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Abstract

Our ability to interpret others’ mental states001
through nonverbal cues (NVCs) is fundamen-002
tal to our survival and social cohesion. While003
existing Theory of Mind (ToM) benchmarks004
have primarily focused on false-belief tasks005
and reasoning with asymmetric information,006
they overlook other mental states beyond belief007
and the rich tapestry of human nonverbal com-008

munication. We present MOTION2MIND,009
a framework for evaluating the ToM capabili-010
ties of machines in interpreting NVCs. Lever-011
aging an expert-curated body-language refer-012
ence as a proxy knowledge base, we build013

MOTION2MIND, a carefully curated video014
dataset with fine-grained nonverbal cue anno-015
tations paired with manually verified psycho-016
logical interpretations. It encompasses 222017
types of nonverbal cues and 397 mind states.018
Our evaluation reveals that current AI systems019
struggle significantly with NVC interpretation,020
exhibiting not only a substantial performance021
gap in Detection, as well as patterns of over-022
interpretation in Explanation compared to hu-023
man annotators. We make our data and public.024

1 Introduction025

Understanding others’ mental states through vi-026

sual cues is fundamental to human social interac-027

tion and intelligence (Fernandez-Duque and Baird,028

2005; Tomasello et al., 2005). We naturally infer029

emotions from facial expressions (Barrett et al.,030

2011), intentions from behaviors (Becchio et al.,031

2018), and social status from appearances (Free-032

man and Ambady, 2011). As artificial intelli-033

gence systems become increasingly integrated into034

our daily lives—from virtual assistants to social035

robots (Mathur et al., 2024)—their ability to inter-036

pret these NVCs becomes crucial for meaningful037

human-AI interaction.038

Large Language Models (LLMs) have made039

remarkable progress in processing text-based in-040

teractions (Park et al., 2023), yet their capabil-041

ity to understand subtle mental states expressed 042

through nonverbal communication remains largely 043

unverified. Existing Theory of Mind (ToM) bench- 044

marks (Le et al., 2019; Weber et al., 2021; Jin et al., 045

2024a) have advanced, but they primarily focus 046

on false-belief tasks (Wimmer and Perner, 1983) 047

- testing an agent’s ability to reason about asym- 048

metric information between characters. However, 049

there is a growing body of work that calls for a 050

broader spectrum of mental state inference in ToM 051

tasks (Ma et al., 2023; Wang et al., 2025). 052

Another attempt to measure NVC understand- 053

ing through video datasets (Luo et al., 2020; Chen 054

et al., 2023; Liu et al., 2021a; Huang et al., 2021) 055

has encountered two significant methodological 056

limitations. First, they employ an oversimplified 057

scoring system focused on emotions (e.g., rating 058

valence/arousal on a 1-7 scale), which fails to cap- 059

ture the broad range of mental states. Secondly, 060

most of these datasets span from several minutes 061

to several hours, during which numerous NVCs 062

appear, but individual annotations for each NVC 063

are not provided. 064

To address these challenges, we introduce 065

MOTION2MIND, a comprehensive framework 066

to evaluate mind interpretation capabilities using 067

NVC as important information. Our framework 068

is seeded by an expert-curated body-language ref- 069

erence that enumerates 407 frequently discussed 070

cues and their plausible psychological interpreta- 071

tions. We use this reference as a structured prior 072

against which we can measure how well models 073

align with human-documented associations when 074

applied to realistic contexts drawn from sitcoms, 075

reality footage, and film. Our data is validated by a 076

high accuracy of human annotators demonstrating 077

its plausibility and clarity. While the current state- 078

of-the-art model GPT-4o (OpenAI et al., 2024a) 079

correctly guesses complex false belief tasks (Kosin- 080

ski, 2024), it fails to align with even this day-to-day 081

NVC knowledge in realistic contexts. 082
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Figure 1: We disentangle concept of nonverbal cue understanding into three distinct components: (1) Detection,
identifying and labeling various naturalistic movements; (2) Knowledge, the general understanding of the psycho-
logical meanings associated with specific cues; and (3) Explanation, contextual reasoning to infer the psychological
state behind observed cues. Our test set, developed based on Joe Navarro’s work, reveals that while LLMs perform
comparably to humans in Knowledge, they exhibit a substantial gap in the Explanation and Detection phase.

Our key contributions are:083

1. A Three-Stage Framework for Nonverbal084

Theory of Mind. As shown in Figure 1, we085

propose a structured framework for under-086

standing nonverbal communication with three087

distinct components: Detection, Knowledge,088

and Explanation.089

2. MOTION2MIND: A Realistic, Multi-090

modal Benchmark with Contextually In-091

valid Cues. We operationalize the reference092

dictionary inside contextual video clips and093

additionally include ‘invalid’ cues (salient but094

carrying no dictionary-supported meaning) to095

test over-interpretation.096

3. Comprehensive Evaluation of Model Com-097

petence in Nonverbal Mind Inference.098

We assess five task types to quantify how099

closely models reproduce documented cue100

and meaning, comparing against experts and101

non-experts.102

In §2, we introduce key components for theo-103

rizing nonverbal cue (NVC) communication. §3104

evaluates basic knowledge of the NVCs without105

contexts. §4 introduces our MOTION2MIND106

framework, and §5 presents empirical analyzes of107

current models.108

2 Components in Understanding109

Nonverbal Theory of Mind110

Many psychological studies divide the mentaliza-111

tion process into successive stages (Fonagy, 2011;112

Heider, 2013). To evaluate the performance of113

NVC understanding, we break down the process114

where external stimuli are transformed into mental-115

state inferences.116

2.1 Detection / Perception 117

Detection converts raw multimodal signals into 118

discrete nonverbal cue recognition. Accurate de- 119

tection is a prerequisite for downstream inference. 120

Key challenges include handling inter- and intra- 121

subject variability and mitigating noise (e.g.camera 122

angle, background audio). 123

2.2 Knowledge 124

The knowledge component maps each detected cue 125

to a set of ‘plausible’ psychological meanings. Con- 126

sidering the nature of nonverbal cues, where a sin- 127

gle cue can convey multiple meanings, psychologi- 128

cal studies use patterns from various contexts. We 129

reference an expert-curated body-language dictio- 130

nary (Navarro, 2018) as a proxy knowledge base. 131

It lists 400+ cues and multiple plausible interpre- 132

tations. More analysis about the reference is in 133

Appendix B. 134

2.3 Explanation 135

Explanation takes the candidate interpretations 136

from the knowledge component and combines them 137

with contextual information to yield a final mental- 138

state hypothesis (e.g. ‘surprised,’ ‘engaged’). This 139

stage addresses the inherent ambiguity of nonverbal 140

behavior by leveraging environmental cues. 141

Terminology. We use nonverbal cue (NVC) for 142

observable gestures, poses, or vocal prosody, and 143

mind state for the latent psychological interpreta- 144

tion (emotion, attitude, or intention). 145

3 Knowledge: Body-language 146

understanding Without Context 147

We test how prior knowledge of state-of-the-art 148

LLMs (GPT, Claude, Qwen2.5-Instruct) aligns 149
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Cue → Explanation Explanation → Cue

Prompt Given a nonverbal cue, please choose the most
plausible explanation from the options.

Given the explanation of a nonverbal cue, please
provide a plausible nonverbal cue from the op-
tions.

‘Arm crossing’ ‘Feeling insecure or threatened’

Options 0: Enthusiastic celebration 0: Arm crossing
1: Drive to emphasize key statements 1: Elation triumph displays
2: Feeling insecure or threatened 2: Elbow flexing
3: Wanting to connect or belong 3: Hugging

Table 1: Example of prompts in §3. We implement two-sided tasks: Cue to Explanation and Explanation to Cue.
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Figure 2: NVC knowledge scores of intelligent LLMs —
GPT (green), Claude (orange), Qwen2.5-Instruct (pur-
ple) — tested on the NVC dictionary. LLMs manifest
structurized knowledge even than psychological experts.

with the structured NVC dictionary by human ex-150

perts (Navarro, 2018).151

3.1 Methodology152

Test Set Navarro (2018) covers 407 NVCs and153

their possible (multiple) psychological meanings.154

To process this, we structure the consolidated ex-155

planation paragraph into n different semantic units156

(e.g.Fatigue, Stressed, Interested) using GPT-o1.157

Tasks As shown in Table 1, we design two task158

types to measure NVC proficiency.159

1. Cue → Explanation (Understanding): Mod-160

els select the most plausible interpretation of161

a given nonverbal cue.162

2. Explanation → Cue (Generation): Models163

generate a matching cue from an explanation.164

Given the multi-answer nature of NVC interac-165

tion, we simplify the task into Multi-choice QA166

questionnaires for clear evaluation. To construct167

meaningful but clear distractors, we use cosine sim- 168

ilarity between semantic embeddings1 and select 169

options whose explanations are semantically dis- 170

tant from all explanation units associated with the 171

correct answer (See Appendix F). 172

Human Baselines Performance is measured 173

against two human groups: (1) four experts: psy- 174

chologists with counseling certificates and (2) five 175

non-experts: graduate students with no psychol- 176

ogy expertise. This dual baseline highlights gaps 177

between LLMs and human understanding. More 178

details about annotators are in Appendix C. 179

3.2 Results 180

LLMs align in documented knowledge. This 181

indicates that they possess a high level of structured 182

knowledge about nonverbal cues. Human experts 183

tend to struggle more, likely due to the absence of 184

contextual information that typically aids interpre- 185

tation. 186

Large models do better in both tasks. Our re- 187

sults show a clear scaling effect across models of 188

different sizes. Larger models, such as GPT-o1 189

and Qwen2.5-32B, consistently outperform smaller 190

ones in both understanding and generation tasks. 191

This scaling trend indicates that larger models bet- 192

ter align with the reference associations, suggesting 193

the dictionary is a sufficiently structured prior for 194

comparative evaluation. 195

Understanding > generation. Across all models, 196

selecting the correct explanation for a given cue is 197

generally easier than generating a cue based on a 198

described mental state. Human participants also 199

perform better in the understanding task, but the 200

1We use OpenAI’s ‘text-embedding-3-small’ for comput-
ing semantic embeddings.

3



Videos (497H)

Human Annotators

Clips
② VLM Caption

③ Priority

Filtering

Free-form Description

Dictionary

① Sampling, Filtering, Subtitles

④ Manual Inspection

M.m. Cue

Explanation

Validated

Easy

Diverse

Motion2Mind
32 frames

Cue, Meaning

�� Hallucinatio�
�� Overlookin�
�� Salience

Challenge

Figure 3: We build MOTION2MIND, a dataset annotated with fine-grained multimodal (m.m.) cues. To construct
the dataset, we collect 497 hours of video from YouTube (sitcoms, movies, reality shows), sample short clips
(32 frames), and generate initial captions using Qwen2.5-32B-VL-Instruct. These captions are filtered using a
body-language dictionary to prioritize clips with interpretable cues and meanings. Human annotators then manually
inspect the clips and refine the explanations based on contextual grounding, ensuring that each cue is paired with its
most accurate and salient psychological meaning within the scene.

difference between understanding and generation201

is less pronounced compared to LLMs.202

4 MOTION2MIND203

We present MOTION2MIND, a carefully curated204

video dataset designed to test body language un-205

derstanding within contexts. It features (1) video206

clips sourced from YouTube content; (2) fine-207

grained motion annotations on short 4-second seg-208

ments, each paired with psychological interpreta-209

tions grounded in the full context; and (3) high-210

quality annotations validated by human psycholo-211

gists, achieving average 92% accuracy.212

4.1 Video Collection213

Diverse Real-World Sources To address the lim-214

itations of prior NVC datasets (see Table 2), which215

often suffer from small scale or restricted annota-216

tion types, we source diverse videos from six high-217

subscriber YouTube channels spanning film, televi-218

sion, and reality genres. Using the YT-DLP frame-219

work (yt-dlp contributors, 2025), we collected ap-220

proximately 4,730 unique clips of total 497.92221

hours.222

Clip Sampling We randomly sample short 4-223

second segments rather than exhaustively process-224

ing entire videos. To ensure fair coverage across225

different video types and lengths, we extract clips226

in proportion to video length and cap the number227

from each video at 40 (approximately half the mode228

of video lengths). Each 4-second clip is extracted229

at 8 frames per second (fps), a rate chosen based230

on empirical tests balancing visual informativeness231

and computational efficiency.232

Filtering To ensure the presence of NVCs, we233

filter out clips that either (1) lack human pres-234

ence or (2) inconsistent frame-wise people detec-235

tion which means scene transitions. We apply 236

YOLOv8 (Jocher et al., 2023) to detect human pres- 237

ence and track consistency across frames. 238

Subtitles We extract spoken dialogue using 239

Whisper-large-v3 (Radford et al., 2022), and align 240

utterances to video timestamps. Speaker segmenta- 241

tion is performed using NVIDIA NeMo (Kuchaiev 242

et al., 2019), allowing us to associate vocal cues 243

with specific individuals in each clip. 244

4.2 Nonverbal Cue 245

We annotate both visual and vocal nonverbal cues 246

using a hybrid approach of automatic pipelines and 247

detailed human inspection. 248

4.2.1 Visual Cue 249

Challenge We initially test Qwen2.5-32B-VL- 250

Instruct for free-form captioning of short video 251

clips. Despite the promising abilities, it intro- 252

duces several common issues: (1) Hallucination 253

and Omission: Describing not appearing cues or 254

overlooking appearing cues. (2) Misalignment with 255

Human Salience: The described cue is present but 256

not the most overt for the human. 257

Solution 1: Body Part Detection and Prompt 258

Conditioning We apply MediaPipe (Lugaresi 259

et al., 2019) to identify visible body parts (e.g., 260

face, arms, hands, torso) in each clip. This serves 261

hallucination filtering to discard captions from non- 262

detected body parts and focused prompting to pro- 263

duce more specific descriptions. 264

Solution 2: Character-Specific Captioning We 265

then generate visual descriptions for each individ- 266

ual in the clip. For each detected character and their 267

visible body parts, we prompt the VLM to describe 268

their behavior. Through prompt engineering, we 269

find that simple instructions yield more accurate 270
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Dataset Items Mods # Mind Cue. Invalid Vocal. Source

MOTION2MIND 1,022 V +A +T 397 ✓ ✓ ✓ Movie, Sitcom, Reality

SOCIAL GENOME (Mathur et al., 2025) 272 V +A +T — ✓ ✗ ✓ YouTube
MMToM-QA (Jin et al., 2024b) 7.5k V +A +T Unk (B, D, I) ✓ ✗ ✗ Simulation
Aff–Wild2 (Kollias and Zafeiriou, 2019) 548 V +A 8 (E) ✗ ✗ ✓ YouTube
VEATIC (Ren et al., 2023) 124 V +A Cont. (E) ✗ ✗ ✓ Mixed clips
MovieGraphs (Vicol et al., 2018) 7.6k V +T 9 (R) ✓ ✗ ✗ Movies
Social–IQ (Li et al., 2025) 1.2k V +T QA ✓ ✗ ✗ YouTube
iMiGUE (Liu et al., 2021b) 359 V 3 (E) ✗ ✗ ✗ Tennis press
BoLD / ARBEE (Luo et al., 2019) 9.8k V 26 (E) ✗ ✗ ✗ Movies
BoME (Wu et al., 2023) 1.6k V 4 (E) ✗ ✗ ✗ AVA-derived

Table 2: We introduce MOTION2MIND, the first multimodal dataset with fine-grained motion annotations and
validated psychological explanations. V = vision, A = audio, T = text. Cue. denotes specification of behavior in the
visual modality. B, D, I, E, R stand for Belief, Desire, Intention, Emotion, and Relationship, respectively. Cont. =
continuous variable; Vocal. = annotation of vocal nonverbal cue.

and informative results than complex task-specific271

prompts.272

Solution 3: Dictionary-Guided Priority Filter-273

ing We convert the free-form captions into struc-274

tured JSON format using GPT-4o-mini. Each entry275

includes the detected cue, actor, body parts, and an276

explanation if specified. To narrow the candidate277

set and sort with priority, we filter out any cues not278

found in our reference body language dictionary279

(has extremely low semantic similarity with any280

dictionary entity). Our dictionary is comprehensive281

that defines 407 validated nonverbal cues, and this282

step eliminates subjective or overly creative outputs283

and narrows the candidate set for human review.284

Solution 4: Final Human Inspection Remain-285

ing annotations are manually reviewed by the au-286

thors. Three criteria are used: (1) Appearance: Is287

the described cue visibly present in the clip? (2)288

Salience: Is it the most psychologically relevant289

cue in the scene? (3) Diversity: Are the numbers of290

NVC balanced? This step ensures that annotations291

are both accurate and balanced.292

4.2.2 Vocal Cue293

Our vocal cue annotation pipeline identifies three294

primary vocal cues: Speaking rate, Pitch, and Si-295

lence duration.296

Speaking Rate We measure words per minute297

(WPM) within each segment, dynamically applying298

the mean and standard deviation for speaker. We299

label [Fast] when normalized WPM exceeds 1.5.300

Pitch We estimate pitch for each utterance us-301

ing Parselmouth (Boersma and Weenink, 2021).302

Segments shorter than 120 ms are excluded for303

reliable estimation. Similarly with Speaking rate, 304

we annotate [HIGH_PITCH] when normalized pitch 305

surpasses 1.25. 306

Long Pause Silent periods are detected using We- 307

bRTC VAD. Segments with a silence duration ex- 308

ceeding 600 ms and accounting for over 5% of the 309

total segment length are labeled as [LONG_PAUSE]. 310

4.3 Interpretations 311

Challenges Interpreting NVCs presents three 312

major challenges. (1) Ambiguity: Many cues 313

have multiple possible meanings or no clear in- 314

terpretation depending on contexts; (2) Subjectiv- 315

ity: Perceptions vary between observers; (3) Over- 316

interpretation: Automatic pipeline such as VLMs 317

tend to assign meaning to every cue. 318

Solution 1: Dictionary-Constrained Interpre- 319

tation To mitigate Ambiguity, we constrain all 320

NVC interpretations to a predefined body language 321

dictionary containing 407 cue types and 2,050 pos- 322

sible psychological explanations. This ensures that 323

all labels are grounded in established psychological 324

literature. During manual inspection, we find that 325

most explanations are grounded by the dictionary, 326

showing its broad coverage. 327

Solution 2: Human-Guided Labeling and In- 328

valid Cases Each cue is reviewed by human anno- 329

tators using the dictionary as reference. Annotators 330

select the most contextually appropriate explana- 331

tion. We also incorporate ‘Invalid’ if the cue is 332

apparent but not directly pointing any psycholog- 333

ical state. To reduce Subjectivity, all annotations 334

are cross-checked by a second annotator. 335
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Detection Cue Explanation Prediction

Model Open Input ToM Method MCQ Binary Accuracy Total Valid Invalid MCQ

Expert – – – – 89.0 – 81.3 76.3 86.3 90.0
Non-expert – – – – 92.0 – 69.3 63.3 73.3 83.3

GPT-o1 ✗ V, T, (A) ✗ 64.3 45.0 40.6 62.5 64.9 50.6 95.7
GPT-4o ✗ V, T, (A) ✗ 64.3 45.4 41.1 62.3 64.9 49.4 67.9
Gemini-Flash-1.5 ✗ V, T, A ✗ 67.6 59.2 64.9 46.2 65.2 63.5 73.8

Qwen 2.5-32B ✓ V, T, (A) ✗ 65.0 69.3 47.7 59.6 65.5 30.0 83.2
Qwen 2.5-7B ✓ V, T, (A) ✗ 67.6 32.3 46.8 59.5 65.1 29.6 49.5
Qwen 2.5-3B ✓ V, T, (A) ✗ 58.8 54.0 44.2 47.8 57.3 0.0 25.7
InternVL3-8B ✓ V, T, (A) ✗ 68.0 78.0 54.0 59.9 66.0 29.5 81.5
InternVL3-2B ✓ V, T, (A) ✗ 67.0 95.6 49.6 43.8 51.3 6.5 68.9

Qwen 2.5-32B ✓ V, T, (A) Wilf et al. (2023) - - 59.2 61.8 65.6 40.0 67.0
Qwen 2.5-7B ✓ V, T, (A) Sclar et al. (2023) - - 58.3 51.4 56.0 25.3 64.9

Table 3: Performance of VLMs on MOTION2MIND. We evaluate each model across five tasks: (1) Detection
(MCQ): Identify the correct nonverbal cue of video clip. (2) Detection (Binary): Determine whether a given cue
appears in the clip. (3) Cue: Choose the most appropriate nonverbal cue that would occur in context. (4) Explanation:
Infer the likely mind state of thelo given cue. (5) Prediction: Anticipate thioke next line of dialogue following a cue.
VLMs consistently underperform humans across tasks. The random baseline is 25% for all multiple-choice tasks
except for Detection - Binary. Input: V = visual (frames), T = text, A = audio features.

5 Test VLMs336

We test current VLMs’ performance on our337

MOTION2MIND benchmark. Specifically, we338

test GPT o1 and 4o, Qwen2.5-VL (Wang et al.,339

2024) 32B to 3B, and InternVL (Chen et al., 2024c)340

8B to 2B. For a clear evaluation, we formulate this341

task as a multiple-choice question (MCQ) similar342

to §3, and the answer positions are randomized343

between four to eliminate position bias.344

5.1 Input Modality345

Visual (Frames, NVC) We provide a sequence346

of video frames as visual input, representing a 4-347

second clip containing the target NVC. To stay348

within the model’s visual-token limit, we down-349

sample each clip to a maximum of 32 frames, with350

a minimum frame resolution of 64 pixels.351

Textual (Script, Context) For the Cue, Expla-352

nation, and Prediction tasks, we supply up to 60353

seconds of dialogue script as a textual context. Vo-354

cal events (e.g.sighs, laughter) are annotated inline355

to preserve prosodic information.356

5.2 Task Definition357

Detection The goal is to identify which nonver-358

bal cue appears in the given visual input. We design359

two formats for robustness: (1) MCQ, where the360

model selects the correct cue from multiple distrac-361

tors (cues), and (2) Binary, where the frames and a362

candidate cue is provided, and the model chooses 363

between ‘Appears.’ and ‘Does not appear’. 364

Cue (Generation) The task is to infer the most 365

plausible nonverbal cue in the blank. Since script- 366

only lacks contextual information, we also provide 367

the preceding 4-second video chunk to supply rele- 368

vant visual context while avoiding spoilers. 369

Explanation Similarly given a short video clip 370

and its aligned script, and also the specified nonver- 371

bal cue, the model is asked to infer the most likely 372

underlying psychological or emotional state. This 373

task evaluates the model’s ability to interpret the 374

meaning of observed behavior. 375

Prediction (Next Utterance) This task provides 376

both the visual clip and its surrounding script, with 377

a blank for the next line of dialogue following the 378

nonverbal cue. The model must choose the most 379

plausible next utterance, serving as a proxy for its 380

ability to reason about mental state transitions in 381

context. 382

5.3 Results 383

Explanation, Detection: Clear Human-AI Gap 384

As shown in Table 3, even non-expert humans out- 385

perform all tested models on key tasks. Experts 386

reach over 80% accuracy on Explanation and 90% 387

on Prediction. Although there is a strong scaling 388

effect, the best VLM shows clearly lower capability 389

(o1: 45.0) than human (Experts: 89.0). 390
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Explanation: Struggles with Invalid Cues Mod-391

els consistently connect ‘invalid’ nonverbal cue392

with certain meaning. Most models show a 30–40393

point gap between valid and invalid Explanation394

accuracy, suggesting a tendency to over-interpret.395

We further analyze in §5.4.396

Theory of Mind Modules Yield Limited Gains397

While models with ToM modules (Wilf et al., 2023;398

Sclar et al., 2023; Jin et al., 2024a; Zhang et al.,399

2025) show modest gains (e.g.32B, Explanation400

64.9 in certain tasks, they do not close the gap401

with human performance. For example, Qwen 2.5-402

32B with ToM achieves only a slight improvement403

over GPT-4o without ToM in Explanation (65.5%404

vs 64.9%). Cue prediction remains particularly405

challenging across all configurations. Full results406

using ToM Baselines are in Appendix D, and we407

adopt the best approach for two models in Table 3.408

Detection: Binary vs. Multi-choice Binary De-409

tection is generally easier than the MCQ variant,410

likely due to lower ambiguity in answer choices.411

However, some models (e.g., InternVL3-2B at412

95.6%) show unrealistically high scores, likely due413

to overfitting to the default ‘Appears’ label in the414

binary setting.415

Explanation, Prediction: Larger Models Excel in416

Contextual Tasks These tasks require nuanced,417

context-dependent reasoning, and this highlights418

the benefits of larger models. For example, Qwen419

2.5-32B and GPT-o1 outperform smaller models420

by over 20 points in Prediction.421

5.4 Over- vs. Under-interpretation422

In Explanation task, we categorize the combination423

of model answer type and ground-truth typology in424

Table 4.425

Type Ground-truth Model answer

TP Valid Same Valid
FN Valid Invalid
EP Valid Different Valid
TN Invalid Invalid
FP Invalid A valid

Table 4: Ground-truth is labeled by human annotators,
and ‘valid’ means that the NVC shows some distinct
psychological meaning in the context (e.g.Stressed). We
define False Negative (FN) and False Positive (FP)
as under-interpretation and over-interpretation.

0 20 40 60 80 100
InternVL3-1B
InternVL3-2B
InternVL3-8B

Qwen2.5-VL-3B
Qwen2.5-VL-7B

Qwen2.5-VL-32B
o1

True Positive
False Negative (Under)
Error Positive

True Negative
False Positive (Over)

Figure 4: Stacked bar plots of Explanation task answers.
Small models shows low precision (over-interpret) com-
pared to larger models.

Predominance of Over-Interpretation In Fig- 426

ure 4, despite a ground-truth skew toward valid 427

explanations, over-interpretation (False Positives) 428

far outnumbers under-interpretation (False Nega- 429

tives). Models rarely confuse a valid cue for an 430

invalid one. As model size decreases, the propor- 431

tion of ‘Error Positives’ (EP)—instances where a 432

model labels a cue as valid but assigns the wrong 433

explanation—rises sharply. 434

5.5 Qualitative results 435

Figure 5 shows representative cases where the O1 436

model produces incorrect inferences in Detection- 437

binary and Explanation tasks. In Detection-Binary 438

task, the model misidentifies even clear cues such 439

as ‘smiling’ and ‘gesturing while speaking’. In the 440

explanation tasks, the model demonstrates a ten- 441

dency to over-interpret benign cues as indicative 442

of psychological states, such as just sitting forward 443

alone is connected with ‘intention to show empa- 444

thy’. 445

6 Related Work 446

Theory of Mind Benchmarks Early AI ToM 447

benchmarks largely mirror developmental false- 448

belief tests in text form (Le et al., 2019; Kim et al., 449

2023; Li et al., 2023; Amirizaniani et al., 2024), 450

some papers encompassing visual cues as input (Jin 451

et al., 2024a; Chen et al., 2024a; Zhang et al., 2024; 452

van Groenestijn, 2024; Etesam et al., 2023; Ma 453

et al., 2023) evaluating models’ ability to distin- 454

guish asymmetric information in templated stories. 455

Recent efforts expand ToM assessments to broader 456

mental states—emotions, intentions, desires, be- 457

liefs, knowledges, percepts—and incorporate vi- 458

sual context (Wang et al., 2025; Ma et al., 2023; 459

Duan et al., 2022; Fan et al., 2021; Mao et al., 2024; 460
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Actor: woman
Cue: smile

Actor: Woman in Red Dress
Cue: Neck touching

Actor: Woman with short hair
Cue: Gesturing while speaking

Actor: Man
Cue: Closed-eyes

Actor: Upright individual
Cue: forehead-tension

F: Stress reliever and pacifier
T: focus

Actor: man
Cue: sitting-forward

F: Intention to show empathy
T: Invalid 

Actor: Woman Sitting at the Table
Cue: fingers-close-together

F: Needing a quick way to relieve stress 
T: Invalid 

Actor: Man in the right side
Cue: Toes-pointing-up

F: I have to leave this situation
T: Joyful anticipation

Figure 5: Examples of erroneous inferences by the GPT-O1 model in Detection-Binary and explanation tasks. The
first row illustrates the example which model doesn’t recognize the given cue (e.g.Smile, Neck touching). The
second row presents misinterpretations, where benign or contextually ambiguous cues are incorrectly assigned
psychological meanings (F: False explanation, T: True explanation).

Bortoletto et al., 2024) utilizing agent behavior or461

navigation as the inferred cue. MOTION2MIND462

deals with nuanced and detailed body language463

sourced from a structured NVC dictionary.464

Video-Based Social Reasoning NVC datasets465

are built in video understanding domain to clas-466

sify the appropriate emotion state or social re-467

lation of the character in the video (Luo et al.,468

2020; Liu et al., 2021a; Huang et al., 2021;469

Wicke, 2024; Zadeh et al., 2019; Lu et al., 2020;470

Chen et al., 2024b; Tapaswi et al., 2019). So-471

cial Genome (Mathur et al., 2025) introduces 272472

videos paired with 1,486 human-annotated reason-473

ing traces. Social Genome deals with multimodal474

social-reasoning chains with diverse information475

type, but our MOTION2MIND focuses on visual476

information in the domain of NVCs.477

Affective Computing & HRI Affective HRI478

aims to sense and react to human states from facial,479

bodily, and vocal cues (Picard, 1997; Spezialetti480

et al., 2020). Early work centered on real-time481

emotion or intent recognition for assistive robots482

(Rudovic et al., 2018; van der Pol et al., 2022).483

Recent studies embed explicit ToM: false-belief484

reasoning on humanoids (Zeng et al., 2020) and485

GPT-4V–based multimodal inference in AToM-Bot486

(Shu et al., 2024), advancing toward robots with487

functional Theory of Mind (Breazeal and Scassel-488

lati, 2002; Sturgeon et al., 2021).489

7 Conclusion 490

Our study presents a comprehensive evaluation 491

framework, MOTION2MIND, for assessing AI 492

systems’ capacity to interpret nonverbal cues 493

(NVCs) in real-world, multimodal contexts, reveal- 494

ing substantial gaps between human and machine 495

performance. Their performance degrades signifi- 496

cantly when faced with contextual ambiguity and 497

nuanced social cues (Invalid). State-of-the-art mod- 498

els such as GPT-4o and Qwen2.5-VL fail to consis- 499

tently integrate visual and textual modalities, as ev- 500

idenced by inconsistent performance in combined 501

Detection and Explanation tasks. 502

8 Limitations 503

Proxy Nature of the Dictionary Our annota- 504

tions and Knowledge tasks are grounded in a single 505

expert-curated body-language dictionary. We use 506

it as a proxy knowledge base as the most diverse 507

and extensive NVC reference we are aware of. As 508

psychological definitions of nonverbal behaviors 509

remain fluid and debated, especially for new ges- 510

tures and micro-expressions identified, our fixed 511

taxonomy may not capture them. 512

Cultural Variability Nonverbal meanings vary 513

across cultures, social roles, and interaction set- 514

tings. Although the reference includes some 515

non-Western cues (e.g.Namaste, Gaze hierarchy, 516

and Kowtow) and some culture-neutral cues 517

8



(e.g.Proximity, Smiling, and Leaning) real-world518

interpretation varies widely across societies. Under-519

standing and correcting for cultural bias in video-520

language models is therefore an important and in-521

dependent direction for future work.522

9 Ethical Considerations523

Privacy and Consent While our video dataset524

uses publicly available YouTube clips, the broader525

application of NVC understanding raises important526

privacy concerns. The ability to automatically inter-527

pret body language and emotional states could en-528

able surveillance systems that infringe on personal529

privacy. Future deployments of such technology530

should carefully consider consent mechanisms and531

privacy protections, particularly in public spaces or532

workplace environments.533

Potential for Misuse and Manipulation Ad-534

vanced understanding of NVCs could be exploited535

for manipulation or deception. Systems capable of536

interpreting subtle behavioral signals might be mis-537

used for psychological profiling, social engineering,538

or targeted influence campaigns. Additionally, the539

technology could be used to develop more sophis-540

ticated deepfake systems that incorporate realistic541

nonverbal behaviors, further complicating issues of542

digital authenticity and trust.543

Bias and Cultural Sensitivity Our framework,544

despite efforts to be comprehensive, may contain545

inherent biases in how it interprets and validates546

NVCs across different cultural contexts. Reliance547

on Western-centric sources for body language in-548

terpretation could lead to misinterpretation or over-549

simplification of culturally specific gestures and550

expressions. Furthermore, the use of movie clips as551

a data source may perpetuate certain cultural stereo-552

types or biases in the portrayal and interpretation553

of emotional states.554
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A Dataset Construction Details 1125

A.1 Video Sources and Sampling Strategy 1126

• Source Channels: Sitcoms (Clipzone Sit- 1127

coms, The Office, Friends), Movies (Lions- 1128

gate, JoBlo), Reality Shows (Keeping Up with 1129

the Kardashians). 1130

• Sampling Protocol: We sampled up to 40 1131

clips (each 4 seconds long) per video. 1132

A.2 Filtering and Preprocessing 1133

• Cue Filtering: We applied semantic and lex- 1134

ical matching using Sentence-BERT embed- 1135

dings against the dictionary. 1136

• Rejection Criteria: Non-human content, 1137

poor visibility, occlusion, and rapid cuts were 1138

removed. 1139

A.3 Human Inspection Process 1140

• Manual Review: 24.3% stratified sample was 1141

manually inspected. 1142

• Results: 35% pass rate; Inter-rater agreement 1143

(Cohen’s κ) = 0.79 on 100 items. 1144

B Cue Dictionary 1145

B.1 Statistics 1146

• 19 anatomical categories (Head, Eyes, Eye- 1147

brows, Mouth, Hands, Torso, Feet, etc.). 1148

• An average of 21.4 cues per category, yield- 1149

ing a total of 407 NVCs. 1150

• For each cue, 5.03 psychological explana- 1151

tions on average, spanning Knowledge, Be- 1152

liefs, Percepts, Desires, and Emotions (Ta- 1153

ble 5). 1154

B.2 Coverage Against Literature 1155

Great comprehensiveness To verify the com- 1156

prehensiveness of our dictionary, we compare our 1157

cue inventory with five foundational NVC sources. 1158

Table 6 below summarizes which anatomical cate- 1159

gories appear across sources and highlights repre- 1160

sentative cues. 1161

Why Use a Single Dictionary? 1162

While numerous works contribute valuable insights, 1163

we select this single dictionary as our primary an- 1164

notation backbone for the following reasons: 1165
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Category Mind–state labels

BELIEFS confidence, self-assurance, trust, doubt, skepticism, suspicious, disbelief, certainty, confidence in telling
the truth, belief in one’s statement, negative or worrisome thoughts

INTENTIONS emphasis, accusing, desire to appear polite and agreeable, desire to appear more attractive, desire to
drive home a point, trying to attract a potential mate, directing attention, open to response, actively
participating, gesture to confide, intent, accusation or emphasis, joking gesture, stop-sign (blocking),
signalling closeness, asking consent

PERCEPTS attentive, attention, observing, focus, engagement, passive observation, distracted, disinterest, curiosity,
showing focused attention, glare, looking away, openness, withdrawal

DESIRES seeking comfort or reassurance, desire for self-comfort, desire for closeness and bonding, seeking
understanding, desire to emphasize, desire to appear attractive, trying to block out pain, wanting privacy,
wanting relief, yearning/intense wanting (energy)

KNOWLEDGE uncertainty, genuine uncertainty (‘I really don’t know’), confusion, contemplation, thoughtfulness,
reflection, consideration, awareness, evaluation / judging, realization, inquisitiveness

EMOTIONS stress, anxiety, fear, panic, anger, annoyance, irritation, happiness, joy, sadness, calm, relaxation,
affection, warmth, excitement, enthusiasm, nervousness, frustration, comfort, disgust, aversion, contempt,
surprise, shock, embarrassment, humility, fatigue, tiredness

Table 5: Representative ‘explanation’ labels onto six broad cognitive–affective categories used in Theory-of-Mind
literature (Ma et al., 2023). MOTION2MIND covers wide range of human cognition.

Anatomical Region Cues Sources

Eyes Pupil dilation, gaze holding/averting Darwin (1872), Ekman (2003), Kleinke (1986),
Pease and Pease (2004), Knapp and Hall (2007)

Nose Nostril flare, nose wrinkle Ekman (1997), Pease and Pease (2004)
Mouth & Lips Lip compression, lip purse, one-sided

raise (AU14), jaw clench
Ekman (2003), Matsumoto and Hwang (2008), Hess
et al. (2010), Fast (1970), Navarro (2018)

Cheeks & Jaw Cheek sucking, cheek tension Navarro (2018), Burgoon et al. (2016)
Eyebrows & Forehead Inner raise (AU1+2), brow-lowering

(AU4), forehead tension
Ekman (2003), Knapp and Hall (2007), Davis and
Smith (2010), Fast (1970)

Head Nods, shakes, head tilt, head turns Pease and Pease (2004), Knapp and Hall (2007), Fast
(1970)

Arms & Hands Arms crossed, hands-akimbo, pointing,
self-touch

Morris (1977), Burgoon and Manusov (1994), Car-
ney et al. (2010), Pease and Pease (2004), Knapp
and Hall (2007)

Shoulders & Torso Shoulder shrug, slump, chest expansion Darwin (1872), Mehrabian (1972), Tramposch and
Hart (2021), Knapp and Hall (2007)

Pelvis & Hips Pelvic retreat, pelvis forward Givens (2016), Pease and Pease (2004)
Legs & Feet Leg uncrossing, foot tapping, weight

shifts
Morris (1977), Knapp and Hall (2007), Pease and
Pease (2004)

Table 6: Overlap between our dictionary and foundational NVC literature, grouped by anatomical region.

• Breadth: Includes over 400 cues spanning1166

full-body nonverbal expression.1167

• Psychological Grounding: Using a uni-1168

fied dictionary avoids inconsistency, semantic1169

drift, and label redundancy.1170

• Operational Clarity: Offers standardized la-1171

bels and illustrated guidelines.1172

B.3 Cultural Limitations and Future Work1173

• Rooted in Western sources; includes some1174

non-Western cues (e.g.Namaste, kowtow) and1175

global cues (e.g.Yawn, Leaning in).1176

• Future plans include multilingual annotators1177

and culturally grounded expansions (Yerukola 1178

et al., 2025). 1179

C Annotator Details and Guidelines 1180

C.1 Annotator Selection 1181

Experts We recruited 4 Ph.D. candidates in clini- 1182

cal psychology who routinely interpret nonverbal 1183

behaviour as part of their training and research. All 1184

expert annotators are fluent in English. To ensure 1185

fair compensation, we set a minimum rate of $15 1186

per hour. 1187

Non-experts We additionally recruited 5 grad- 1188

uate students outside clinical psychology who 1189

demonstrated English proficiency sufficient for the 1190
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ToM Method Cue Explanation Pred.

Acc Total Val. Inv. Acc

32B

✗ 47.7 59.6 65.5 30.0 83.2
Wilf et al. (2023) 59.2 61.8 65.6 40.0 67.0
Sclar et al. (2023) 48.6 45.4 49.6 21.3 53.0
Jin et al. (2024a) 30.2 27.4 27.5 26.8 28.1

Zhang et al. (2025) 40.1 50.7 56.1 24.6 37.7

7B

✗ 46.8 59.5 65.1 29.6 49.5
Wilf et al. (2023) 51.3 63.8 68.0 40.0 59.4
Sclar et al. (2023) 58.3 51.4 56.0 25.3 64.9
Jin et al. (2024a) 54.9 43.1 50.7 3.3 58.1

Zhang et al. (2025) 43.0 47.7 54.7 11.4 63.2

Table 7: Performance of Qwen 2.5 models on
MOTION2MIND with four Theory of Mind meth-

ods (Wilf et al., 2023; Sclar et al., 2023; Jin et al., 2024a;
Zhang et al., 2025). Pred. = Prediction, Val. = Valid,
Inv. = Invalid.

task. They were compensated at the same mini-1191

mum rate of $15 per hour.1192

C.2 Procedure1193

To balance cognitive load with annotation quality,1194

we adopted a subsampling strategy. Each annotator1195

labelled an identical set of 50 items, enabling us to1196

compute inter-annotator agreement while keeping1197

the session manageable.1198

C.3 Interface1199

Annotations were collected with Label Studio2 us-1200

ing the interface shown in Figure 6.1201

D More Analysis1202

D.1 ToM Methods1203

D.2 Cue Types and Social Scenario Types1204

Methods We classify each clip’s sentiment as1205

Negative, Neutral, or Positive by matching1206

its script, mind-state label, and NVC explana-1207

tion against predefined keyword sets. Simultane-1208

ously, we extract social-context features (number1209

of speakers, presence of “?”, “!”, and scene mark-1210

ers) to assign each clip to one of: Dialogue, Mono-1211

logue, Group Discussion, Intimate Conversation, or1212

Multi-person Scene. For each model and category,1213

we compute accuracy as the fraction of correctly1214

answered MCQs.1215

Results Table 8 shows:1216

• Neutral and Positive contexts yield higher1217

accuracies than Negative ones, and o1 re-1218

mains most robust to sentiment shifts.1219

2https://labelstud.io/

o1 Qw-32B Qw-7B Int-8B

By Situation Sentiment

Negative 68.3 65.2 66.3 57.4
Neutral 75.0 63.7 67.2 64.1
Positive 75.5 65.9 71.5 66.1

By Social Situation

Dialogue 77.8 78.6 94.7 70.0
Group Discussion 74.9 66.6 68.8 59.4
Intimate Conversation 74.8 62.4 66.2 65.6
Monologue 73.8 64.1 67.6 63.3
Multi-person Scene 78.9 71.1 85.7 85.2

Table 8: Model accuracies by situation sentiment (top
block) and by social scenario (bottom block).

• Dialogue and moderate-sized groups (2–4 1220

speakers) achieve peak performance. 1221

• Accuracy drops in Monologues (1 speaker) 1222

and very large groups (> 5 speakers). 1223

D.3 Knowledge: Validity-Binary Task 1224

Methods We sample each dictionary 1225

cue–explanation pair as a positive example 1226

and create a negative example by choosing a 1227

semantically distant explanation for the same 1228

cue. Models predict True/False and we measure 1229

accuracy, precision, and recall against these labels. 1230

Model Acc. Prec. Recall

Qwen2.5-32B-Instruct 0.886 0.964 0.834
Qwen2.5-14B-Instruct 0.911 0.923 0.902
Qwen2.5-7B-Instruct 0.875 0.927 0.839
Qwen2.5-3B-Instruct 0.894 0.856 0.926
Qwen2.5-1.5B-Instruct 0.884 0.998 0.814
Qwen2.5-0.5B-Instruct 0.565 0.966 0.536

Table 9: Validity-binary task: whether the
cue–explanation pair is valid (random baseline
= 0.5).

Results Table 9 indicates: 1231

• All models 1 B achieve >0.80 accuracy, 1232

precision, and recall, demonstrating strong 1233

cue–meaning knowledge. 1234

• Performance drops sharply for the 0.5 B 1235

model, highlighting the impact of model size 1236

on semantic understanding. 1237

D.4 Categorical Performance Difference 1238

Methods We group the 407 cues by anatomi- 1239

cal region (Face, Arms, Legs, etc.), calculate each 1240

model’s mean accuracy per region, and visualize 1241

the results in Figure 7. 1242
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Figure 6: Example of the labeling interface.
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Figure 7: 5 most accurate (Orange) and inaccurate
(Green) body parts. Models are less likely to choose
‘invalid’ responses when similar NVC is added to the
dialogue (x: NVC numbers, y: Answer as invalid) for
both validity and explanation tasks.

Results Figure 7 shows:1243

• Facial cues do not yield the highest accu-1244

racy, contrary to common assumptions.1245

• Arms, hips, and hands/fingers achieve rel-1246

atively higher accuracy, suggesting clearer1247

mappings to descriptors.1248

D.5 Appearing Human Size1249

Methods We measure each clip’s average human1250

bounding-box area and compute the Pearson corre-1251

lation with model accuracy.1252

Results1253

• The mean correlation coefficient is −0.005±1254

0.065, indicating virtually no relationship1255

between on-screen size and accuracy.1256

• Bounding-box size has little influence on1257

model performance.1258

D.6 Frame Numbers 1259

Methods We sample up to 32 frames at equal 1260

intervals (varying limits of 32, 16, 8, 4 frames) and 1261

measure model accuracy on Detection and Expla- 1262

nation tasks. 1263
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Figure 8: Accuracy versus maximum input frames.

Results In Figure 8, 1264

• Accuracy declines as the number of frames 1265

decreases, due to loss of motion clarity. 1266

• Explanation drops less sharply than Detec- 1267

tion, since it leverages script context. 1268

E Experimental Setup 1269

E.1 Hardware & Inference 1270

• Up to 4× NVIDIA GeForce RTX 3090 GPUs 1271

for the 32B vision–language model 1272

• 1× NVIDIA GeForce RTX 3090 GPU for all 1273

other models (8B, 7B, 3B, 2B, 1B) 1274
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• Paged attention via VLLM library (Kwon1275

et al., 2023)1276

• Inference time: under 2 hours per task type1277

E.2 Hyperparameters1278

• Temperature: 0 (for deterministic outputs)1279

• Random seed: 01280

• Maximum output tokens: variant1281

• Top-p sampling: 0.0011282

• Repetition penalty: 1.051283

E.3 List of LLMs Used in Paper1284

The models we utilized in this paper are as follows:1285

• GPT-o1 (OpenAI et al., 2024b)1286

• GPT-4o (OpenAI et al., 2024a)1287

• GPT-4o-mini (OpenAI et al., 2024a)1288

• Gemini-1.5-Flash (Team et al., 2024)1289

• Qwen2.5-VL-32B-Instruct (Wang et al.,1290

2024)1291

• Qwen2.5-VL-7B-Instruct (Wang et al., 2024)1292

• Qwen2.5-VL-3B-Instruct (Wang et al., 2024)1293

• InternVL3-8B (Chen et al., 2024c)1294

• InternVL3-2B (Chen et al., 2024c)1295

• InternVL3-1B (Chen et al., 2024c)1296

F Option Generation Algorithm1297

In §3 and §5, we utilze testset as multi-choice ques-1298

tion format sourcing distractor options in the data1299

pool. We use the semantic cosine distance, consid-1300

ering all the explanation pool described in dictio-1301

nary given one nonverbal cue.1302

G Prompts1303

In Table 10 and Table 11, we specify the prompts1304

we use for §4 and §5.1305

H Use of AI Assistants1306

We use AI assistants in coding and correcting gram-1307

matical errors.1308
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Algorithm 1 GENDIVERSEOPTIONS

T : list of targets
I: list of items (each has pivot, subcat)
k: #options to pick (≈ 3)
dir ∈ {far, close}: choose dissimilar or similar distractors
τmin, τmax: cosine-similarity thresholds (optional) R: MCQ records
Pre-compute embeddings
C ← list of all pivot texts in I
E ← ENCODE(C) *matrix |I|×d
t ∈ T e⋆ ← ENCODE(t.pivot)
σ ← cos_sim(E, e⋆) *|I| scores
Candidate mask
mask← true|I|

if use subcategory then mask &= (I.subcat = t.subcat) exclude the target itself mask &=
(
C ̸= t.pivot

)
if τmin given then mask &= (σ ≥ τmin)

if τmax given then mask &= (σ ≤ τmax)
A ← indices where mask= true

if |A| < k then*fallback A ← {j | C[j] ̸= t.pivot}
Greedy selection
S ← [ ]

while |S| < k do dir = far pick j⋆ = argminj∈A σ[j] pick j⋆ = argmaxj∈A σ[j]
S += [ I[j⋆] ]; A ← A \ {j⋆}
Assemble MCQ entry
R +=

〈
t, [ t ] ∪ S

〉
returnR

19



Variable: body part, Frames

{Frames}

Please explain the nonverbal cues in the video of the given body part in the most detail.

– If multiple people appear, explain each person’s cues separately.
– Do not mention cues unrelated to the specified body part.

[Body part]: {body part}

Variables: script + caption

Given the caption about the short video clip and script, please parse the appearing nonverbal cues into JSON format. Do
not annotate vocal cues.

FORMAT:
[

{
"cue_id": "0",
"cue_sign": "...", # concise description
"body_part": "...", # head, face, neck, arms ...
"cue_agent": "...", # who performed the action
"mind_state": "...", # psychological meaning or "none"
"detail": "..." # extra detail

},
...

]

[Script with Caption]
{script + caption}

[Appearing action]

Table 10: Captions used in §4. Prompt used to get novnerbal cue captions in the video and reconstruct the data into
json format.
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Variables: script, agent, options

Given the following script and a video clip, please select the most plausible nonverbal action (behaviour by {agent})
in the blank. The MARKED SCENE is bounded by ***** SCENE START ***** and ***** SCENE END *****. The
previous chunk of the scene is included for context.

[Script]
{script}

Choose from the following options (answer only the option number without any other text):
{options}

Variables: script, options

Given the following script of a short video clip, please explain the nonverbal action in the blank. Focus on the cue between
the scene start and end marks.

[Script]
{script}

Choose from the following options (answer only the option number without any other text):
{options}

Variables: script, options

Given the following script of a short video clip, please predict the next utterance in the blank. Focus on the cue between
the scene start and end marks.

[Script]
{script}

Choose from the following options (answer only the option number without any other text):
{options}

Variables: agent, options

Given the following video, please detect what nonverbal cue (behaviour by {agent}) is present.

Choose from the following options (answer only the option number without any other text):
{options}

Variables: cue, agent, options

Given the following video, please detect whether the specified nonverbal cue appears.

Nonverbal cue: {cue} by {agent}

Choose from the following options (answer only the option number without any other text):
1. appears
2. does not appear

Table 11: Prompt templates for the five task types used in our benchmark, ordered left-to-right: cue, explanation,
next_prediction, detection, and detection_binary. Curly-braced tokens ({}) are filled at runtime.
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