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Abstract

We study the problem of synthesizing programs that include machine learning com-
ponents such as deep neural networks (DNNs). We focus on statistical properties,
which are properties expected to hold with high probability—e.g., that an image
classification model correctly identifies people in images with high probability.
We propose novel algorithms for sketching and synthesizing such programs by
leveraging ideas from statistical learning theory to provide statistical soundness
guarantees. We evaluate our approach on synthesizing list processing programs
that include DNN components used to process image inputs, as well as case studies
on image classification and on precision medicine. Our results demonstrate that
our approach can be used to synthesize programs with probabilistic guarantees.

1 Introduction

Machine learning has recently become a powerful tool for solving challenging problems in artificial
intelligence. As a consequence, there has been a great deal of interest in incorporating machine
learning components such as deep neural networks (DNNs) into real-world systems, ranging from
healthcare decision-making [1, 2, 3], to robotics perception and control [4, 5]. In these domains,
there is often a need to ensure correctness properties of the overall system. To reason about such
properties, we need to reason about properties of the incorporated machine learning components,
focusing on statistical properties that should hold with high probability with respect to the distribution
of inputs—e.g., we may want to ensure that the DNN detects 95% of pedestrians.

We propose a framework for synthesizing programs that incorporate machine learning components
while satisfying statistical correctness properties. Our framework consists of two components. First,
it includes a novel statistical sketching algorithm, which builds on the concept of sketching [6] to
provide statistical guarantees. At a high level, it takes as input a sketch (i.e., a program with certain
parts left unspecified), annotated with specifications encoding statistical properties that are expected
to hold, as well as holes corresponding to real-valued thresholds for making decisions (e.g., the
confidence level at which to label an image as containing a pedestrian or to diagnose a patient with a
disease). Since statistical properties depend on the data distribution, it additionally takes as input
a labeled dataset of training examples (separate from those used to train the DNNs). Then, our
algorithm selects values to fill the holes in the sketch so all the given specifications are satisfied.

Second, our framework uses this sketching algorithm in conjunction with a syntax-guided synthe-
sizer [7] to synthesize programs in a specific domain that provably satisfy statistical guarantees. Our
strategy is to first synthesize a sketch whose specifications encode overall correctness, and then apply
our sketching algorithm to fill the holes in the sketch so these specifications are satisfied.

We have implemented our approach as STATCODER. We evaluate its ability to synthesize list
processing programs satisfying statistical properties, where the program inputs are images, and DNN
components are used to classify objects in these images. We also perform three case studies of our
sketching algorithm: one on ImageNet classification and another on a medical prediction task.
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2 Overview

Here, we provide an overview of our approach; we give details on our sketch language in Section A,
our sketching algorithm in Section C, and our synthesis algorithm in Section D.

Statistical sketching. We assume given a DNN component f : X → [0, 1] that, given an image
x ∈ X , predicts whether x contains a person. In particular, f(x) is a score indicating its confidence
that x contains a person; higher score means more likely to contain a person. We do not assume
the the scores are reliable—e.g., they may be overconfident. We assume that the ground truth label
y∗ ∈ Y = {0, 1} indicates whether x contains a person. For example, f(x) may be the probability
that an image contains a person according to a pretrained DNN such as ResNet [8]; then, the goal is
to tailor this DNN to the current task in a way that provides correctness guarantees.

In particular, our goal is to choose a threshold c ∈ [0, 1] such that the program returns that the given
image x contains a person if f(x) has confidence at least 1− c—i.e., f(x) ≥ 1− c, or equivalently,
1− f(x) ≤ c. Furthermore, we want c to be correct in the following sense:

(y∗ = 1)⇒ (1− f(x) ≤ c)

That is, if the image contains a person (i.e., y∗ = 1), then the classifier should say so (i.e., 1−f(x) ≤
c). We do not require the converse—i.e., the program may incorrectly conclude that an image contains
a person even if it does not. That is, we want soundness (i.e., no false negatives) but not necessarily
completeness (i.e., no false positives). However, we cannot guarantee soundness for every x; instead,
we guarantee it with high probability—i.e., we say c is ε-approximately correct if

Pp(x,y∗)
(
y∗ = 1⇒ 1− f(x) ≤ c

)
≥ 1− ε. (1)

In adddition, our algorithm relies on training examples ~z = {(x1, y∗1), ..., (xn, y
∗
n)} to choose c,

where (xi, y
∗
i ) ∼ p are i.i.d. samples from p(x, y∗). Thus, as with probably approximately correct

(PAC) bounds from statistical learning theory [9, 10], we need to additional allow a possibility that
our algorithm fails altogether due to the randomness in our training examples ~z. In particular, consider
an algorithm A that chooses c = A(~z); then, we say A is (ε, δ)-PAC if

Pp(~z)
(
A(~z) is ε-approximately correct

)
≥ 1− δ

where p(~z) is the distribution over the training examples ~z, and δ ∈ R>0 is another user-provided
confidence level. Then, given the sketch, a value δ ∈ R>0, and a dataset ~z, our algorithm synthesizes
a value of c to fill ??1 such that c is ε-approximately correct with probability at least 1− δ.

Our sketching algorithm formulates the problem of synthesizing c as a binary classification problem.
In particular, for each training example (x, y∗) ∈ X × Y , it constructs the value

z =

{
1− f(x) if y∗ = 1

−∞ otherwise.

Note that for a given choice of c, the value w = 1(z ≤ c) indicates whether c is correct for (x, y∗)—
either y∗ = 0, in which case since z = −∞ so the antecedent y∗ = 1 in (1) trivially holds, or y∗ = 1,
in which case z = 1− f(x) and w indicates whether the consequent of (1) holds.

Thus, thinking of z as a random function of (x, y∗), our goal is to choose c such that Pp(z)(z ≤ c) ≥
1− ε. In other words, c can be thought of as a threshold in a binary classification problem, where the
input is z and the desired label is always w = 1. The difference from typical binary classification
is that we do not want to minimize the number of errors; instead, our goal is to minimize c subject
to a constraint on the error rate—i.e., we want the most optimistic value of c that satisfies the PAC
guarantee. In Section C, we provide an algorithm for solving this problem with PAC guarantees.

Synthesis algorithm. Next, suppose we want to synthesize a program that counts the number of
people in a list of images ` = (x1, ..., xn). Intuitively, we can do so by writing a simple list processing
program around our DNN for detecting people. In particular, letting

(predictperson x) = 1(1− f(x) ≤ ??)

be our DNN component, where the detection threshold has been left as a hole, then the sketch

P̃ex = (fold + (map predictperson `) 0)

2



counts the number of people in `. Given a few input-output examples along with the ground truth
labels for each image, we can use a standard enumerative synthesizer to compute the sketch P̃ex,
assuming predictperson returns the ground truth label. In particular, this sketch has a single hole in
the DNN component predictperson that remains to be filled.

Note that P̃ex evaluates correctly if predictperson returns the ground truth label, but in general, it may
make mistakes. Thus, the correctness property for the synthesized program Pex needs to account
for the possibility that predictperson may return incorrectly. Mirroring the correctness property for
a single prediction, suppose we want a program Pex that conservatively overestimates the number
of people in `.1 In particular, given confidence levels ε, δ ∈ R>0, we say a completion Pex of P̃ex is
ε-approximately correct if

Pp(α)(JPexK` ≥ y∗) ≥ 1− ε,

where α = (`, y∗) is an example, and JP K` denotes the output of running program P on input `.
Then, we say our synthesis algorithm is (ε, δ)-probably approximately correct (PAC) if

Pp(~α)(A(P̃ex, ~α) is ε-approximately correct) ≥ 1− δ,

where Pex = A(P̃ex, ~α) is the program synthesized using our algorithm and training examples ~α.

Using our statistical sketching algorithm, we can provide (ε′, δ′)-PAC guarantees on predictperson
for any ε′, δ′ ∈ R>0; thus, the question is how to choose (i) the appropriate specification, (ii) the
parameters of this specification, and (iii) the confidence levels ε′, δ′. These choices depend on the
specification that we want to ensure for the synthesized program Pex. In our example, we can use the
specification above—i.e., that predictperson returns 1 with high probability if there is a person:

(predictperson x) = 1(1− f(x) ≤??) {y∗ = 1}|ε′ .

In general, the specification on predictperson may have additional parameters (in particular, for
real-valued predictions, an error tolerance e).

Next, we need to choose ε′, δ′. While there is only one hole, predictperson is executed multiple times
(assuming length(`) > 1). We need to choose ε′ and δ′ so that with high probability, predictperson is
correct for all applications. For simplicity, we assume given an upper bound N ∈ N on the maximum
possible length of ` (we discuss how we might remove this assumption in Section E). Given N , we
take ε′ = ε/N and δ′ = δ/N ; then, we use our sketching algorithm to synthesize c to fill the hole in
predictperson. By a union bound, for a given list `, all applications of predictperson are correct with
probability at least 1− ε, and this property holds with probability at least 1− δ. Under this event, Pex
returns correctly—i.e., Pex satisfies the desired (ε, δ)-PAC guarantee.

3 Evaluation

We provide partial experimental results here; see Section F for details and additional results.

Experimental setup. We consider synthesizing programs that operate over the predictions made by a
state-of-the-art DNN for object detection. We assume given a DNN component f̂ that given an image
x, is designed to detect people and cars in x. We use a pretrained state-of-the-art object detector
called Faster R-CNN [4] available in PyTorch [11], tailored to the COCO dataset [12], which is a
dataset of real-world images containing people, cars, and other objects. There are multiple variants of
Faster R-CNN; we use the most accurate one, X101-FPN with 3× learning rate schedule.

We represent this DNN as a component f̂ : X → Y = D∗ × R, where f̂(x) = (ŷ(x), p̂(x)) consists
of a list of detections d ∈ ŷ(x) along with a correctness score p̂(x) that the prediction is correct. Each
detection d ∈ D = R2 ×Z is itself a tuple d = (b, z) including the position b and predicted category
of the object. The ground truth label y∗ for an image x is a list of detections d ∈ y∗. In general, we
cannot expect to get a perfect match between the predicted bounding boxes and the ground truth ones.

1In Section D, our synthesis algorithm is presented for the case where it returns the correct answer or
“unknown” with high probability, but as we discuss in Section E, it can easily be modified to return an overestimate
of the correct answer.
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Task ∅ Rate Failure Rate
STATCODER Naïve STATCODER Naïve

count number of people in x 0.054 0.901 0.124 0.003
check if x contains a person 0.054 0.901 0.124 0.003
count people near center of x 0.290 0.901 0.032 0.003
find people near a car 0.901 1.000 0.003 0.000
minimum distance from person to center of x 0.149 0.901 0.023 0.000

average 0.290 0.921 0.061 0.002

Table 1: We show results on synthesizing list processing programs over object detection. For each
task, we show the “∅ Rate” (i.e., how often the program returns “unknown”), and the “Failure Rate”
(i.e., how many errors the program makes). The desired PAC parameters are ε = δ = 0.2.

Typically, two detections d, d∗ match, denoted ‖d− d∗‖ ≤ e, where e is a specified error tolerance, if
the distance between their centers satisfies ‖b− b∗‖∞ ≤ e. Furthermore, we write ‖ŷ(x)− y∗‖ ≤ e
if |ŷ(x)| = |y∗| and there exists a one-to-one correspondence between d ∈ f̂(x) and d∗ ∈ y∗ such
that ‖d− d∗‖ ≤ e. Then, we define predict : X → (Y ∪∅) by

(predict x) = (if p̂(x) ≥??c {‖ŷ(x)− y∗‖ ≤??e}⇒??ε then ŷ(x) else ∅).

In other words, the specification says that a correct prediction is if the error tolerance is below a level
??e to be specified. Thus, given e and ε to fill ??e and ??ε, respectively, our sketching algorithm
synthesizes a threshold c to fill ??c in a way that guarantees that this specification holds. Then,
predict returns ŷ(x) if the DNN is sufficiently confident in its prediction, and ∅ otherwise. For
example, if a robot acting in the world is using results from the program to navigate, then it can act
conservatively (e.g., safely come to a stop) when the program returns ∅ to ensure safety; alternatively,
it might fall back on a more accurate but computationally expensive model to make predictions.

We use our synthesis algorithm in conjunction with this prediction component and a standard domain-
specific language (DSL) of list processing programs, and PAC parameters ε = δ = 0.2. We use
n = 1000 COCO validation set images for synthesis, and the remaining 1503 for evaluation.

We compare to a baseline that uses a naïve statistical estimator to synthesize c instead of statistical
sketching. At a high level, it uses the more traditional method of chooses c to minimize the empirical
error rate, whereas our algorithm minimizes c subject to a constraint on the error rate. We evaluate
our approach on synthesizing five programs. For the program synthesized using each approach, we
report the following metrics: (i) the ∅ rate—i.e., The rate at which P̄ returns ∅, and (ii) the failure
rate—i.e., the rate at which P̄ makes mistakes.

Results. Results are shown in Table 1. Both STATCODER and the baseline always achieve the desired
failure rate bound of ε = 0.2. However, STATCODER outperforms the baseline by a large margin in
terms of ∅ rate, since it uses a learning algorithm tailored to our setting. These results demonstrate
the effectiveness of STATCODER at synthesizing accurate programs while satisfying a PAC guarantee.

4 Conclusion

We have proposed algorithms for synthesizing machine learning programs that come with PAC
guarantees. Our technique leverages novel statistical learning bounds to achieve these guarantees. We
have empirically demonstrated how our approach can be used to synthesize list processing programs
that manipulate images using DNN components while satisfying PAC guarantees.
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P ::= c | x | f(P, ..., P )

| φ(P, c) {Q}ωε | φ(P, ??) {Q}
ω
ε | φ(P, c) {Q}

ω
??

Q ::= c | x | y | f(Q, ..., Q)

JcK∗α = c

JxK∗α = α(x)

JyK∗α = α(y)

Jf(P, ..., P )K∗α = f(JP K∗α, ..., JP K∗α)

Jf(Q, ..., Q)K∗α = f(JQK∗α, ..., JQK∗α)

Jφ(P, c) {Q}ωε K∗α = JQK∗α

JcKβ = c

JxKβ = β(x)

Jf(P, ..., P )Kβ = f(JP Kβ , ..., JP Kβ)

Jφ(P, v) {Q}ωε Kβ = 1(JP Kβ > c)

Figure 1: Syntax (left), train semantics (right, top), and test semantics (right, bottom). The production
rules in the syntax are implicitly universally quantified over constant values c ∈ C, input variables
x ∈ X , ground truth input variables y ∈ Y , components f ∈ F where f : Ck → C, ε ∈ R>0,
and ω ∈ {|,⇒}. The distinguished component φ ∈ F is a function φ : R2 → R defined by
φ(z, t) = 1(z ≤ t).

A Sketch Language

In this section, we describe the syntax and semantics of our sketch language, as well as the desired
correctness properties we expect that synthesized programs should satisfy.

Syntax. Our sketch language is shown in Figure 1. Intuitively, in the expression φ(P, c) {Q}ωε , Q is
a specification that we want to ensure holds, P is a score (intuitively, it should indicate the likelihood
that Q holds, but we make no assumptions about it), c is a threshold below which we consider Q
to be satisfied, ε is the allowed failure probability, and ω indicates whether we want a conditional
guarantee (i.e., ω = |, the guarantee (1)) or implication guarantee (i.e., ω =⇒, the guarantee (??)).
We assume that P evaluates to a value in R, c ∈ R, and Q evaluates to a value in {0, 1}. Note that Q
is itself a program; unlike programs P , it can use ground truth inputs y. Finally, either c and ε in this
expression can be left as a hole ?? (but not both simultaneously).

We say P is complete if it contains no holes and partial otherwise. We use P to denote the space
of programs, P̄ ⊆ P to denote the space of complete programs, and P̄ ∈ P̄ to denote a complete
program. For P ∈ P , we use Φ(P ) to denote the expressions φ(P ′, c) {Q}ωε in P (including
cases where c or ε is a hole), Φc??(P ) ⊆ Φ(P ) to denote the expressions φ(P ′, ??) {Q}ωε in P ,
Φε??(P ) ⊆ Φ(P ) to denote the expressions φ(P ′, c) {Q}ω?? in P , and Φ??(P ) = Φc??(P ) ∪ Φε??(P ).

Semantics. We define two semantics for programs P , shown in Figure 1:

• Train semantics: Given a training valuation α ∈ A, where α : X ∪ Y → C maps both
inputs and ground truth inputs y to values, the train semantics J·K∗α evaluate Q instead of
φ(P, c). Since they ignore φ, they can be applied to both partial and complete programs.

• Test semantics: Given a test valuation β ∈ B, where β : X → C maps inputs to values, the
test semantics J·Kβ evaluate φ(P, c) instead of Q. They only apply to complete programs.

Correctness properties. We define what it means for a complete program to be correct—i.e., satisfies
its specifications. We begin with correctness of a single specification.

Definition A.1. Given a distribution p(α) over test valuations α ∈ A, φ(P̄ , c) {Q}|ε is approximately
sound if it satisfies the conditional guarantee2

Pp(α)
(
Jφ(P̄ , c) {Q}ωε Kα

∣∣ Jφ(P̄ , c) {Q}ωε K∗α
)
≥ 1− ε,

and {Q}⇒ε is approximately sound if it satisfies the implication guarantee

Pp(α)
(
Jφ(P̄ , c) {Q}ωε K∗α ⇒ Jφ(P̄ , c) {Q}ωε Kα

)
≥ 1− ε.

This property can be thought of as probabilistic soundness; it says that we should have φ(P̄ , c)⇒ Q
with high probability, which means that φ(P̄ , c) is a sound overapproximation of Q.

Definition A.2. A complete program P̄ is approximately correct (denoted P̄ ∈ P̄∗) if every expres-
sion φ(P̄ ′, c) {Q}ωε in P̄ is approximately sound.

2Note that since α includes valuations of x ∈ X , we can use it in conjunction both train semantics and test
semantics.
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B Statistical Verification

We describe our algorithm for verifying a complete program. Our algorithm (Algorithm 1) takes as
input a complete program P̄ , training valuations ~α = (α1, ..., αn), where α1, ..., αn ∼ p are i.i.d.
samples, and a confidence level δ ∈ R>0, and outputs a value A(P̄ , ~α) ∈ {0, 1} indicating whether
P̄ is approximately complete, which is correct with probability at least 1− δ with respect to p(~α).

Our algorithm is based on statistical verification [13, 14, 15]. These algorithms leverage concentration
inequalities from probability theory to provide high-probability correctness guarantees. Concentration
inequalities are theorems that provide rigorous bounds on the rate of convergence of statistical
estimators. For instance, consider a Bernoulli distribution p = Bernoulli(µ) with unknown mean
µ. Given samples z1, ..., zn ∼ p, Hoeffding’s inequality [16] says that the empirical mean µ̂(~z) =
n−1

∑n
i=1 zi converges to µ:

Pp(~z)
(
|µ̂(~z)− µ| ≤ ε

)
≥ 1− δ where δ = 2e−2nε

2

, (2)

i.e., µ̂(~z) is a good approximation of µ with high probability.

In our setting, given training valuation α and a specification E = φ(P̄ ′, c) {Q}ωε in P̄ , we let
zα = JEKα and z∗α = JEK∗α. Then, ε-approximate soundness of E is equivalent to µ = Pp(α)(zα |
z∗α) ≥ 1− ε if ω = |, or µ = Pp(α)(z∗α ⇒ zα) ≥ 1− ε if ω =⇒. That is, ε-approximate soundness
is equivalent to µ ≥ 1− ε, where µ is the mean of a Bernoulli random variable zα that is a function of
a random variable α with distribution p(α | z∗α) (if ω = |) or the mean of a Bernoulli random variable
z∗α ⇒ zα that is a function of α with distribution p(α) (if ω = ⇒). However, zα is potentially a
complicated function of α and p(α) is unknown, so µ is hard to compute directly. Instead, given i.i.d.
samples α1, ..., αn ∼ p(α), we can construct the samples zα1

, ..., zαn and z∗α1
, ..., z∗αn and use them

estimate µ:

µ̂(~α) =

{∑n
i=1 zαi∧z

∗
αi∑n

i=1 z
∗
αi

if ω = |∑n
i=1 z

∗
αi ⇒ zαi if ω =⇒ .

Then, we can use (2) to bound the error of µ̂(~α)—e.g., if µ̂(~α) ≥ 1− ε
2 and |µ̂(~α)− µ| ≤ ε

2 with
probability at least 1− δ, then µ ≥ 1− ε with probability at least 1− δ. However, this approach is
inefficient since Hoeffding’s inequality is not tight for our setting. Instead, our verification algorithm
(Section B.2) leverages a concentration inequality tailored to our setting (Section B.1). Finally, we
disucss how our approach can be used in the context of runtime monitoring (Section B.3).

B.1 A Concentration Bound

Problem formulation. Consider a Bernoulli distribution p = Bernoulli(µ) with unknown mean
µ ∈ [0, 1]. Given ε ∈ R>0, our goal is to determine whether µ ≥ 1− ε. For instance, a sample z ∼ p
may indicate a desired outcome (e.g., a correctly classified input), in which case µ is the correctness
rate and ε is a desired bound on the error rate; then, our goal is to check whether the µ meets the
desired error bound. More precisely, we want to compute ψ ∈ {0, 1} such that

ψ ⇒ (µ ≥ 1− ε). (3)

That is, ψ is a sound overapproximation of the property µ ≥ 1− ε (i.e., ψ = 1 implies µ ≥ 1− ε).
To compute such a ψ, we are given a training set of examples ~z = (z1, ..., zn) ∈ {0, 1}n, where
z1, ..., zn ∼ p are n i.i.d. samples from p. An estimator is a mapping ψ̂ : Rn → R. We say such an
estimator is approximately correct if it satisfies the condition (3)—i.e., ψ̂(~z)⇒ (µ ≥ 1− ε).

In general, we cannot guarantee ψ̂(~z) is approximately correct due to the randomness in the training
examples ~z.3 Thus, we allow a probability δ ∈ R>0 that ψ̂(~z) is not approximately correct.

Definition B.1. Given ε, δ ∈ R>0, ψ̂ is (ε, δ)-PAC if Pp(~z)
(
ψ̂(~z)⇒ (µ ≥ 1− ε)

)
≥ 1− δ.

In other words, ψ̂(~z) is approximately correct with probability at least 1 − δ according to the
randomness in p(~z). Our goal is to construct an (ε, δ)-PAC estimator ψ̂(~z).

3Note that ψ̂ is a deterministic function; the randomness of ψ̂(~z) is entirely due to the randomness in the
training data ~z.
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Algorithm 1 Use statistical verification to check if P is approximately correct.
procedure VERIFY(P̄ , ~α, δ)

m← |Φ(P )|
for φ(P̄ ′, c) {Q}ωε ∈ Φ(P̄ ) do

Compute ~z~α according to (5)
Compute ψ̂(~z~α) according to (4) with (ε, δ/m)

if ¬ψ̂(~z~α) then
return false

end if
end for
return true

end procedure

Estimator. Given ε, δ ∈ R>0, consider the estimator

ψ̂(~z) = 1(L(~z) ≤ k) where k = max

{
h ∈ N

∣∣∣∣∣
h∑
i=0

(
n

i

)
εi(1− ε)n−i ≤ δ

}
(4)

and where L(~z) =
∑n
z∈~z(1 − z). Intuitively, L(~z) counts the number of errors, so we conclude

the desired property holds as long as L(~z) is below a threshold k. This threshold is chosen so ψ̂ is
(ε, δ)-PAC—in particular, δ upper bounds the CDF of the binomial distribution evaluated at k.

To compute the solution k in (4), we start with h = 0 and increment it until it no longer satisfies the
condition. To ensure numerical stability, this computation is performed using logarithms. Note that k
does not exist if the set inside the maximum in (4) is empty; in this case, we choose ψ̂(~z) = 0, which
trivially satisfies the PAC property. We have the following; see Section H.1 for a proof:

Theorem B.2. The estimator ψ̂ is (ε, δ)-PAC.

B.2 Verification Algorithm

Problem formulation. A verification algorithm A : P̄ × An → {0, 1} takes as input a complete
program P̄ ∈ P̄ , and a set of test valuations ~α = (α1, ..., αn) ∈ An, where α1, ..., αn ∼ p are i.i.d.
samples from a distribution p(α). For example, p(α) may be the distribution of input images to an
image classifier encountered while running in production, that have been manually labeled using
crowdsourcing. Then, A(P̄ , ~α) ∈ {0, 1} should indicate whether P̄ is approximately sound—i.e.,
whether every expression φ(P̄ ′, c) {Q}ωε ∈ Φ(P̄ ) is approximately sound. We say that A is sound if
A(P̄ , ~α)⇒ P̄ ∈ P̄∗. As before, we cannot guarantee that A is sound; instead, given δ ∈ R>0, we
want this property to hold with probability at least 1− δ according to p(~α).

Definition B.3. A verification algorithm A : P̄ × An → {0, 1} is δ-probably approximately sound
if for all P̄ ∈ P̄ , Pp(~α)

(
A(P̄ , ~α)⇒ P̄ ∈ P̄∗

)
≥ 1− δ.

Algorithm. Our verification algorithm is shown in Algorithm 1. It check approximate correctness of
P̄ by checking approximate soundness of each φ(P̄ ′, c) {Q}ωε ∈ Φ(P̄ ). It does so by allocating a
δ/m probability of failure for each expression, where m = |Φ(P̄ )| is the number of such expressions.

Next, we describe how our algorithm checks approximate soundness for a single expression
φ(P̄ ′, c) {Q}ωε . Given a single test valuation α ∼ p, consider the indicators

zα = Jφ(P̄ ′, c) {Q}ωε Kα and z∗α = Jφ(P̄ ′, c) {Q}ωε K∗α.

That is, zα indicates whether φ(P̄ ′, c) holds, and z∗α indicates whether Q holds. Then, φ(P̄ ′, c) {Q}
is approximately sound if and only if

Pp(α)(zα | z∗α) ≥ 1− ε if ω = | or Pp(α)(z∗α ⇒ zα) ≥ 1− ε if ω =⇒ .

Next, note that zα ∈ {0, 1} is a Bernoulli random variable with mean µ = Pp(α)(zα | z∗α) (if ω = |)
or µ = Pp(α)(z∗α ⇒ zα) (if ω = ⇒). Thus, given ~α = (α1, ..., αn), where α1, ..., αn ∼ p are i.i.d.
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samples,

~z~α =

{
{zα | α ∈ ~α ∧ z∗α} if ω =|
{z∗α ⇒ zα | α ∈ ~α} if ω =⇒ (5)

is a vector of i.i.d. samples from Bernoulli(µ). Then, the estimator ψ̂(~z~α) in (4) with parameters
(ε, δ/m) indicates whether µ ≥ 1 − ε with high probability—i.e., if ψ̂(~z~α) = 1, then µ ≥ 1 − ε
holds with probability at least 1− δ/m according to p(~α). The following guarantee follows from
Theorem B.2 by a union bound over expressions in Φ(P̄ ):
Theorem B.4. Algorithm 1 is δ-probably approximately sound.

B.3 Runtime Monitoring

One challenge is that the specifications considered by our framework depend on the distribution of
the data. As a consequence, if this distribution changes, then our correctness guarantees may no
longer hold. This potential failure mode, called distribution shift [17, 18], is a major challenge for
machine learning components. A key feature of our framework is that it can be used not only to
sketch or verify the program before it is deployed, but also to continuously re-sketch the program
based on feedback obtained in production to account for potential distribution shift. The primary
requirement for using this approach is the need for feedback—i.e., continuing to collect labeled
examples in production. In some settings, this kind of feedback is naturally available; otherwise, a
solution is to manually label a small fraction of examples—e.g., using crowdsourcing [19].

Given ground truth labels for the input examples encountered in production, our verification algorithm
can be straightforwardly adapted to the runtime setting. In particular, our system collects examples
during execution; once it collects at least N examples, it re-runs verification or sketching. It can
do so after every subsequent example, or every K examples. Finally, we may want to discard an
examples after T steps, both for computational efficiency and to account for the fact that the data
distribution may be shifting over time so older examples are less representative. Here, K,N, T ∈ N
are hyperparameters. Finally, we note that our statistical sketching algorithm can similarly be adapted
to the runtime setting.

C Statistical Sketching

Next, we describe our algorithm for synthesizing values c and ε to fill holes in a given sketch. Our
algorithm, shown in Figure 2, takes as input a sketch P , training valuations ~α = (α1, ..., αn), where
α1, ..., αn ∼ p are i.i.d. samples, and a confidence level δ ∈ R>0, and outputs a complete program
A(P̄ , ~α) ∈ P̄∗ that is approximately correct with probability at least 1− δ with respect to p(~α).

Our algorithm synthesizes c and ε in a bottom-up fashion, so that all subtrees of the current expression
are complete. Our sketching algorithm uses probabilistic bounds in conjunction with the given
samples ~α to provide guarantees. Intuitively, since we are estimating parameters from data, our
problem is a statistical learning problem [9], so we can leverage techniques from statistical learning
theory to provide guarantees on the synthesized sketch.

For synthesizing c—i.e., an expression E = φ(P, c) {Q}ωε . Letting zα = JP Kα ∈ R and z∗α = JEK,
then c is ε-approximately correct if zα ≤ c conditioned on z∗α = 1 (if ω = |) or whenever z∗α = 1
(if ω = ⇒) with probability at least 1 − ε with respect to p(α). In either case, synthesizing c is
equivalent to a binary classification problem with labels z∗α, with a one-dimensional hypothesis space
c ∈ R and a one-dimensional feature space zα ∈ R. Furthermore, this problem is simple—c is a
linear classifier. Thus, we could use standard learning theory results to provide guarantees.

However, we can obtain sharper guarantees using a learning theory bound specialized to our setting.
We build on a bound based on [10] (Section C.1) tailored to the realizable setting, where there
exists a classifier that makes zero mistakes. Our setting is realizable, since c = ∞ always makes
zero mistakes. The main difference is that their bound always chooses a classifier that makes zero
mistakes, which can be overly conservative. We prove a novel generalization bound that allows for
some number k of mistakes that is a function of ε, δ, and n.

Synthesizing a value ε is a bit different, since we are not classifying examples that depend on a
single α, but examples that depend on ~α. Thus, we can formulate it as a learning problem where the
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examples are ~α; however, this approach is complicated due to the need to figure out how to divide
our given samples ~α into multiple sub-examples ~α1, ...~αn. Instead, we use an approach based on
Hoeffding’s inequality [16] (Section C.2) to infer ε. In particular, Hoeffding’s inequality gives us a
lower bound on the correctness rate Pp(α)(zα | z∗α) ≥ 1− ε (if ω = |) or Pp(α)(z∗α ⇒ zα) ≥ 1− ε
(if ω =⇒), and we can simply use this ε.

Finally, our sketching algorithm uses the above two approaches to synthesize c and ε (Section C.3).

C.1 A Learning Theory Bound

Problem formulation. We consider a unary classification problem with one-dimensional feature and
hypothesis spaces. In particular, given a probability distribution p(z) over z ∈ R (the feature), the
goal is to select the smallest possible threshold t ∈ R (the hypothesis) such that

Pp(z)(z ≤ t) ≥ 1− ε (6)

for a given ε ∈ R>0. That is, we want the smallest possible t such that z ∈ (−∞, t] with probability
at least 1− ε according to p(z). We denote the subset of t that satisfies (6) by

Tε =
{
t ∈ R | Pp(z)(z ≤ t) ≥ 1− ε

}
.

To compute such a t, we are given a training set of examples ~z = (z1, ..., zn) ∈ Rn, where
z1, ..., zn ∼ p are n i.i.d. samples from p. An estimator t̂ is a mapping t̂ : Rn → R. Then, the
constraint (6) is t̂(~z) ∈ Tε; we say such a t̂ is ε-approximately correct—i.e., it is correct for “most”
samples z ∼ p.

In general, we are unable to guarantee that t̂ is approximately correct due to the randomness in
the training examples ~z. Thus, we additionally allow for a small probability δ ∈ R>0 that t̂ is not
approximately correct.
Definition C.1. Given ε, δ ∈ R>0, t̂ is (ε, δ)-PAC if Pp(~z)(t̂(~z) ∈ Tε) ≥ 1− δ.

That is, t̂(~z) is approximately correct with probability at least 1− δ according to p(~z). Our goal is to
construct an (ε, δ)-PAC estimator t̂(~z) that tries to minimize t̂(~z).

Estimator. Given ε, δ ∈ R>0, consider the estimator

t̂(~z) = inf
t∈R

{
t ∈ R

∣∣ L(t;~z) ≤ k
}

+ γ(~z) where k = max

{
h ∈ N

∣∣∣∣∣
h∑
i=0

(
n

i

)
εi(1− ε)n−i ≤ δ

}
(7)

where the empirical loss is L(t;~z) =
∑
z∈~z 1(z > t), and where γ(~z) > 0 is an arbitrary positive

function. Intuitively, the empirical loss counts the number of mistakes that t makes on the training
data—i.e., z ∈ ~z such that z 6∈ (−∞, t]. To compute the solution k in (7), we start with h = 0 and
increment it until it no longer satisfies the condition. To ensure numerical stability, this computation
is performed using logarithms. Note that k does not exist if the set inside the maximum in (7) is
empty; in this case, we choose ψ̂(~z) = 0, which trivially satisfies the PAC property. To compute
t̂(~z), we sort the training examples z1, ..., zn by magnitude, so z1 ≥ z2 ≥ ... ≥ zn. Finally, zk+1

solves the minimization problem in (7), so t̂(~z) = zk+1 + γ(~z). If k does not exist, then we choose
t̂(~z) =∞, which trivially satisfies the PAC property. We have the following; see Section H.2 for a
proof:
Theorem C.2. The estimator t̂(~z) in (7) is (ε, δ)-PAC.

C.2 A Concentration Bound

Problem formulation. Consider a Bernoulli distribution p = Bernoulli(µ) with unknown mean
µ ∈ [0, 1]. Our goal is to compute a lower bound ν ∈ [0, 1] of µ—i.e., µ ≥ ν. For example, if µ is the
error rate of a classifier, then ν is a lower bound on this rate. To compute ν, we are given a training
set ~z = (z1, ..., zn) ∈ {0, 1}n, where z1, ..., zn ∼ p are n i.i.d. samples from p. An estimator is a
mapping ν̂ : Rn → R. We say ν̂ is correct if it satisfies µ ≥ ν̂(~z). We are unable to guarantee that
ν̂(~z) is correct due to the randomness in the training examples ~z. Thus, we additionally allow for a
small probability δ ∈ R>0 that ψ̂(~z) is not correct—i.e., it is probably correct (PC).
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Algorithm 2 Use learning theory to sketch P̄ that is approximately correct.
procedure SKETCH(P, ~α, δ)

m← |Φ??(P )|
for E ∈ BottomUp(Φ??(P )) do

if E = φ(P̄ ′, ??) {Q}ωε then
Compute ~z~α according to (9)
Compute t̂(~z~α) according to (7) with (ε, δ/m)
Fill the hole ?? with t̂(~zα)

else if E = φ(P̄ ′, c) {Q}ω?? then
Compute ~z~α according to (9)
Compute ν̂(~z~α) according to (8) with δ/m
Fill the hole ?? with 1− ν̂(~z~α)

end if
end for
return true

end procedure

Definition C.3. Given δ ∈ R>0, ν̂ is δ-PC if Pp(~z)
(
µ ≥ ν̂(~z)

)
≥ 1− δ.

In other words, ν̂(~z) is correct with probability at least 1− δ according to the randomness in p(~z).
Our goal is to construct an δ-PC estimator ν̂(~z).

Estimator. Given δ ∈ R>0, consider the estimator

ν̂(~z) = µ̂(~z)−
√

log(1/δ)

2n
, (8)

where µ̂(~z) = n−1
∑
z∈~z z is an estimate of µ based on the samples ~z; we take ν̂(~z) = 0 if (8) is

negative. Intuitively, the second term in ν̂(~z) is a correction to µ̂(~z) to ensure it is (ε, δ)-PC, based
on Hoeffding’s inequality [16]. We have the following; see Section H.3 for a proof:
Theorem C.4. The estimator ν̂ is δ-PC.

C.3 Sketching Algorithm

Problem formulation. A sketching algorithm A : P × An → P̄ takes as input a partial program
P ∈ P , together with a set of test valuations ~α = (α1, ..., αn) ∈ An, where α1, ..., αn ∼ p are i.i.d.
samples from an underlying distribution p(α). Then, P̄ = A(P, ~α) should be a complete program
that is approximately correct by filling each hole in expressions φ(P ′, ??) {Q}ωε ∈ Φc??(P ) with
a value c ∈ R and each hole in expressions φ(P ′, c) {Q}ω?? ∈ φε??(P ) with a value ε ∈ R>0. We
assume that every expression in Φ(P ) has a hole—i.e., Φ(P ) = Φ??(P ); otherwise, we cannot
guarantee that the existing thresholds in these expressions are approximately sound.
Definition C.5. A partial program P ∈ P is a full sketch, denoted P ∈ P0, if Φ??(P ) = Φ(P ).

Then, we say A is correct if A(P, ~α) ∈ P̄∗. We cannot guarantee this property; instead, given
δ ∈ R>0, we want it to hold with probability at least 1− δ according to p(~α).
Definition C.6. A sketching algorithm A : P0 × An → P̄ is δ-probably approximately correct
(PAC) if for all P ∈ P0, we have Pp(~α)

(
A(P, ~α) ∈ P̄∗

)
≥ 1− δ.

Note that this definition does not include ε since these values are provide in the given sketch.

Algorithm. Our sketching algorithm is shown in Algorithm 2. At a high level, it fills each hole so
that the resulting expressions φ(P̄ ′, c) {Q}ωε are all approximately sound. The order in which these
expressions are processed is important; a expression cannot be processed until all its descendants
have been processed. This order ensures that P̄ ′ is complete, so it can be evaluated. In Algorithm 2,
the function BottomUp ensures that the expressions in Φ??(P ) is processed in such an order. The
algorithm allocates a δ/m probability of failure for each expression, where m = |Φ??(P )|.
Synthesizing c. We describe how our algorithm synthesizes a threshold c for an expression E =
φ(P̄ ′, ??) {Q}ωε . Given a single test valuation α ∼ p, consider the values

zα = JP̄ ′Kα and z∗α = Jφ(P̄ ′, ??) {Q}ωε K∗α
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Given c ∈ R, it follows by definition of J·Kα that

Jφ(P̄ ′, c) {Q}ωε Kα = 1(zα ≤ c).

Thus, E is approximately sound for some c ∈ R if and only if

Pp(α)(zα ≤ c | z∗α) ≥ 1− ε if ω = | or Pp(α)(z∗α ⇒ zα ≤ c) ≥ 1− ε if ω =⇒ .

Given ~α = (α1, ..., αn), where α1, ..., αn ∼ p i.i.d.,

~z~α =

{
{zα | α ∈ ~α ∧ z∗α} if ω = |
{z∗α ⇒ zα | α ∈ ~α} if ω =⇒ (9)

is a vector of i.i.d. samples. The estimator t̂(~z~α) in (7) with parameters (ε, δ/m) ensures approximate
soundness with high probability—i.e.,

Pp(α)
(
zα ≤ t̂(~z~α) | z∗α

)
≥ 1− ε if ω = | or Pp(α)

(
z∗α ⇒ zα ≤ t̂(~z~α)

)
≥ 1− ε if ω =⇒ .

holds with probability at least 1− δ/m according to p(~α).

Synthesizing ε. We describe how our algorithm synthesizes a confidence level ε for an expression
E = φ(P̄ ′, c) {Q}ω??. Given a single test valuation α ∼ p, consider the values

zα = Jφ(P̄ ′, c) {Q}ω??Kα and z∗α = Jφ(P̄ ′, c) {Q}ω??K∗α.

Note that we compute these values even though the ε is a hole, since J·Kα and J·K∗α do not depend on
ε. Also, note that unlike the case of synthesizing c, where zα ∈ R is a score, in this case, zα ∈ {0, 1}
is a binary value. Given ε ∈ R>0, E is ε-approximately sound for ε if and only if

Pp(α)(zα | z∗α) ≥ 1− ε if ω = | or Pp(α)(z∗α ⇒ zα) ≥ 1− ε if ω =⇒ .

Given ~α = (α1, ..., αn), where α1, ..., αn ∼ p are i.i.d. samples, ~z~α defined in (9) is a vector of i.i.d.
samples from Bernoulli(µ). Then, the estimator ν̂(~z~α) in (8) with parameter δ/m is a lower bound
on µ with high probability—i.e.,

Pp(α)(zα | z∗α) ≥ ν̂(~z~α) if ω = | or Pp(α)(z∗α ⇒ zα) ≥ ν̂(~z~α) if ω =⇒ .

holds with probability at least 1− δ/m according to p(~α). Thus, it suffices to choose 1− ε = ν̂(~z~α).

The following guarantee follows from Theorems C.2 & C.4 by a union bound over Φ(P̄ ):

Theorem C.7. Algorithm 2 is δ-PAC.

D Synthesis Algorithm

We now describe a syntax-guided synthesizer that uses our sketching algorithm to identify programs
with machine learning components while satisfying a desired error guarantee. In general, to design
such a synthesizer, we need to design a space of specifications along with a domain-specific language
(DSL) of programs. For clarity, we focus on a specific set of design choices; as we discuss in
Section E, our approach straightforwardly generalizes in several ways. We consider the following
choices:

• Specifications: We consider specifications ψ̃ = (ψ, ε, e), consisting of both a traditional
part ψ indicating the logical property that the train semantics of the program should satisfy
(provided either as a logical formula or input-output examples), and a statistical part (ε, e)
indicating that the program should have error at most e with probability at least 1− ε with
respect to p(α), or else return ∅.

• DSL: We consider a DSL (shown in Figure 2) of list processing programs where the inputs
are images of integers. Our DSL includes components designed to predict the integer
represented by a given image. These components return the predicted value if its confidence
is above a certain threshold, and return ∅ otherwise. Values ∅ are propagated as ∅ by all
components in our DSL—i.e., if any input to a function is ∅, then its output is also ∅.
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Pτ ::= input1τ | · · · | inputkττ
| (Pτ′→τ Pτ′ )
| (fold Pτ′→τ→τ Plist(τ′) Pτ )

Plist(τ) ::= (map Pτ′→τ Plist(τ′))

| (filter Pτ→bool Plist(τ))

| (slice Plist(τ) Pint Pint)

Pint ::= (length Plist(τ))

Pσ→σ→σ ::= + | −
Pint→int→bool ::= ≤ | = | ≥

Pfloat→float→bool ::= cond-≤ | cond-≥
Pimage→σ ::= predictσ

Pimage→image ::= cond-flip

(predictint x) = (if p̂(x, f̂(x)) ≥ ??c {f̂(x) = y
∗}⇒??ε then f̂(x) else ∅)

(predictfloat x) = (if p̂(x, f̂(x)) ≥ ??c {|f̂(x)− y∗| ≤ ??e}⇒??ε then f̂(x) else ∅)

(cond-flip x) = (if p̂flip(x, f̂flip(x)) ≥ ??c {f̂flip(x) = y
∗
flip}
⇒
??ε

then (cond-flip0 x) else ∅)

(cond-flip0 x) = (if f̂flip(x) then flip(x) else x)

(cond-≤ y1 y2) = (if |y1 − y2| ≥ ??c {y∗1 ≤ y
∗
2}
⇒
??ε

then y1 ≥ y2 else ∅)

(cond-≥ y1 y2) = (if |y1 − y2| ≥ ??c {y∗1 ≥ y
∗
2}
⇒
??ε

then y1 ≥ y2 else ∅)

Figure 2: This figure shows our domain-specific language (DSL) of list processing programs over
images of inputs. The top half shows the production rules; these rules are implicitly universally
quantified over the type variables τ and σ, where τ ::= bool | int | float | image | list(τ) | τ → τ
and σ ::= int | float | image. The bottom half shows the semantics of functions in our language
that have statistical specifications.

Algorithm 3 Use learning theory to synthesize P̄ that is approximately correct.
procedure SYNTHESIZE(~α, ψ, ε, e,N, δ)

P̃ ← SynthesizePartialSketch(ψ)
~αsynth, ~αsketch ← Split(~α)
P ← arg maxP ′∈FillAll(P̃ ,ε,e) Score(Sketch(P ′, ~αsynth, δ))

return Sketch(P, ~αsketch, δ)
end procedure

For clarity, we refer to specifications ψ̃ as task specifications and specifications on DSL components
as component specifications. As a running example, consider the program in Figure 3. This program
predicts the value x of the image input1 (as an integer) and values ` of the images in the list input2

(as real values), and then sums the values in ` that are greater than equal to x. It contains three
components that have component specifications: the two machine learning components predictint
and predictfloat, along with the inequality cond-≤. The first two component specifications ensure
that the corresponding machine learning model returns correctly (or ∅) with high probability. For
the last one, note that in the expression y1 ≤ y2, the inputs y1 and y2 may have a small amount of
prediction error, so if they are to close together (i.e., |y1 − y2| ≤ c for some c ∈ R≤0), then y1 ≤ y2
might be incorrect. Thus, to ensure ≤ returns correctly, cond-≤ returns ∅ if |y1 − y2| ≤ c.
Finally, note that we use ω =⇒, indicating that our goal is to synthesize P̄ such that the the overall
success rate is bounded—i.e., Pp(α)

(
JP̄ Kα = ∅∨ |JP̄ Kα− JP̄ K∗α| > e

)
≥ 1− ε. We could use ω = |

here if we instead wanted to bound the probability of failure conditioned on JP̄ Kα 6= ∅.

Given labeled training examples ~α, a task specification ψ̃, a maximum list length N , and a confidence
level δ, our algorithm shown in Algorithm 3 synthesizes a complete program P̄ that satisfies ψ̃ with
probability at least 1− δ. At a high level, this algorithm proceeds in three steps:

• Step 1: First, our algorithm uses the logical specification ψ to identify a sketch P̃ whose
train semantics is consistent with ψ. Note that the train semantics for sketches in our DSL
in Figure 2 are well-defined even when the holes left unfilled. We refer to P̃ as a partial
sketch, since it has additional holes that cannot be filled by our sketching algorithm.

• Step 2: While our algorithm uses our sketching algorithm described in Algorithm 2 to fill
holes ??c in P̃ , it must first fill the holes ??ε and ??e (described below), which cannot be
handled by this algorithm. To this end, it analyzes the program to identify constraints on
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Task Specification ψ̃ex =
(
ψ = {[1, 2, 3] 7→ 3, [2, 4, 2] 7→ 4}, ε = 0.05, e = 6, N = 3, δ = 0.05

)
Partial Sketch P̃ex = (fold + (filter (cond-≤︸ ︷︷ ︸

f1

(predictint︸ ︷︷ ︸
f2

input1)) (map predictfloat︸ ︷︷ ︸
f3

input2) 0))

Components
with Holes

f1 = (λy1 (λy2 (if |y1 − y2| ≥ ??c {y∗1 ≤ y
∗
2}
⇒
??ε

then y1 ≤ y2 else ∅)))

f2 = (λx (if p̂(x, f̂(x)) ≥ ??c {f̂(x) = y∗}⇒??ε then f̂(x) else ∅))

f3 = (λx (if p̂(x, f̂(x)) ≥ ??c {|f̂(x)− y∗| ≤ ??e}⇒??ε then f̂(x) else ∅))

Figure 3: Example of a task in our list processing domain. Given ψ̃ex, the goal is to synthesize
a program P̄ whose train semantics satisfies ψ, and whose test semantics satisfy Pp(α)

(
JP̄ Kα =

∅ ∨ |JP̄ Kα − JP̄ K∗α| ≤ e
)
≥ 1− ε.

the values of ε and e that can be assigned to each hole ??ε and ??e, respectively and satisfy
the desired task specification (ε, e). Given candidate values ~e and ~ε, it constructs the sketch
P = Fill(P̃ ,~ε, ~e), and evaluates the success rate Score(P ) (i.e., how often JP Kα 6= ∅). It
chooses the sketch P that maximizes this objective over a finite set of choices of ~ε and ~e.

• Step 3: Finally, it uses a held-out set of labeled examples ~αsketch in conjunction with our
sketching algorithm in Algorithm 2 to synthesize We use a held-out set since Theorem C.7
only holds if the examples ~αsketch are not used to construct the sketch P .

In Figure 3, we show the partial sketch P̃ex along with two analyses which are used to help compute
the search space over ~ε and ~e. Below, we describe our DSL and synthesis algorithm in more detail.

D.1 Domain-Specific Language

Our DSL is summarized in Figure 2. To be precise, this figure shows sketches in our language; filling
holes in these sketches produces a program in our language. At a high level, the language consists of
standard list processing operators such as map, filter, and fold, along with a set of functions that can
be applied to individual integers, real numbers, or images.

Machine learning components. Our DSL has three machine learning components: predictint,
predictfloat, and cond-flip. The first two predict the value in a given image. They are identical
except for their component specification; whereas the integer predictions must be exactly correct, the
real-valued predictions are allowed to have bounded error. We describe these specifications below.
This difference gives the user flexibility in terms of what kind of guarantees they want to provide.

The third machine learning component checks if the input image is flipped along the vertical axis.
We include it to demonstrate how our approach can combine multiple machine learning components.
It only returns an image if it is confident about its prediction; otherwise, it returns ∅.

Component specifications. Intuitively, there are two kinds of component specifications in our
language: (i) require that the output is exactly correct, and (ii) require that the error of the output is
bounded. There are four components in (i): predictint, cond-flip, cond-≤, and cond-≥. The first
two are straightforward—they consist of a machine learning component, and return the predicted
value if the prediction confidence is a threshold to be synthesized, and return ∅ otherwise.

The latter two are result from challenges handling inequalities on real-valued predictions. In particular,
real-valued predictions (i.e., by predictfloat) can be wrong by a bounded amount, yet the return value
of ≤ and ≥ is a Boolean value that must be exactly correct. Thus, these components include a
component specification indicating that their output must be correct with high probability. Note that
the scoring function used in the condition is |y1 − y2|; intuitively, if the inputs y1 and y2 are far apart
(i.e., |y1 − y2| is large), then the predicted result is less likely to be an error.

The predictfloat component is the only one in (ii). The only difference from predictint is that it only
requires that the prediction is correct to within some bounded amount of error—i.e., |f̂(x)− y∗| ≤ e,
for some e ∈ R≥0. Note that e is left as a hole to be filled.

Holes. Our language has three kinds of holes. The first two are holes ??c and ??ε; these are in our
sketch DSL in Figure 2. Note that in that DSL, each component specification could only have either
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c or ε as a hole, but here we allow both to be left as holes; our algorithm searches over choices of ε to
fill holes ??ε, and uses our sketching algorithm in Algorithm 2 to fill holes ??c. The third kind of hole
is the hole ??e in the component specification |f̂(x)− y∗| ≤ ??e for predictfloat, which indicates the
magnitude of error allowed by the prediction of that component. As with ??ε holes, the ??e holes
are filled by our algorithm before our sketching algorithm is applied. Intuitively, ??ε (resp., ??e)
holes must be filled in a way that satisfies the overall ε failure probability guarantee (resp., e error
guarantee) in the user-provided task specification ψ̃.

D.2 Synthesis Algorithm

Our algorithm (Algorithm 3) takes as input labeled training examples ~α, a task specification ψ̃ =
(ψ, ε, e), and δ ∈ R>0, and returns a program P̄ that satisfies ψ̃ with probability ≥ 1− δ.

Step 1: Syntax-guided synthesis. Our algorithm first synthesizes a partial sketch P̃ in our DSL
whose train semantics satisfies ψ—i.e., UNSATα,y

(
y = JP̃ K∗α ∧ ¬ψ(α, y)

)
. Importantly, note that

JP̃ K∗α is well-defined even though there are holes in P̃ . We can compute P̃ using any standard
synthesizer.

Step 2: Sketching ε and e. Next, our algorithm fills the holes ??ε in P̃ with values ~ε and holes
??e with values ~e to obtain a sketch P = FILL(P̃ ,~ε, ~e). Since P only has holes ??ε, we can use
Algorithm 2 to fill these holes in a way that guarantees correctness for the given values ~ε and ~e—i.e.,

Pp(α)
(
|JP̄ Kα − JP K∗α| ≤ e

)
≥ 1− ε, (10)

where P̄ is a completion of P where the holes ??c in P have been filled with values ~c. We need to
use P̄ since the test semantics are not well-defined for sketches P . In particular, we need to choose
values ~ε and ~e that ensure that (10) holds for all possible completions P̄ of P .

Furthermore, we not only want to choose ~ε and ~e to ensure correctness, but also to maximize a
quantitative property of P̄ . In particular, we want to choose it in a way that maximizes the probability
that P does not return ∅—i.e., maximize the score

Score(P ) = Pp(α)
(
JP̄ Kα 6= ∅

)
Note that the score depends critically on the choice of thresholds ~c used to fill holes ??c in P . Thus,
given a set of candidate choices ~ε and ~e, our algorithm constructs the corresponding sketch P ′ =
Fill(P̃ ,~ε, ~e), uses our sketching algorithm to fill the holes ??c in P ′ to obtain P̄ ′ = Sketch(P ′, ~α, δ),
and finally scores P̄ ′. Then, our algorithm chooses P ′ with the highest score. In Algorithm 3, we let
FillAll(P̃ , ε, e) denote the set of all sketches P ′ constructed from candidates ~ε and ~e.

One important detail is that Algorithm 2 requires that P is a straight-line program—i.e., it cannot
handle loops. For now, we assume that we are given a bound N ∈ N on the maximum length of any
input list. Then, we can unroll list operations such as map, filter, and fold into straight-line code.
Algorithm 3 uses this strategy to apply Algorithm 2 to sketches P . We describe how we can remove
the assumption that we have an upper bound N in Section E.

Step 3: Sketching c. Finally, we use Algorithm 2 to choose values ~c to fill holes ??c in the highest
scoring sketch P from the previous step, and return the result P̄ = Sketch(P, ~αsketch, δ). Importantly,
in the previous step, P is chosen based on a subset ~αsynth of the training examples ~α, whereas in this
step, P̄ is constructed based on a disjoint subset ~αsketch. We choose these two subsets to be of equal
size since Algorithm 2 is sensitive to the number of examples in ~α. This strategy ensures that P does
not depend on the random variable ~αsketch, thereby ensuring that Theorem C.7 holds.

D.3 Search Space Over ~ε and ~e

Here, we describe how we choose candidates ~ε and ~e in Step 2 so that the candidate sketches
P ′ = Fill(P̃ ,~ε, ~e) satisfy (10). At a high level, for ~ε, for each component f of P̃ with an ??ε hole,
we compute JP̃ K#f , which is the number of times f occurs in the unrolled version of P̃ ; then, we
consider ~ε = (εf1 , ..., εfd) such that

∑
f εf ≤ ε. For ~e, for each component f of P̃ with an ??e hole,

we compute JP̃ Kerr : ~e 7→ e′, which is a linear function mapping ~e to an upper bound e′ on the error
of the output; then, we consider ~e such that JP̃ Kerr(~e) ≤ e. We provide details below.
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J(F L)K#f = JF K#f + JLK#f

J(fold F L B)K#f = N · JF K#f + JLK#f + JBK#f

J(map F L)K#f = N · JF K#f + JLK#f

J(filter F L)K#f = N · JF K#f + JLK#f

J(slice L I1 I2)K
#
f = JLK#f + JI1K#f + JI2K#f

J(length L)K#f = JLK#f

Jf ′K#f = 1(f
′
= f)

Jinputiτ K#f = 0

J(F L)Kerr
= JF Kerr

(JLKerr
)

J(fold F L B)Kerr
= max
n∈{0,1,...,N}

(JF Kerr
)
n
(JLKerr

, JBKerr
)

J(map F L)Kerr
= JF Kerr

(JLKerr
)

J(filter F L)Kerr
= JLKerr

J(slice L I1 I2)K
err

= JLKerr

J(length L)Kerr
= 0

JfKerr
=


λη.ef if f = predictfloat
λη.λη′.η + η′ if f ∈ {+,−}
λη.η otherwise

Jinputiτ Kerr
= 0

Figure 4: Rules Algorithm 3 uses to compute the search space over ~ε (left) and ~e (right). In the rule of
J·Kerr for fold, fn(`, b) = f(`, fn−1(`, b)) (and f0(`, b) = b) is the function f iterated n times in its
second argument. The definitions of η, η′, and η + η′ in the rule for JfKerr are given in Section D.3.

Search space over~ε. First, we describe our search space over parameter values~ε used to fill holes ??ε
so that the overall failure rate is at most ε. Note that here, ~ε = (εf1 , ..., εfk), where FP̃ = {f1, ..., fk}
are subexpressions of P̃ of the form predictint, predictfloat, cond-flip, cond-≤, or cond-≥, since
each of these subexpressions contains exactly one hole of the form ??ε.

Intuitively, we can ensure correctness via a union bound—i.e., if the sum of the εf is bounded by ε,
then the overall failure probability is also bounded by ε. The key caveat is that to apply Algorithm 2,
we need to unroll the sketch P = Fill(P̃ ,~ε, ~e). Thus, we need to count a value εf multiple times if
the corresponding subexpression f occurs multiple times in the unrolled version of P .

In particular, the rules JP K#f ′ shown in Figure 4 are designed to count the number of occurrences
of the subexpression f ′ in the unrolled version of P . Note that in these rules, f ′ refers to a specific
subexpression, and 1(f = f ′) refers to whether f is that specific subexpression; multiple uses of the
same construct (e.g., a program with two uses of predictint) are counted separately. These rules are
straightforward; for instance, when unrolling the fold operator, the expressions for the list L and the
initial value B are included exactly once, whereas the function expression F occurs N times. Then,
to ensure that the failure probability is at most ε, it suffices for ~ε to satisfy∑

f∈FP̃

JP̃ K#f · εf ≤ ε. (11)

Now, let ∆FP̃ = {~x ∈ R|FP̃ | | ∀f . 0 ≤ xf ≤ 1 ∧
∑
f∈FP̃

xf = 1} be the regular simplex in R|FP̃ |.
Now, given any ~x ∈ ∆FP̃ , letting εf = xf · ε/JP̃ K#f , then (11) is satisfied. In our algorithm, we
search over a finite set of points from ∆Fp̃ , and construct the corresponding set of values ~ε.

In Figure 6, the rule for filter applies f1 =cond-≤ and f2 = predictint each N = 3 times (where N
is the given bound on the list length), so we have JP̃exK

#
f1

= JP̃exK
#
f2

= 3. Similarly, map applies
f3 = predictfloat a total of N = 3 times, so JP̃exK

#
f1

= 3. As an example of a point in our search
space, taking ~x = (1/3, 1/3, 1/3) yields ~ε = (1/9, 1/9, 1/9).

Search space over ~e. Next, we describe our search space over parameter values ~e used to fill holes ??e
so the overall error is at most e. Similar to before, ~e = (ef1 , ..., efh), but this time GP̃ = {f1, ..., fh}
are subexpressions of P̃ of the form predictfloat, which each contain exactly one hole of the form ??e.
In this case, we define an analysis that bounds the overall error of the output of P̄ = Fill(P,~ε,~e) for
any ~ε as a function of ~e. More precisely, JP Kerr satisfies the following property:∥∥JFill(P,~ε,~e)Kα − JP K∗α

∥∥
∞ ≤ JP Kerr(~e) (12)

for all ~ε and ~e, and for all α such that all component specifications in Fill(P,~ε,~e hold for ~α. In other
words, (12) bounds the error of the output for examples α such that predictions fall within the desired
error bounds (failures happen with probability at most ε according to our choices of ~ε).

Note that (12) uses the L∞ norm. For scalar outputs, we have ‖x−x′‖∞ = |x−x′|. For list outputs,
for the L∞ norm to be well-defined, we need to ensure that x = JFill(P,~ε,~e)Kα and x′ = JP̄ K∗α
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are of the same length (at least, when all component specifications are satisfied). In particular, the
only potential case where x and x′ have unequal lengths is if P̄ contains a filter operator. We focus
on filtering real-valued lists; filtering integer-valued lists is similar (and there are no operations to
filter list-valued lists or image-valued lists). In the real-valued case, the filter function must be either
cond-≤ and cond-≥. Assuming the component specifications on cond-≤ and cond-≥ are satisfied,
then their (Boolean) outputs are guaranteed to be equal, so the outputs of the filter operator have
equal length under train and test semantics. Thus, ‖x− x′‖∞ is well-defined.

Given JP Kerr, our goal is to compute ~e satisfying

JP Kerr(~e) ≤ e. (13)

As with ~ε, we can construct a candidate ~e for any point in x ∈ ∆GP̃ by taking ef = xf · e/af ,
where JP̃ Kerr =

∑
f∈GP̃

af · ef . In Figure 3, we have JP̃ Kerr = 3 · ef3 , so there is a single candidate
ef3 = e/3.

Next, we describe the rules JP Kerr, which are shown in Figure 4 (right). They compute an symbolic
expression of the form η =

∑
f∈GP̃

af · ef ∈ EP̃ , where af ∈ R≥0 and ef is a symbol. Given
~e, an expression η can be evaluated by substituting ~e for the symbols ef in η. Now, the rule
for function application assumes given a function abstraction JF Kerr : EP̃ → EP̃ . In particular,
JF Kerr is the identity function except for predictfloat, +, and −. The case predictfloat follows since
we have assumed that the component specification holes, and the component specification for
f = predictfloat says exactly that |Jf̄Kα − JfK∗α| ≤ ef for any completion f̄ of f . For + and −,
letting η =

∑
f∈GP̃

af · ef and η′ =
∑
f∈GP̃

a′f · ef , we define η+ η′ =
∑
f∈GP̃

(af + a′f ) · ef . The
rule for map follows since we are using the L∞ norm, so the bound is applied elementwise. The
remaining rules are straightforward.

In Figure 3, the rule for predictfloat returns ef3 , so the rule for map returns 3 · ef3 (since the given
bound on the list length is N = 3). The remaining rules propagate this value, so JP̃exKerr = 3 · ef3 .

Finally, the fact that J·Kerr is a linear function follows by structural induction. Additional components
(e.g., multiplication) can result in nonlinear expressions, but a similar approach applies.

Overall search space. Our overall search space consists of pairs ~ε and ~e such that ~ε satisfies (11) and
~e satisfies (13); given such a pair, FillAll(P̃ , ε, e) includes the program P = Fill(P̃ ,~ε, ~e). Together,
(11) and (13) ensure the desired property (10). In particular, for any completion P̄ of P , (13) ensures
that |JP̄ Kα − JP K∗α| ≤ e as long as α satisfies all the component specifications, and (11) ensures that
α satisfies the component specifications with probability at least 1− ε over p(α).

E Discussion

Generality. In Section D, we described a synthesizer tailored to the language in Figure 2. Our ap-
proach generalizes straightforwardly in several ways. First, we note that the predictint and predictfloat
machine learning components are not specific to images of integers, and represent general clas-
sification and regression problems, respectively. Furthermore, we can also include additional list
processing components as long as we provide the abstract semantics J·K# and J·Kerr. Thus, our
algorithm can be viewed as a general algorithm for synthesizing list processing programs with DNNs
for classification and regression, where the specification is that with high probability, the program
should return the either the correct answer (within some given error tolerance) or ∅.

We can also modify the specification in certain ways; for instance, we can ignore certain kinds of
errors by modifying the annotations on predictint and predictfloat. For instance, to allow for one-sided
errors in regression problems (e.g., it is fine to say “person” when there isn’t one but not vice versa),
we can simply drop the absolute values from the task specification ψ and from the annotations on
predictfloat. For this case, the algorithm for allocating errors e works as is, but in general, it may need
to be modified to ensure the annotations imply the specification.

Bound on examples. In Section D, we assumed given a bound N on the maximum length of any list
observed during program execution. Intuitively, we can circumvent this assumption by computing a
high probability bound N ; the error probability can be included in the user-provided allowable error
rate ε. In particular, let JP̃ Klen

α denote the maximum list length observed while executing P̃ on input
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DSL Variant Task ∅ Rate Failure Rate
STATCODER No Search k = 0 STATCODER No Search k = 0

int

sum x ∈ ` 0.000 0.000 0.177 0.018 0.018 0.001
max x ∈ ` 0.000 0.000 0.177 0.008 0.008 0.001
sum x ∈ ` that are≤ k 0.001 0.022 0.206 0.016 0.010 0.001
max first k elements x ∈ ` 0.000 0.008 0.195 0.007 0.007 0.000
count x ∈ ` that are≤ k 0.001 0.022 0.206 0.000 0.000 0.000

average – 0.000 0.010 0.192 0.010 0.009 0.001

float

sum x ∈ ` 0.000 0.000 0.000 0.001 0.001 0.001
max x ∈ ` 0.000 0.000 0.000 0.000 0.000 0.000
sum x ∈ ` that are≤ k 0.000 1.000 1.000 0.010 0.000 0.000
max first k elements x ∈ ` 0.000 0.005 0.177 0.000 0.000 0.000
count x ∈ ` that are≤ k 0.000 1.000 1.000 0.000 0.000 0.000

average – 0.000 0.401 0.435 0.002 0.000 0.000

flip

sum x ∈ ` 0.015 0.016 0.230 0.012 0.012 0.001
max x ∈ ` 0.015 0.016 0.230 0.006 0.006 0.001
sum x ∈ ` that are≤ k 0.025 0.085 0.265 0.012 0.004 0.001
max first k elements x ∈ ` 0.063 0.046 0.258 0.005 0.004 0.000
count x ∈ ` that are≤ k 0.025 0.085 0.265 0.000 0.000 0.000

average – 0.029 0.050 0.250 0.007 0.005 0.001

fast

sum x ∈ ` 0.033 0.033 0.706 0.026 0.026 0.000
max x ∈ ` 0.033 0.033 0.706 0.008 0.008 0.000
sum x ∈ ` that are≤ k 0.039 0.127 0.755 0.023 0.005 0.000
max first k elements x ∈ ` 0.035 0.061 1.000 0.010 0.007 0.000
count x ∈ ` that are≤ k 0.039 0.127 0.755 0.000 0.000 0.000

average – 0.036 0.076 0.784 0.013 0.009 0.000

overall – 0.016 0.134 0.415 0.008 0.006 0.000

Table 2: We show results on synthesizing list processing programs, for both our approach
(STATCODER) and the baseline that does not search over ~ε and ~e (“No Search”). For each
DSL variant and each task, we show the “∅ Rate” Pp(α)(JP̄ Kα = ∅), and the “Failure Rate”
Pp(α)(JP̄ Kα 6= ∅ ∧ |JP̄ Kα − JP̄ K∗α = ∅|) > e.

α. Then, suppose we can obtain N such that

Pp(α)
(
JP̃ Klen

α ≤ N) ≥ 1− ε

2
.

Now, if we synthesize a completion P̄ of P̃ with overall error rate ≤ ε/2, then by a union bound, the
total error rate is ≤ ε. Finally, to obtain such an N , we can use the specification

JP̃ Klen
α ≤?? {true}⇒ε/2.

Letting c be the synthesized value used to fill the hole, the specification says that JP̃ Klen
α ≤ c with

probability at least ε/2 according to p(α), which is exactly the desired condition on N ; thus, we can
take N = c. Note that since the specification is true, we can use either | or⇒.

F Evaluation

We describe our evaluation on synthesizing list processing programs, as well as on three case studies:
(i) a state-of-the-art image classifier, (ii) a random forest trained to predict Warfarin drug dosage, and
(iii) object detection.

F.1 Synthesizing List Processing Programs with Image Classification

Experimental setup. We evaluate our synthesis algorithm on our list processing domain in Section D.
Inputs are lists of MNIST digits [20]. We use a convolutional DNN (two convolutional layers followed
by two fully connected layers, with ReLU activations) [21] to predict the integer in an image, trained
on the MNIST training set; it achieves 99.2% accuracy. We also train a single layer DNN, which
is 4.04× faster but only 98.5% accurate. Finally, for inputs with the flip component, with consider
input images flipped along their horizontal axis. We train a DNN to predict whether a given image is
flipped; it achieves 99.6% accuracy.
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(b) (c)

Figure 5: For list processing programs, we show ∅ rate (black) and failure rate (red) as a function
of (a) ε, (b) δ, and (c) e, on average for (a,b) “Int” programs and (c) “Float” programs. Defaults are
ε = δ = 0.05 and e = 6.0.

For the synthesizer, we use a standard enumerative synthesizer that returns the smallest program in
terms of depth (but chooses arbitrarily among equal depth programs). We give it 5 labeled input-
output examples as a specification ψ, along with the type of the function to be synthesized [22, 23].
For the search space over each ~ε and ~e, we consider values ~x0 ∈ {1, 3, 5}d, where d = |FP̃ | or
d = |GP̃ |, and then take ~x = ~x0/‖~x0‖1 to normalize it to ∆d. We also compare to (i) a baseline
“No Search”, which only considers a single ~x0 = (1, ..., 1), and (ii) a baseline “k = 0”, which uses
a variant of our generalization bound that uses either k = 0 (or k = ∅, if there are insufficient
samples); this strategy captures the guarantees provided by traditional generalization bounds from
statistical learning theory [10, 24, 25]. We use our algorithm with parameters ε = δ = 0.05, e = 6,
and N = 3. We use 2500 MNIST test set images for each αsynth and αsketch, and the remaining 5000
for evaluation. Next, we consider four variants of our DSL:

• Int: Restrict to components with integer type and omit the cond-flip component

• Float: Same as “int”, but include components with real types

• Flip: Same as “int”, but include the flip component

• Fast: Same as “int”, but use the fast neural network.

For each variant, we consider five list processing tasks, which are designed to exercise different kinds
of components. These programs all take as input a list ` of images x ∈ `; in addition, several of them
take as input a second image k that encodes some information relevant to task. Then, they output an
integer or real value (as specified by ψ). The tasks are shared across the different DSL variants, but
specific programs change based on the available components.

Results. We show results in Table 2. For the program P̄ synthesized using each our approach
STATCODER and our baseline that does not search over ~ε and ~e, we show the following metrics:

• ∅ Rate: The rate at which P̄ returns ∅—i.e., Pp(α)(JP̄ Kα = ∅).

• Failure Rate: The rate at which P̄ makes mistakes—i.e.,

Pp(α)
(
JP̄ Kα 6= ∅ ∧ |JP̄ Kα − JP̄ K∗α = ∅|

)
> e.

As can be seen, both STATCODER and the baseline always achieve the desired failure rate bound of
ε = 0.05. Furthermore, by searching over candidates ~ε and ~e, STATCODER substantially outperforms
the baseline, achieving an 8× reduction in ∅ rate on average. For simpler programs (i.e., sum and
max), the two perform similarly since there is only a single hole, so the search space only contains
one candidate. However, for larger programs, the search improves performance by up to an order of
magnitude. There is a single case where the baseline performs better (the fourth program in the “flip”
DSL), due to random chance since the dataset αsketch used to synthesize the final program P̄ from P̃
differs from the dataset αsynth used to choose ~ε and ~e. STATCODER outperforms the “k = 0” baseline
by an even larger margin, due to the fact that the generalization bound is overly conservative; these
results demonstrate the importance of using a generalization bound specialized to our setting rather
than a more traditional generalization bound that minimizes the empirical risk.

Next, in Figure 5, we show how these results vary as a function of the specification parameters ε, δ,
and e. As can be seen, ε has the largest effect on ∅ and failure rates, followed by e; as expected, δ
has almost no effect since the dependence of our bound on δ is logarithmic.

Finally, we note that the failure rates for the “fast” DSL are very low. Thus, we could use our
technique to chain together the fast program with the slow one, along the same lines as discussed in
our case study in Section F.3; we estimate that doing so results in a 3× speedup on average.

22



Task ∅ Rate Failure Rate
STATCODER No Search k = 0 STATCODER No Search k = 0

count the number of people in x 0.054 0.054 0.901 0.124 0.124 0.003
check if x contains a person 0.054 0.054 0.901 0.124 0.124 0.003
count people near the center of x 0.290 0.290 0.901 0.032 0.032 0.003
find people near a car 0.901 0.901 1.000 0.003 0.003 0.000
minimum distance from a person to the center of x 0.149 0.149 0.901 0.023 0.023 0.000

average 0.290 0.290 0.921 0.061 0.061 0.002

Table 3: We show results on synthesizing list processing programs over object detection, for our
approach STATCODER. For each DSL variant and each task, we show the “∅ Rate” Pp(α)(JP̄ Kα = ∅),
and the “Failure Rate” Pp(α)(JP̄ Kα 6= ∅ ∧ |JP̄ Kα − JP̄ K∗α = ∅|) > e. Parameters are ε = δ = 0.2
and e = 20.0.

F.2 Synthesizing List Processing Programs with Object Detection

Experimental setup. Next, we consider synthesizing programs that operate over the predictions
made by a state-of-the-art DNN for object detection. We assume given a DNN component f̂ that
given an image x, is designed to detect people and cars in x. We use a pretrained state-of-the-art
object detector called Faster R-CNN [4] available in PyTorch [11], tailored to the COCO dataset [12],
which is a dataset of real-world images containing people, cars, and other objects. There are multiple
variants of Faster R-CNN; we use the most accurate one, X101-FPN with 3× learning rate schedule.

We represent this DNN as a component f̂ : X → Y = D∗ × R, where f̂(x) = (ŷ(x), p̂(x)) consists
of a list of detections d ∈ ŷ(x) along with a correctness score p̂(x) that the prediction is correct. Each
detection d ∈ D = R2 ×Z is itself a tuple d = (b, z) including the position b and predicted category
of the object. The ground truth label y∗ for an image x is a list of detections d ∈ y∗. In general, we
cannot expect to get a perfect match between the predicted bounding boxes and the ground truth ones.
Typically, two detections d, d∗ match, denoted ‖d− d∗‖ ≤ e, where e is a specified error tolerance, if
the distance between their centers satisfies ‖b− b∗‖∞ ≤ e. Furthermore, we write ‖ŷ(x)− y∗‖ ≤ e
if |ŷ(x)| = |y∗| and there exists a one-to-one correspondence between d ∈ f̂(x) and d∗ ∈ y∗ such
that ‖d− d∗‖ ≤ e. Then, we define predict : X → (Y ∪∅) by

(predict x) = (if p̂(x) ≥??c {‖ŷ(x)− y∗‖ ≤??e}⇒??ε then ŷ(x) else ∅).

In other words, the specification says that a correct prediction is if the error tolerance is below a level
??e to be specified. Thus, given e and ε to fill ??e and ??ε, respectively, our sketching algorithm
synthesizes a threshold c to fill ??c in a way that guarantees that this specification holds. Then,
predict returns ŷ(x) if the DNN is sufficiently confident in its prediction, and ∅ otherwise.

We can use this component in conjunction with our synthesis algorithm in the same way that it uses
predictfloat. In particular, we define the abstract semantics

J(predict x)Kerr = λη.epredict.

These semantics enable it to select the error tolerance e to fill ??e. The remainder of the synthesis
algorithm proceeds as in Section F.1. We use parameters ε = δ = 0.2, e = 20.0, and N = 3, and
use n = 1000 COCO validation set images for each αsynth and αsketch and the remaining 1503 for
evaluation. We use larger ε and δ since the accuracy of the object detector is significantly lower than
that of the image classifier, so the ∅ rates are very high for smaller choices.

We evaluate our approach on synthesizing five programs, which include additional list processing
components: (i) (product L L′), which returns the list of all pairs (x, x′) such that x ∈ JLK and
x′ ∈ JL′K, (ii) (compose f f ′), which returns the composition λx.f(f ′(x)), (iii) (isz′ D), which
returns 1(z = z′), where JDK = (b, z) is a detection and z′ ∈ Z is an object category, and (iv)
(distance D D′), which returns the distance ‖b − b′‖∞ between two detections JDK = (b, z) and
JD′K = (b′, z′). Their abstract semantics are straightforward: for J·K#, they each evaluate each of
their arguments once, and for J·Kerr, the only one that propagates errors is distance, for which

J(distance D D′)Kerr = JDKerr + JD′Kerr.

Results. We provide results in Table 3. The trends are similar to Section F.1; the main difference is
that search does not help in this case, likely because there is only a single machine learning component
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def is_person(x, y_true=None):
if 1.0 - f(x) <= ??1 {y_true} [|, 0.05]:

return True
else:

return False

def is_person_fast(x):
if 1.0 - f_fast(x) <= ??2 {is_person(x)} [|, 0.05]:

return is_person(x)
else:

return False

def monitor_correctness(x):
if np.random.uniform() <= 0.99:

return
passert 1.0 - f_fast(x) <= ??2 {is_person(x)} [|, 0.05]

def monitor_speed(x):
passert 1.0 - f_fast(x) > ??2 {true} [|, ??3]

Figure 6: A program used to predict whether an image x contains a person. Specifications are shown
in green; curly brackets is the specification and square brackets is the value of ε. The corresponding
inequality with a hole in blue. Holes with the same number are filled with the same value.

(b) (c)

(e) (f)

(h) (i)

(j)

Figure 7: For ResNet alone, we show the recall (red), desired lower bound on the recall (blue), and
precision (black) as a function of (a) ε, (b) δ, (c) y ∈ Y , and (j) the number of synthesis examples n;
the defaults are ε = δ = 0.05, n = 25, 000, and y = “car”, except in (c) we use ε = 0.1 to facilitate
the comparison with (f). We show the same values for ResNet+AlexNet as a function of (d) ε, (e)
δ, and (f) y ∈ Y . For ResNet+AlexNet (black) compared to AlexNet alone (green), we show the
running time as a function of (g) ε, (h) δ, and (i) y ∈ Y; we omit ResNet alone since its running time
(82.6 minutes) is significantly above the scale.

so optimizing the allocation does not significantly affect performance. Finally, we can chain these
programs with a faster object detector to reduce running time; see Section F.5.

F.3 Case Study 1: ImageNet Image Classification

Correctness. Consider program shown in Figure 6, which classifies images as “person” (returns true)
or “not person” (returns false). The function is_person takes as input an image x, and optionally
the ground truth label y∗ (which is only used during sketching). The specification in is_person says
that the program should return true with high probability if the image is of a person (i.e., y∗ = 1).
The predicate 1(1 − f(x) ≤ c) is shown in blue, where the value of c has been left as a hole ??1,
the specification y∗ = 1 is shown in green in the curly braces, and the value ε = 0.05 is shown in
green in the square braces. We perform a case study in the context of this program (though for labels
other than “person”). We consider the ImageNet dataset [19], a large image classification benchmark
with over one million images in 1000 categories, including various different animals and inanimate
objects. We consider the ResNet-152 DNN architecture [8], a state-of-the-art image classification
model trained on ImageNet that achieves about 88% accuracy overall. For both architectures, we use
the implementation in PyTorch [11].

To use our system, we split the ImageNet validation set consisting of 50,000 held-out images into (at
most) 25,000 for synthesis (i.e., the synthesis set) and 25,000 for validation. Because ImageNet has
so many labels, each object category has very few examples in the validation dataset (50 on average).
Thus, we group the labels into larger, coarse-grained categories, focusing on ones that correspond
to many fine-grained ImageNet labels. We consider “dog” (130 labels, 6,500 images) “bird” (59
labels, 2,950 images), “insect” (27 labels, 1,350 images), “car” (21 labels, 1050 images), “snake”
(17 labels, 850 images), and “cat” (13 labels, 650 images). The default one we use is “car”; this
category contains vehicles such as passenger cars, bikes, busses, trolleys, etc. For the scoring function,
given a coarse-grained category Y ⊆ Y , we use the sum of the fine-grained label probabilities—i.e.,
f(x) =

∑
y∈Y p(x, y), where p(x, y) is the predicted probability of label y according to ResNet-152.

Then, we use our sketching algorithm to synthesize c to fill ??1. We show results in the first and
fourth rows of Figure 7. Note that the red curves ideally equal the blue curves, but are slightly

24



conservative to account for synthesis being based on finitely many samples. The value of ε has the
biggest effect on performance, since it directly governs recall; as ε grows, recall drops (as desired)
and precision substantially improves. In contrast, the performance does not vary significantly with
δ. These trends match sample complexity guarantees from learning theory relevant to our setting of
n = O(log(1/δ)/ε) [24, 25]. Next, as n grows larger, recall can more closely match the desired
maximum, allowing precision to improve dramatically (the non-monotone effect is most likely due
to random chance). Finally, the dependence on the target label is also governed by the number of
synthesis images in each category.

Improving speed. Next, we describe how our framework can be used to compose f with a second
DNN ffast, which is much faster than f but has lower accuracy. Intuitively, we want to use ffast when
we can guarantee its prediction is correct with high probability, and use f otherwise. This approach
has been used to reduce running time [26, 27]; our framework can be used to do so while providing
rigorous accuracy guarantees.

The code for this approach is shown in is_person_fast in Figure 6. As before, the idea is to
compute a threshold c′ such that the prediction ffast(x) ≥ 1 − c′ is correct with high probability.
There are two differences. First, if we conclude that there might be a person in the image according to
ffast, then we return the prediction according to f (instead of true). While ffast is guaranteed to detect
95% images with people with high probability, it may have more false positives than f ; calling f after
ffast reduces these false positives. Second, the correctness guarantee is with respect to the prediction
ŷ = 1(f(x) ≥ 1− c) rather than y∗. We could use y∗, but there is no need—if ŷ is incorrect, then it
is not helpful for ffast to predict correctly since it falls back on ŷ.

For ffast, we use AlexNet, which achieves about 57% accuracy overall; in particular, we use ffast(x) =∑
y∈Y pfast(x, y), where pfast(x, y) is the predicted probability of label y according to AlexNet. Then,

we conclude that x (may) have label y if ffast(x) ≥ 1− c′, where c′ is synthesized by our algorithm.
We obtain results on an Nvidia GeForce RTX 2080 Ti GPU. We show results on the second and third
rows of Figure 7. All results shown are for the combined predictions (i.e., using both AlexNet and
ResNet), and are estimated on the validation set. For running time, we omit results for ResNet since
its running time is 82.6 minutes, which is more than 4× the running time of our combined model.
For the “dog” category, our approach reduces running time 6× from 82.6 minutes to 13.8 minutes
without any sacrifice in precision or recall.

Thus, our approach significantly reduces running time while achieving the desired error rate. Fur-
thermore, comparing to Figure 7 (d), the precision does not significantly decrease across most labels.
It does suffer for the labels “car” and “snake”. Intuitively, for these labels, there are relatively few
examples in the synthesis set, so the synthesis algorithm needs to choose more conservative thresholds.
Since the fast program has two thresholds whereas the original program only has one, it is more
conservative in the latter case. This difference is reflected in the fact that Figure 7 (e) has higher
recall than (d), especially for “car” and “snake”.

Importantly, these results rely on the fact that we are tailoring our predictions to a single category—
i.e., our system enables the user to tailor the predictions of pretrained DNN models such as ResNet
and AlexNet to their desired task. For instance, it can focus on predicting cars rather than achieving
good performance on all 1000 ImageNet categories.

Runtime monitoring. As described in Section B.3, our framework can monitor the synthesized
program at runtime, which is useful since PAC guarantees are specific to the data distribution p(x, y∗).
Thus, if the program is executed on data from a different distribution, called distribution shift [17, 18],
then our guarantees may not hold. Monitoring requires us to obtain ground truth labels y∗ for inputs
x encountered at run time; then, we use these ground truth labels to estimate the failure rate of the
model and ensure it is below the desired value ε.

We show how we can monitor the correctness of is_person_fast. In this case, we can easily obtain
ground truth labels since the specification for ??2 can be obtained by evaluating f(x). We want to
avoid running f on every input since this would defeat the purpose of using a fast DNN; instead,
we might run it once every N iterations for some large N . The function monitor_correctness
implements this check, generating a ground truth label once every N = 100 iterations on average.
Note that we formulate the check as a probabilistic assertion [28]—i.e.,

passert 1− ffast(x) ≤ c′ {1− f(x) ≤ c}|0.05,
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def predict_warfarin_dose(x, y_true=None):
y = argmax([(ys, f(x, y)) for y in [‘low’, ‘med’, ‘high’]])
if y == ‘low’ and f(x, ‘low’) >= ??1 {y_true != ‘high’} [|, 0.05]:

return ‘low’
if y == ‘high’ and f(x, ‘high’) >= ??2 {y_true != ‘low’} [|, 0.05]:

return ‘high’
return ‘med’

def monitor_correctness(x):
y = argmax([(ys, f(x, y)) for y in [‘low’, ‘med’, ‘high’]])
y_true = obtain_result(x)
if y == ‘low’:

passert f(x, ‘low’) >= ??1 {y_true != ‘high’} [|, 0.05]
if y == ‘high’:

passert f(x, ‘high’) >= ??2 {y_true != ‘low’} [|, 0.05]

Figure 8: A program that predicts the Warfarin dose for a patient with covariates x. Specifications
are shown in green; curly brackets is the specification and square brackets is the value of ε. The
corresponding inequality with a hole in blue. Holes with the same number are filled with the same
value.

(b) (c)

(e) (f)

Figure 9: We show the error rate (top) and accuracy (bottom) for our program (black), the random
forest (red), always predicting “medium” (green) as a function of (a,d) ε, (b,e) δ, and (c,f) the number
of synthesis examples n; for the top plots, we also show the desired upper bound on the error rate
(blue).

which has the semantics

Pp(x,y∗)
(
1− ffast(x) ≤ c′ | 1− f(x) ≤ c

)
,

which is the specification in is_person_fast. When our framework synthesizes a value c′ to fill
??2 in is_person_fast, it uses the same value to fill ??2 in monitor_correctness. Then, at run
time, it accumulates pairs (x, ŷ), where ŷ = 1(f(x) ≤ c), in calls to monitor_correctness and
uses them to check whether the probabilistic assertion in that function is true.

To evaluate whether monitoring can detect shifts, we select two subsets of the “car” category: (i) bikes,
including motor bikes, and (ii) passenger cars, excluding busses, trucks, etc., with 6 fine-grained
labels each. Then, we consider a shift from the car category to the bike category—i.e., if we imagine
that bikes were instead labeled as cars, would the recall of our program continue to be above the
desired threshold. First, we check whether it proves correctness when the data distribution does not
shift—i.e., using the test images labeled “passenger car”. We run our verification algorithm on this
property using the test set images labeled As expected, our verification algorithm correctly concludes
that both the recall and the running time are within the expected bounds. Then, we check whether it
proves correctness when the data distribution shifts—i.e., using the test images labeled “bike”. In this
case, our verification algorithm concludes that recall is incorrect, but running time is correct. Indeed,
the average running time is now lower—intuitively, ffast is incorrectly rejecting many “car” images,
which reduces recall (undesired) as well as running time (desired).

As a side note, our framework can also be used to monitor quantitative properties. For instance, we
can keep monitor how frequently the branch ffast(x) > c is taken—i.e., avoiding the need to evaluate
f(x). In Figure 6, monitor_running_time includes a probabilistic assertion

passert 1− ffast(x) > c′ {true}|ε
to perform this check. This assertion says that 1− ffast(x) > c′ with probability at least 1− ε—i.e.,
the faster branch in is_person_fast should be taken at least 1− ε fraction of the time according to
p(x, y∗). We might not know what is a reasonable value of ε—i.e., the rate at which ffast predicts
there is a person in the image. Thus, we leave it as a hole ??3. Given training examples ~z, our
framework can be used to synthesize a value of ε to fill this hole.

F.4 Case Study 2: Precision Medicine

Warfarin dosing task. Next, we consider a task from precision medicine. In particular, we consider
a random forest trained to predict dosing level for the Warfarin drug based on individual covariates
such as genetic biomarkers [29]. Personalized dosing can improve patient outcomes, but significant
errors can lead to adverse events if not quickly corrected. The ideal dosage is a real-valued label. The
goal is to train a model to predict this dosage as a decision support tool for physicians. For simplicity,
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we build on an approach that converts the problem into a classification problem by discretizing this
value into labels Y = {high,medium, low} dose [30]. Then, the goal is to maximize accuracy while
ensuring that very few patients for whom a high dose is predicted but should have been assigned a
low dose, and vice versa.

Experimental setup. We split the dataset (5,528 examples) into training (1,658 examples), synthesis
(2,764 examples), and test (1,106 examples) sets. Then, we use scikit-learn [31] to train a random
forest f : X × Y → R with 100 trees on the training set, where f(x, y) ∈ R is the probability
assigned to label y ∈ Y , and use f in conjunction with the program shown in Figure 9. This program
includes two thresholds clow and chigh, and only assigns a low dose to a patient with covariates x if
f(x) ≥ 1− clow, and similarly for a high dose—i.e., it only assigns the riskier outcomes when f is
sufficiently confident in its prediction. Importantly, the specification on clow refers not to the error
rate on predictions for patients for whom y = low, but for whom y = high—i.e., we want to choose
clow to ensure precision specifically on patients for whom y = high, and conversely for chigh. We use
our synthesis algorithm to synthesize values of clow and chigh that satisfy these specifications.

Correctness. Figure 9 shows the results of our approach (black) compared to directly predicting the
highest probability label according to the random forest f (red), always predicting “medium” (green),
and the desired error rate (blue), as a function of the maximum error rate ε, the maximum failure
probability δ, and the number of synthesis examples n. The top plots show the error rate, which is the
maximum of the rate at which patients with y = low are assigned a high dose, and the rate at which
patients y = high are assigned a low dose; this value should be below the blue line. The bottom
plot shows the overall accuracy of the program—i.e., how often its predicted dose equals the ground
truth dose. All values are estimated on the held-out test set. As before, ε has the largest impact on
performance since it directly controls the error rate; however, once it hits ε = 0.06, performance
levels off since its accuracy now equals that of f , and the program never assigns a dose not predicted
by f . Performance is flat as a function of δ. Finally, performance increases quickly as n goes from
500 to 1000, but plateaus thereafter, again once accuracy equals that of f .

Runtime monitoring. In the case of Warfarin dosing, the doctor administers an initial dose to the
patient (possibly the predicted dose, depending on the doctor’s judgement), and gradually adjusts
it based on the patient response. Thus, we eventually observe the ground truth dose that should
have been recommended, which we can use to monitor our program. This process is achieved
by the monitor_correctness subroutine; here, obtain_result returns the true dose eventually
observed for a patient with covariates x. We evaluate whether our runtime monitoring can detect shifts
in the data distribution that lead to a reduction in performance. We consider a shift in terms of the
ethnicity of the patients, which has recently been identified as an important challenge in algorithmic
healthcare [32]. In particular, we consider a model trained using non-Hispanic White patients (2,969
examples), which we refer to as the “majority patients”, and test it on Black, Hispanic, and Asian
patients (2,559 examples), which we refer to as the “minority patients”.

First, we check if it proves correctness when the data distribution does not shift—i.e., we train
the random forest, and synthesize and verify the program on majority patients. As expected, it
successfully verifies correctness. Next, we check if it proves correctness when there is a shift—i.e.,
we train the random forest and synthesize the program on majority patients, but verify the program
on minority patients. As expected, it rejects the program as incorrect.

Finally, recall that whether verification is successful depends on how many test examples are provided;
thus, we also evaluate how many test examples are needed in this setting. To make sure we have
enough examples, we use all examples in this case. Then, we find that for 2,000 test examples, our
verification algorithm successfully proves correctness, but for 500, 1,000, or 1,500 test examples, it
fails. Intuitively, the number of test examples needed to verify correctness needs to be more than the
number use to synthesize the parameters, or else the synthesized thresholds will be more precise (i.e.,
closer to their “optimal” value) and the verification algorithm will not have enough data to validate
them. In this case, we use 1,000 synthesis examples, so about 2× as many test examples are needed
to verify correctness.

F.5 Case Study 3: Object Detection

Object detection. We assume given a DNN component f that given an image x, is designed to
detect people in x. Our formulation of object detection in this section is slightly different than the
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def detect_ppl(x):
y_hat = f(x)
return [d.box for d in y_hat if check_det(x, d)]

def check_det(x, d, d_true=None)
return d.score > ??1 {IOU(d.box, d_true) >= 0.5} [|, 0.05]

def detect_ppl_fast(x, y_true=None):
y_hat = f_fast(x)
no_ppl_score = 1.0 - max([d.score for d in y_hat])
if no_ppl_score > ??2 {len(detect_ppl(x)) != 0} [|, 0.05]:

return []
else:

return detect_ppl(x)

def monitor_correctness(x):
if np.random.uniform() <= 0.99:

return
y_hat = f_fast(x)
no_ppl_score = 1.0 - max([d.score for d in y_hat])
passert no_ppl_score > ??1 { len(detect_ppl(x)) != 0} [??3]

def monitor_speed(x):
y_hat = f_fast(x)
no_ppl_score = 1.0 - max([d.score for d in y_hat])
passert no_ppl_score > ??1 {true} [??3]

Figure 10: A program used to detect people in a given image x. Specifications are shown in green;
curly brackets is the specification and square brackets is the value of ε. The corresponding inequality
with a hole in blue. Holes with the same number are filled with the same value.

(b) (c)

(e) (f)

(h) (i)

Figure 11: For the slow model alone (top) and slow+fast model (middle), we show recall (red),
the desired lower bound on recall (blue), and precision (black) as a function of (a,d) ε, (b,e) δ, and
(c,f) the object category y. For slow+fast (black), slow alone (red), and fast alone (green), we show
running time as a function of (g) ε, (h) δ, and (i) the object category y.

previous setup. In particular, d ∈ f(x) is a list of detections, which is a pair d = (b, p) including a
bounding box b ∈ R4 that encodes the center, width, and height of a rectangular region of x, and a
value p ∈ [0, 1] that is the predicted probability that b exists. In addition, the ground truth label y∗ for
an image x is a list of bounding boxes b ∈ y∗. In general, we cannot expect to get a perfect match
between the predicted bounding boxes and the ground truth ones. Typically, two bounding boxes b,′
match if have significant overlap—in particular, their intersection-over-union satisfies IOU(b, b′) ≥ ρ
for some threshold ρ ∈ [0, 1]; we use a standard choice of ρ = 0.5. We denote that b and b′ match
in this sense by b ∼= b′. Finally, b approximately matches a bounding box in y∗ it b ∼= b′ for some
b′ ∈ y∗, which we denote by b ∈̃ y∗.
Experimental setup. We use a pretrained state-of-the-art object detector called Faster R-CNN [4]
available in PyTorch [11], tailored to the COCO dataset [12]. There are multiple variants of Faster
R-CNN; we use the most accurate one, termed X101-FPN with 3× learning rate schedule. For each
predicted bounding box, this model additionally outputs a predicted object category (e.g., “person”),
as well as the size of the bounding box (“small”, “medium”, and “large”). For most of our evaluation,
we use “person” and “large”. We specify alternative choices when we used them; in particular, we
additionally consider 6 of the 91 object categories: “person” (10777 bounding boxes), “car” (1918
bounding boxes), “truck” (414 bounding boxes), “motorcycle” (367 bounding boxes), “bike” (314
bounding boxes), and “bus” (283 bounding boxes). We split the COCO validation set into 2000
synthesis images and 3000 test images.

Correctness. Our goal is to detect a majority of people. In particular, we consider synthesizing a
threshold c and selecting all bounding boxes with probability above c—i.e.,

f(x, c) = {b | (b, p) ∈ f(x) ∧ p ≥ c}.
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This task is more challenging to specify than our examples so far since f(x) is a structured output. In
particular, we are not reasoning about whether f(x) is correct with high probability with respect to
p(x, y∗), but whether bounding boxes (b, p) ∈ f(x) are correct. Thus, we need a distribution p(b | x)
over bounding boxes b in an image x. Given such a distribution, our goal is to choose c so

Pp(x,y∗),p(b|x) (b ∈̃ f(x, c) | b ∈̃ y∗) ≥ 1− ε, (14)

where p(x, y∗) is the data distribution. Intuitively, this property says that f(x, c) contains at least
a 1 − ε fraction of ground truth bounding boxes. A reasonable choice for p(b | x) is the uniform
distribution over f(x, 0)—i.e., the set of all bounding boxes predicted by f . One issue is when a
ground truth bounding box b ∈ y∗ is completely missing from f(x, 0); in this case, b would not occur
in p(b | x), so (14) would not count it as an error even though it is missing from f(x, c) for any c. To
handle this case, we simply add (b, 0) to f(x) during synthesis for such bounding boxes b—i.e., f
predicts b occurs with probability zero.

The program for achieving this goal is shown in the subroutine detect_ppl in Figure 10. We use
our algorithm in conjunction with the synthesis examples to synthesize the parameter ??1 for this
program, using the default values ε = δ = 0.05 and the object category “person”. In Figure 11, we
show the recall (red), desired lower bound on recall (blue), and precision (black) as a function of (a)
ε, (b) δ, and (c) the object category y. The trends are largely similar to before—e.g., performance
varies significantly with ε and the object category, but not very much with δ. For (c), we use ε = 0.1
to facilitate comparison to our fast program described below.

Improving speed. We use a similar approach to improve speed as before—i.e., given a fast object
detector ffast, we want to use it to check the image, and only send it to the slow object detector f if
necessary. A challenge compared to image classification is that the object detection model does not
operate at the level of bounding boxes, which is the level at which we defined correctness, but at
the level of images. Thus, we cannot decide whether we want to run the slow model independently
for each detection d ∈ ffast(x); instead, we have to make such a decision for an image x as a whole.
Intuitively, we check whether the fast model returns any detections in the given image x. To this end,
we compute the maximum score p across all detections (b, p) ∈ ffast(x)—i.e.,

f̃fast(x) = max
(b,p)∈ffast(x)

p.

Then, we want to guarantee that y∗ = ∅ if this score is below some threshold that ensures that
y∗ = ∅; this property is equivalent to its contrapositive

(y∗ 6= ∅)⇒ (1− f̃fast(x) ≤ c), (15)

where the right-hand side of the implication is equivalent to ffast(x) ≥ 1− c—i.e., the score is above
the threshold 1− c. As before, we cannot ensure this property holds with probability one, so instead
we use the high-probability variant

Pp(x,y∗)(1− f̃fast(x) ≤ c | y∗ 6= ∅) ≥ 1− ε.

This approach is shown in the detect_ppl_fast subroutine in Figure 10. We note that this approach
does not provide guarantees as strong as the ones for image classification—in particular, there is
a chance that the false negative images x of ffast (i.e., x does not satisfy (15)) will contain larger
numbers of ground truth bounding boxes compared to true positive images. Then, the recall at the
level of bounding boxes may be less than 1 − 2ε. However, we find that it works well in practice;
intuitively, ffast is more likely to have false negative images that contain fewer ground truth bounding
boxes.

For ffast, we use a variant of Faster R-CNN termed R50-FPN with 3× learning rate schedule, which
is the fastest variant available. Then, we synthesize the parameters of ??1 and ??2 in Figure 10
using the synthesis examples. As before, all results are run on an Nvidia GeForce RTX 2080 Ti
GPU. In Figure 11, we show the recall (red), desired lower bound on recall (blue), and precision
(black) of our approach as a function of (d) ε, (e) δ, and (f) the object category y. Similarly, we
show the running time (on the entire test set) of the combined program slow+fast (black), fast alone
(green), and slow alone (red). As can be seen, our approach reduces running time by more than 2×
except in the case of “person” (28% reduction) and “truck” (45% reduction). The person speedup
is relatively small because so many of the images in the COCO dataset contain people. Compared
to the image classification setting, we obtain a smaller speedup since the gap between the fast and

29



slow models is not as large, and also because we can only avoid using the slow model for images that
contain zero detections. Furthermore, comparing Figure 11 (c) and (f) (i.e., slow alone vs. slow+fast,
respectively), for categories “car” and “truck”, we suffer no loss in precision, though we suffer a
small loss in precision for the others.

Finally, we note that in Figure 11 (e), for δ = 0.15 and δ = 0.2, the estimated recall falls slightly
below the desired lower bound on recall. This result is most likely due to random chance, either
because of randomness in the synthesis set or because these values are estimates based on a random
test set. In particular, 0.15 is a fairly high failure probability (note that the results across δ are
correlated, since we are using the same synthesis and test sets across all δ).

Runtime monitoring. We use runtime monitors to check that our program meets the desired
bounds both in terms of error rate (the subroutine monitor_correctness in Figure 10) and running
time (the subroutine monitor_speed in Figure 10). These approaches are the same as for image
classification—the correctness monitor checks that the error rate (i.e., ffast(x) concludes there are no
detections but f(x) 6= ∅) is below the desired rate ε, and the running time monitor checks that f is
not called too often (i.e., ffast(x) concludes there are no detections sufficiently frequently).

To evaluate these monitors, we consider a shift from the default “large” bounding boxes we use
to “small” and “medium”. Intuitively, the smaller bounding boxes correspond to objects farther in
the background, which are harder to detect but also tend to be less important (e.g., an autonomous
car may not care as much about detecting far-away pedestrians). The trends are as before. First,
we find that the monitors correctly prove correctness when there is no shift. Second, we find that
the running time does not increase due to the shift, so the running time monitor continues to prove
correctness. Finally, our correctness monitor rejects correctness for the shift to “small” bounding
boxes; interestingly, it proves correctness for “medium” bounding boxes, which suggests that our
synthesized program generalizes to this case.

G Related Work

Synthesizing machine learning programs. There has been work on synthesizing programs that
include DNN components [33, 34, 35, 36, 37] and on synthesizing probabilistic programs [38, 39];
however, they do not provide guarantees on the synthesized program. There has been work on
synthesizing control policies that satisfy provable guarantees [40, 41, 42, 43]; however, they focus
on the setting where the learner can interact with the environment, and are not applicable to our
supervised learning setting. Finally, there has been work on synthesizing programs with probabilistic
constraints [44], but requires that the search space of programs has finite VC dimension.

Verified machine learning. There has been recent interest in verifying machine learning programs—
e.g., verifying robustness [45, 46, 47, 48, 49], fairness [50, 51], and safety [46, 52]. More broadly,
there has been work verifying systems such as approximate computing [53, 54, 55, 56] and probabilis-
tic programming [57, 28]. The most closely related work is [58, 59, 60, 61], which verify semantic
properties of machine learning models by sampling synthetic inputs from a user-specified space. In
contrast, our focus is on synthesizing machine learning programs.

Statistical verification. There has been work leveraging statistical bounds to verify stochastic
systems [13, 14, 15], probabilistic programs [57, 28], and machine learning programs [51]. Our
verification algorithm in Section B relies on bounds similar to the ones used in these approaches [13].
To the best of our knowledge, we are the first to focus on synthesis; in contrast to verification, our
approach relies on bounds from learning theory to provide correctness guarantees.

Conformal prediction. There has been work on conformal prediction [62, 63, 64, 65], including
applications of these ideas to deep learning [66, 67, 68, 69], which aim to use statistical techniques
to provide guarantees on the predictions of machine learning models. In particular, they provide
confidence sets of outputs that contain the true label with high probability. Our techniques are
inspired by these approaches, extending them to a general framework of synthesizing machine
learning programs that satisfy provable guarantees.
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H Proofs

H.1 Proof of Theorem B.2

It suffices to show that if µ < 1− ε, then Pp(~z)(ψ̂(~z)) < δ. First, note that since z1, ..., zn are i.i.d.
Bernoulli random variables with mean µ, then 1− z1, ..., 1− zn are i.i.d. Bernoulli random variables
with mean ν = 1− µ. Their sum L(~z) is a binomial random variable—i.e., L(~z) ∼ Binomial(n, ν).
Also, note that the condition µ < 1− ε is equivalent to ν > ε. Thus, we have

Pp(~z)(ψ̂(~z)) =

k∑
i=0

(
n

i

)
νi(1− ν)n−i

<

k∑
i=0

(
n

i

)
εi(1− ε)n−i

≤ δ,
where the first inequality follows by standard properties of the CDF of the Binomial distribution. The
claim follows.

H.2 Proof of Theorem C.2

First, define
t0ε = inf

t∈R
Tε.

Intuitively, t0ε ∈ R is the threshold that determines whether t is ε-approximately correct. In particular,
it is clear that t ∈ Tε for all t > t0ε and t 6∈ Tε for all t < t0ε ; in general, t0ε ∈ Tε may or may not hold.
Thus, it suffices to show

Pp(~z)(t̂(~z) ≤ t0ε) < δ.

To this end, note that the constraint L(t;~z) ≤ k in (7) implies∑
z∈~z

1(z > t̂(~z)− γ(~z)) ≤ k.

Thus, on event t̂(~z) ≤ t0ε , we have t̂(~z)− γ(~z) ≤ t0ε − γ(~z), so

k ≤
∑
z∈~z

1(z > t̂(~z)− γ(~z)) ≤
∑
z∈~z

1(z > t0ε − γ(~z)).

As a consequence, we have

Pp(~z)(t̂(~z) ≤ t0ε) ≤ Pp(~z)

(∑
z∈~z

1(z > t0ε − γ(~z)) ≥ k

)
.

Next, since t0ε − γ(~z) < t0ε , we have t0ε − γ(~z) 6∈ Tε—i.e.,
ε < Pp(z)(z > t0ε − γ(~z)) = Ep(z)(1(z > t0ε − γ(~z))).

In other words, the random variables 1(z > t0ε −γ(~z)) for z ∈ ~z are i.i.d. Bernoulli random variables
with mean ν > ε. Thus, we have

Pp(~z)

(∑
z∈~z

1(z > t0ε − γ(~z)) ≥ k

)
=

k∑
i=0

Pp(~z)

(∑
z∈~z

1(z > t0ε + γ(~z)) = i

)

=

k∑
i=0

Binomial(i;n, ν)

<

k∑
i=0

Binomial(i;n, ε)

=

k∑
i=0

(
n

i

)
εi(1− ε)n−i

≤ δ,
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where the first inequality follows by standard properties of the CDF of the Binomial distribution. The
claim follows.

H.3 Proof of Theorem C.4

First, we have the following classical inequality [16]:
Theorem H.1. (Hoeffding’s inequality) We have

Pp(~z)
(
µ− µ̂(~z) ≥ t

)
≤ e−2nt

2

.

Now, letting t =
√

log(1/δ)
2n , we have

Pp(~z)
(
µ ≥ ν̂(~z)

)
≤ Pp(~z)

(
µ− µ̂(~z) ≥ t

)
≤ e−2nt

2

≤ δ,

where the second-to-last inequality follows from Theorem H.1. The claim follows.
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