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ABSTRACT

Deep learning models, such as wide neural networks, can be conceptualized as
nonlinear dynamical physical systems characterized by a multitude of interacting
degrees of freedom. Such systems in the infinite limit, tend to exhibit simplified
dynamics. This paper delves into gradient descent-based learning algorithms, that
display a linear structure in their parameter dynamics, reminiscent of the neural
tangent kernel. We establish this apparent linearity arises due to weak correlations
between the first and higher-order derivatives of the hypothesis function, concern-
ing the parameters, taken around their initial values. This insight suggests that
these weak correlations could be the underlying reason for the observed lineariza-
tion in such systems. As a case in point, we showcase this weak correlations struc-
ture within neural networks in the large width limit. Exploiting the relationship
between linearity and weak correlations, we derive a bound on deviations from
linearity observed during the training trajectory of stochastic gradient descent. To
facilitate our proof, we introduce a novel method to bound the asymptotic behav-
ior of random tensors and establish that every tensor of this kind posses a unique,
tight bound.

1 INTRODUCTION

Deep learning in general, and particularly over-parameterized neural networks, revolutionized vari-
ous fields (Graves et al. (2013); He et al. (2016); Krizhevsky et al. (2012); Silver et al. (2016)), and
they are likely to do much more. Yet, the underlying reason for their unprecedented success remains
elusive. These systems can be interpreted as non-linear dynamical physical systems, characterized
by a multitude of interacting degrees of freedom, which makes an exact description of their behavior
exceedingly hard. However, it is well established that dynamical physical systems when expanded
to an infinite number of degrees of freedom tend to exhibit a simplified form of dynamics (Anderson
(1972)), therefore, it seems plausible to consider such a limit in the context of deep learning systems.

A seminal study in 2018 (Jacot et al. (2018)), demonstrated that wide, fully connected neural net-
works, undergoing deterministic gradient descent, behave as though they were linear with respect
to their parameters, (while maintaining a highly non-linear structure in their inputs). This structure
has been denoted as the neural tangent kernel (NTK). The result sparked a plethora of subsequent
research, generalizing it to other architectures, investigating the rate of convergence towards this
linear limit, exploring the deviation of the parameters themselves from their initial configuration,
decoding the structure of the kernels, and leveraging this knowledge to enhance our understanding
of wide neural networks in general (Lee et al. (2019); Li et al. (2019); Cao & Gu (2019); Karniadakis
et al. (2021); Huang et al. (2021); Bartlett et al. (2021)).

Subsequent discussions arose regarding the role of this limit in the exemplary performance of wide
neural networks. Several studies have demonstrated that in certain contexts, infinitely wide neural
networks converge to their global minimum at an exponential rate (Jacot et al. (2018); Lee et al.
(2019); Du et al. (2019); Allen-Zhu et al. (2019a;b); Daniely (2017); Li & Liang (2018); Du et al.
(2018); Xu et al. (2020)). Moreover, wide neural networks have been posited as effective tools for
generalization, with connections drawn to the double descent phenomenon (Belkin et al. (2019);
Nakkiran et al. (2021); Mei & Montanari (2022)). However, these conclusions encounter some
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contention when juxtaposed with empirical evidence. Notably, several experiments indicate that
for real-world data, NTK-based learning is less effective than its wide (albeit finite) neural network
counterparts (Lee et al. (2020); Fort et al. (2020)). This apparent ”NTK inferiority paradox” suggests
that the relationship between the NTK limit and the success of finite neural networks may be more
intricate than initially presumed.

An under-explored area within the realm of the neural tangent kernel limit pertains to the founda-
tional principles responsible for this linearization. Chizat et al. (2019) proposed that any learning
system, under a gradient-based algorithm, embodies an intrinsic scale that directs the system’s lin-
earization. Furthermore, the introduction of an external parameter, can modulate this inherent scale,
thereby influencing the system’s tendency towards linearization. Liu et al. (2020) demonstrated that
the related ratio between the subordinate/spectral norm of the Hessian, and the euclidean norm of
the Gradient that governs linearization. Their work also elucidated that in wide neural networks this
ratio tends to be small.

1.1 OUR CONTRIBUTIONS

1. We establish that for gradient descent-based learning, linearity is equivalent to weak corre-
lations between the first and subsequent derivatives of the hypothesis function concerning
its parameters at their initial values (3.3). This equivalence is suggested as the fundamental
cause for the linearization observed in wide neural networks.

2. We prove a directly that wide neural networks display this weak derivative correlations
structure. By relying and extending the tensor programs formalism (Yang & Littwin
(2021)), our approach uniformly addresses a broader spectrum of architectures at once,
than any other proof we are aware of (4.2).

3. Drawing from the same concepts, we demonstrate how modifications in the architecture
of linearizing learning systems, and more specifically, wide neural networks, affect the
rate of linearization. This finding is juxtaposed Chizat et al. (2019)’s result, regarding the
implications of the introduction of an external scale (3.3.2,4.2).

4. Harnessing the formalism of weak derivatives correlations, we derive a bound on the devia-
tion from linearization over time during learning, when utilizing stochastic gradient descent
(4.1). This is a generalisation of the traditional result for deterministic gradient descent (Lee
et al. (2019)). This is crucial, as in most practical scenarios, stochastic gradient generalize
better than deterministic gradient descent (Lee et al. (2020); Fort et al. (2020)).

5. We introduce the notion of random tensor asymptotic behavior, as an effective analytical
tool to describe the asymptotic behavior of random tensors (2). Such tensors are not only
integral to machine learning, but also serve a pivotal role in diverse mathematical and phys-
ical frameworks. Understanding the evolution of these tensors typical asymptotic behavior
is relevant for addressing many questions across these fields.

The overarching simplicity and broad applicability of our findings suggest that weak derivatives cor-
relations could very well be the foundational cause for the prevalent linearization attributes observed
in wide neural networks, and possibly for other linearizing systems.

2 RANDOM TENSOR ASYMPTOTIC BEHAVIOR

Random tensors play a fundamental role in machine learning in general, and in this work in partic-
ular. In this section, we demonstrate the effectiveness of employing the stochastic big O notation
of the subordinate norm to characterize the asymptotic behavior of a general random tensor series
(hereinafter referred to as a random tensor). Addressing the asymptotic behavior of such tensors
involves two inherent challenges: the complexity arising from their multitude of components, and
the stochastic nature of these components.

1. To avoid the first challenge, we focus on the tensor’s subordinate norm, as elucidated in
Section 2.1. This norm exhibits a wide array of useful properties, rendering it highly effec-
tive for working with random tensors, particularly concerning linear products.
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2. In Section 2.2, we argue that the stochastic big O notation is the most effective tool for char-
acterizing the asymptotic behavior of random variables, surpassing other measures such as
the standard big O notation of the variance. We further demonstrate how its properties
seamlessly synergize with those of the subordinate norm.

3. Finally, in Section 2.3, we establish that every random variable possesses a unique, tight
asymptotic bound, termed the definite asymptotic bound. This allows us to use the stochas-
tic big O notation not merely as a tool to bound the asymptotic behavior of random tensors,
but also as a way to fully characterize it. Consequently, we define the asymptotic behavior
of a tensor M as the definite asymptotic bound of the tensor’s subordinate norm.

2.1 THE SUBORDINATE TENSOR NORM

Let M be a tensor of rank r ∈ N0. Denote all its indices using the vector i⃗, such that each ie for e =
1...r can assume values ie = 1...Ne. Consequently, the tensor comprises a total of N = N1 · · ·Nr

elements.

We will use the subordinate norm, defined as Kreyszig (1991):

∥M∥ = sup
{
M ·

(
v1 × . . .× vr

)∣∣ v1 ∈ SN1 . . . v
r ∈ SNr

}
=

sup

{
N1...Nr∑
i1...ir=1

(
Mi1...irv

1
i1 · · · v

r
ir

)∣∣∣∣∣ v1 ∈ SN1 . . . v
r ∈ SNr

}
,

(1)

where SNk
=
{
v ∈ RNk : v · v = 1

}
represents the unit vectors of the appropriate dimensions.

This norm satisfies certain algebraic properties outlined in lemma A.1, including: [i] the triangle
inequality; [ii] for a tensor M and vectors v1 . . . vq with appropriately defined product, the condition∥∥M ·

(
v1 × . . .× vr

)∥∥ ≤ ∥M∥
∥∥v1∥∥ · · · ∥vr∥ holds; [iii] Given two tensors M

(1)

i⃗1
,M

(2)

i⃗2
defining

Mi⃗1 ,⃗i2
= M

(1)

i⃗1
M

(2)

i⃗2
then, ∥M∥ =

∥∥M (1)
∥∥∥∥M (2)

∥∥.

Also, one has ∥M∥ ≤ ∥M∥F (with equality for vectors) (A.2) where the Frobenius norm is:

∥M∥2F =
∑
i⃗

M2
i⃗
. (2)

2.2 EFFECTIVENESS OF THE STOCHASTIC ”BIG O” NOTATION

Consider a general random tensor series, denoted by M ≡ {Mn}∞n=1, which henceforth we will
consider as a random tensor that depend on a limiting parameter n ∈ N1.

Our objective in this section is to identify a method to describe and bound the asymptotic behavior of
such a tensor, which adheres to elementary algebraic properties. Specifically, we aim for the product
of multiple bounded random tensors to be constrained by the product of their respective bounds.

Employing our defined norm (1), we can simplify our problem from general random tensors to pos-
itive random variables (rank zero tensors), as our norm satisfies the elementary algebraic properties
established in Lemma A.1. This reduction is substantial; however, the challenge of addressing the
non-deterministic nature of our variable remains.

One might initially consider the expectation value of the tensor’s norm as a solution. This approach,
unfortunately falls short, because that for two positive random variables M1,M2 their product vari-
ance is not bounded by the product of their variance. In fact, generally, the converse is true:

Var (M1M2) ≥ Var (M2)Var (M1) (3)

This issue becomes more pronounced when considering the product of multiple such variables,
a frequent occurrence in this work. For instance, even with a basic zero-mean normal distribution
with standard deviation σ, the higher moments of this distribution factor as p!! = p(p−2)(p−4) · · ·:

∀p ∈ N : ⟨Mp⟩ = p!!σp . (4)

1The results are applicable not only for N, but for any other set possessing an absolute order above it
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When multiplying multiple such variables, these factors can accumulate in the lower moments,
rendering this definition impractical for our purposes. Similarly, any attempt to define asymptotic
behavior using the variable’s moments will encounter similar difficulties.

To circumvent these challenges, we adopt the stochastic big O notation Dodge (2003); Bishop et al.
(2007)2. We denote N =

{
f : N → R0+

}
as the set of all functions from N to R0+.

Definition 2.1 (Asymptotic Upper Bound of Random Tensors). A random tensor M , as defined
above, is said to be asymptotically upper bounded by f ∈ N as follows:

M = O (f) , (5)
if and only if:

∀g ∈ N s.t f = o (g) : lim
n→∞

P (∥Mn∥ ≤ g (n)) = 1 . (6)

The lower asymptotic bound, f = Ω(M), is defined analogously but with the inequality reversed
and g = o(f).

Like with an infinite number of deterministic series, where pointwise convergence often falls short
and uniform convergence is required, we demand a definition of a uniform asymptotic bound for
discussing an infinite number of random tensors. This concept is rigorously defined in appendix
A.1.
Remark 2.1. For a finite number of tensors, it can simply be demonstrated that the uniform bound
aligns with the pointwise asymptotic bound, analogous to series convergence..

We demonstrate in lemma A.6 that this notation inherits many of the norm’s properties it as defined
above, including all of the properties of the subordinate norm, delineated in lemma A.1. Further-
more, it satisfies several other useful properties, outlined in appendix A.3.

2.3 THE DEFINITE RANDOM TENSOR ASYMPTOTIC BOUND

Remark 2.2. We denote f ≤ g or (f) ≤ O(g) iff f = O(g). We also denote f < g or O(f) <
O(g) iff f = O(g) and f ̸∼ g, where f ∼ g ⇔ O (f) = O (g) ⇔ f = O (g) ∧ g = O (f). It is
important to note that f < g can hold even without necessitating f = o(g).

It can be readily shown that for any random tensor M , there exist upper and lower bounds such
that O (h−) ≤ O (M) ≤ O (h+), and that they satisfy h− ≤ h+. Furthermore, if h+ and h−
satisfy h+ ∼ h−, their asymptotic behavior is unique. Meaning that for any other pair h′

+, h
′
−, the

relationship h+ ∼ h′
+ ∼ h′

− ∼ h− still holds (A.5). In such scenarios, we assert that M possesses
an exact asymptotic behavior, denoted as O (h+) = O (h−).

The existence of such a pair however is not guaranteed, as illustrated by a random variable that, for
every n ∈ N, has equal probability of one-half to yield either 1 or n. For this variable, the optimal
upper bound is n, and the optimal lower bound is 1, but these do not exhibit the same limiting
behavior. Analogously, deterministic series may exhibit similar behavior, featuring multiple distinct
partial limits. However, in the deterministic case, the limsup and liminf serve as the appropriate
upper and lower limits respectively. This observation leads to the question of whether an appropriate
asymptotic bound exists for the random case. It turns out, it does.
Theorem 2.1 (Definite Asymptotic Bounds for Tensors). Consider a random tensor M with a lim-
iting parameter n as described earlier. There exists f ∈ N serving as a tight/definite upper bound
for M , satisfying:

M = O (f) ∧ ∀f ̸< g : M ̸= O (g) . (7)
Furthermore, the asymptotic behavior of f is unique.

Explanation. Although the theorem may appear intuitive, the challenge arises from the fact that
our order above N is not a total one, even when considering only the asymptotic behavior of the
functions. For example, none of the following equations hold true:

sin (πn) < cos (πn) , cos (πn) < sin (πn) , sin (πn) ∼ cos (πn) . (8)
We address this issue by employing Zorn’s lemma, as demonstrated in appendix A.2.

2Our definition slightly differs from the standard definition for big O in probability notation, but it is
straightforward to show its equivalence
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Since every such random tensor M has precisely one definite asymptotic bound f , we can consider
this bound as the random tensor’s asymptotic behavior, represented as:

O(M) = O(f) . (9)

3 WEAK CORRELATIONS AND LINEARIZATION

3.1 NOTATIONS FOR SUPERVISED LEARNING

3.1.1 GENERAL NOTATIONS

Supervised learning involves learning a classifier: a function ŷ : X → Y that maps an input
set (here X ⊆ RdX ), to an output set (here Y ⊆ RdY ), given a dataset of its values X ′ ⊆ X ,
denoted as the ”target function”. This is achieved by using an hypothesis function, in our case of
the form F : RN → {f : X → Y } which depends on certain parameters θ ∈ RN (in the case of
fully connected neural networks for example, the weights and biases). The objective of supervised
learning is to find the optimal values for these parameters, such that F captures ŷ best, with respect
to a cost function C. We use x ∈ X to denote elements in the input set, and i, j = 1...dY to denote
the output vector indices. The parameters θ are enumerated as θα, α = 1, ..., |θ| = N , and their
initial values are denoted by θ0 = θ(0).

We work within the optimization framework of single input batches gradient descent-based training,
which is defined such that for every learning step s ∈ N:

∆xsθ (s) = θ (s+ 1)− θ (s) = −η∇C (F (θ) (xs) , ŷ (xs))|θ=θ(s) =
= −η∇F (θ (s)) (xs) C′ (F (θ (s)) (xs) , ŷ (xs)) .

(10)

Here, ∇α = ∂
∂θα

represents the gradient operator, xs denotes the s ∈ Nth input data, and C′(x) =
dC(x)
dx refers to the derivative of the cost function. The derivative matrix/the Jacobian ∇F is defined

such that for every indices i, α, (∇F )αi = ∇αFi. We denote η as the learning rate and (xs, ŷ (xs))
as the images and labels, respectively. The training path is defined as the sequence of inputs upon
which we trained our system, represented by {xs ∈ A}∞s=0. We assume that each input along this
path is drawn from the same random distribution P , neglecting the possibility of drawing the same
input multiple times. The same distribution will be used for both training and testing. Moreover, we
assume that the hypothesis function and the cost function F, C are analytical in their parameters. We
study learning in the limit where the number of parameters N ≡ |θ| → ∞, with N ≡ N(n) being a
function of some other parameter n ∈ N, denoted as the ”limiting parameter”. For neural networks,
n is typically chosen as the width of the smallest layer, but we can choose any parameter governs
the system’s linearization.
Remark 3.1. This framework can be greatly generalised, as we discussed in appendix F.

3.1.2 NEURAL TANGENT KERNEL NOTATIONS

Numerous gradient descent learning systems (GDML) with different neural network architectures,
display a linear-like structure in their parameters in the large width limit. In this linear limit, the
hypothesis function takes the following form:

Flin (0) = F (θ0) ,
∀s ∈ N0 : Flin (s+ 1) = Flin (s)−Θ0 (·, xs) C′ (Flin (s) (xs) , ŷ (xs)) ,

(11)

with the kernel Θ defined such as:

∀x, x′ ∈ X : Θ (θ) (x, x′) = η∇F (θ) (x)
T ∇F (θ) (x′) , Θ0 ≡ Θ(θ0) , (12)

where ∇FT is the transpose of ∇F the Jacobian.

3.2 THE DERIVATIVES CORRELATIONS

3.2.1 THE DERIVATIVES CORRELATIONS DEFINITION

In the following, we prove that linearization is equivalent to having weak correlations between the
first, and higher derivatives of the hypothesis function, with respect to the initial parameters. We
define the derivative correlations as follows:

5



Under review as a conference paper at ICLR 2024

Definition 3.1 (Derivatives Correlations). We define the derivatives correlations of the hypothesis
function for any positive integer d ∈ N and non-negative integer D ∈ N0 as:

CD,d (θ) =
η

D
2 +d

D!d!
∇×D+dF (θ)

T
(∇F (θ))

×d
, (13)

where the higher order derivatives defined such that for every d ∈ N and indices i, α1...αd,(
∇×DF

)
α1...αd,i

= ∇α1 · · · ∇αd
Fi.

More explicitly, we present the inputs and indices of these tensors as follows:

CD,d (θ)
α1+d...αD+d

i0,i1...id
(x0, x1 . . . xd) =

η
D
2

+d

D!d!

∑N
α1...αd=1 ∇×D+d

α1...αD+d
Fi0 (θ) (x0) (∇α1Fi1 (θ) (x1) · · · ∇αd

Fid (θ) (xd)) ,
(14)

The objects in (13) are the correlation of the derivatives in the sense that α1 . . . αd can be viewed
as random variables, drawn from a uniform distribution of {1...N}, while θ and all other indices
are fixed instances and hence deterministic. In this context, ∇×D+dF and ∇F × . . .×∇F in (13)
can be viewed as random vectors of the variables α1 . . . αd, and the summation in (13) represents
the (unnormalized) form of the ”Pearson correlation” between the two random vectors. The overall
coefficient of the learning rate η

D
2 +d serves as the appropriate normalization, as we will demonstrate

in appendix C and D. We will also denote: Cd (θ) ≡ C0,d (θ) ,CD,d ≡ CD,d (θ0) ,C
d ≡ Cd (θ0).

An example for these correlations is the D = 0, d = 1 correlation, the correlation of the first
derivative with itself, the kernel:

C1 (θ) = η∇TF (θ)∇F (θ) = Θ (θ) . (15)

The definition for the asymptotic behavior for these derivative correlations is slightly nuanced due
to the many different potential combinations of distinct inputs. We rigorously define it in appendix
B.1.

3.3 EQUIVALENCE OF LINEARITY AND WEAK DERIVATIVES CORRELATIONS

Our main theorems concern the equivalence of linearity and weak derivative correlations. In other
words, weak correlations can be regarded as the fundamental reason for the linear structure of wide
neural networks. These theorems are applicable for systems that are properly scaled in the initial
condition, meaning that when taking n → ∞ the different components of the system remain finite.
We define in rigour exactly what it means in appendix B.2. We denote such systems as properly
normalised GDMLs or PGDMLs.

3.3.1 OUR MAIN THEOREMS

In the following theorems, we describe two distinct manifestations of the equivalence between lin-
earization and weak derivatives correlations for a PGDMLs. We denote by m(n) as the parameter of
the linearization/correlation decay where m(n) → ∞. m(n) is an intrinsic parameter of the system,
and is defined by the linearization rate or the correlation structure. For wide neural networks for
example, m(n) =

√
n.

Theorem 3.1 (Fixed Weak Correlations and Linearization Equivalence). Under the conditions de-
scribed above, for a sufficiently small learning rate η < ηthe, the two properties are equivalent:

1. m(n) - fixed weak derivatives correlation:

∀d,D ∈ N : Cd = O

(
1

m (n)

)
,CD,d = O

(
1√
m (n)

)
Uniformly. (16)

2. Simple linearity: For every fixed training step s ∈ N:

F (θ (s))− Flin (s) = O
(

1
m(n)

)
,

∀D ∈ N : η
D
2

(
∇×DF (θ (s))−∇×DF (θ0)

)
= O

(
1√
m(n)

)
Uniformly.

(17)
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ηthe is defined such as all the correlations are uniformly bounded by O(1), to ensure the sum con-
verges, as shown in appendix C.2.

The next theorem delineates an even stronger equivalence, which is also relevant for wide neural
networks. It also encompasses the scaling of the learning rate.

Theorem 3.2 (Exponential Weak Correlations and Linearization Equivalence). For the conditions
described above, the two properties are equivalent:

1. m(n) - power weak derivatives correlation:

∀
(
D,∈ N0, d ∈ N

)
̸= (0, 1) : CD,d = O

(
1√
m (n)

)d

Uniformly. (18)

2. Strong linearity: For every reparametrisation of the learning rate η → r(n)η, r(n) > 0 and
for every fixed training step s ∈ N:

F (θ (s))− Flin (s) = O
(

r(n)
m(n)

)
,

∀D ∈ N :
(

η
r(n)

)D
2 (∇×DF (θ (s))−∇×DF (θ0)

)
= O

(
r(n)√
m(n)

)
.

(19)

Explanation. We prove the theorems by considering for a general learning step s ∈ N, the hypothe-
sis function and its derivatives’ Taylor series expansion around the s−1 step. Utilizing equation 10,
we can find that the evolution of the derivatives of F and its derivatives during learning, is governed
by a linear combination of the correlations of the form:

∀D ∈ N0 : ∆
η

D
2

D!
∇×DF (θ) =

∞∑
d=1

CD,d (θ) (−C′ (F (θ) , ŷ))
×d

, (20)

where ∆∇×DF in the change of ∇×DF . For deterministic functions it is straightforward to prove
the equivalences by employing the arithmetic properties of the big O notation, and that [i] One can
choose any F − ŷ (as long as its asymptotic behavior is appropriate). [ii] Different components in
our sum cannot cancel each other, since we can change η continuously; thus, for the sum stay small,
all of the components must be small. The adjustments needed for our case of stochastic functions
are minor, as, as we show in appendix A.3, our tensor asymptotic behavior notation satisfies many
of the same properties of the deterministic big O notation. The complete proofs are in appendix
??.

3.3.2 EXTERNAL SCALE AND HESSIAN SPECTRAL NORM

We see in theorem 3.2, that a rescaling of η such as η → r(n)η can either promote or impede the
process of linearization. This observation also holds for Theorem (3.2) as long as η < ηthe. This
insight offers a deeper understanding of the findings presented by Chizat et al. (2019). Specifically,
it elucidates that an alteration of an external scale influences linearization by affecting the scale of
the higher correlations differently than of the lower ones.

A notable connection to another principal research Liu et al. (2020), is the definition of derivatives
correlations themselves. In Liu et al. (2020), the authors established that linearization, results from
a small ratio between the spectral norm of the Hessian and the norm of the gradient. The derivative
correlations can be interpreted as a spectral norm, but concerning solely the gradient, when con-
sidered as a vector. This interpretation serves as a refinement of the results presented in Liu et al.
(2020). Unlike in Liu et al. (2020) approach, which required this ratio to be small within a ball, our
approach demands its minimization at the initialization point itself. Because of that it necessitates
the decay of higher-order correlations.

3.3.3 THE CHICKEN AND THE EGG OF LINEARIZATION AND WEAK CORRELATIONS

The relationship between linearization and weak correlations in over-parameterized systems can be
comprehended from two different viewpoints. The first perspective suggests that effective learning
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in such systems necessitates a form of implicit regularization, which inherently favors simplicity
(Belkin et al. (2019)). This preference can be directly incorporated by imposing a linear (or at least
approximately linear), structure in highly over-parameterized regimes. Notably, in certain scenarios,
linearization can facilitate exponential convergence rates, especially with respect to the training
datasets and, but in some instances, even with respect to the testing datasets (Jacot et al. (2018); Lee
et al. (2019); Du et al. (2019); Allen-Zhu et al. (2019b); Daniely (2017); Li & Liang (2018); Du
et al. (2018); Xu et al. (2020); Allen-Zhu et al. (2019a)). Hence, weak derivative correlations can be
interpreted as a pragmatic approach for achieving linearization.

An alternative interpretation, aligning more closely with the spirit of this paper, suggests that weak
derivative correlations do not primarily serve as a dynamic mechanism for linearization, but rather, as
its underlying cause. In this context, persisting derivative correlations may indicate an inherent bias
within the system, typically undesirable. Therefore, linearization can be viewed as a consequence
of our attempt to avoid counterproductive biases, by demanding weak correlations.

Moreover, if we possess some prior knowledge about an inherent biases in our problem, it might be
advantageous to allow some non-decaying correlations, counteracting the process of linearization.
Furthermore, as certain biases can enhance general learning algorithms (in the form of implicit and
explicit regularization), this perspective might provide valuable insights into the ”NTK inferiority
paradox” introduced in the introduction (1). The reason why linear learning underperforms in com-
parison to finite neural networks, might be that it lack some beneficial biases, in the form of non
vanishing correlations.

4 PROPERTIES OF WEAKLY CORRELATED PGDMLS

4.1 APPLICATION: DEVIATION FROM LINEARITY DURING LEARNING

Multiple studies have examined the deviation of the hypothesis function F from its linear approx-
imation, Flin (11), as a function of n for a fixed learning step (especially in the context of wide
neural networks). Yet, it seems that no research has explored the deviation between these functions
with respect to the learning step for stochastic GD (10). This aspect is crucial since even if F −Flin

vanished for a given learning step, if it deviates too fast during learning, the linearization may not
be evident for realistic large n.

We address single-input batches stochastic GD in our study. However, as we explained in appendix
F, this result can be greatly generalized. Notably, the analysis for stochastic GD may be even more
relevant even for deterministic GD, than the conventional approaches that presuppose a training
dataset. This is because, while the batch might be fixed, its initial selection is from a stochastic
distribution.
Corollary 4.0.1 (Weakly Correlated PGDML Deviation Over Time). For an exponentially m(n)-
weakly correlated PGDML, given η < ηcor, and some S ∈ N, that for every s = 1 . . . S, if:

C′ (Flin (s) , ŷ) = O
(
e−

s
T

)
, C′′ (Flin (s) , ŷ) = O (1) Uniformly, (21)

than:

F (θ (s))− Flin (s) = O

(
s0

m (n)

)
Uniformly. (22)

ηcor is the standard critical learning rate ensuring our system’s effectively learns in the NTK limit
(D). It’s typically from the same order of magnitude as ηthe.

Explanation. We prove the corollary by using a similar induction process as in theorems (3.1,3.2).
However, here we also consider the dependency in the learning step, as detailed in appendix D. We
are able to bound the deviation over time, by leveraging the fact that in the NTK limit during the
initial phases of the learning process, the system converges towards the target function exponentially
fast3 (Jacot et al. (2018); Lee et al. (2019); Du et al. (2019); Allen-Zhu et al. (2019b); Daniely (2017);
Li & Liang (2018); Du et al. (2018); Xu et al. (2020); Allen-Zhu et al. (2019a)). We believe that
subsequent research will be able to produce more refined bounds.

3The known bounds for C′ (Flin, ŷ) are typically bounds over the variance. In appendix A.4, we discuss
how an average exponential bound can be translated into a uniform probabilistic bound.
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4.2 EXAMPLE: WIDE NEURAL NETWORKS

Numerous studies have demonstrated that a wide range of neural networks architectures exhibit
linearization as they approach the infinite width limit, including any combination of CNNs, con-
volutional neural network, recurrent neural networks, attention, and others. However, the existing
proofs tend to be specific to particular architectures, and are often intricate in nature. The most com-
prehensive proof we aware of that uniformly encompasses a diverse set of architectures, is presented
in (Yang & Littwin (2021); Yang (2020)). These works employed the tensor product formalism
(Yang (2019)), which can describe most relevant variants of wide neural network architectures, as
the composition of global linear operations, and point-wise non linear functions.

1. Relying on the semi-linear structure of FNCs we were able show explicitly by induction that
for appropriate activation functions wide neural networks are n-fixed weakly correlated,
and n

3
2 -exponential weakly correlated, (and in most practical seance can be considered as

n-exponentially weakly correlated as well), (E).

2. The framework of low correlations proves effective in discerning how modifications to our
network influence its linearization. For instance, it is evident that supn∈N

ϕ[n]

(n+1)! , govern
the rate of linearization in FNCs (E). This observation is why we demand for FNCs, that
over the relevant domain, the activation function satisfy:

ϕ[n] ≤ O ((n+ 1)!) , (23)

where ϕ[n] is the n-th derivative of the network’s activation function - ϕ.

3. Our proof for FNCs can simply be generalised for any wide network, described by the
tensor programs formalism (E.5.1). This is because, similarly to FNCs, all such systems
exhibit a wide semi-linear form by definition. Demonstrating that the linearization of these
systems arises from weak correlations, allows us to utilize all of the insights we’ve found
for weakly correlated systems in general. We were also been able to conceive lineariz-
ing network-based systems, that fall outside the scope of the tensor programs formalism
(E.5.2).

Leveraging the notation of the asymptotic tensor behavior, our proof accommodates a broad
spectrum of initialization schemes, extending beyond the Gaussian initialization predomi-
nantly employed in other studies.

5 DISCUSSION AND OUTLOOK

The linearization of large and complex learning systems is a widespread phenomenon, but our com-
prehension of it remains limited. We propose the weak derivatives correlations (3.1), is the underly-
ing structure behind this phenomenon. We demonstrated that this formalism is natural for analyzing
this linearization: [i] It allows for the determination of if, and how fast a general system undergoes
linearization (3.3.1,4.2). [ii] It aids us in analyzing the deviations from linearization during learning
(4.0.1).

These insights raise a pivotal question (discussed in 3.3.3): Is the emergence of the weak correla-
tions structure simply a tool to ensure a linear limit for overparameterized systems? Or does weak
correlations indicate an absence of inherent biases, leading to linearization? If the latter is true, it
suggests that in systems with pre-existing knowledge, specific non-linear learning methodologies
reflecting those biases might be beneficial. That could partially explain why the NTK limit falls
short in comparison to finite neural networks.

At the core of our weak derivatives correlation framework, is the random tensor asymptotic behavior
formalism, outlined in section 2. We have showcased its efficacy in characterizing the asymptotic
behavior of random tensors, and we anticipate its utility to extend across disciplines that involve
such tensors.

We further discuss generalisations and limitations in appendix F.
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