
InternScenes: A Large-scale Simulatable Indoor Scene
Dataset with Realistic Layouts

Weipeng Zhong1,2∗, Peizhou Cao1,3∗, Yichen Jin4, Li Luo1,5, Wenzhe Cai1, Jingli Lin1,2,
Hanqing Wang1, Zhaoyang Lyu1, Tai Wang1, Bo Dai5, Xudong Xu1†, Jiangmiao Pang1†

1Shanghai AI Laboratory 2Shanghai Jiao Tong University
3Beihang University 4Peking University 5The University of Hong Kong

Abstract

The advancement of Embodied AI heavily relies on large-scale, simulatable 3D
scene datasets characterized by scene diversity and realistic layouts. However,
existing datasets typically suffer from limitations in data scale or diversity, sani-
tized layouts lacking small items, and severe object collisions. To address these
shortcomings, we introduce InternScenes, a novel large-scale simulatable indoor
scene dataset comprising approximately 40,000 diverse scenes by integrating three
disparate scene sources, i.e., real-world scans, procedurally generated scenes, and
designer-created scenes, including 1.96M 3D objects and covering 15 common
scene types and 288 object classes. We particularly preserve massive small items
in the scenes, resulting in realistic and complex layouts with an average of 41.5
objects per region. Our comprehensive data processing pipeline ensures simulata-
bility by creating real-to-sim replicas for real-world scans, enhances interactivity
by incorporating interactive objects into these scenes, and resolves object colli-
sions by physical simulations. We demonstrate the value of InternScenes with
two benchmark applications: scene layout generation and point-goal navigation.
Both show the new challenges posed by the complex and realistic layouts. More
importantly, InternScenes paves the way for scaling up the model training for both
tasks, making the generation and navigation in such complex scenes possible. We
commit to open-sourcing the data and benchmarks to benefit the whole community.

1 Introduction

In the realm of embodied intelligence, 3D scenes [12, 25, 10] serve as the basis of simulation
environments and become increasingly essential for agents to acquire a wide range of skills [4, 18],
thereby significantly facilitating the advancement of Embodied AI. To encourage agents to learn more
diverse skills and robustly adapt to various application scenarios, the whole community warrants
a large-scale 3D dataset characterized by diverse and realistic layouts. While the dataset diversity
refers to the richness and variety of scenes, encompassing a multitude of 3D object types, a realistic
layout entails complex relationships between objects and a large number of objects within regions,
especially small items. More importantly, the inclusion of various interactive objects in the scenes is
crucial to support the learning of diverse agent skills.

Unfortunately, existing datasets fall short of meeting the aforementioned requirements and can be
broadly categorized into three groups. 1) Real-world scanned scenes [8, 37, 5] boast realistic layouts
and originate from a vast and diverse range of sources. However, these scanned data are typically
represented as point clouds, having incomplete or inaccurate geometry, and thus are incompatible
with interactive simulation environments based on engines like MuJoCo [30] or Isaac Sim [22]. 2)

∗Equal contribution
†Corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Track on Datasets and Benchmarks.

Figure 1: InternScenes is a large-scale, simulatable indoor scene dataset with diverse layouts and
various 3D objects. It supports various tasks, such as scene layout generation and vision navigation.

Designer-created scenes [12, 40] feature a large number of simulatable 3D object assets. Nevertheless,
these datasets deliberately omit small items [32], such as those on tables or cabinets, resulting in
overly sanitized scenes that contradict realistic layouts. Furthermore, severe object collisions [35] are
prevalent in these datasets, significantly hindering their integration into simulation environments. 3)
Procedurally generated scenes [24], in theory, can offer an unlimited number of scenarios and avoid
object collisions through delicately crafted rules. On the downside, these scenes are resource-intensive
and time-consuming to generate, and often suffer from a lack of diversity. Ultimately, none of these
datasets has adequately considered the inclusion of interactive objects.

In this paper, we introduce InternScenes, a large-scale, simulatable indoor scene dataset characterized
by its diversity and realistic layouts. To ensure diversity, we integrate three distinct types of scene
data: real-world scanned scenes from EmbodiedScan [32], procedurally generated scenes from
Infinigen indoors [24], and designer-created synthetic scenes, correspondingly producing 3 subsets:
InternScenes-Real2Sim, InternScenes-Gen, InternScenes-Synthetic. These diverse data sources have
respective advantages: EmbodiedScan comprises small-scale single regions with realistic layouts,
while Infinigen indoors provides various scenes with meticulously arranged and zero-collision
object placement via subtle rules. In addition, the considerable designer-created synthetic scenes
further offer extensive diversity and broader spatial coverage. To handle their different data formats
and annotations, we customize corresponding data pipelines to make them simulation-ready. For
EmbodiedScan, we create simulatable replicas for real-world scenes by replacing scanned objects
with suitable object assets retrieved from Objaverse [11]. It is noteworthy that EmbodiedScan contains
extensive annotations of small objects, allowing us to preserve realistic layouts after the real-to-
sim transformation. To maintain realistic and complex indoor layouts, we select designer-created
scenes with a large number of objects, particularly including numerous small items, and advocate
object-number-aggressive rules while obtaining scenes via Infinigen indoors [24].

Consequently, as shown in Figure 1 our dataset consists of approximately 40, 000 diverse indoor
scenes, including 48k regions from 15 common types in daily life, e.g., living region, resting region,
dining region, etc., and features 1.96M objects and 800k CAD models covering a comprehensive
taxonomy of 288 object classes within indoor scenes. Furthermore, we substitute roughly 20% 3D
assets inside with interactive objects from PartNet-Mobility and subsequently put all the scenes into
the physical simulator to prevent object collisions, yielding a large-scale dataset of simulatable scenes
with complex and realistic layouts. For example, each region of InternScenes has the highest-ever
average number of 41.5 objects. Table 1 provides an overall comparison between InternScenes and
existing 3D indoor scene datasets.

2

Table 1: Comparison with other 3D indoor datasets, where "-" represents "not available" or "not
reported", "∞" indicates unlimited generation capability but requires significant time and computa-
tional resources. "Avg. Objects" indicates the average objects per region.

Dataset Layout Type #Scenes #Regions/ #Objects/ #Avg. #CAD Physical
Reg.Types Obj.Types Objects Models Optimization

MP3D[5] Real 90 -/- 50K/40 - - ✗

EmbodiedScan[32] Real 9588 16K/12 230K/288 14.4 - ✗

Structured3d[40] Designed 3.5K 21K/- 444K/40 21.1 - ✗

Hypersim[26] Designed 461 -/- 58K/40 - - ✗

3D-front[12] Designed 6.8K 19K/8 140K/49 6.9 13K ✗

Behavior-1K[18] Designed 50 373/8 -/1949 - 9K ✓

SceneVerse[16] Real+Designed 68K -/- 1.5M/- - - ✗

ASE[2] Generation 100K -/- -/29 - 8K ✗

Infinigen[24] Generation ∞ -/- ∞/89 - ∞ ✗

InternScenes Real+Designed
+Rule-based 40K 48K/15 1.96M/288 41.5 800K ✓

To fully harness the potential of InternScenes, we preliminarily use it for two benchmark applications:
scene layout generation and point-goal visual navigation. First, we build two versions of InternScenes
for scene layout generation: a full version with all objects included and a simplified version with all
the small objects removed. Although trained with this large-scale dataset, current state-of-the-art
methods still have unsatisfactory performance on the full version. It indicates the challenging nature
of such complex scene generation, appealing to new model paradigms in the future. Furthermore,
thanks to the simulation-ready property of InternScenes, we build the point-goal visual navigation
benchmark to apply it for embodied AI. The complex and cluttered environments also pose great
challenges for previous navigation policies. More importantly, we further generate more episodes
from the diverse scene assets, and the experiments demonstrate the data’s efficacy in boosting the
generalization of our policies. We will open-source InternScenes with its corresponding data pipelines
and benchmarks to the community, and hope they can pave the way from simulation to real-world
applications for both AIGC and embodied AI algorithms.

2 Related Work

Real-world Scans of Indoor 3D Scenes. To directly obtain information from the 3D world for
perception, researchers have employed various sensors to scan real environments, capturing RGB-D
images that are subsequently reconstructed and annotated. Datasets [8, 31, 5, 37, 28, 25] such as
ScanNet, MP3D, and 3RScan are utilized to enhance models’ 3D perception capabilities. While
direct scanning retains substantial real-world information, it is constrained by the complexity of
the data acquisition process and limitations of the collection equipment. These factors frequently
introduce unavoidable noise, thereby posing significant challenges to scene perception.

In recent years, researchers have made significant progress in enhancing reconstruction quality and
annotation precision. For example, ScanNet++ [37] utilizes higher precision equipment compared
to ScanNet [8] to achieve improved reconstruction and semantic annotation. EmbodiedScan [32]
has enriched datasets from ScanNet, MP3D, and 3RScan with extensive annotation information,
including annotations for small objects within scenes. It expands the object categories to 288 and
provides annotations with 9-DoF bounding box information. Despite employing higher-precision
collection equipment and more detailed annotations, there still exists a considerable gap between
these scenes in simulation environments and real-world scenarios, along with inevitable annotation
errors. Constructing a large number of finely annotated real-to-sim scenes is labor-intensive and
time-consuming. As a result, researchers are increasingly focusing on indoor simulation scenes.

Simulated Indoor Scenes. To efficiently and cost-effectively obtain large-scale, detailed indoor
scene data, researchers increasingly rely on computer software to construct and process synthetic
indoor scenes [19, 40, 26, 12, 18, 10, 2], enabling the acquisition of multimodal data from diverse
viewpoints. However, due to copyright restrictions, researchers often cannot access the original 3D

3

assets directly and must rely on pre-rendered datasets. Although Hypersim [26] provides a processing
pipeline that allows users to purchase the original assets and follow the whole pipeline for custom
rendering, this approach is prohibitively expensive, with costs reaching approximately $57K.

As an alternative, rule-based generative models such as SceneScript [2] and Infinigen [24] can
automatically generate an unlimited amount of 3D scene data via scripting. However, they are
computationally intensive and time-consuming, and the resulting scenes often suffer from limited
diversity. Another distinct approach is taken by 3D-FRONT [12], which has released 18K curated
scene layouts and 13K CAD models, allowing researchers to reconstruct complete indoor scenes
for novel tasks. However, since these layout designs are generated by learning from professional
designers’ inspirations, they often lack realism and diversity, resulting in scenes with fewer objects
and missing many small items that are common in real environments. In contrast, InternScenes
comprises approximately 40K diverse indoor scenes, encompassing 48K regions across 15 common
daily-life categories. Each region contains an average of 41.5 objects, indicating a high density of
objects within our scenes, including small items. Moreover, around 30% of the objects in each region
are interactive.

Real-to-Sim 3D Scene Generation. To construct scene datasets with authentic spatial distributions
suitable for physics-based simulation and embodied AI training, researchers typically employ a
real-to-sim paradigm to assemble scene datasets. In this approach, real environments are scanned to
acquire detailed layout information, which is subsequently transformed into synthetic scene assets.
For instance, the OpenRooms [20] dataset builds upon ScanNet [8] indoor point cloud; it aligns
ShapeNet [6] CAD models with the scanned furniture by the Scan2CAD [1] method. During this
process, each object’s bounding box is meticulously refined to enforce orthogonality with both the
floor and wall planes and to remove any floating or intersecting artifacts, resulting in physically
coherent scene layouts and object placements. Concurrent work MetaScenes [38] also builds delicate
Real2Sim replica via replacing objects in ScanNet [8] Scenes, but its coverage is limited in a single
data source. In contrast, certain methods forego point-cloud acquisition entirely, instead inferring
spatial priors directly from a single image to synthesize 3D scenes. MIDI [15] conditions on a
single image to generate multiple object assets in one pass. However, it frequently introduces visible
artifacts and suffers from severe entanglement among objects of disparate scales, undermining realistic
interactions. ACDC [9] method leverages vision-language models to extract scene distributions from
a single image and reconstruct environments using BEHAVIOR-1K [18] assets. Despite its promise,
ACDC struggles to accurately represent complex scenes populated with numerous small objects,
limiting its fidelity in such scenarios.

3 Dataset

In this section, we detail our two-stage pipeline to build a diverse and realistic scene dataset. In the
first stage, scenes from multiple sources are integrated and cleaned to extract layout information,
while a diverse 3D asset library is curated to ensure accurate object-layout correspondence. In the
second stage, objects are placed into scenes based on extracted layouts, followed by optimization and
physics simulations to resolve issues such as collisions. Finally, we conduct a statistical analysis on
our dataset, highlighting its quality and advantages.

3.1 Multi-Source Data Processing

InternScenes-Real2Sim: Real-to-Sim Replica Creation on Real-world Scanned Scenes. Cur-
rently, retrieving scenes from real to simulation environments still faces two core challenges. First,
the layouts in real-world scenes exhibit high diversity and complexity, as residents often have person-
alized preferences for object arrangements within scenes. Second, real scenes commonly contain a
large number of small objects, which are more heterogeneous in category, greater in quantity, and
display significantly varied poses compared to large furniture items. To address these challenges, we
propose an effective retrieval pipeline, illustrated in Figure 2. The detailed annotations of regions
and numerous small objects in EmbodiedScan precisely meet our requirements, making it a valuable
data source. To ensure sufficient object density within each region, we defined a set of rules to merge
small, semantically similar regions, guaranteeing that each resulting region contains at least 8 objects.

To further cover all object categories present in EmbodiedScan and to enable interactive capabilities
in the retrieved scenes, we perform label mapping and canonical pose correction on raw assets from

4

Real2Sim

Preprocess Regions in EmbodiedScan

3D Assets from Objaverse and PartNet-Mobility

Floor

𝑳𝒈𝒓𝒐𝒖𝒏𝒅 𝑳𝑰𝒐𝑼

ImagesCap3D Labels
Mapping

Correct / Incorrect ?
Check

…

Multi-Perspectives

Synthetic

Real

Fixing Orient

Rules for Optimization

Physical Simulation

Sim-Ready

Render
Xy

z

Merge

Identify the
Canonical Pose

Retrieve

Post-Processing Render

Mapping Labels

Fix Collision

Figure 2: Pipeline for retrieving synthetic scenes from real scan scenes

Objaverse [11] and PartNet-Mobility [35]. For label mapping in Objaverse, we utilize GPT-4o to map
descriptions from Cap3D [21] into 288 predefined categories. The mapping results, along with their
corresponding rendered images, are then fed into the InternVL [7] model for verification and filtering
to eliminate incorrect mappings. In contrast, the label system in PartNet-Mobility is relatively limited,
so we conducted manual label matching.

For objects with orientation constraints, we further perform canonical pose correction. Specifically,
we render such objects from multiple viewpoints at an oblique top-down angle and input these
renderings into InternVL. The model identifies and outputs the index of the image that best represents
the front-facing view, based on which we align the main direction of each object to the positive x-axis
with the Euler angles annotated in EmbodiedScan. To more effectively align object arrangements with
their corresponding assets in real-world scenarios, we further propose a candidate object selection
mechanism coupled with a fuzzy label replacement strategy. A comprehensive description of the
underlying rules is provided in the supplementary material.

InternScenes-Gen: Procedurally Generated Scenes constrained by Rules. We also include scene
layouts generated by Infinigen Indoors, which is a procedural generator for creating photorealistic
indoor scenes. It employs a constraint-based arrangement system. It defines scene composition
constraints for several region types through a domain-specific language. These constraints cover
various aspects such as symmetry, spatial relations, quantity, physics, and accessibility. The system
then employs a solver to generate scene compositions that maximally satisfy these constraints. The
scenes generated by Infinigen Indoors are photorealistic and semantically plausible. It can generate
complex indoor scenes with object arrangements that adhere to physical and functional constraints,
and it is capable of generating detailed indoor settings, such as dining tables with various objects and
items inside cabinets. We implement relevant algorithms to extract and save scene layouts from the
scenes generated by Infinigen Indoors.

InternScenes-Synthetic: Annotation for Designer-Created Scenes. The organization of synthetic
scenes should ideally follow a logical sequence, progressing from general to specific elements,
thereby establishing a hierarchical structure of Scene-Regions-Instances-Parts. This clear hierarchical
division enables efficient extraction and understanding of information related to the scenes and their
constituent objects. However, in practice, the data structures created by designers frequently display
disorganized arrangements and insufficient annotation, which present notable challenges for data
collection.

Specifically, at the Regions level, a single house typically contains multiple functional regions, yet
these regions are not clearly delineated. For example, in an apartment suite, the living region and
cooking region might coexist in the same scene, but designers often fail to distinctly define their
boundaries, rendering it impossible to implement automatic segmentation using standard algorithms.
At the Instances level, there are both furniture sets that are physically combined in the scene and parts
that theoretically should be combined but are not. For instance, a sofa and the pillows or magazines
placed on it are defined by the designer as a single instance, while the table legs and tabletop are

5

Three - round
Quality Inspection and Rework

Four - round ReworkObject Attribute Annotation

Semantic Label Annotation

Polygon
Annotation

Multi-view
Visualization

Annotation Tool

Whole Scene
Roaming

Scene
Components
Visualization

Annotation
Area

Scene Selection

{"model_0": "table",
"model_1": "pillow",
"model_2": "magazine",
"model_3": "pillow",
"model_4": "couch",
"model_5": "light",
"model_6": "statue",
"model_7": "model",
"model_8": "toy",…}

Annotation Result

[{ "name": "object0",
"feedback": "complete" },

{ "name": "object1",
"feedback": " combined" },

{ "name": "object2",
"feedback": " part" },

{ "name": "object4",
"feedback": "wall" }, …]

Annotation Result

{ "id": 0,
"label": "storage region",
"vertex": [
 [301, 403],
 [293, 201],
 [4, 209],
 [0, 423]
]
},

Incorrect Annotation

{ "id": 0,
"label": "resting
region", "vertex": [
 [321, 15],
 [885, 15],
 [889, 430],
 [325, 423]
]
},

Correct Annotation

Regions Annotation

Instances Annotation

Raw Scene

VLM

“Cooking Region”

“Living Region”

Layout Info "combined"

"part"

"part"

Automatic Annotation & Human check
Split &
Merge

Figure 3: Pipeline for annotating and processing raw scenes to extract precise layout information.

split into separate instances. This approach to organization not only leads to significant ambiguity in
semantic instance judgment but also results in potentially inaccurate bounding box dimensions. To
address the aforementioned issues, we refined the definition of region types within the scenes and
performed splitting or merging operations on instances to capture the finest layout distribution within
each region. The overall processing pipeline is illustrated in Figure 3.

Region Annotation. Given the lack of a universal region segmentation algorithm, we adopted a manual
annotation approach to define region types. To facilitate this process, we developed a dedicated region
annotation tool consisting of three core modules. The Multi-View Visualization module displays
multi-view renderings of sampled points within the scene. The Polygon Annotation module presents
the bird’s-eye-view map of the entire scene and allows annotators to delineate regions using polygonal
drawings. The Semantic Label Annotation module enables annotators to assign semantic categories
by selecting from a set of predefined semantic label options. After three rounds of annotation, review,
and correction, we obtained the coordinate information and attribute labels for all regions in the
scene.

Instance Annotation. To address the hierarchical disorder among objects in the original scenes,
we relied on human judgment to determine whether objects needed splitting or merging. For this
purpose, we built an instance annotation tool that allows annotators to freely navigate the 3D scene
and locate target objects for evaluation and labeling. Based on these annotations, we wrote scripts
to automatically perform object splitting and merging. Subsequently, we rendered the processed
objects from six different viewpoints and fed these images into the InternVL to generate semantic
labels automatically, which are then verified by human annotators. Based on the region and instance
annotation results, we further extract the object coordinates, bounding box dimensions, and rotation
Euler angles within each region, thereby forming the necessary layout information.

3.2 Physics-Aware Scene Composition

To prevent collision and clipping issues between objects in the scene, we perform physical simulation
optimization on the scenes obtained in the previous step. Specifically, we first conduct fine-tuning of
the bounding boxes of the objects and then place them into a simulator to perform final computational
adjustments to achieve the final scene layout.

6

Figure 4: Region statistics. Our dataset includes 15 common scene categories, such as the resting
room and the living room. We also show the distribution of region areas.

Figure 5: Distribution of objects across 288 categories. We list the 30 categories with the highest
occurrence frequency.

Bounding Box Optimization and Fine-Tuning. Given the distribution characteristics of objects
within a region, we establish different rules for larger furniture objects and smaller object assets. For
smaller assets, we first bind their positions to nearby larger objects to ensure that the relative positions
of large furniture and smaller object assets remain stable during the fine-tuning process. For larger
furniture, we implement a loss function composed of three parts: Li = LIoU + Lground + Lreg. The
IoU Loss is used to optimize overlapping and clipping among large furniture items. The Ground Loss
addresses noise introduced during scanning, which can lead to misalignment of objects with the floor.
The Regularization Term ensures that these objects do not deviate significantly from their original
positions.

Simulator Processing. To further enhance the physical plausibility of smaller objects in the region
and avoid common issues such as object collision and floating, we import the optimized furniture
layout into the SAPIEN [35] engine for detailed physics simulation, after completing the bounding-
box-based optimization for large furniture items. Specific implementation details regarding bounding
box optimization and physics simulation can be found in the supplementary material.

3.3 Dataset Statistics

Region and Object Statistics. Our dataset comprises three subsets, totaling 39870 scenes and 48381
regions across 15 categories. Specifically, the InternScenes-Real2Sim subset contains 9833 regions,
InternScenes-Gen contains 11454 regions, and InternScenes-Synthetic contains 27094 regions. In
total, 1.96M objects from 288 categories are placed across all regions, sampled from our asset library
of 80M CAD models. These objects are sampled from our asset library containing 80 million CAD

7

Figure 6: Scene Examples in OmniScenes-Real2Sim(left), Gen(middle), Synthetic(right)

models. On average, each region contains 41.5 objects. Figure 4 (a) shows the distribution of 15
region types. Figure 4 (b) shows the distribution of region area (in m2). Figure 5 shows the distribution
of objects across 288 categories. The five most frequent object categories are chair, toy, book, light,
and bottle. In Figure 6, we provide some scene examples of InternScenes for visualization.

Object Relation Statistics. Following [39], we quantified the number of containment and support
relationships between objects in the InternScenes dataset to characterize its structural complexity.
Specifically, we selected a subset of object categories from InternScenes—categories that are not only
commonly present in indoor scenes but also likely to serve as containers or supporting structures. For
all objects falling into these selected categories, we calculated the total number of containment and
support relationships, which were determined by the presence of smaller objects either inside (for
containment) or on top of (for support) them. On average, each of these objects contains or supports
3.45 other objects. When excluding the subset of objects that exhibit no containment or support
relationships, this average rises to 5.57 objects per supporting or containing object.

4 Experiment

This section presents two preliminary benchmarks built upon InternScenes to show its application
in 3D AIGC and embodied AI. Specifically, given the complex and diverse layouts provided in
InternScenes, we first introduce an interior scene generation benchmark and show the new challenges
posed by the large number of small objects involved (Section 4.1). Subsequently, since InternScenes
is simulation-ready, we use it to benchmark point-goal navigation methods and discuss the new
challenges caused by more realistic, cluttered environments in Section 4.2.

4.1 Interior Scene Generation

The first important property of InternScenes is its complex and realistic layout, which bridges the gap
in the field of scene generation. Therefore, we first build an interior scene generation benchmark to
validate the efficacy of our dataset and study the emerging challenges.

Dataset Construction. We selected three common region types from the InternScenes dataset,
Resting, Living, and Dining regions, for our interior scene generation experiments. To decouple the
effect of the large number of small objects in InternScenes, we construct two versions of datasets
for different difficulty levels: 1) Full Version that includes all objects, and 2) Simplified Version that
removes all small objects. Then we use all the scenes for training the generative baseline models.

8

Table 2: Quantitative evaluation results of ATISS[23], DiffuScene[29], and Physcene[36] trained
separately on the full and simplified versions of the Internscenes dataset. For SCA, the score closer to
50% is better. Lower FID and CKL demonstrate better generation performance.

Dataset Method
Resting Region Living Region Dining Region

FID(↓) SCA% CKL(↓) FID(↓) SCA% CKL(↓) FID(↓) SCA% CKL(↓)

Full
Version
Dataset

ATISS 101.85 95.65 0.178 104.48 96.95 0.091 133.20 99.44 0.151

DiffuScene 96.56 95.40 0.232 107.49 96.66 0.149 122.95 97.54 0.235

Physcene 88.02 94.97 0.175 66.59 96.45 0.123 130.39 98.91 0.081

Simplified
Version
Dataset

ATISS 23.20 59.80 0.133 30.49 70.95 0.056 30.89 64.72 0.063

DiffuScene 22.88 57.70 0.117 23.54 64.30 0.057 28.70 59.99 0.095

Physcene 23.78 68.45 0.142 24.75 64.40 0.058 26.76 66.82 0.047

Experimental Setup. We employed the unconditional generation mode for all three baseline
models. To ensure a fair comparison, we retrained a Variational Autoencoder (VAE) for point cloud
compression using InternScenes assets and mapped the original object categories to our defined
288-category taxonomy. Performance was evaluated on 1, 000 generated scenes using four common
metrics in indoor scene generation: Fréchet Inception Distance (FID) [14], Kernel Inception Distance
(KID × 0.001) [3], Scene Classification Accuracy (SCA), and Category KL Divergence (CKL × 0.01).
For FID, KID, and SCA metrics, we rendered a 256×256 resolution orthographic top-down view for
each real and generated scene. We benchmark three representative baseline methods for analysis,
namely ATISS [23], DiffuScene [29], and PhyScene [36].

Results and Analysis. The quantitative results of our experiments are presented in Table 2. A
comparison of the different baselines, when trained on identical datasets, reveals that DiffuScene
and PhyScene generally exhibit superior performance across most metrics. This observation aligns
with the performance distribution of these baselines on the 3D-FRONT [12] dataset, which indirectly
substantiates the plausible realism of the InternScenes dataset.

However, when employing the same methodology and experimental setup but utilizing distinct
training data, all three baselines demonstrate a decline in performance on the complete version of
InternScenes. Our findings indicate that while the three baselines perform commendably in generating
indoor scenes composed of large furniture items, they encounter difficulties in capturing the extensive
array of small objects characterized by complex distributions within the comprehensive dataset. This
highlights that the placement of small items is not a trivial task and constitutes a challenging problem
as explored by works on micro-scene generation [38, 13].

Furthermore, on the simplified version of the InternScenes data, the results obtained by DiffuScene
and PhyScene are largely comparable across most metrics. Conversely, in the context of complex
scenes within the complete dataset, PhyScene exhibits a pronounced advantage over DiffuScene.
This suggests that the physics-based guidance mechanism integrated into the PhyScene method may
potentially boost the efficacy of diffusion-based scene generation algorithms in producing physically
plausible and complex scenes.

4.2 Navigation

Next, we choose point-goal navigation as the benchmark application of InternScenes for embodied
AI. Previous scene datasets for point-goal navigation either have simple layout complexity or limited
diversity. In contrast, InternScenes provides diverse simulation-ready environments that can generate
considerable episodes therein. More importantly, it offers a challenging testbed for testing point-goal
navigation algorithms in diverse, realistic, cluttered scenes.

Experiment Setup. To evaluate the efficacy of our scene datasets for downstream Embodied AI
tasks, we build a physically and visually realistic point-goal navigation benchmark based on IsaacSim
and our scene assets, which distinguishes from prior physical-agnostic navigation benchmarks, such
as Habitat-Sim [27] and AI2Thor [17]. For a more comprehensive investigation of the sim-to-real
gap in navigation approaches, we manually select 20 scenes from InternScenes-Real2Sim and 10
from InternScenes-Gen, with selection criteria based on layout complexity and asset quality. The
wheeled robot ClearPath Dingo is adopted as the navigation agent. Two metrics are employed in

9

Table 3: The PointGoal navigation benchmark results across different baseline methods.

Method InternScenes-Real2Sim InternScenes-Gen

Success(↑) SPL(↑) Distance(-) Success(↑) SPL(↑) Distance(-)

DD-PPO [34] 23.6 23.1 5.41 45.0 44.2 4.94

NavDP [4] 48.3 45.3 - 61.9 61.8 -

NavDP-FT [4] 51.0 49.4 - 63.6 61.7 -

the benchmark: Success Rate and Shortest Path Length (SPL). Success Rate assesses whether the
agent can find a valid path to reach the goal, while SPL measures the efficiency of the executed path
relative to the oracle shortest path. Each scene is evaluated across 20 episodes, and we report the
average distance between all starting points and target points to quantify task difficulty.

Baseline. Three representative baseline methods are considered in the evaluation. The first is an
RL-based method, DD-PPO [34], which is massively trained in Habitat-Sim [27]. As DD-PPO
trains the policy with respect to a discrete action space, we deploy it in the continuous action space
by multiplying the discrete predicted coordinates with a coefficient into linear and angular speed.
The second is a pretrained diffusion-based imitation learning method, NavDP [4]. The third is a
fine-tuned version of NavDP. To fine-tune the NavDP, we follow their data generation pipeline with
our Internscenes assets and compose a new navigation dataset with 118,784 trajectories.

Results and Analysis. Navigation performance metrics are reported in Table 3. DD-PPO [34]
achieves a low success rate across all scenes, indicating that RL-based policies have limited gen-
eralization capabilities when confronted with continuous action spaces and domain gaps during
motion execution. While NavDP [4] can select optimal trajectories using its pretrained critic function
and complete navigation tasks in many scenarios, the cluttered layouts in InternScenes pose unique
challenges, leading to a success rate of approximately 50%. By fine-tuning NavDP with additional
navigation trajectories from InternScenes, we observe a slight improvement in its overall perfor-
mance. This result demonstrates that the diversity of our InternScenes dataset can facilitate model
training; however, how to scale model capacity to leverage increasingly large datasets remains an
open problem.

Discussion and Conclusion. Based on the navigation performance metrics, we observe a significant
performance decline in our evaluation framework. By analyzing failure cases in depth, we identify
three key challenges in our benchmark and propose a potential direction for future research on
navigation methods. First, the realistic scene assets in our benchmark tend to feature cluttered room
layouts, which demand more precise path-planning capabilities and collision recovery mechanisms.
The lack of collision recovery capabilities in the baseline methods is a key factor contributing to
their performance degradation in cluttered environments. Second, our scene assets frequently include
narrow pathways, where traversability depends entirely on the robot’s embodiment information.
However, most learning-based navigation methods rely solely on exteroceptive observations, which
constrains their navigation performance in such scenarios. Third, real-world objects often have
small connected components (e.g., office chair legs) that are classified as obstacles. While these tiny
obstacles may be captured in visual observations only in limited frames, they are critical for safe path
planning—posing a major challenge to the spatial perception capabilities of navigation approaches.
These three characteristics make our navigation benchmark an ideal platform for evaluating the
sim-to-real gap of navigation methods.

5 Limitations and Conclusion

In this work, we introduce InternScenes, a large-scale, simulatable indoor scene dataset with diverse
and realistic layouts, constructed by integrating real-world scans, procedural generation, and synthetic
design. Featuring 40,000 scenes and over 1.96 million objects from 288 classes, InternScenes enables
new benchmarks in layout generation and visual navigation, posing significant challenges to current
methods. We open-source the dataset and tools to support future research in embodied AI and AIGC.
Although this paper presents a pipeline for processing multi-source scene data, the current approach
remains reliant on manual annotation and can be further improved regarding scene diversity. Future
work will aim to reduce human involvement and further improve the quality of the 3D assets library.

10

6 Acknowledgement

This work is funded in part by the National Key R&D Program of China (2022ZD0160201), Shanghai
Artificial Intelligence Laboratory, and HKU Startup Fund.

References
[1] Armen Avetisyan, Manuel Dahnert, Angela Dai, Manolis Savva, Angel X Chang, and Matthias

Nießner. Scan2cad: Learning cad model alignment in rgb-d scans. In Proceedings of the
IEEE/CVF Conference on computer vision and pattern recognition, pages 2614–2623, 2019.

[2] Armen Avetisyan, Christopher Xie, Henry Howard-Jenkins, Tsun-Yi Yang, Samir Aroudj,
Suvam Patra, Fuyang Zhang, Duncan Frost, Luke Holland, Campbell Orme, et al. Scene-
script: Reconstructing scenes with an autoregressive structured language model. In European
Conference on Computer Vision, pages 247–263. Springer, 2024.

[3] Mikołaj Bińkowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton. Demystifying
mmd gans. arXiv preprint arXiv:1801.01401, 2018.

[4] Wenzhe Cai, Jiaqi Peng, Yuqiang Yang, Yujian Zhang, Meng Wei, Hanqing Wang, Yilun Chen,
Tai Wang, and Jiangmiao Pang. Navdp: Learning sim-to-real navigation diffusion policy with
privileged information guidance, 2025.

[5] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niessner, Manolis
Savva, Shuran Song, Andy Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d data in
indoor environments. International Conference on 3D Vision (3DV), 2017.

[6] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d
model repository. arXiv preprint arXiv:1512.03012, 2015.

[7] Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
for generic visual-linguistic tasks. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 24185–24198, 2024.

[8] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 5828–5839, 2017.

[9] Tianyuan Dai, Josiah Wong, Yunfan Jiang, Chen Wang, Cem Gokmen, Ruohan Zhang, Jiajun
Wu, and Li Fei-Fei. Acdc: Automated creation of digital cousins for robust policy learning.
arXiv e-prints, pages arXiv–2410, 2024.

[10] Matt Deitke, Eli VanderBilt, Alvaro Herrasti, Luca Weihs, Kiana Ehsani, Jordi Salvador,
Winson Han, Eric Kolve, Aniruddha Kembhavi, and Roozbeh Mottaghi. Procthor: Large-scale
embodied ai using procedural generation. Advances in Neural Information Processing Systems,
35:5982–5994, 2022.

[11] Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt,
Ludwig Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe
of annotated 3d objects. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 13142–13153, 2023.

[12] Huan Fu, Bowen Cai, Lin Gao, Ling-Xiao Zhang, Jiaming Wang, Cao Li, Qixun Zeng, Chengyue
Sun, Rongfei Jia, Binqiang Zhao, et al. 3d-front: 3d furnished rooms with layouts and semantics.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 10933–
10942, 2021.

[13] Jinkun Hao, Naifu Liang, Zhen Luo, Xudong Xu, Weipeng Zhong, Ran Yi, Yichen Jin, Zhaoyang
Lyu, Feng Zheng, Lizhuang Ma, et al. Mesatask: Towards task-driven tabletop scene generation
via 3d spatial reasoning. arXiv preprint arXiv:2509.22281, 2025.

11

[14] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

[15] Zehuan Huang, Yuan-Chen Guo, Xingqiao An, Yunhan Yang, Yangguang Li, Zi-Xin Zou, Ding
Liang, Xihui Liu, Yan-Pei Cao, and Lu Sheng. Midi: Multi-instance diffusion for single image
to 3d scene generation. arXiv preprint arXiv:2412.03558, 2024.

[16] Baoxiong Jia, Yixin Chen, Huangyue Yu, Yan Wang, Xuesong Niu, Tengyu Liu, Qing Li,
and Siyuan Huang. Sceneverse: Scaling 3d vision-language learning for grounded scene
understanding. In European Conference on Computer Vision, pages 289–310. Springer, 2024.

[17] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Matt
Deitke, Kiana Ehsani, Daniel Gordon, Yuke Zhu, et al. Ai2-thor: An interactive 3d environment
for visual ai. arXiv preprint arXiv:1712.05474, 2017.

[18] Chengshu Li, Ruohan Zhang, Josiah Wong, Cem Gokmen, Sanjana Srivastava, Roberto Martín-
Martín, Chen Wang, Gabrael Levine, Michael Lingelbach, Jiankai Sun, et al. Behavior-1k:
A benchmark for embodied ai with 1,000 everyday activities and realistic simulation. In
Conference on Robot Learning, pages 80–93. PMLR, 2023.

[19] Wenbin Li, Sajad Saeedi, John McCormac, Ronald Clark, Dimos Tzoumanikas, Qing Ye,
Yuzhong Huang, Rui Tang, and Stefan Leutenegger. Interiornet: Mega-scale multi-sensor
photo-realistic indoor scenes dataset. arXiv preprint arXiv:1809.00716, 2018.

[20] Zhengqin Li, Ting-Wei Yu, Shen Sang, Sarah Wang, Meng Song, Yuhan Liu, Yu-Ying Yeh, Rui
Zhu, Nitesh Gundavarapu, Jia Shi, et al. Openrooms: An open framework for photorealistic
indoor scene datasets. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 7190–7199, 2021.

[21] Tiange Luo, Chris Rockwell, Honglak Lee, and Justin Johnson. Scalable 3d captioning with
pretrained models. arXiv preprint arXiv:2306.07279, 2023.

[22] NVIDIA. Isaac sim 4.0 - robotics simulation and synthetic data generation.
https://developer.nvidia.com/isaac-sim, 2024.

[23] Despoina Paschalidou, Amlan Kar, Maria Shugrina, Karsten Kreis, Andreas Geiger, and Sanja
Fidler. Atiss: Autoregressive transformers for indoor scene synthesis. Advances in Neural
Information Processing Systems, 34:12013–12026, 2021.

[24] Alexander Raistrick, Lingjie Mei, Karhan Kayan, David Yan, Yiming Zuo, Beining Han,
Hongyu Wen, Meenal Parakh, Stamatis Alexandropoulos, Lahav Lipson, et al. Infinigen
indoors: Photorealistic indoor scenes using procedural generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 21783–21794,
2024.

[25] Santhosh K Ramakrishnan, Aaron Gokaslan, Erik Wijmans, Oleksandr Maksymets, Alex Clegg,
John Turner, Eric Undersander, Wojciech Galuba, Andrew Westbury, Angel X Chang, et al.
Habitat-matterport 3d dataset (hm3d): 1000 large-scale 3d environments for embodied ai. arXiv
preprint arXiv:2109.08238, 2021.

[26] Mike Roberts, Jason Ramapuram, Anurag Ranjan, Atulit Kumar, Miguel Angel Bautista, Nathan
Paczan, Russ Webb, and Joshua M Susskind. Hypersim: A photorealistic synthetic dataset for
holistic indoor scene understanding. In Proceedings of the IEEE/CVF international conference
on computer vision, pages 10912–10922, 2021.

[27] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana
Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform for
embodied ai research. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 9339–9347, 2019.

[28] Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik Wijmans, Simon Green, Jakob J
Engel, Raul Mur-Artal, Carl Ren, Shobhit Verma, et al. The replica dataset: A digital replica of
indoor spaces. arXiv preprint arXiv:1906.05797, 2019.

12

[29] Jiapeng Tang, Yinyu Nie, Lev Markhasin, Angela Dai, Justus Thies, and Matthias Nießner.
Diffuscene: Denoising diffusion models for generative indoor scene synthesis. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 20507–20518,
2024.

[30] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ international conference on intelligent robots and systems, pages
5026–5033. IEEE, 2012.

[31] Johanna Wald, Armen Avetisyan, Nassir Navab, Federico Tombari, and Matthias Nießner. Rio:
3d object instance re-localization in changing indoor environments. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 7658–7667, 2019.

[32] Tai Wang, Xiaohan Mao, Chenming Zhu, Runsen Xu, Ruiyuan Lyu, Peisen Li, Xiao Chen,
Wenwei Zhang, Kai Chen, Tianfan Xue, et al. Embodiedscan: A holistic multi-modal 3d
perception suite towards embodied ai. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 19757–19767, 2024.

[33] Xinyue Wei, Minghua Liu, Zhan Ling, and Hao Su. Approximate convex decomposition for 3d
meshes with collision-aware concavity and tree search. ACM Transactions on Graphics (TOG),
41(4):1–18, 2022.

[34] Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee, Irfan Essa, Devi Parikh, Manolis
Savva, and Dhruv Batra. Dd-ppo: Learning near-perfect pointgoal navigators from 2.5 billion
frames. In International Conference on Learning Representations.

[35] Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu,
Hanxiao Jiang, Yifu Yuan, He Wang, et al. Sapien: A simulated part-based interactive environ-
ment. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 11097–11107, 2020.

[36] Yandan Yang, Baoxiong Jia, Peiyuan Zhi, and Siyuan Huang. Physcene: Physically interactable
3d scene synthesis for embodied ai. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 16262–16272, 2024.

[37] Chandan Yeshwanth, Yueh-Cheng Liu, Matthias Nießner, and Angela Dai. Scannet++: A high-
fidelity dataset of 3d indoor scenes. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 12–22, 2023.

[38] Huangyue Yu, Baoxiong Jia, Yixin Chen, Yandan Yang, Puhao Li, Rongpeng Su, Jiaxin Li,
Qing Li, Wei Liang, Song-Chun Zhu, et al. Metascenes: Towards automated replica creation
for real-world 3d scans. In Proceedings of the Computer Vision and Pattern Recognition
Conference, pages 1667–1679, 2025.

[39] Lap-Fai Yu, Sai-Kit Yeung, and Demetri Terzopoulos. The clutterpalette: An interactive tool
for detailing indoor scenes. IEEE transactions on visualization and computer graphics, 22(2):
1138–1148, 2015.

[40] Jia Zheng, Junfei Zhang, Jing Li, Rui Tang, Shenghua Gao, and Zihan Zhou. Structured3d:
A large photo-realistic dataset for structured 3d modeling. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IX 16, pages
519–535. Springer, 2020.

13

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly outlines the limitations of existing
datasets and introduces OmniScenes as a solution, highlighting its scale, diversity, and the
integration of multiple scene sources. It also specifies the improvements in simulatability,
layout realism, and interactivity, and briefly mentions the benchmark applications that
demonstrate the dataset’s value. The commitment to open-source the data and tools further
underscores the paper’s contribution to the research community.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Although this paper presents a pipeline for processing multi-source scene data,
the current approach remains reliant on manual annotation and can be further improved
regarding scene diversity. Future work will aim to reduce human involvement and further
improve the quality of the 3D assets library.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best

14

judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide assumptions for the optimization loss function in the Supplemen-
tary.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We will release our codes and data for reproducing our experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

15

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: For detailed code and data access and processing methods, please see the
repository:https://github.com/PC1E-bit/OmniScenes

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 4 for details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: See Section 4 for details.

Guidelines:

• The answer NA means that the paper does not include experiments.

16

https://github.com/PC1E-bit/OmniScenes
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We will discuss it in supplementary.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conform the NeurIPS code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have only discussed the positive contributions of open source data to the
community.

17

https://neurips.cc/public/EthicsGuidelines

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer:[Yes]

Justification: The code and data will be cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

18

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: New assets are introduced in the paper.

Guidelines: We the paper does not release new assets.

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:[NA]

Justification: We does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

19

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We used LLM for 3d assets’ curation and processing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Pipeline Details

This section supplements several details in the two-stage pipeline, mainly including the retrieval
details of InternScenes-Real2Sim and the annotation details of InternScenes-Synthetic in the first
stage and details of Physics-Aware Scene Composition in the second stage.

A.1 Retrieval Details of InternScenes-Real2Sim

Object Category Replacement and Candidate Asset Selection Strategy. In the retrieval process,
our goal is to find and match the most suitable 3D object instance for each bounding box in the
EmbodiedScan [32] dataset from a pre-curated 3D asset library and place it in the corresponding
location within the scene. For object categories with clear semantic definitions, their candidate assets
are directly composed of all available instances under that category in the asset library.

Figure 7: Examples of symmetrical L-shaped couches.

However, some categories in EmbodiedScan are defined too broadly or ambiguously, potentially
covering multiple specific subcategories. For example, the category "object" might refer to items
such as books, plants, or lamps placed on a desk, or it could represent small objects like shoes located
on the floor. To address such semantically ambiguous categories, we introduce a context-based
rule-driven label replacement mechanism. Specifically, by analyzing the spatial position of an object
labeled as "object" within the scene and the semantic information of its neighboring objects, we infer
a more specific alternative category.

For instance, if an "object" is located on a desk, its semantic category can be further refined into one
of several predefined categories, such as "book," "plant," or "lamp". In this case, the set of candidate
assets for that object will consist of all 3D models under these refined categories in the asset library.
The complete mapping rules from ambiguous to specific categories are detailed in Table 4.

Building upon the category replacement for "object", we further consider the special shape require-
ments of objects within scenes. Take L-shaped couches as an example—these may exhibit two
distinct spatial configurations: left-L and right-L (mirror-L). Based on the spatial distribution of
bounding boxes in the scene, we classify couches into three types: left-L, right-L, and standard
(non-L). Due to limited diversity in specialized shapes within the asset library, we manually group
existing couch models into these three categories and apply mirror symmetry transformations to
the left-L and right-L types, allowing them to complement each other in different scenarios, which
enhances both the adaptability and variety of candidate couches in terms of shape. The L-shaped
couches are illustrated in Figure 7.

Select from candidate assets. For a given object in the scene, we select the asset that best matches
the annotated bounding box dimensions provided by EmbodiedScan [32] from all its candidate
assets. By introducing bounding box similarity as an evaluation metric, we can effectively reduce
morphological distortions caused by scale stretching.

21

Table 4: Substituted Object Categories by Position
Object Position Substituted Categories

on floor "bin", "bag", "backpack", "basket", "shoe", "ball"

on bed / couch "toy", "pillow", "bag", "book", "backpack", "hat"

on table / desk "book", "plant", "lamp", "bottle", "socket", "cup",
"vase", "bowl", "plate", "fruit", "teapot"

in washroom "cup", "box", "bottle", "towel", "case",
"soap", "soap dish", "soap dispenser"

in kitchen / on stove "bowl", "cup", "knife", "plate", "can", "fruit", "food"

in / on cabinet "box", "toy", "book", "hat", "bag", "cup", "shoe"

attached to wall "picture", "socket"

Due to the diverse origins of the assets, their scales are not uniformly aligned. Therefore, before
computing the bounding box similarity, we first normalize the bounding box dimensions. Let the
target bounding box size vector be t ∈ R3, and the i-th candidate bounding box size vector be
ci ∈ R3. Then, the bbox similarity is defined as:

sim(ci, t) =

3∑
j=1

ci,j tj√√√√ 3∑
j=1

c2i,j

√√√√ 3∑
j=1

t2j

After the asset is selected, we transform the chosen 3D model according to the size, translation, and
rotation information of the object’s bounding box in the original scene, so as to accurately place it
into the corresponding position within the scene.

A.2 Annotation Details of InternScenes-Synthetic

Region Annotation. In our region annotation tool, achieving an effective perception of the overall
scene environment and precise region annotation requires the use of the BEV map of the scene along
with the corresponding sampling point information. To facilitate this, we employ IsaacSim [22] to
render images from multiple perspectives within the scene, which supports the subsequent annotation
processes.

To generate the BEV map, the process begins by converting the entire scene into point clouds and
performing downsampling to extract a histogram of the z-axis height distribution. Next, the z-axis
coordinates corresponding to the peaks in this histogram are identified. These coordinates, combined
with the DBSCAN clustering method, help estimate the height range for the floor and ceiling. Finally,
a Rect Light is positioned 1.5 meters above the floor, and an orthographic camera is placed 1.8 meters
above the floor to capture the entire scene, resulting in a clearly structured BEV map.

To generate multi-view rendered images of specific sampling points, we start by downsampling the
floor point cloud to determine the sampling locations. At each sampling location, a perspective
camera is positioned 1.8 meters above the floor. The camera captures images by rotating around
the point in 45-degree increments, resulting in a total of 8 different perspective rendering images.
This comprehensive method ensures that all spatial information surrounding the sampling point is
thoroughly captured. Figure 8 shows the BEV maps of some scenes along with the rendered images
of their corresponding sampling points.

Instance Annotation for Splitting and Merging. Given the difficulty of accessing the original data
format, we convert the entire scene into a mesh and transform all its constituent elements into point
clouds with color information. This transformation facilitates easier access to the data.

During the annotation process, when a user selects a specific element, it is highlighted within the
scene, and the camera view automatically adjusts to focus on that element. This adjustment helps users
better understand the element’s exact location within the scene, enabling more precise annotation
operations.

22

Figure 8: Examples of BEV maps and rendered images of their corresponding sampling points

Figure 9: Instance annotation interface UI

23

For label selection, users can primarily choose from two major categories: object types and room
structure types. Object type annotations are further divided into three subcategories: individual
complete objects, which are standalone entities with clear semantic definitions; assemblies, which are
sets or collections composed of multiple objects with different semantics; and partial objects, which
represent components of a complete object. Room structure types are categorized into floor, ceiling,
walls, and background, providing a more accurate description of the spatial composition within the
scene. Figure 9 provides a detailed illustration of the user interface design for the annotation tool.
Based on the annotation results, we perform automated splitting or merging of objects within the
scene.

Instance Annotation for Semantic Labels. We extract the processed instance assets from the scene
and utilize IsaacSim to render them from multiple viewpoints. Specifically, for both the 45-degree
upper diagonal and 45-degree lower diagonal perspectives relative to the object, we perform three
renderings at 120-degree intervals, resulting in a total of six views. These six rendered images are
then collectively fed into the InternVL [7] model for automatic semantic annotation of the objects.

Figure 10: Inspection results of scene 4

Figure 11: Inspection results of scene 9

24

Table 5: Automatic captioning accuracy for manual inspection

ID #Correct #Incorrect #All Accuracy

1 32 8 40 80.00%
2 39 2 41 95.12%
3 18 1 19 94.74%
4 33 2 35 94.29%
5 28 2 30 93.33%
6 52 7 59 88.14%
7 192 24 216 88.89%
8 59 3 62 95.16%
9 31 10 41 75.61%

10 145 12 157 92.36%
11 27 3 30 90.00%
12 87 15 102 85.29%
13 12 5 17 70.59%
14 25 1 26 96.15%
15 27 4 31 87.10%
16 19 0 19 100.00%
17 17 5 22 77.27%
18 68 9 77 88.31%
19 28 5 33 84.85%
20 69 3 72 95.83%
21 43 7 50 86.00%
22 47 12 59 79.66%
23 13 1 14 92.86%
24 25 5 30 83.33%
25 23 4 27 85.19%

ID #Correct #Incorrect #All Accuracy

26 71 10 81 87.65%
27 38 4 42 90.48%
28 29 3 32 90.63%
29 9 2 11 81.82%
30 24 3 27 88.89%
31 14 0 14 100.00%
32 78 4 82 95.12%
33 34 10 44 77.27%
34 168 10 178 94.38%
35 36 5 41 87.80%
36 141 18 159 88.68%
37 30 8 38 78.95%
38 29 10 39 74.36%
39 11 3 14 78.57%
40 103 16 119 86.55%
41 5 0 5 100.00%
42 71 15 86 82.56%
43 19 2 21 90.48%
44 27 9 36 75.00%
45 11 1 12 91.67%
46 31 3 34 91.18%
47 26 7 33 78.79%
48 40 8 48 83.33%
49 15 2 17 88.24%
50 27 6 33 81.82%

All 2237 313 2550 87.73%

Finally, we conducted random inspections on a total of 2550 objects across 50 randomly selected
scenes to evaluate the accuracy of the annotations. Figure 10 11 show the inspection results for some
of the annotated objects, while Table 5 summarizes the distribution of label accuracy across these 50
scenes. The accuracy of automatic captioning can reach more than 85%

A.3 Details of Physics-Aware Scene Composition

Oriented Bounding Box Optimization and Fine-Tuning. We optimize the oriented bounding
box (OBB) position of large furniture, focusing on addressing issues such as furniture penetration
or unreasonable interaction between furniture and the ground. To achieve this, we designed a loss
function consisting of three terms:LIoU , Lground, and Lreg , which are used to quantitatively evaluate
the furniture layout. We represent the N bounding boxes of the large furniture in the scene as a list
{bi}Ni=1. The center translation of each bounding box bi is denoted by ti, and we use hground to
denote the ground height. The overall loss function is as follows:

L = λIoULIoU + λgroundLground + λregLreg.

Specifically, LIoU prevents collisions by penalizing overlaps between objects. For any pair of large
furniture items whose OBBs intersect, we compute the IoU of their Axis-Aligned Bounding Boxes
(AABBs) as the loss value.

LIoU =
∑

1≤j<k≤N

[
IoU(b

(t)
j , b

(t)
k)

]2
25

The Lground term ensures that the bottom surfaces of furniture items—such as sofas, chairs, and
tables—stably align with the ground plane.

Lground =

N∑
j=1

(h
(t)
j − hground)

2

Finally, Lreg restricts how much the furniture can deviate from its original annotated position during
optimization, thereby preserving the spatial layout of the original scene while correcting physical
inconsistencies. The overall optimization process is shown in algorithm 1.

Lreg =

N∑
j=1

∥∥t(t)j − t
(0)
j

∥∥2
2

Algorithm 1 OBB Optimization Algorithm

Input: Initial boxes {b(0)i }Ni=1, Max iterations T , Ground height hground

Output: Final boxes {b(T)
i }Ni=1

1: initialize positions {ti}Ni=1 ← {t
(0)
i }Ni=1

2: for t = 1 to T do
3: Li ← ComputeLoss

(
{b(t)i }Ni=1, {b

(0)
i }Ni=1, hground

)
4: backpropagate and update {ti}Ni=1
5: end for
6: return {b(T)

i }Ni=0

Simulator Processing. After the bounding box optimization, the layout and physical plausibility of
large furniture in the scene have been improved. However, small objects still exhibit artifacts such as
floating or interpenetration. Moreover, due to the complex shapes of these small objects and the loose
fit between the objects and their bounding boxes, further optimization using bounding box-based
methods proves ineffective in resolving these issues. To address this, we employ physics simulation
to refine the placement of small objects and eliminate such artifacts.

Prior to the physics simulation, we decompose each object in the asset library into convex collision
primitives using the COACD [33] method. Notably, to enhance the realism of small object placements
within scenes—particularly their ability to reside inside furniture with cavities (e.g., drawers or
shelves)—we first perform a simple segmentation on cavity-containing furniture, breaking them into
smaller components that expose the internal cavities. Each of these components is then individually
processed with COACD decomposition. Finally, all resulting collision primitives are merged into a
unified collision representation for the original object. This approach ensures that internal cavities
are accurately captured in the convex collision geometry.

For the physics simulation, we utilize SAPIEN [35]. During the simulation, gravity and repulsive
forces are enabled, allowing previously floating objects to settle naturally and interpenetrating objects
to separate, ultimately yielding a physically plausible and realistic scene configuration.

B Experiments

This section supplements the details of two experiments mentioned in the main paper, including
layout generation and navigation tasks.

B.1 Interior Scene Generation

Data and Implementation Details. We conduct scene interior generation experiments using three
commonly used regions from the InternScenes dataset: resting, living, and dining regions. Two
versions of the dataset are constructed: a full version, which retains all objects present in the
original InternScenes scenes, and a simplified version, which only preserves 45 large furniture object
categories. The list of these categories is shown as follows:

26

selected categories in simplified version dataset
["air conditioner", "bathtub", "beanbag", "bed", "bench",
"bicycle", "blinds", "cabinet", "car", "chair",
"chandelier", "clothes dryer", "coffee maker", "column",
"commode", "couch", "counter", "countertop", "crib",
"desk", "dishwasher", "door", "drawer", "dresser",
"fireplace", "jalousie", "microwave", "oven", "pillar",
"pool table", "radiator", "range hood", "refrigerator",
"screen", "shelf", "stand", "stool", "stove", "table",
"toilet", "tv", "vanity", "wardrobe", "washing machine",
"window "]

We perform unconditional scene generation experiments using ATISS [23], DiffuScene [29], and
PhyScene [36]. The implementations of these methods are adapted from their official GitHub
repositories to fit our dataset. For the two diffusion-based methods, DiffuScene and PyScene, we
set the maximum number of objects per scene to 50. To ensure fair comparison across methods, all
baselines adopt the same network architecture, training hyperparameters, and experimental setup. In
addition, the object retrieval process for constructing 3D scenes and the rendering pipeline used for
metric computation are kept identical.

Qualitative Results and Analysis. We present the results of unconditional scene generation using
the three baseline methods on both the simplified version and full version datasets in Figure12 and
Figure13, respectively. By comparing the generation results, we observe that baseline models trained
on the full version of the dataset tend to produce erroneous layouts for small objects, such as floating
or interpenetrating artifacts. These models struggle to accurately control the position and orientation
of small objects to ensure physical plausibility. In addition, there are qualitative differences in the
placement of large furniture between the two versions of InternScenes. Scenes generated using the
simplified version exhibit more reasonable layouts for large objects compared to those generated from
the full version. This may be caused by the limited contextual modeling capacity of existing baseline
models when handling scenes with a large number of objects, making it difficult to effectively capture
the layout distribution in the InternScenes dataset. A new challenge of scene generation is to enable
models to better learn the layout distribution of complex scenes containing numerous objects and to
generate scenes that are more physically realistic.

B.2 Navigation

Examples of the evaluation scenes for navigation are visualized in Figure 14. We bind the collider
for all the meshes in the scenes and download the robot asset of ClearPath Dingo from the official
Isaacsim assets as the navigation robot. To decide the starting points and target points for each
evaluation episode, we extract the floor as the navigable areas and calculate the ESDF map. The
navigable areas with ESDF value greater than 0.5m are filtered as candidates. Finally, we randomly
sample pairs of points with distances in the range (3m, 10m) as the starting and destination for
navigation. For a physical-realistic evaluation benchmark, we control two wheel speeds for Dingo
in the IsaacSim, instead of teleporting the agent to the predicted pose of the navigation methods.
To decide the wheel speed, we first convert the baseline navigation methods’ prediction results into
linear and angular speed, then calculate the desired wheel speed with a differential model. For
the DD-PPO, as this method is trained with discrete action space and predicts among four actions
{MoveForward, TurnLeft, TurnRight, Stop}, we simply map each discrete action into a pre-
defined speed set {(u = 0.5, w = 0.0), (u = 0.0, w = 1.0), (u = 0.0, w = −1.0), (u = 0.0, v =
0.0)}, where u represents the linear speed and v represents the angular speed. For the NavDP, as this
method predicts a continuous trajectory, we select the fourth waypoint in the trajectory and convert
the waypoint coordinates into linear and angular speed by an open-loop controller. The linear speed
is calculated with a coefficient Ku multiplying the L2-norm of the waypoint coordinates, and the
angular speed is calculated with a coefficient Kw multiplying the relative yaw angle between the
fourth waypoint and the current pose.

27

A
TI

SS
D

if
fu

sc
en

e
P

h
ys

ce
n

e

Living
Region

A
TI

SS
D

if
fu

sc
en

e
P

h
ys

ce
n

e

Dining
Region

A
TI

SS
D

if
fu

sc
en

e
P

h
ys

ce
n

e

Resting
Region

Figure 12: Examples of regions generated by baseline models trained on a simplified version of the
InternScenes dataset

28

A
TI

SS
D

if
fu

sc
en

e
P

h
ys

ce
n

e
A

TI
SS

D
if

fu
sc

en
e

P
h

ys
ce

n
e

A
TI

SS
D

if
fu

sc
en

e
P

h
ys

ce
n

e

Living
Region

Dining
Region

Resting
Region

Figure 13: Examples of regions generated by baseline models trained on the full version of the
InternScenes dataset

29

OmniScenes Navigation Scenes

Figure 14: Scenes for the navigation evaluation.

C Dataset Statistics

Scene Showcase. We provide some scene examples of InternScenes for visualization. Figure 15
shows some examples of InternScenes-Real2Sim, where each scene originates from a scanned
real-world room and is then transformed via a real-to-sim transformation. In Figure 16, we show
some examples of InternScenes-Gen, which are constructed using procedural generation techniques.
Moreover, Figure 17 showcases curated scenes created by professional designers from InternScenes-
Synthetic.

Layout and Objects Statistics. Our dataset comprises three subsets, totaling 39870 scenes and 48381
regions across 15 categories. Specifically, the InternScenes-Real2Sim subset contains 9833 regions,
InternScenes-Gen contains 11454 regions, and InternScenes-Synthetic contains 27094 regions. In
total, 1.96M objects from 288 categories are placed across all regions, sampled from our asset library
of 80M CAD models. These objects are sampled from our asset library containing 80 million CAD
models. On average, each region contains 41.5 objects. We also conduct a statistical study of the
volume distribution of all object bounding boxes in the scenes (Figure 18(a)), and further analyzed
the volume distributions of five representative object categories. These categories were selected to
represent objects of varying scales, ranging from large furniture to small items: chair, bed, couch,
bottle, and book (Figure 18(b)).

Data Format. The dataset is structured into two primary components: region-level layout information
and a model asset library. The layout information is characterized by the semantic attributes of each
region and the objects it contains. For each region, detailed object annotations are provided, including
the corresponding model name from the asset library, object category, spatial center coordinates,
bounding box dimensions, and associated ZXY Euler angles. The model asset library contains mesh
representations of all objects, enabling complete 3D scene reconstruction when combined with the
layout information.

30

Figure 15: Examples from InternScenes-Real2Sim. Each scene shows its BEV map as well as one
isometric view.

Figure 16: Examples from InternScenes-Gen. The BEV map and one isometric view are shown.

Region and Object Joint Statistics. Figure 19 illustrates the distribution of object density, measured
as the number of objects per square meter (m2), across various regions. The average object density
computed across all scenes is 1.296 objects per square meter.

In Figure 20, we show the distribution of 100 object categories across 15 regions, where the depth of
the rectangle’s color and its size are positively correlated with the quantity of that object category
within the corresponding region. The darker and larger the rectangle, the higher the frequency of that
object category in the area.

31

Figure 17: Examples from InternScenes-Synthetic. The BEV map and one isometric view are shown.

Figure 18: Object bounding boxes volume statistics

Figure 19: Distribution of object density (number of objects per m2) across different regions.

32

Figure 20: Distribution of 100 object categories conditioned on 15 different types

Table 6: FPS results (min–max / mean) under different levels of parallel simulation.

Scene Type Parallel=1 Parallel=20 Parallel=40
OmniScenes-Real2Sim 242.86-250.48 / 246.95 173.39-177.83 / 175.34 127.77-136.44 / 131.86
OmniScenes-Gen 242.29-275.43 / 263.95 225.19-244.65 / 238.22 141.28-212.31 / 200.07
OmniScenes-Synthetic 172.06-176.83 / 175.04 84.41-88.29 / 86.57 50.74-52.06 / 51.61

Table 7: CPU usage (cores % / memory in GB) under different levels of parallel simulation.

Scene Type Parallel=1 Parallel=20 Parallel=40
OmniScenes-Real2Sim 4.588% / 5.602 GB 9.924% / 10.649 GB 12.051% / 19.606 GB
OmniScenes-Gen 16.129% / 4.938 GB 14.480% / 7.927 GB 21.320% / 12.629 GB
OmniScenes-Synthetic 73.623% / 13.879 GB 79.718% / 21.923 GB 73.400% / 32.388 GB

Table 8: GPU memory usage (in GB) under different levels of parallel simulation.

Scene Type Parallel=1 Parallel=20 Parallel=40
OmniScenes-Real2Sim 2.528 GB 5.205 GB 5.385 GB
OmniScenes-Gen 5.399 GB 5.476 GB 5.679 GB
OmniScenes-Synthetic 7.542 GB 7.785 GB 8.168 GB

33

D System Performance and Resource Requirements

Detailed Performance Metrics. We perform a comprehensive evaluation of the resource overhead
associated with rendering our scenes in the simulator. Specifically, we report the following metrics
after rendering scenes from three subsets of our dataset in Isaac Sim: GPU memory usage, CPU
usage and memory usage (%), and rendering throughput (FPS) All experiments are conducted on a
high-performance node equipped with 128 vCPUs, 1024 GB DDR5 RAM, and 8× NVIDIA RTX
4090 (48 GB) GPUs. Isaac Sim is launched in headless mode using 1 GPU, 16 CPU cores, and 128
GB RAM. We adopt the Stage Light environment for for all scenes. After loading a scene, we run the
simulator for 2000 steps, discarded the first 200 steps as warm-up, and computed FPS and memory
footprints on the remaining steps.

The detailed results are summarized in Table 6, 7, 8. These metrics provide a clear view of the
computational cost and rendering efficiency of our dataset under realistic simulation conditions.

Parallel Simulation Support. To evaluate the dataset’s support for parallel simulation, we conduct
experiments under the same hardware and runtime configuration described before. Specifically, we
select scenes from each of the three data sources in our dataset.

We then incrementally load multiple scenes into a single Isaac Sim World in headless mode, and
monitored the system performance as the number of parallel environments increased. The quantitative
results are reported in Table 6, 7, 8.

E Discussion on Procedural Generation with Infinigen Indoor

To enrich the diversity of generated assets and layouts in our dataset, we leverage Infinigen In-
doors [24], a procedural generation framework designed to mitigate risks of introducing bias in spatial
configurations and object co-occurrence patterns through fully randomized asset generation and a
constraint-based layout optimization that utilizes simulated annealing, thereby minimizing systematic
bias.

For the assets in the omniscenes-gen of our dataset, Infinigen Indoors generates objects with extensive
randomization. For example, the furniture category alone includes 17 generators with 216 controllable
parameters. This high degree of parameterization ensures significant diversity in the generated assets,
which in turn avoids the explicit bias introduced by reusing a static set of models.

Regarding spatial configurations, Infinigen Indoors employs a Simulated Annealing solver to search
a large state space for generating the scenes, which prevents the inclusion of templated or repetitive
layouts in our data. According to the Infinigen Indoors [24], the Simulated Annealing solver uses the
following pipeline to ensure the diversity and randomness of the generated scenes:

• At each iteration, given the current scene state s, the solver randomly chooses a move to
apply to the scene (e.g., adding or rotating an object), generating a proposed state s′.

• Both the original state s and the proposed state s′ are evaluated on the constraint graph,
yielding corresponding loss terms l(s) and l(s′). The probability of accepting the new state
is given by:

p(s′|s) = min

[
exp

(
l(s)− l(s′)

τ

)
, 1

]
where τ is the current temperature. This indicates that if the new scene state is an improve-
ment, it is always accepted. However, if the new layout is not an improvement, the solver
may still accept it with a certain probability.

• As the optimization progresses, the temperature parameter τ cools from 0.25 to 0.001..
This means that in the initial phase of optimization, the solver has a higher probability of
accepting a state with a higher loss, allowing it to escape local optima and perform a broader
exploration of the solution space. In the final stages, the solver almost exclusively accepts
better states, allowing the scene to converge to a high-quality arrangement.

This optimization mechanism employed by Infinigen Indoors ensures that our scenes have diverse
and high-quality spatial configurations, thereby suppressing the generation of bias.

34

F Support for Articulated Objects

Articulated Objects Source. We use URDF assets from the PartNet-Mobility dataset, a peer-
reviewed and widely used authoritative dataset for robot manipulation research, where the quality
and annotation accuracy of its URDF files have been validated by the community.

Integration Pipeline. A programmatic pipeline assembles these assets into interactive scenes within
Isaac Sim, ensuring that the kinematic structure defined in the URDF files is faithfully preserved as
articulations in the final USD scene. The pseudocode for assembling an interactive scene in Isaac
Sim is as follows:

Pseudocode for Assembling an Interactive Scene

Input: layout_file (our provided JSON), asset_path (path to
assets)

def build_interactive_scene(layout_file , asset_path):
1. Initialize a new USD stage in Isaac Sim
stage = IsaacSim.create_new_stage ()
layout_data = parse_json(layout_file)

2. Iterate through objects defined in our layout file
for obj_info in layout_data["objects"]:

prim_path = f"/World/{ obj_info.name}"
full_asset_path = asset_path + obj_info.asset_file

3. Conditionally import assets based on type
if obj_info.type == "glb": # For static objects

stage.add_reference_to_prim(prim_path ,
full_asset_path)

elif obj_info.type == "urdf": # For articulated objects
Use Isaac Sim’s standard URDF importer
This automatically creates a physics -enabled

articulation
IsaacSim.URDF_Importer.import(

urdf_path=full_asset_path ,
prim_path=prim_path ,
create_articulation=True # This is the key for

interactivity
)

4. Set the object ’s pose in the world
prim = stage.get_prim(prim_path)
prim.set_world_transform(obj_info.position , obj_info.

orientation)

return stage

This pipeline guarantees that once an object is imported, its joints (e.g., a cabinet’s hinge) are not just
visual elements but are fully interactive, physics-driven articulations ready for manipulation tasks.
In addition, every step of this process relies on Isaac Sim’s core, publicly documented APIs, such
as the omni.importer.urdf tool. This proves that our dataset is not only theoretically usable but
also practically direct and convenient to use, as it seamlessly integrates into the standard Isaac Sim
workflow.

35

	Introduction
	Related Work
	Dataset
	Multi-Source Data Processing
	Physics-Aware Scene Composition
	Dataset Statistics

	Experiment
	Interior Scene Generation
	Navigation

	Limitations and Conclusion
	Acknowledgement
	Pipeline Details
	Retrieval Details of InternScenes-Real2Sim
	Annotation Details of InternScenes-Synthetic
	Details of Physics-Aware Scene Composition

	Experiments
	Interior Scene Generation
	Navigation

	Dataset Statistics
	System Performance and Resource Requirements
	Discussion on Procedural Generation with Infinigen Indoor
	Support for Articulated Objects

