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Abstract

Convolutional Neural Networks (CNNs) have been established as the dominant
approach to computer vision tasks. As a result, efficient inference of CNNs has
become a major concern to enable the processing of image data close to where it
is generated by camera sensors, most commonly microcontroller units (MCUs).
However, major obstacles to deploying CNNs on MCUs are the strict memory
and bandwidth constraints that make processing high-resolution images on many
MCUs infeasible. In this work, we propose a method to fuse convolutional layers
in quantized CNNs, which serves as an additional optimization of the memory
requirements of CNNs during inference. By fusing memory-intensive convolutions
in the early inverted residual blocks of MobileNetv2-like CNNs, we show that
memory requirements during inference can be reduced by up to 54% at the cost of
only about a 14% increase in latency and no change in accuracy. As an example, we
show that this reduction enables the deployment of image processing pipelines on a
Cortex-M7 MCU that supports image resolutions up to 320×320 pixels compared
to the 128×128 pixels commonly used in related work.

1 Introduction

Layer fusion, as a means of simplifying the computational graph of convolutional neural networks
(CNNs), is widely used to support the efficient deployment of CNNs on resource-constrained
microcontroller units (MCUs). In particular, for large input applications such as vision tasks, layer
fusion is in many cases even a mandatory optimization required to meet memory and latency
constraints on the target device. In this work, we discuss the fusion of convolutional layers in inverted
residual blocks of fully quantized MobileNetV2-like CNNs [14] as a means to overcome the RAM
bottleneck found in early CNN layers. We show that using this optimization, the deployment of vision
tasks with input resolutions up to 320×320 pixels becomes feasible within the memory constraints of
common Cortex-M7 MCUs. Furthermore, we demonstrate the applicability of our approach to both
generic MobileNetV2-like CNNs and MCUNet [8], a CNN specialized for MCU deployment. Finally,
we present latency results measured on an IMXRT1862 and describe an algorithm that automatically
finds the optimal number of inverted residual blocks to fuse to maximize memory savings while
minimizing computational overhead for a CNN to demonstrate the effectiveness of our approach.

Our contribution is threefold. First, we propose a layer fusion method for inverted residual blocks
for use on MCUs, which can yield memory savings of up to 54% for image classification tasks.
Second, we evaluate our approach on two CNN architectures, a generic MobileNetV2-like CNN and
MCUNet [8], and show that it enables the deployment of vision-based tasks with input resolutions of
up to 320×320 pixels on Cortex-M7 MCUs that were not feasible in terms of memory requirements
in the current state-of-the-art. Third, we analyze and discuss how layer fusion affects the underlying
memory allocation scheme.
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The remainder of this paper is structured as follows. First, in Section 2, we give an overview of
related work. Second, in Sections 3 and 4, we describe how to fuse the convolutions in inverted
residual blocks and the impact it has on memory allocation. Third, in Sections 5 and 6, we present
and discuss experimental results.

2 Related Work

Common layer fusion techniques implemented in many deep learning pipelines include folding
Batchnorm layers into preceding convolutional or linear layers, and the fusion of ReLU activation
functions with linear quantization layers required for fully quantized CNN inference [10]. The
advantage of both techniques is that they simplify the computational complexity of CNNs. For
example, Batchnorm folding explicitly computes the (relatively) expensive Batchnorm layer during
deployment [10], thereby reducing the computational effort required to perform inference. The two
previously discussed layer fusion methods have in common that while they reduce the computational
complexity of a DNN, they have only little impact on the RAM usage since they do not alleviate the
problem of big intermediate feature maps.

To reduce the RAM overhead of DNN inference with layer fusion, Lin et al. [8] propose in-place
depth-wise convolutions as part of their MCUNet ecosystem. The authors observed that since depth-
wise convolutions do not perform filtering across channels, once a channel is computed, its input
activation can be used to store the output activation of another channel, allowing for an in-place
computation of the two convolution which as a results reduces the RAM overhead.

In contrast, we propose a layer fusion approach based on the observation that not only depthwise-
separable convolutions, but any number of convolutions of any type can be combined and executed
together as a single operation by fusing and then rearranging their loop nests. This significantly
reduces the total memory required for intermediate feature maps by allowing tiling across spatial
dimensions. We use this method to fuse a complete inverted residual block consisting of three convo-
lutions. Compared to [8], which only combines the two convolutional layers of a depthwise-separable
convolution, thereby compressing only one intermediate feature map, our approach compresses two
feature maps instead. As a result, our approach can achieve a significantly higher compression rate,
see Section 5.2.

Except for the fusion of dethwise-separable convolutions [8], the use of layer fusion and tiling
for convolutional layers has been discussed mainly as a means to speed up inference on dedicated
hardware and dataflow accelerators [6, 1, 12, 9, 3]. Although this reduction in inference time cannot
be achieved on MCUs using layer fusion and tiling, we show in this work that the memory savings
alone resulting from the approach are still highly interesting because memory is the main bottleneck
for DNN inference on MCUs. As a result, using the approach enables processing of high-resolution
input CNNs that previously could not be deployed on MCUs due to memory limitations.

3 Fused-Layer Inverted Residual Blocks

We propose the fusion of the convolutions in inverted residual blocks [14]. An inverted residual block
consists of three convolutional layers: first, a 1×1 convolution to expand the number of channels;
second, a 3×3 depth-wise convolution; and third, a 1×1 convolution to reduce the number of channels
so that input and output can be (optionally) added. Compared to regular residual blocks as proposed
by the ResNet architecture [5], which have a “wide-narrow-wide” structure with their number of
channels, inverted residual blocks follow a “narrow-wide-narrow” approach. This makes them an
optimal candidate for layer fusion because combining the three successive convolutions into a single
operation can reduce the “wide” and therefore very costly intermediate feature maps. This leaves the
inverted residual block with only the “narrow” less costly input and output feature maps.

We apply our proposed layer fusion approach to fully quantized CNNs [10]. As part of the quantization
process, we fold Batchnorm layers as well as ReLU layers into their preceding convolutions. This
leaves three fully quantized convolutions for each inverted residual block, which we then fuse in
a single operation. To fuse the three convolutions, we use a tiling approach over the two spatial
dimensions of the intermediate feature maps as described by [1] for FPGAs. The idea is that instead
of computing entire feature maps layer by layer, the output feature map is instead divided into smaller
tiles that can then be computed separately. This results in a vertical “tile-by-tile” computation method
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Figure 1: Schematic of an inverted residual block fused using our tiling approach. Each tile in the
output feature map can be computed separately, allowing for a significant reduction of the intermediate
feature maps to only the areas within the black boxes.

instead of the commonly used horizontal, “layer-by-layer” approach, see Fig. 1. Therefore, only
portions of the intermediate outputs of the convolutional layers in the inverted residual blocks need
to be computed and held in memory at the same time. Due to this fact and because each tile can be
computed separately and sequentially, the same memory for intermediate results can be reused for all
tiles, thereby significantly reducing the overall RAM requirements of the inverted residual block.

The latency of a convolutional layer at index i ∈ {1,2,3} of an inverted residual block is assumed
to be proportional to the number of MAC operations to be executed and can be computed by
Li

c = H i
o ·W i

o ·F i ·Ki
h ·Ki

w ·Ci, where H i
o and W i

o are the height and width of the output feature map, F i

and Ci are the number of filters and channels of the convolution, and Ki
h and Ki

w are the height and
width of the kernel. Correspondingly, the latency of a depthwise convolutional layer at index i can
be described as Li

dc = H i
o ·W i

o ·F i ·Ki
h ·Ki

w. For an unfused inverted residual block, this results in a
latency as shown in Eq. (1), where each convolution is computed in a “layer-by-layer” fashion.

Lunfused = L1
c +L2

dc +L3
c = H1

o ·W 1
o ·F1 ·K1

h ·K1
w ·C1

+H2
o ·W 2

o ·F2 ·K2
h ·K2

w +H3
o ·W 3

o ·F3 ·K3
h ·K3

w ·C3 (1)

By fusing and then rearranging the two spatial dimensions of the three convolutions, the latency of
the fused inverted residual block can be formulated as shown in Eq. (2) where TH ,TW ∈ N are the
number of horizontal and vertical tiles.

Lfused =TH ·TW · (H1
to ·W 1

to ·F1 ·K1
h ·K1

w ·C1

+H2
to ·W 2

to ·F2 ·K2
h ·K2

w +H3
to ·W 3

to ·F3 ·K3
h ·K3

w ·C3)
(2)

For each tile, its width H i
to and height W i

to are calculated based on the strides si
h and si

w and the kernel
height Ki

h and width Ki
w of each layer i. We show this for H i

to in Eq. (3), where the equations for W i
to

can be calculated analogously.

H3
to = H3

o/TH

H2
to = (H3

to · s2
h)+(K2

h − s2
h)

H1
to = (H2

to · s1
h)+(K1

h − s1
h)

(3)

In Eq. (3), we make the simplified assumption that H3
o is divisible by TH without a remainder.

Of course, if this is not the case, a remainder H3
rto = H3

o −H3
to has to be considered additionally.

Furthermore, it can be seen that for both H2
to and H3

to, whenever si
h <Ki

h and si
h > 1, then TH ·H i

to >H i
o.

This is because such a convolutional layer requires the tiles to overlap at their boundaries in order to
be computed correctly, see Fig. 1 for reference. As a result, the latency Lfused may be higher than
Lunfused. The only feasible configuration of a convolutional layer where TH ·H i

to = H i
o, i.e., where

tiling comes at no additional cost in latency, is for si
h = 1 and Ki

h = 1, which is commonly referred to
as a 1×1 convolution. In inverted residual blocks, such 1×1 convolutions are used as the first and the
last convolution to inflate and then compress the intermediate feature maps across channels. However,
the convolutional layer in between the two 1× 1 convolutions must be a depthwise convolution
with K2

h > 1 to allow for dependencies in the spatial dimensions, thereby making the use of s2
h = 1

and K2
h = 1 infeasible. As a result, while our proposed approach is mathematically equivalent to

computing the inverted residual block “layer-by-layer”, its use comes at the cost of increased latency
due to the need to recompute intermediate results of the second depthwise convolution for multiple
tiles.
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(a) CIFAR10, 128×128 pixels
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(b) GTSRB, 256×256 pixels
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(c) Flowers, 320×320 pixels

Figure 2: The memory allocation schemes for the MobileNetV2-like CNN and the three tested vision
datasets. Each tensor is represented by a box, where the height of the box is the size of the tensor in
kB and the width of the box is the lifetime of the tensor. The green boxes show the allocation scheme
found when using layer fusion (tiling rate 4×4) compared to the light blue boxes showing the scheme
when not using layer fusion.

4 Memory Allocation Scheme

Like other inference engines for MCUs, such as tflite-micro [4] or TinyEngine [8], we use an offline
memory scheduling approach that simulates memory allocation for a complete inference ahead of
time. This results in each tensor being assigned a fixed size and offset in a memory array, often
also called a tensor arena, allowing for a malloc-free implementation on the MCU. Based on the
observations that (a) the same allocation scheme can be used for each inference and (b) intermediate
tensors during CNN inference have different lifetimes, usually shorter than the inference itself and
in many cases not overlapping, the required size σmax of the tensor arena can be minimized by
maximizing the number of tensors that can safely reuse memory since they do not overlap. In the
following, we analyze how our layer fusion approach helps the memory scheduler to find a better
solution by reducing the size σmax of the tensor arena for all three vision tasks evaluated.

We visualize our memory allocation scheme in Fig. 2 for a MobileNetV2-like CNN and for three
vision tasks with different input image resolutions which we also consider in our evaluation, see
Section 5. Each box in the three plots represents a tensor. The green boxes show the memory
allocation scheme when fusing inverted residual blocks, while the blue boxes show the allocation
scheme for the same CNN but without layer fusion. The y-axis of the plots denotes memory (RAM),
while the x-axis denotes allocation steps, i.e., the progression of "time" in the simulation. Thus, the
height of each box is the size of the corresponding tensor in kilobytes, while its width is the lifetime
of the tensor. The logical allocation step counter increases each time a layer (or operand) of the CNN
is executed. This means that in each allocation step, either new tensors can be allocated or existing
tensors that are no longer needed can be freed.

Looking at the unoptimized blue allocation schemes in Fig. 2, it can be seen that there is a significant
imbalance in memory distribution between the first and last layers of the CNNs, since especially
the early layers produce feature maps of significant size compared to later layers. Therefore, the
main memory bottleneck of most CNNs is found in the first layers. Since layer fusion increases
latency, it is sufficient to apply it only to the early, memory-intensive layers, while leaving later layers
unchanged. This minimizes the latency increase while maximizing RAM savings.

The process of finding the optimal number of inverted residual blocks in a CNN to fuse, given a
number of tiles TH ,TW ∈ N, can be automated. Since layer fusion increases latency, the goal is to
find a tuple L of fused inverted residual blocks that minimizes the RAM requirement σmax from the
n-tuple (r0,r1, . . . ,rn−1) of all fusible inverted residual blocks. We describe a simple algorithm that
can be used offline as part of the memory allocation, see Algorithm 1. The algorithm first assumes
that L = (r0,r1, . . . ,rn−1) to query σbest as the minimal RAM requirements that can be achieved by
layer fusion. Then, each element r of the reversed tuple (rn−1, . . . ,r1,r0) is iteratively removed from
L and the resulting RAM requirements σmax are determined. If σmax ≤ σbest , then r can be safely
removed from L without increasing the RAM requirements.

Comparing the optimized green allocation schemes with the unoptimized blue ones for the
MobileNetV2-like CNNs in Fig. 2, it can be seen that for all three examples, the optimization
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Algorithm 1: Pseudocode example for finding the optimal tuple L of inverted residual blocks
to fuse from the n-tuple (r0,r1, . . . ,rn−1) of all possible fusible inverted residual blocks of a
given CNN and a given tiling width and height TH ,TW ∈ N.

1 L ← (r0,r1, . . . ,rn−1);
2 σbest← DETERMINEMEMORYSCHEDULE(L ,TH ,TW );
3 foreach r ∈ (rn−1, . . . ,r1,r0) do
4 σmax← DETERMINEMEMORYSCHEDULE(L .REMOVE(r),TH ,TW );
5 if σmax ≤ σbest then
6 L ←L .REMOVE(r);

problem of minimizing the size σmax of the tensor arena has become easier since the layer fusion
resulted in initial tensors being either removed or replaced by smaller ones. Therefore, the memory
scheduler could find a better solution, i.e., a smaller σmax.

5 Evaluation

We test the effectiveness of our fused inverted residual blocks on three vision tasks, i.e., CIFAR10 [7],
GTSRB [15], and flowers [11], and with three image resolutions, 128×128, 256×256, and 320×320
pixels, see Fig. 3. We trained all three datasets with (a) a generic MobileNetV2-like CNN architecture,
consisting of an initial convolutional layer with Batchnorm and ReLU, followed by seven inverted
residual blocks and a linear classification head, resulting in about 340k trainable parameters, and
(b) MCUNet [8], a CNN architecture commonly used for MCU deployment. Using these two
architectures, we achieved a classification accuracy of about 88% on the CIFAR10 task, about 98%
on the GTSRB task, and about 84% on the flowers task after 200 epochs of training using baseline
models pre-trained on ImageNet [13]. For all three tasks, these results either match or improve the
accuracies reported in the respective papers or in benchmarks such as TinyML perf [2]. Furthermore,
in our experiments, we applied layer fusion only to those inverted residual blocks needed to overcome
the RAM bottleneck which we determined using Algorithm 1. For the MobileNetV2-like CNNs, we
fused the first two blocks, and for MCUNet, the first three blocks, leaving all other blocks unchanged.

5.1 Evaluation on Vision Tasks

We evaluate the memory utilization for different tiling rates for the generic MobileNetV2-like
architecture, see the left plot in Fig. 3a. A tiling rate of 1×1 corresponds to unfused inverted residual
blocks and thus denotes the baseline of no layer fusion. It can be seen that for all three image
resolutions, even a small tiling rate of 2×2 or 4×4 significantly reduces the memory consumption of
the CNN. A small tiling rate, i.e., large tiles, is beneficial because it minimizes the area of tile overlap
and thus reduces the increase in latency, since fewer intermediate results need to be recomputed.

Fig. 3 (right) shows the impact of our layer-fusion approach on latency based on the applied tiling
rate on the IMXRT1862 Cortex-M7 MCU. Our results show that the rate at which latency increases
for different tiling rates is relatively slow. Combined with the observation that fusing only the initial
layers with a small tiling rate is usually sufficient, our layer fusion is also feasible from a throughput
perspective. For example, for the CIFAR10 task, selecting a tiling rate of 8×8 can reduce RAM
requirements by 50% at the cost of a 14.7% increase in latency compared to not using layer fusion.
More specifically, for CIFAR10 this means a reduction in processed frames per second (FPS) from
5.9 to 5.1, i.e., a reduction of less than 1 FPS, which is barely noticeable for most vision applications.

5.2 Benchmarking using MCUNet

To verify the flexibility of our layer-fusing approach on other MobileNetV2-based CNN architectures,
we tested our method on MCUNet [8] using the version pre-trained on ImageNet [13] provided by the
authors online, see Fig. 3b. To this end, we first fine-tuned the architecture for our three vision tasks,
before applying our proposed layer fusion technique during deployment. Similar to the experiments
discussed in the previous Section, in Fig. 3b, we provide memory results for increasing tiling in the
left plot and latency results in the right plot. For MCUNet, we fused the first three inverted residual
blocks, which allowed us to overcome the memory bottleneck in the initial layers for all three datasets.
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Figure 3: Memory consumption and latency measured on the IMXRT1862 for the flowers, gtsrb, and
CIFAR10 datasets and for different tiling rates for (a) a MobileNetV2-like CNN and (b) MCUNet. A
tiling rate of 1×1 is equivalent to no tiling at all and thus represents the baseline. The deviation in
latency we observed was always less than 1ms for all measurements. Missing latency results are due
to the CNN exceeding the 512 kB memory limit of the IMXRT1862, see the gray dashed lines.

As a result, like for the generic MobileNetV2-like architecture, our layer-fusing approach reduced
RAM requirements to about 50%. Comparing the RAM compression factor achieved by our approach
for MCUNet’s most commonly used input resolution of 128× 128 pixels, we achieved a 2.1×
reduction in memory requirements for the CIFAR10 task. This compression factor is significantly
higher than the 1.6× reduction reported in [8] for their in-place depth-wise convolution approach,
demonstrating (a) the greater flexibility of our approach to work for different CNN architectures
without having to modify them, and (b) the superior compression factor that can be achieved by
fusing inverted residual blocks compared to simply optimizing depth-wise separable convolutions.

6 Discussion

While layer fusion of convolutional layers can result in significant memory savings, as we have shown
in Section 5, the technique is limited because it requires explicit co-design between the architecture
of the CNN and the runtime used for CNN execution on the MCU. This is because each combination
of fused layers must be explicitly implemented by the runtime. Of course, depending on what layer
combinations the runtime supports, this can significantly reduce the design space from which a CNN
architecture can be constructed. For example, the layer fusion approach proposed by [8] is only
designed for their own CNN architecture MCUNet and works only within their ecosystem.

To at least partially circumvent this “co-design problem”, we proposed to fuse a well-defined block
from MobileNetV2 [14], the inverted residual block. Especially for CNNs targeting MCUs, this
architecture is most often chosen as a starting point to derive suitable architectures, and especially the
inverted residual block is popular due to its memory-efficient design. Therefore, as we showed in
our evaluation in Section 5, our approach does not only work for generic versions of MobilNetV2,
see Section 5.1, but can also be effectively applied to other CNN architectures used on the edge,
including one of the most popular architectures MCUNet, shown in Section 5.2.

7 Conclusion

In this work, we presented a layer-fusion approach for convolutional layers to reduce the memory
requirements of inverted residual blocks in MobileNetV2-like CNNs. As a result, we were able to
support high input image resolutions up to 320×320 RGB within the constraints of a Cortex-M7
MCU with no loss of accuracy and only at the cost of a slight increase in latency.

Acknowledgments. This work was supported by the Bavarian Ministry for Economic Affairs,
Infrastructure, Transport and Technology through the Center for Analytics-Data-Applications (ADA-
Center) within the framework of “BAYERN DIGITAL II”.
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