long as the
GP-based surrogate model of f̂(·) is well-calibrated, we can use it to construct high-probability
confidence bounds for f̂(·). In particular, Srinivas et al. (2010) show that as long as f̂ has bounded
norm in the reproducing kernel Hilbert space (RKHS) associated with the covariance function κ used
in the GP, f̂(γ) is bounded (with high probability) by lower and upper confidence bounds lcbt(γ) =
µt(γ)−√βtσt(γ) and ucbt(γ) = µt(γ) +

√
βtσt(γ). Hereby, βt is a parameter that ensures validity

of the confidence bounds (see Appendix A.2.3 for practical discussion and ablation study).

Consequently, we can bound the unknown f̂(γ∗t ) and f̂(γ∗D) that define the sub-optimality r̂t:

r̂t = f̂(γ∗t )− f̂(γ∗D) ≤ min
γ∈Gt

ucbt(γ)−min
γ∈Γ

lcbt(γ) =: r̄t, (7)

where the inequality for f̂(γ∗t ) is due to the definition of the reporting rule f̂(γ∗t ) = minγ∈Gt f̂(γ)
over the evaluated points Gt = {γ1, . . . , γt}. We illustrate the idea with an example in Fig. 1a.

Termination threshold. We showed how to control the optimization error via the (computable)
regret upper bound r̄t in the above and now we propose to stop the BO when r̄t is smaller than some
threshold εBO, i.e. at an iteration T : r̄T ≤ εBO. Following Proposition 1, we suggest setting εBO to
be of similar magnitude as the statistical error εst (since smaller regret r̂t is not beneficial when εst
dominates). We now discuss how to estimate the statistical error εst in case of cross-validation.

Cross-validation is the standard approach to compute an estimator f̂(γ) of the population risk. The
data D is partitioned into k equal-sized sets D1, . . . ,Dk used for (a) training the modelMγ(·;D−i),
where D−i = ∪j 6=iDi (i.e., training on all but the i-th fold), and (b) validatingMγ(·;Di) on the i-th
fold of the data. These two steps are then repeated in a loop k times, and then the average over k
validation results is computed, yielding the noisy BO evaluation y = f̂(γ) + ε where the noise is due
to the randomness in the training procedure or to epistemic uncertainty.

The statistical error εst of an estimate can be characterised in terms of its variance and bias where
the latter can be neglected in case of cross-validation (Bayle et al., 2020). Though the variance of the
cross-validation estimate Varf̂(γ) = E[(f̂(γ)− Ef̂(γ))2] is generally unknown, Nadeau & Bengio
(2003) propose an estimate for it. Specifically, for the sample variance (denoted as s2

cv) of k-fold
cross-validation, a simple post-correction technique to estimate the variance Varf̂(γ) is

Varf̂(γ) ≈
(

1

k
+
|Di|
|D−i|

)
s2

cv(γ), (8)

where |Di|, |D−i| are the set sizes. For example, in the case of 10-fold cross-validation we have
Varf̂(γ) ≈ 0.21s2

cv(γ). We are now ready to propose our termination condition in the following.
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Termination condition for BO. Consider the setup of Proposition 1 where f̂(·) is a cross-validation-
based estimator being iteratively minimized by BO. Let yt = f̂(γt) + εt be a noisy evaluation at the
input γt and γ∗t = arg min

γi∈{γ1,...,γt}
yi denote the best observed input by BO iteration t. Let r̄t defined in

Eq. (7) be the simple regret bound computed at each iteration t. Let the variance Varf̂(γ∗t ) of the
estimator f̂(·) be approximated according to Eq. (8). Then, BO is terminated once:

r̄t <

√
Varf̂(γ∗t ). (9)

Intuitively, the termination is triggered once the maximum plausible improvement becomes less
than the standard deviation of the estimate. This variance-based termination condition adapts to
different algorithms or datasets and its computation comes with negligible computational cost on
top of cross-validation. The pseudo code for the criterion is summarised in Appendix A.1.2. If
cross-validation cannot be used or is computationally prohibitive, the user can define the right-hand
side of the termination condition. In this case, the upper bound on the left-hand side still has an
intuitive interpretation: the user can set the threshold based on their desired solution accuracy. This
case is demonstrated in Fig. 1b, with an example of automatic termination for tuning an MLP.

4 EXPERIMENTS

The main challenge of early stopping HPO is to find the right trade-off between reducing runtime
and performance degradation. We thus study in experiments how the speed-up gained from different
termination criterions affects the final test performance.

4.1 EXPERIMENTAL SETUP

We start with describing our experimental setup to validation our approach. To establish a sensible
experimental setup, we define two new metrics that account for the trade-off between resources saved
and drop in final performance and provide a list of reasonable baselines.

4.1.1 BASELINES

To validate our proposed termination criterion we consider the following baselines:

• The first baseline is a näive convergence test controlled by a parameter i: BO is stopped
once the best observed validation metric remains unchanged for i consecutive iterations.
This convergence condition heavily relies on i, which needs to be chosen in advance. We
consider values commonly used in practice, namely i = {10, 30, 50}.

• We also compare to Lorenz et al. (2016); Nguyen et al. (2017), which terminates BO once
the value of the Probability of Improvement (PI) or Expected Improvement (EI) drops below
a pre-defined threshold. Both acquisition functions do not live on a well-defined scale,
rendering it hard to identify a sensible threshold in practice. We follow the recommendations
from Nguyen et al. (2017); Lorenz et al. (2016) and consider the following values for EI
{10−9, 10−13, 10−17} and for PI {10−5, 10−9, 10−13}. Empirically, we observe that all
thresholds lead to significant speeds up but, at the same time, to a severe degradation of the
final solution quality. Because of space constraints, we only show the results for 10−17 for
EI and 10−13 for PI, and report the full results in Appendix A.2.

4.1.2 METRICS

To measure the effectiveness of a termination criterion, we analyze two metrics to quantify the change
in test error and the time saved. Particularly, given a BO budget T, we compare the test error yes
when early stopping is triggered to the test error yT . For each experiment, we compute the relative
test error change RYC as

RYC =
yT − yes

max(yT , yes)
. (10)

This allows us to aggregate the results over different algorithms and datasets, as RYC ∈ [−1, 1] and
can be interpreted as follows: A positive RYC represents an improvement in the test error when
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applying early stopping, while a negative RYC indicates the opposite. Similarly, let the total training
time for a predefined budget T be tT and the total training time when early stopping is triggered be
tes. Then the relative time change RTC is defined as

RTC =
tT − tes
tT

. (11)

A positive RTC, where RTC ∈ [0, 1], indicates a reduction in total training time. While reducing
training time is desirable, it should be noted that this can be achieved through any simple stopping
criterion (e.g., consider interrupting HPO with a fixed probability after every iteration). In other
words, the RTC is not a meaningful metric when decoupled from the RYC and we will thus consider
the two in tandem in the following experiments.

4.2 HOW TO SELECT THE DATA TO ESTIMATE THE BOUND?

Since we are only interested in estimating the upper bound of the regret of the incumbent, we
conjecture that using only the top performing hyperparameter evaluations may improve the estimation
quality. To validate this, we use BORE (Tiao et al., 2021) tuning results on the naval dataset from
HPO-Bench Klein & Hutter (2019) (described in Section 4.4) where we can quantify the true regret.
We compute the upper bound by Eq. (7) using three options: 100%, top 50% or top 20% of the
hyperparameters evaluated so far. The quality of the bound is measured by the difference to the true
regret. Results are shown in Fig. 2a, where the median of 50 replicates are shown as solid line and
the 20’th and 80’th quantiles are shown as dashed and dotted lines, respectively. We also show the
number of negative differences (the upper bound is smaller than the true regret) in the legend next to
the different options in the this figure.

From Fig. 2a, fitting a surrogate model with all the hyperparameter evaluations poses a challenge
for estimating the upper bound of the regret, which is aligned with recent findings on more efficient
BO with local probabilistic model, especially for high-dimensional problems (Eriksson et al., 2019).
Using the top 20% evaluations gives the best upper bound estimation quality in the median, at the
cost of the most under-estimations of the true regret (2553). Our method would stop too early due to
the under-estimation, which would negatively impact the quality measured by RYC scores, as shown
in Fig. 2b. As a result, we use top 50% hyperparameters evaluations for the upper bound estimation
throughout this paper.

0 100 200 300 400 500

BO iterations

10−6

10−4

10−2

100

102

u
p

p
er

b
ou

n
d

-
tr

u
e

re
gr

et

Top=100% (#negative=9)

Top=20.0% (#negative=2553)

Top=50.0% (#negative=537)

(a) Bound quality for using all, the top 50% and top
20% hyperparameter evaluations, measured by the
difference between upper bound and true regret.

0.001 0.0005 0.0001

threshold

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

R
Y

C

topq

0.2

0.5

(b) Box plots of RYC scores when using the top
50% and top 20% hyperparameter evaluations under
common thresholds.

Figure 2: The upper bound estimation quality is affected by the set of hyperparameters evaluations
used in the surrogate model training.

4.3 STANDARD BO WITH CROSS-VALIDATION

We use standard BO with matérn 5/2 kernel in the GP surrogate. The hyperparameters of the GP
are estimated with type II maximum likelihood estimation. We tune two algorithms: XGBoost
(XGB) with 9 hyperparameters and Random Forest (RF) with three hyperparameters on 19 small
tabular datasets using cross-validation. The detailed BO setting, hyperparameter search space of the
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algorithms, as well as the characteristics of the datasets can be found in Appendix A.1. We optimize
classification error or rooted mean square error for classification and regression datasets, respectively.

For our stopping method, we use Eq. (8) as our stopping threshold. We apply automatic termination
only after the first 20 iterations to ensure a robust fit of the surrogate models both for our method
and the baselines. We present the aggregated results across datasets for XGB and RF in Fig. 3 where
the mean (shown in the dots) and standard deviation (shown in the error bars in both RTC and RYC
dimensions) of RTC and RYC scores for different termination methods are shown.

From Fig. 3, a general trend on i in the convergence check baseline is visible: as i increases, the
speed-up decreases while the solution quality increases. The EI and PI based stopping criteria
behave similarly in terms of both RTC and RYC scores. The methods tend to stop BO very early,
thus leading to significant speed up. However, maybe not surprisingly, such an aggressive early
stopping leads to worse test performance on average. The convergence check baseline and our method
could achieve various trade-offs between speed and solution quality effectively by changing patience
hyperparameter or the post-correction term, and our method prioritizes quality over speed.

Furthermore, the standard deviations of the RYC and RTC scores also provide us with interesting
insights. The RYC variances of our method are usually smaller than the baselines ones, indicating
that we successfully maintain a high solution quality across a wide range of scenarios. On the other
hand, the RTC variances of our method are usually higher than the baselines, which highlights that
our method adapts to different scenarios rather than stopping BO at similar iterations.
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Figure 3: The mean and standard deviation of RYC and RTC scores for the compared automatic
termination methods when using cross validation in the hyperparameter evaluation when tuning XGB
(left) and RF (right). The mean value is shown as the large dot and the standard deviation is shown as
an error bar in both dimensions.

4.4 NEURAL HYPERPARAMETER AND ARCHITECTURE SEARCH

A main advantage or our termination criterion is that it is applicable for any iterative HPO method.
To demonstrate this, we apply it to several state-of-the-art Bayesian optimization methods from the
literature: TPE (Bergstra et al., 2011), BORE Tiao et al. (2021), GP-BO (Snoek et al., 2012) as well
as random search (RS) (Bergstra & Bengio, 2012). For each method and dataset, we perform 50
independent runs with a different seed.

We consider two popular tabular benchmark suites from the literature: NAS-HPO-Bench (Klein
& Hutter, 2019), which mimics the hyperparameter and neural architecture search of multi-layer
perceptrons on tabular regression datasets, and NAS-Bench-201 (Dong & Yang, 2020) for neural
architecture search on image classification datasets. Notice that for NAS-Bench-201, we used
validation metrics to compute RYC instead of test metrics, thus, no positive RYC scores are observed.
For a detailed description of these benchmarks we refer to the original paper. We consider the
following thresholds on the final regret {0.0001, 0.001, 0.01} in our experiments, corresponding to a
loss of performance of 0.01%, 0.1% and 1% compared to global optimum. Due to space constraints
we will only show results for BORE in Figure Fig. 4 and Fig. 5, respectively, and provide all other
results in Fig. 6 in the appendix.
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While no method Pareto dominates the others, our termination criterion shows a similar trend as in
Section 4.3 and tends to prioritise accuracy over speed. Users need to choose the threshold based on
their own preference with respect to the speed-accuracy tradeoff, i.e a higher threshold saves more
wall-clock time but potentially leads to a higher drop in performance. However, our criterion benefits
from an intuitive and interpretable threshold. We further show a distribution of true regrets at the
stopping iteration triggered by our method with the considered thresholds on HPO-Bench in Fig. 5d.

From Fig. 5d, with a high threshold of 0.01, all the experiments (4 datasets with 50 replicates) are
early stopped by our method and 41 (20%) experiments end up with true regret being higher than the
threshold. With a low threshold of 0.0001, 112 experiments are stopped and 12 (10.7%) experiments
end up with true regret being higher than the threshold. In short, our method achieves 80% to 90%
success rate of stopping the BO with true regret within the user-defined tolerance.
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Figure 4: The mean and standard deviation of RYC and RTC scores for considered automatic
termination methods for HPO-Bench datasets. The mean value is shown in the large dot and the
standard deviation is shown as an error bar in both dimensions.

For every method we aggregated the scores over datasets with other HPO optimizers in Fig. 6. We can
see that the speed up of the convergence check baseline is affected very mildly by the optimizers while
the RYC scores largely depend on the optimiser: RYC scores with random search are worse than
with BORE. In contrast, the RYC scores for our termination criterion are similar across optimisers,
especially for smaller thresholds. On the other hand, the speed up for a given threshold tends to vary.
This can be explained by the difference of the optimizer’s performance, for examples random search
is not as efficient as BORE, and hence the regret is mostly above the stopping threshold. In summary,
while convergence check baselines are by design robust in terms of time saved, our method is more
robust in terms of maintaining the solution quality.

4.5 OVERFITTING IN BO FOR HYPERPARAMETER OPTIMIZATION

Proposition 1 emphasises an important problem of BO-based HPO: while focusing (and minimizing)
the validation error, we cannot fully reduce the discrepancy between the validation and test errors.
Empirically, we show this might happen when correlation between the test and validation errors is
low, thus improvement in validation performance does not lead to the better test results. A particular
example of such low correlation in the small error region is presented in Fig. 8 (Appendix A.2) when
tuning XGB and Random Forest on tst-census dataset.
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Figure 5: Fig. (a) - (c), the mean and standard deviation of RYC and RTC scores for considered
automatic termination methods for NAS-Bench-201 datasets. Notice that validation metrics are
used in these experiments, thus no positive RYC scores are observed. The mean value is shown
in the big dot and the standard deviation is shown as error bar in both dimensions. In Fig. 5d, it
shows a distribution of true regrets at the stopping iteration triggered by our method with considered
thresholds for HPO-Bench. The number of stopped experiments and the number of “wrong” cases
where the true regret is larger than the threshold are shown in the legend in Fig. 5d.

In our experiments, a positive RYC score is an indicator of overfitting, showing that the test error at
the terminated iteration is lower than the test error in the final round. We observe positive RYC scores
in both Fig. 3 and Fig. 4, one with cross-validation on small datasets and one with medium-sized
datasets. Hence, we would like raise attention to the possible overfitting issue that occurs in HPO for
which our method can be used as a plugin to mitigate overfitting.

5 CONCLUSION

Despite the usefulness of hyperparameter optimizations (HPO), setting a budget in advance remains a
challenging problem. In this work, we propose an automatic termination criterion that can be plugged
into many common HPO methods. The criterion uses an intuitive and interpretable upper bound of
simple regret, allowing users explicitly control the accuracy loss. In addition, when cross validation
is used in the evaluations of hyperparameters, we propose to use an analytical threshold rooted from
the variance of cross validation results.

The experimental results suggest that our method can be robustly used across many HPO optimizers.
Depending on the user-defined thresholds, with 80% to 90% chance, our method achieves true regret
within that threshold, saving unnecessary computation and reducing energy consumption. We also
observe that overfitting exists in HPO even when cross-validation is used. We hope our work will
draw the attention of the HPO community to the practical questions of how to set budget in advance
and how to mitigate overfitting when tuning hyperparameters in machine learning.
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Ethics Statement In a broader context, we highlight that BO can reduce the computational cost
required to tune ML models, mitigating the electricity consumption and carbon footprint associated
with brute force techniques such as random and grid search. The automatic termination criterion we
presented in this work can have a positive societal impact by further reducing the cost of tuning ML
models. On the other hand, BO is a general methodology to optimize gradient-free functions and is
not limited to specific application domains. Our early-stopping approach does not decrease the risk
for misuse, calling for methods to enforce fairness constraints Perrone et al. (2021) as well as for care
at model-deployment time.

Reproducibility Statement To improve the reproducibility, the code to rerun the experiments can be
found at https://anonymous.4open.science/r/BO-early-stopping-555E, which will be
made publicly available after the paper is published. Besides, we also detail the experiments setting in relevant
aspects: the choices for BO are in Appendix A.1.1, the search spaces of the algorithms are in Appendix A.1.3
and the datasets sources and descriptions are in Appendix A.1.4.
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A APPENDIX

A.1 EXPERIMENTS SETTING

A.1.1 BO SETTING

We used an internal BO implementation where expected improvement (EI) together with Mat‘ern-52 kernel
in the GP are used. The hyperparameters of the GP includes output noise, a scalar mean value, bandwidths
for every input dimension, 2 input warping parameters and a scalar covariance scale parameter. The closest
open-source implementations are GPyOpt using input warped GP 1 or AutoGluon BayesOpt searcher 2. We
maximize type II likelihood to learn the GP hyperparameters in our experiments.

A.1.2 ALGORITHM

A.1.3 SEARCH SPACES FOR CROSS VALIDATION EXPERIMENTS

XGBoost (XGB) and RandomForest (RF) are based on scikit-learn implementations and their search spaces are
listed in Table 1.

A.1.4 DATASETS IN CROSS VALIDATION EXPERIMENTS

We list the datasets that are used in our experiments, as well as their characteristics and sources in Table 2.
For each dataset, we first randomly draw 20% as test set and for the rest, we use 10-fold cross validations for
regression datasets and 10-fold stratified cross validation for classification datasets. The actual data splits depend
on the seed controlled in our experiments. For a given experiment, all the hyperparameters trainings use the
same data splits for the whole tuning problem. For the experiments without cross-validation, we use 20% dataset
as validation set and the rest as training set.

A.2 DETAILED RESULTS

We first show the scatter plots of RTC and RYC scores for different automatic termination methods on HPO-
Bench-datasets in Fig. 6 and the results on NAS-Bench-201 in Fig. 7.

A.2.1 DETAILED NUMBERS OF RYC AND RTC SCORES

We report detailed RYC scores and RTC scores of different HPO automatic termination methods for the
experiments in the main text in Table 3, Table 4 and Table 5.

1https://github.com/SheffieldML/GPyOpt
2https://github.com/awslabs/autogluon
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Algorithm 1 BO for HPO with cross-validation and automatic termination

Require: ModelMγ parametrized by γ ∈ Γ , data {D1, . . . ,Dk} for k-fold cross-validation,
acquisition function α(γ)

1: Initialize y∗t = +∞ and Gt = {}
2: for t = 1, 2, . . . do
3: Sample γt ∈ arg maxγ∈Γ α(γ)
4: for i = 1, 2, . . . , k do
5: Fit the modelMγ(·;D−i), where D−i = ∪j 6=iDi
6: Evaluate the fitted model yit = 1

|Di|
∑

xi,yi∈Di

`(yi,Mγ(xi,D−i))
7: end for
8: Calculate the sample mean yt = 1

k

∑
k

yit,

9: if yt ≤ y∗t then
10: Update y∗t = yt and the current best γ∗t = γt
11: Calculate the sample variance s2

cv = 1
k

∑
i(yt − yit)2

12: Calculate the variance estimate Varf̂(γ∗t ) ≈
(

1
k + |Di|

|D−i|

)
s2

cv from Eq. (8)
13: end if
14: Update Gt = Gt−1 ∪ γt and y1:t = y1:t−1 ∪ yt
15: Update σt, µt with Eqs. (1) and (2)
16: Calculate upper bound r̄t := min

γ∈Gt

ucbt(γ)−min
γ∈Γ

lcbt(γ) for simple regret from Eq. (7)

17: if the condition r̄t ≤
√

Varf̂(γ∗t ) holds then
18: terminate BO loop
19: end if
20: end for
21: Output: γ∗t

Table 1: Search spaces description for each algorithm.

tasks hyperparameter search space scale

XGBoost

n_estimators [2, 29] log
learning_rate [10−6, 1] log

gamma [10−6, 26] log
min_child_weight [10−6, 25] log

max_depth [2, 25] log
subsample [0.5, 1] linear

colsample_bytree [0.3, 1] linear
reg_lambda [10−6, 2] log

reg_alpha [10−6, 2] log

RandomForest
n_estimators [1, 28] log

min_samples_split [0.01, 0.5] log
max_depth [1, 5] log

A.2.2 CORRELATION BETWEEN VALIDATION AND TEST METRICS

In Fig. 8, we show the correlation between validation and test metrics of hyperparameters when tuning XGB and
RF on tst-census dataset in Fig. 8.

A.2.3 THE CHOICE OF βt

High-probability concentration inequalities (aka confidence bounds) are important to reason about the unknown
objective function and are used for theoretically grounded convergence guarantees in some (GP-UCB-based) BO
methods (Srinivas et al., 2010; Ha et al., 2019; Kirschner et al., 2020; Makarova et al., 2021). There, βt stands
for the parameter that balances between exploration vs. exploitation and ensures the validity of the confidence
bounds. The choice of βt is then guided by the assumptions made on the unknown objective, for example, the
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dataset problem_type n_rows n_cols n_classes source

openml14 classification 1999 76 10 openml
openml20 classification 1999 240 10 openml
tst-hate-crimes classification 2024 43 63 data.gov
openml-9910 classification 3751 1776 2 openml
farmads classification 4142 4 2 uci
openml-3892 classification 4229 1617 2 openml
sylvine classification 5124 21 2 openml
op100-9952 classification 5404 5 2 openml
openml28 classification 5619 64 10 openml
philippine classification 5832 309 2 data.gov
fabert classification 8237 801 2 openml
openml32 classification 10991 16 10 openml
openml34538 regression 1744 43 - openml
tst-census regression 2000 44 - data.gov
openml405 regression 4449 202 - openml
tmdb-movie-metadata regression 4809 22 - kaggle
openml503 regression 6573 14 - openml
openml558 regression 8191 32 - openml
openml308 regression 8191 32 - openml

Table 2: Datasets used in our experiments including their characteristics and sources.
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Figure 6: Fig. (a) - (d), the mean and standard deviation of RYC and RTC scores for considered
automatic termination methods on HPO-Bench datasets using GP based BO (GP-BO), Random
Search (RS), TPE and BORE optimizers. The mean value is shown in the big dot and the standard
deviation is shown as error bar in both dimensions.

objective being a sample from a GP or the objective having the bounded norm in RKHS (more agnostic case
used in Section 3).
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Figure 7: Fig. (a) - (d), the mean and standard deviation of RYC and RTC scores for considered
automatic termination methods on NAS-Bench-201 datasets using GP based BO (GP-BO), Random
Search (RS), TPE and BORE optimizers. The mean value is shown in the big dot and the standard
deviation is shown as error bar in both dimensions.

RTC RYC
algo RF XGB RF XGB

Conv_10 0.840 0.841 -0.031 -0.051
Conv_30 0.686 0.666 -0.022 -0.026
Conv_50 0.498 0.504 -0.015 -0.021
EI_1e-08 0.896 0.850 -0.057 -0.052
EI_1e-12 0.895 0.779 -0.055 -0.047
EI_1e-16 0.893 0.718 -0.052 -0.045
PI_0.0001 0.898 0.875 -0.059 -0.059
PI_1e-08 0.895 0.814 -0.055 -0.052
PI_1e-12 0.894 0.739 -0.055 -0.044
Ours_0.21 0.318 0.144 -0.004 -0.003
Ours_0.5 0.580 0.224 -0.013 -0.006

Table 3: RTC and RYC scores for early stopping methods in cross validation benchmarks.

In our experiments, we follow the common practice of scaling down βt which is usually used to improve
performance over the (conservative) theoretically grounded values (see e.g., Srinivas et al. (2010); Kirschner
et al. (2020); Makarova et al. (2021)). Particularly, throughout this paper, we set βt = 2 log(|Γ|t2π2/6δ) where
δ = 0.1 and |Γ| is set to be the number of hyperparameters. We then further scale it down by a factor of 5 as
defined in the experiments in Srinivas et al. (2010). We provide an ablation study on the choice of βt in Fig. 9.
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RTC RYC
dataset naval parkinsons protein slice naval parkinsons protein slice

Conv_10 0.943 0.947 0.946 0.942 -0.605 -0.582 -0.117 -0.432
Conv_30 0.826 0.837 0.837 0.840 -0.064 -0.235 -0.021 -0.119
Conv_50 0.748 0.729 0.734 0.747 -0.038 -0.107 -0.008 -0.058
Ours_0.0001 0.790 0.018 0.198 0.822 -0.041 -0.012 -0.005 -0.072
Ours_0.001 0.910 0.038 0.271 0.934 -0.220 -0.031 -0.018 -0.281
Ours_0.01 0.941 0.901 0.906 0.953 -0.498 -0.378 -0.071 -0.466

Table 4: RTC and RYC scores for early stopping methods in HPO-Bench.

RTC RYC
dataset ImageNet cifar10 cifar100 ImageNet cifar10 cifar100

Conv_10 0.880 0.889 0.888 -0.034 -0.098 -0.097
Conv_30 0.612 0.611 0.606 -0.010 -0.019 -0.036
Conv_50 0.372 0.361 0.372 -0.004 -0.006 -0.014
Ours_0.0001 0.274 0.311 0.519 -0.002 -0.008 -0.026
Ours_0.001 0.377 0.622 0.582 -0.005 -0.023 -0.033
Ours_0.01 0.837 0.902 0.879 -0.022 -0.106 -0.099

Table 5: RTC and RYC scores for early stopping methods in NAS-Bench-201.

2 4 6 8 10 12 14

validation error

2

4

6

8

10

12

14

te
st

er
ro

r

XGB on tst-census

(a) Training XGB on test-census dataset

6.5 7.0 7.5 8.0 8.5

validation error

7.0

7.5

8.0

8.5

9.0

te
st

er
ro

r

RF on tst-census

(b) Training RF on test-census dataset.

Figure 8: We show validation error for training XGB (a) and RF (b) on tst-census dataset on
the x-axis and test error on the y-axis. In the low error region, the validation metrics are not well
correlated with the test metrics.

15



Under review as a conference paper at ICLR 2022

0 100 200 300 400 500
BO iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

up
pe

r b
ou

nd
 - 

tru
e 

re
gr

et

BORE on Naval dataset
t=#HP (#negative=537)
t = 0.2 (#negative=6654)

Figure 9: The differences between upper bound and true regret for every BO iterations when using
BORE to tune an MLP on the Naval dataset. The number of negative differences (the upper bound is
smaller than the true regret) are shown in the legend next to the two options for computing βt.
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