Under review as submission to TMLR

Continuous Tensor Relaxation for Finding Diverse Solutions
in Combinatorial Optimization Problems

Anonymous authors
Paper under double-blind review

Abstract

Finding the optimal solution is often the primary goal in combinatorial optimization (CO).
However, real-world applications frequently require diverse solutions rather than a single
optimum, particularly in two key scenarios. First, when directly handling constraints is
challenging, penalties are incorporated into the cost function, reformulating the problem as
an unconstrained CO problem. Tuning these penalties to obtain a desirable solution is often
time-consuming. Second, the optimal solution may lack practical relevance when the cost
function or constraints only approximate a more complex real-world problem. To address
these challenges, generating (i) penalty-diversified solutions by varying penalty intensities
and (ii) variation-diversified solutions with distinct structural characteristics provides valu-
able insights, enabling practitioners to post-select the most suitable solution for their specific
needs. However, efficiently discovering these diverse solutions is more challenging than find-
ing a single optimal one. This study introduces Continual Tensor Relaxation Annealing
(CTRA), a computationally efficient framework for unsupervised-learning (UL)-based CO
solvers that generates diverse solutions within a single training run. CTRA leverages rep-
resentation learning and parallelization to automatically discover shared representations,
substantially accelerating the search for these diverse solutions. Numerical experiments
demonstrate that CTRA outperforms existing UL-based solvers in generating these diverse
solutions while significantly reducing computational costs.

1 Introduction

Constrained combinatorial optimization (CO) problems aim to find an optimal solution within a feasible
space, a fundamental problem in various scientific and engineering applications (Papadimitriou & Steiglitz,
1998; [Korte et al. [2011). However, real-world applications often require diverse solutions rather than a single
optimal solution, particularly in two key situations.

The first situation involves integrating the constraints of a CO problem as penalty terms in the cost func-
tion, thereby converting it into an unconstrained CO problem. This approach is used when handling hard
constraints directly is difficult or when allowing some degree of constraint violation is acceptable to explore
solutions with a lower cost function. However, balancing the trade-off between the cost function and penalty
terms to obtain desirable solutions can be computationally expensive. To address this issue, an effective
strategy is to explore a set of solutions under varying penalty strengths, referred to as (i) penalty-diversified
solutions. Once penalty-diversified solutions are obtained, users can select the most suitable one during
post-processing based on specific application needs, as illustrated in Fig.

The second scenario arises when the formulated cost function or constraints merely approximate a complex
real-world problem. These simplified formulations often fail to capture all critical aspects and implicit condi-
tions practitioners consider important. In such cases, the optimal solution to the simplified formulation may
not always be practical or desirable. To address this, exploring a set of solutions with diverse characteris-
tics and reasonably good performance, referred to as (ii) variation-diversified solutions, is beneficial. These
diverse solutions enable users to post-select the most suitable one tailored to real-world complexities, as
shown in Fig.[I] Additionally, variation-diversified solutions have practical advantages across domains such

Under review as submission to TMLR

()
230

Post-Select *

e ™~ (i) Penalty-Diversified (ii) Variation-Diversified
CTRA UL-based Solver | Solutions Solutions
Common Representation \ 7=\
Automatic Parallelization 8 \\) ‘~
Output Part \"“*"w,,,,n’ ‘

_ -/ #violations

Figure 1: Overview of CTRA UL-based solver and post-processing for diverse solutions.

as game-level design, where generating levels with the same fundamental constraints but distinct character-
istics is particularly valuable (Zhang et al. 2020). However, efficiently discovering these diverse solutions is
more challenging than identifying one solution.

We propose Continual Tensor Relaxation Annealing (CTRA) method for unsupervised learning (UL)-
based CO solvers (Schuetz et al., |2022a; Karalias & Loukas, 2020), a computationally efficient framework
that finds diverse solutions in a single training run by effectively using GPUs. CTRA effectively learns
common representations across multiple problem instances, enabling efficient and automatic parallelization.
This approach enables the exploration of diverse solutions while maintaining comparable model parameters
and runtime to UL-based solvers that produce a single solution. Numerical experiments demonstrate the
effectiveness of several benchmark CO problems. Additionally, CTRA enhances search capabilities, yielding
higher-quality solutions than existing UL-based solvers and greedy algorithms.

Notation. We use the shorthand expression [N] = {1,2,...,N}, N € N. Iy € R¥*" represents an
identity matrix of size N x N. Here, 15 and Oy represent the all-ones vector and all-zeros vector in RY,
respectively. G(V, E) represents an undirected graph, where V is the set of nodes and E C V x V is the
set of edges. For a graph G(V,E), A denote the adjacency matrix with A;; = 0 if an edge (4,7) does not
exist and A;; > 0 if an edge connects i and j. For a sequence {ax, | ar, € R} |, the empirical variance is
defined as VAR[{ax }£< |] = ZkK:l(ak. - 25:1 ay/K)% /K, and the empirical standard deviation is given by
STD[{ax}t,] = (VAR[{ax}},])"/?. For binary vectors a,b € {0,1}", we define the Hamming distance as
dp(a,b) = Zf\;l 1[a; # b;] where 1[-] denotes the indicator function.

2 Background

2.1 Combinatorial Optimization (CO)

Constrained CO problems are defined as follows:

gi(x; C) <0, Viell]

min f(x;C), X(C):{we{o,l}N ’ hy(@:C) =0 VjelJ

’} , I, JeN,

zeX(C)]

where C' € C denotes instance parameters, such as a graph G = (V, E), where C denotes the set of all possible
instances. The binary vector & = (2;)1<i<ny € {0,1}" is the decision variable to be optimized, and X' (C)
denotes the feasible solution space. f: X x C — R denotes the cost function and, for all ¢ € [I] and j € [J],
gi : X xC —=Rand h; : X xC — R denote constraints. In practical scenarios, constrained CO problems are

Under review as submission to TMLR

often converted into unconstrained CO problems using the penalty method:

I+J
min I(z;C,A), Ux;C,N) 2 f(@;0)+ > Awi(; O).

N
xc{0,1} Py

where, for all i € [I + J], v; : {0,1}¥ x C — R is the penalty term that increases when constraints are
violated. For example, the penalty term is defined as follows:

Vi € [I], vi(z;C) = max (0, gi(x; C)), Vi€ [J], vj(a;C) = (h;(z;C))*

and A = (Ai)i<i<i+g € Rf“] represents the penalty parameters that balance satisfying the constraints
and optimizing the cost function. Tuning these penalty parameters A to obtain the desired solutions is a
challenging and time-consuming task. This process often requires solving the problem multiple times while
iteratively adjusting the penalty parameters A until an acceptable solution is obtained.

2.2 Continuous Relaxation and UL-based Solvers

The continuous relaxation strategy reformulate a CO problem by converting discrete variables into continuous

ones as follows:
I+J

i(p;C, A (O 2 f(it (p; C
pe%lﬁw(p), U(p;C,) +Z 0i(p

where p = (pi)1<i<n € [0,1]" denotes relaxed continuous variables, i.e., each binary variable x; € {0,1} is
relaxed to a continuous one p; € [0, 1], and f [0,1]Y x C — R is the relaxation of f, satisfying f(m, C) =
f(z;C) for any = € {0,1}". The relation between the constraint v; and its relaxation 9; is similar for
i€ I+ J), e, Vie[l+J], d(x;C) =v;(x;C) for any = € {0,1}V.

UL-based solvers employ this continuous relaxation strategy for training neural networks (NNs) (Wang et al.,
2022; [Schuetz et al., 2022a; [Karalias & Loukas, [2020; Ichikawal, [2024). The relaxed continuous variables are
parameterized by 6 as pg € [0,1]" and optimized by directly minimizing the following loss function:

I+J
1(6;C,\) 2 f(p +ZMZ po(C); C). (1)

After training, the relaxed solution pg is converted into discrete variables by rounding pg using a threshold
(Schuetz et al.,|2022al) or by applying a greedy method (Wang et al., [2022)). Two types of schemes have been
developed based on this framework.

(I) Learning Generalized Heuristics from History/Data. One approach, proposed by Karalias &
Loukas| (2020)), seeks to automatically learn commonly effective heuristics from historical dataset instances
D= {Cﬂ} _, and then apply these learned heuristics to a new instance C* via inference. Specifically, given
a set of training instances, independently and 1dentlcally distributed from a distribution P(C), the objective
is to minimize the average loss function ming Z =1 1(0;Cy, X). However, this method does not guarantee
high-quality performance for a test instance C*. Even if the training instances D are abundant and the test
instance C' is drawn from the same distribution P(C'), achieving a low average performance Ec.p(c) [1(6;0)]
does not necessarily guarantee a low [(6;C) for a specific C. To address this issue, [Wang & Li (2023)
introduced a meta-learning approach where NNs aim to provide good initialization for new instances.

(IT) Learning Effective Heuristics on Specific Single Instance. Another approach, referred to as
the physics-inspired graph neural networks (PI-GNN) solver (Schuetz et al., |2022ajb), automatically learns
instance-specific heuristics for a given single instance using the instance parameter C' by directly employing
Eq. . This approach has been applied to CO problems on graphs, i.e., C = G(V, E), using graph neural
networks (GNN) to model the relaxed variables pg(G). An L-layered GNN is trained to directly minimize
[(6; C, \) in Eq. , taking as input a graph G along with node embedding vectors and producing the relaxed

Under review as submission to TMLR

solution pg(G) € [0,1]V. A detailed description of GNNs can be found in Appendix Note that this
setting is applicable even when the training dataset D is difficult to obtain. However, learning to minimize
Eq. for a single instance can be time-consuming than the inference process. Nonetheless, for large-scale
problems, it has demonstrated superiority over other solvers in terms of both time and solution performance
(Schuetz et al.| [2022a;b} [Ichikawal [2024).

UL-based solvers face two practical issues: (I) “optimization issues”, where they tend to get stuck in local
optima, and (IT) “rounding issues”, which arise when an artificial post-learning rounding process is needed
to map solutions from the continuous space back to the original discrete space, undermining the robustness
of the results. To address the first issue, [Ichikawa| (2024); |Sun et al.| (2022)) proposed annealing schemes to
escape local optima by introducing the following entropy term s(8; C):

N
#(0;C, X, y) = (pe(C); C, A) +75(pa(C)), s(pe(C)) = _Z {(2pe.i(C) —1)* =1}, a € {2n|n e N}, (2)

where 7 € R denotes a penalty parameter. They anneal the penalty parameter from positive v > 0 to v = 0
to smooth the non-convexity of the objective function I (0; C, A\) similar to simulated annealing (Kirkpatrick
et al., [1983). To address the second issue, |Ichikawal (2024)) further annealed the entropy term to v < 0 until
the entropy term approaches zero, i.e., s(6,C) ~ 0, enforcing the relaxed variable to take on discrete values
and further smoothing the continuous loss landscape for original discrete solutions. This method is referred
to as Continuous Relaxation Annealing (CRA), and the solver that applies the CRA to the PI-GNN solver
is referred to as CRA-PI-GNN solver.

3 Continuous Tensor Relaxation Annealing for Diverse Solutions

We propose an extension of CRA, termed Continuous Tensor Relaxation (CTRA), which enables UL-
based solvers to efficiently handle multiple problem instances within a single training run. Beyond this core
advancement, we demonstrate how CTRA can be effectively tailored to discover both penalty-diversified
solutions and variation-diversified solutions.

3.1 Continuous Tensor Relaxation (CTRA)

Let us consider solving multiple instances Cs = {Cs | Cs € C}li<s<s with different penalty parameters
As = {As}1<s<s simultaneously. To handle these instances, we relax a binary vector € {0,1}" into an
augmented continual matrix P € [0, 1]V that is trained via minimizing the following loss function:

S
R(P;Cs,As,7) Z (P.s; Cs, As) +7S(P) AZZ 1— (2P, — 1)%),

i=1 s=1

where P € [0,1]Y denotes s-the column in P, i.e. P = (Pg)i<s<s € [0,1]V*5. Optimizing R drives each
column P, to minimize its respective objective function [(P.g; Cs, As). Additionally, we also generalize the
entropy term s(p) in Eq. into S(P) for this augmented tensor. Specifically, the following theorem holds.

Theorem 3.1. Under the assumption that for all s € [S], each objective function Z(RS;CS,AS) remains
bounded on [0,1]N, each column solutions P? such that P* € argminP]:?(P;Cs, Ag,7y) converges to the corre-
sponding discrete optimal * € argmin,l(x; Cs, As) asy — +00. Furthermore, asy — —o0, the loss function
R(P;CS,AS) becomes convex and admits a unique half-integral solution 1n15/2 = argminpf%(P;CS, Ag,7).

A detailed proof of Theorem is available in Appendix The relaxation approach naturally extends
to higher-order tensors, P € [0, 1]V*1% potentially enabling more powerful GPU-based parallelization.
A comprehensive exploration of such higher-dimensional implementations remains an exciting avenue for
future research. For UL-based solvers, we parameterize the soft tensor P as Py, leading to

S S
R(6:;Cs,As,7) Z (Po.:s(Cs): Cs, As) +7S(Po(Cs)), S(Po(Cs)) 2D (1 - (2Pps(Cs) — 1)*), (3)

i=1 s=1

Under review as submission to TMLR

where 7 is also annealed from a positive to a negative value as in CRA-PI-GNN solver in Section[2] Following
the UL-based solvers (Karalias & Loukas, [2020; [Schuetz et al., 2022b; Ichikawal 2024), we encode Py via a
GNN-based architecture. This study refer to the solver that applies CTRA to PI-GNN solver as CTRA-PI-
GNN solver.

In this study, we leverage a specialized GNN-based architecture, closely following the core designs of PI-
GNN (Schuetz et al.,2022al) and CRA-PI-GNN (Ichikawa, [2024)), to simultaneously address multiple problem
instances defined by Eq. . Unlike existing solvers that produce a single solution for each instance, CTRA-
PI-GNN solver only expands the node-embedding dimension of the final-layer from 1 to S when handling
S instances, as shown in Fig. [l Therefore, the number of parameters grows linearly solely in the output
layer. This design is both memory- and cost-efficient, as the overall network size remains constant, and the
training time remains comparable to solving a single instance. Moreover, to further reduce computation, we
can initially train on a smaller representative subset S’ C S of problems and then fine-tune the final-layer
embeddings as we move from S’ to S. This two-stage process enables efficient learning. Details of the GNN
architecture are provided in Appendix [C.1}

By maintaining the same network size except for the output layer, CTRA-PI-GNN solver essentially functions
like a bottleneck in an autoencoder as illustrated in Fig. [I] encouraging the GNN to learn compact and
shared representations across multiple problem instances. As a result, it naturally executes efficient parallel
processing. Indeed, numerical experiments show that learning shared representations in this way yields better
solutions compared to standard single-solution approaches such as PI-GNN and CTRA-PI-GNN solvers. In
Appendix [D5] we present additional results demonstrating that CTRA-PI-GNN solves multiple similar
problems more efficiently and effectively than CRA-PI-GNN.

3.2 CTRA for Finding Penalty-Diversified Solutions

To find penalty-diversified solutions, we aim to minimize the following loss function for a problem instance
C, which is a special case of Eq. :

S
R(6;C, As.y) = Y 1(Po,s(C); CA,) +7S(Po(C)). (4)
s=1

By solving this optimization problem, each column Py .s(Cs), for all s € [S], corresponds to the optimal
solution for the penalty parameter As. For penalty-diversified solutions, the variation in each s is primarily
restricted to the penalty coefficient, leading to a strong correlation among instances.

3.3 CTRA for Finding Variation-Diversified Solutions

Next, to explore wvariation-diversified solutions for a single instance C' with a penalty parameter A, we
introduce a diversity penalty into Eq. as follows:

S
R(0;C, 0,7, v) = > 1(Po:s(C); C, A) + 7S(Po(C)) + v (Po(C)),
s=1

N
U(Py(C)) ==Y STD[{Pois(C)}r<s<s], (5)

i=1

where U(Py(C)) serves as a constraint term that promotes diversity in each column Py .,(C), and v is the
parameter controlling the strength of this constraints. Setting v = 0 in Eq. is nearly equivalent to
solving the same CO problem with different initial conditions. The following proposition establishes that
the proposed diversity measure, WU(Py(C)), serves as a natural relaxation of the diversity metric commonly
employed in combinatorial optimization (CO) problems, known as the max-sum Hamming distance (Fomin
et al.l |2020; 2023; Baste et al., 2022; 2019).

Under review as submission to TMLR

Proposition 3.2. For a set of binary sequences {:B(S 21, Vs, x®) € {0, 1}V, the following equality holds:

SQZVAR [{ (&) }1<6<J ZdH x), (6)

where the right-hand side of Fq. @ represents the max-sum Hamming distance.

The detailed proof can be found in Appendix Note that Eq. @ not only provides a natural relaxation of
the max-sum Hamming distance but also reduces the computational complexity with respect to the number
of parallel runs. Specifically, while computing the max-sum Hamming distance incurs a complexity of O(S?),
the proposed diversity penalty achieves a more efficient O(S) complexity. Consequently, as S grows, this
formulation enables substantially faster gradient computations. This study employs the standard deviation
in Eq. [f] to ensure consistency in scaling and sensitivity with other terms.

4 Related work

A straightforward approach to obtaining penalty-diversified solutions is to solve multiple instances in paral-
lel using different penalty coefficients with conventional solvers, provided that multiple CPUs are available.
Alternatively, the penalty coefficient can be iteratively adjusted, solving the instance multiple times. How-
ever, both approaches face computational challenges, typically requiring significant computational resources
or a long runtime. CTRA-PI-GNN solver overcomes these bottlenecks by leveraging GPU parallelism to
efficiently generate penalty-diversified solutions within a runtime comparable to solving a single instance
with a penalty parameter.

In contrast, obtaining variation-diversified solutions is non-trivial, and extensive research has been conducted
on this topic. A common approach is to select solutions that maximize a diversity measure, typically based
on the Hamming distance (Fernau et al., 2019). Traditionally, in fields such as graph algorithms (Baste et al.,
2019; |2022; Hanaka et al., |2021)), constraint programming (Hebrard et al., 2005; |Petit & Trapp, [2015), and
mathematical programming (Danna et al.,[2007; |Danna & Woodruff, [2009; |Petit & Trappl|2019)), two primary
methods have been proposed (Hebrard et al., |2005)): (1) offline diversity problems, where the entire set of
solutions is computed at once, and (2) online diversity problems, where solutions are computed incrementally.
Offline methods often require enumerating many solutions, many of which are similar, leading to scalability
issues. Moreover, utilizing GPUs effectively in this context is not feasible. Due to their sequential nature,
online methods are time-consuming, inherently non-parallelizable, and prone to becoming trapped in local
optima. To overcome these limitations, we focus on methods that leverage GPUs to simultaneously compute
high-quality solutions while maximizing diversity.

5 Experiments

This section evaluate the effectiveness of CTRA-PI-GNN solver in discovering penalty-diversified and
variation-diversified solutions across three CO problems: the maximum independent set (MIS), maximum
cut (MaxCut), diverse bipartite matching (DBM) problems. Their objective functions are summarized in
Table [[] in Appendix For a detailed explanation, refer to Appendix

5.1 Settings

Baseline. Our baseline include results from executing a greedy algorithms, PI-GNN solver (Schuetz et al.|
2022al) and CRA-PI-GNN solver (Ichikawal [2024) multiple times. These solvers are executed multiple times
using different penalty parameters for penalty-diversified solutions and different random seeds for variation-
diversified solutions, allowing us to assess the search efficiency for both types of diversified solutions. For the
MIS problem, we employ a random greedy search implemented by NetworkX, and for the MaxCut problem,
we use a random greedy search implemented by Mehta| (2019). Although some online heuristics exist for
exploring variation-diversified solutions by generating solutions that are distant from those already obtained,
we do not include these methods as benchmarks due to their inefficient GPU utilization and poor scalability
to large problems. We measure the runtime ¢ of each execution, from model training to the final output.

Under review as submission to TMLR

2.0 1.0
ApR #violations/N
1.8 ¥ PL-GNN ¥ PL-GNN 0.9
1.G§ § CRA-PI-GNN ¥ CRA-PI-GNN 0.8
CTRA-PI-GNN CTRA-PI-GNN
‘ MIS (d = 5) X
Method {#Runs}| #Params Time (s) ApR*

PI-GNN {20} |5,022,865x20 13,189+60 0.883+0.002 . e - eeansend W
CRA {20} 5,022,865%x20 14,400+42 0.961+0.002 0.6 0™
CTRA {1} | 5,083,076 1,194+8 0.934:0.002 i 2

0.2 0.1
0.0 £ A He w8 0.0
272 20 22 24 26 28 210 212 214 216
As
2.0 1.0
ApR #violations/N
18 ¥ PLGNN ¥ PLGNN 0.9
1.6 ¥ CRA-PI-GNN ¥ CRA-PI.GNN 0.8
% CTRA-PI-GNN CTRA-PI-GNN
| MIS (d = 20) 14
Method {#Runs} | #Params Time (s) ApR* o 13
=1

PI-GNN {20} |5,022,865%20 15,191+24 0.759+0.007 * 08
CRA {20} 5,022,865%x20 14,816+40 0.928+0.004 0.6
CTRA {1} | 5,083,076 1,254+10 0.87840.011 o

0.2
0.0 O AV S R AN R ~ SR E 1)

2-2 20 22 24 26 28 210 1z 14 316

j’.\'

Figure 2: (Left Table) shows runtime (Time), number of parameters (#Params), and maximum ApR (ApR™)
for each method. (Right Figure) shows ApRs across different penalty parameters A;. Error represent the
standard deviations of 5 random seeds. CTRA-PI-GNN solver can find penalty-diversified solutions in a
single run with a comparable #Params and runtime to UL-based solvers that output a single solution.

Implementation. This numerical experiment aims to validate that CTRA can generate penalty-diversified
and variation-diversified solutions while maintaining a comparable number of parameters and runtime to
UL-based solvers, which produce a single solution, as described in Section [3] Therefore, in our experiments,
the CTRA-PI-GNN solver utilizes the same network architecture as the PI-GNN (Schuetz et al.l 2022a))
and CRA-PI-GNN (Ichikawal 2024)) solvers, except for the output size of the final layer as discussed in
Section |3 We use GraphSage, implemented with the Deep Graph Library (Wang et al.| [2019). The detailed
architectures of these GNNs are provided in Appendix We employ the AdamW (Kingma & Bay, |2014])
optimizer with a learning rate of n = 10~% and a weight decay of 1072. The GNNs are trained for up
to 5 x 10* epochs with early stopping, which monitors the summarized loss function Zsszl I (P.s) and the
entropy term ®(P;~, a), using a tolerance of 1075 and patience of 10 epochs. Further details are provided
in Appendix We set the initial scheduling value to v(0) = —20 for the MIS and DBM problems and

(0) = —6 for the MaxCut problems, using the same scheduling rate ¢ = 1073 and curvature rate a = 2 in

8l
Eq. .

Evaluation Metrics. Following the metric of Wang & Li| (2023), we use the approximation rate (ApR)
for all experiments, defined as ApR = f(=:0)/f(z*;c), where x* represents the optimal solutions. For MIS,
these optimal solutions set to the theoretical results (Barbier et all 2013), for DBM problems, they are
identified using Gurobi 10.0.1 solver with default settings, and for MaxCut problems, they are the best-known
solutions. To evaluate the quality of penalty-diversified solutions, we compute ApR”* = max,¢(s)(ApR(zs))
as a function of the parallel number S in Eq. . To evaluate the quality of variation-diversified solutions,
we compute the average ApR, defined as ApR = Zle ApRs/g and introduce a diversity score (DScore) for

Under review as submission to TMLR

210 e %P0 % W o w0t - ApR=0.0
9 « ApR=0.2
28 . ApR=04
‘ DBM instance-1, matching-1 ; . T Mmoo
ApR = 1.0
Method {#Runs}| #Params Time (s) ApR* PR infoasible
s 2
PI-GNN {121} [12,507,501x121 45,000+5,778 0.883+0.040 ~ 2«
CRA {121} 12,507,501x121 213,612+5,132 1.000£0.000 2
22
CTRA {1} | 13,107,621 1,961+101 0.883+0.011 2
20 R
20 21 22 23 24 25 26 27 28 29 210
A1, 22
210 o o] [- APR=00
o . . ApR=0.2
28 TEEEL L mR-0a
| DBM instance-1, matching-2 : I B e
ApR = 1.0
Method {#Runs}| #Params Time (s) ApR” 2% oo infoasible
5 2° ‘ % O ox o
PLGNN {121} |12,507,501x121 28,064+7,105 0.927+0.024 ~ 2¢ e
CRA {121} 12,507,501x121 208,1414+903 0.990+0.013 2 i
22
CTRA {1} | 13,107,621 2,154+164 1.000+0.000 >
20

50 2T 22 23 2T 35 26 27 28 2.9 21.0
A1, A2

Figure 3: (Left Table) shows runtime (Time), number of parameters (#Params), and maximum ApR (ApR™)
for each method, with errors representing the standard deviations of 5 random seeds. (Right Figure) shows
ApRs, where each point represents the results from 5 random seed across various penalty parameters Ag =
{As = (Aay Aoy Aoy M) | Ay Ao € {2° | s =0,...,10}}. CTRA-PI-GNN solver is capable of finding penalty-
diversified solutions in a single run, with a comparable number of parameters and runtime to those of
UL-based solvers.

the bit sequences {xs}5_;:
2
S oy
DScore({xs}o_) = NS(S—1D) §<l dy(xs,x;)

A higher DScore indicates greater variation among solutions. A desirable variation-diversified solution should
exhibit both high-quality solutions and a diverse set of solutions with distinct characteristics. Thus, solutions
with higher values of both average ApR and DScore are more desirable.

5.2 Finding Penalty-Diversified Solutions

MIS Problems. First, we compare the performacne of CTRA-PI-GNN on MIS problems in RRGs,
G(V,E), with [V| = 10,000 nodes and the node degree of 5 and 20. CTRA-PI-GNN solver run using
Eq. , with a set of penalty parameters, Ag = {2°73 | s = 1,...,20}. CRA-PI-GNN and PI-GNN solver
run multiple times for each penalty parameter A; € Ag. Fig.|2|(Right) shows the ApR as a function of penalty
parameters A\, € Ag. Across all penalty parameters, from 272 to 2!, CTRA-PI-GNN solver performs on
par with or slightly underperforms CRA-PI-GNN solver. Table in Fig. [2] shows the runtime and number of
paramers (#Params) for CTRA-PI-GNN solver at S = 20, compared to the total runtime and #Params
for S runs of PI-GNN and CRA-PI-GNN solvers. These result indicate that CTRA-PI-GNN solver can find
penalty-diversified solutions with a comparable number of parameters and runtime to UL-based solvers that
output a single solution. For a more detailed discussion on the dependence of the runtime and the #params
for number of shot S, refer to Appendix

DBM Problems. We next demonstrate the effectiveness of CTRA-PI-GNN solver for DBM problems,
which serve as practical CO problems. We focus on the first of the 27 DBM instances; see Appendix

Under review as submission to TMLR

OO0, N0, 000@ 000@ @O 00, F1elole)
.O. .OO OO. .OO .O. .OO OO. .OO .OO O.. .OO O..
@ [) @ [) @) [) @) [] [Q [Q
Q Q0 @ 0 @ QO @ @ O o Q0 0]
O O O O QO O Q O O ® O Q@
* S 9 e © S e e 3 9 S
O. O. OO .O OO .O OO .O .. O. .. O.

O O () O (] O (] O O @ O @

o jol OO0® OO0® OO0® Ce0® OCe@C

Figure 4: The obtained solutions by CTRA-PI-GNN solver for the MIS problem on a RRG with 30 nodes
and the degree d = 3. Blue nodes represent the independent set.

- GREEDY PI-GNN
| MIS (d = 20) 2 - | - AR g,
Method {#Runs} | Time (s) ApR DScore £ -s0._ o £ 50l s s
PC1 (0.59%) PC1 (0.60%)
Greedy {300} 8 0.715 0.239 - CTRA 4=00) _ - CTRA (v=0.2) 090
PI-GNN {300} 13,498 0.712 0.238 g s0 1850~
CRA {300} 15,136 0.923 0.248 5 ° E R
& —50E—) 5 & 50—) g 0.80
CTRA (v =0.0) {1} 95 0.873 0.019 et 100.00%) Pect @3.02%)
CTRA (v=0.2) {1} | 154 0.936 0.260 g —CRAL=0Y o CIRALS06 . s
CTRA (v=04) {1} 154 0.900 0.251 I P (e I
- - ~ P]
CTRA (v =0.6) {1} 149 0.852 0.257 T RN I B
PC1 (23.24%) PC1 (20.08%)

Figure 5: (Left Table) shows runtime (Time), average ApR. (ApR), DScore for each method on MIS problems
with a node degree d = 20. (Right Figure) shows the distribution of solutions in a 2-dimensional space using
PCA with varying v.

for the results of the remaining instances. Given that (A1, A2) and (A3, A4) share similar properties,
CTRA-PI-GNN run with a set of S = 11 x 11 parameters on the a grid, Ag = {As = (Mg, Ao, Ao, Ao) T
where Ag, Ay € {2° | s =0,...,10}. CRA-PI-GNN and PI-GNN solver run multiple times for each penalty
parameter A € Ag Fig. |3| (Right) shows that the ApR on the grid Ag using the CTRA-PI-GNN solver
identifies a desirable region where the ApR is nearly 1.0. Table in Fig. 3] demonstrates that CTRA-PI-
GNN solver can find penalty-diversified solutions with a comparable number of parameters and runtime to
UL-based solvers that output a single solution.

5.3 Finding Variation-Diversified Solutions

We next demonstrate that CTRA-PI-GNN solver can efficiently find variation-diversified solutions. Further-
more, we also show that the CTRA-PI-GNN solver enhances exploration capabilities and achieves higher-
quality solutions.

MIS Problems. We first run CTRA-PI-GNN solver using Eq. to find variation-diversified solutions for
MIS problems on small-scaled RRGs with 30 nodes and the node degree set to 3. We set the parameter v = 0.5
and the number of shots tp S = 100 in Eq. . As shown in Fig. |4 CTRA-PI-GNN solver successfully obtain
6 solutions, each with 13 independent sets, which is the global optimum. We extend the investigation to
large-scale RRG with 10,000 nodes and a node degree d = 20, which is known for its optimization challenges
(Angelini & Ricci-Tersenghi, 2023). These experiments investigate how the quality of variation-diversified
solutions depends on the parameter v, using a fixed number of shots S = 300. Fig. (Right) shows a low
dimensional visualization of the normalized solutions {P.,}3% using two-dimensional principal component
analysis (PCA) mapping. The two principal components with the highest contribution rates are selected
for different parameters v = 0.0,0.2,0.4,0.6. These results indicate that increasing parameter v leads to
more diverse solutions, with the solution space becoming increasingly separated in the high-contribution
region. Table in Fig. [5| measures the computation time, ApR, and DScore when the parallel execution

Under review as submission to TMLR

_ _GREEDY __ _ __PIGNN _
| MaxCut G14 g 22 - i ZZ - ARR
Method {#Runs} | Time (s) ApR DScore e S | SEUU—— 099
PC1 (0.44%) PC1 (2.20%)
Greedy {1,000} 87 0.936 0.479 - CTRA 4=00) _ CTRA (v=04) o
PI-GNN {1,000} 25,871 0.963 0.499 g 22 12 ZZ 097
CRA {1,000} 48,639 0.988 0.499 S [
2 g
CTRA (v =0.0) {1} 144 0.977 0.497 T (180.000/.]2)5 e (601.03‘%35 0.95
CTRA (v =04) {1} 138 0.991 0.501 g [RAL=0y o CTRAL=LD) N,
CTRA (v =0.8) {1} 141 0.989 0.501 $ o 2 1 .
CTRA (v =1.2) {1} 147 0.985 0.502 825 1525

-25 0 25 -25 0 25
PC1 (55.74%) PC1 (47.56%)

Figure 6: (Left Table) shows runtime (Time), average ApR (ApR), DScore for each method on MaxCut G14,
with error representing the standard deviations of 5 random seeds. (Right Figure) shows the distribution of
solutions in a 2-dimensional space using PCA with varying v.

number S = 300 using different random seeds. The results show that although the time of CTRA-PI-GNN
solver takes longer than executing the greedy algorithm multiple times, both ApR and DScore reach their
maximum at v = 0.2, yielding the highest quality variation-diversified solutions. Furthermore, increasing

parameter v enhances the exploration capability of GNN, leading to better solutions than those obtained by
conventional PI-GNN and CRA-PI-GNN; see Appendix

MaxCut Problems. Next, we evaluate the ability to find variation-diversified solutions in the G14 in-
stance of Gset, which primarily has four-clustered solution space. We set the number of shot S = 1,000 in
Eq. . Fig. |§| (Right) demonstrates that CTRA-PI-GNN solver can capture four-clustered solutions beyond
a certain value of v. Table in Fig. |§| measures the computation time, ApR, and DScore when the parallel
execution number S = 1,000 is performed using different random seeds. The results show that although
the runtime of CTRA-PI-GNN solver is slower compared to executing the greedy algorithm multiple times,
ApR and DScore reach their maximum at v = 0.4 and v = 1.2, respectively. Additionally, similar to MIS
problems, exploration enhancement is consistent across various instances of Gset. For further details; see

Appendix

6 Conclusion

This study introduces the CTRA framework for UL-based solvers designed to efficiently find penalty-
diversified and variation-diversified solutions within a single training process. Our numerical experiments
demonstrate that CTRA can produce penalty-diversified and variation-diversified solutions while maintain-
ing a comparable number of parameters and runtime to conventional UL-based solvers that generate only
a single solution. This approach not only enhances the computational efficiency in finding these diversified
solutions but also improves the search capabilities, leading to higher-quality solutions compared to existing
UL-based solvers that find a single solution and greedy algorithms.

References

Bahram Alidaee, Gary A Kochenberger, and Ahmad Ahmadian. 0-1 quadratic programming approach for
optimum solutions of two scheduling problems. International Journal of Systems Science, 25(2):401-408,
1994.

Maria Chiara Angelini and Federico Ricci-Tersenghi. Modern graph neural networks do worse than classical
greedy algorithms in solving combinatorial optimization problems like maximum independent set. Nature
Machine Intelligence, 5(1):29-31, 2023.

10

Under review as submission to TMLR

Jean Barbier, Florent Krzakala, Lenka Zdeborova, and Pan Zhang. The hard-core model on random graphs
revisited. In Journal of Physics: Conference Series, volume 473, pp. 012021. IOP Publishing, 2013.

Julien Baste, Lars Jaftke, Tomas Masaiik, Geevarghese Philip, and Giinter Rote. Fpt algorithms for diverse
collections of hitting sets. Algorithms, 12(12):254, 2019.

Julien Baste, Michael R Fellows, Lars Jaffke, Tomas Masaiik, Mateus de Oliveira Oliveira, Geevarghese
Philip, and Frances A Rosamond. Diversity of solutions: An exploration through the lens of fixed-
parameter tractability theory. Artificial Intelligence, 303:103644, 2022.

Mohsen Bayati, David Gamarnik, and Prasad Tetali. Combinatorial approach to the interpolation method
and scaling limits in sparse random graphs. In Proceedings of the forty-second ACM symposium on Theory
of computing, pp. 105-114, 2010.

Amin Coja-Oghlan and Charilaos Efthymiou. On independent sets in random graphs. Random Structures
& Algorithms, 47(3):436-486, 2015.

Emilie Danna and David L. Woodruff. How to select a small set of diverse solutions to mixed integer
programming problems. Operations Research Letters, 37(4):255-260, 2009.

Emilie Danna, Mary Fenelon, Zonghao Gu, and Roland Wunderling. Generating multiple solutions for mixed
integer programming problems. In International Conference on Integer Programming and Combinatorial
Optimization, pp. 280-294. Springer, 2007.

Michel Deza and Monique Laurent. Applications of cut polyhedra—ii. Journal of Computational and Applied
Mathematics, 55(2):217-247, 1994.

Aaron Ferber, Bryan Wilder, Bistra Dilkina, and Milind Tambe. Mipaal: Mixed integer program as a layer.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 1504-1511, 2020.

Henning Fernau, Petr Golovach, Marie-France Sagot, et al. Algorithmic enumeration: Output-sensitive,
input-sensitive, parameterized, approximative (dagstuhl seminar 18421). In Dagstuhl Reports, volume 8.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

Fedor V Fomin, Petr A Golovach, Lars Jaffke, Geevarghese Philip, and Danil Sagunov. Diverse pairs of
matchings. arXiv preprint arXiv:2009.04567, 2020.

Fedor V Fomin, Petr A Golovach, Fahad Panolan, Geevarghese Philip, and Saket Saurabh. Diverse collections
in matroids and graphs. Mathematical Programming, pp. 1-33, 2023.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message
passing for quantum chemistry. In International conference on machine learning, pp. 1263-1272. PMLR,
2017.

Tesshu Hanaka, Yasuaki Kobayashi, Kazuhiro Kurita, and Yota Otachi. Finding diverse trees, paths, and
more. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 3778-3786, 2021.

Emmanuel Hebrard, Brahim Hnich, Barry O’Sullivan, and Toby Walsh. Finding diverse and similar solutions
in constraint programming. In AAAI volume 5, pp. 372-377, 2005.

Yuma Ichikawa. Controlling continuous relaxation for combinatorial optimization. In A. Glober-
son, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Ad-
vances in Neural Information Processing Systems, volume 37, pp. 47189-47216. Curran As-
sociates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/
54191f424e9013fc1d7b923f6e45dff4-Paper-Conference.pdf.

Nikolaos Karalias and Andreas Loukas. Erdos goes neural: an unsupervised learning framework for com-
binatorial optimization on graphs. Advances in Neural Information Processing Systems, 33:6659-6672,
2020.

11

https://proceedings.neurips.cc/paper_files/paper/2024/file/54191f424e9013fc1d7b923f6e45dff4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/54191f424e9013fc1d7b923f6e45dff4-Paper-Conference.pdf

Under review as submission to TMLR

Richard M Karp. Reducibility among combinatorial problems. Springer, 2010.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. Optimization by simulated annealing. science,
220(4598):671-680, 1983.

Bernhard H Korte, Jens Vygen, B Korte, and J Vygen. Combinatorial optimization, volume 1. Springer,
2011.

Jayanta Mandi, Victor Bucarey, Maxime Mulamba Ke Tchomba, and Tias Guns. Decision-focused learning;:
through the lens of learning to rank. In International Conference on Machine Learning, pp. 14935-14947.
PMLR, 2022.

Hermish Mehta. Cvx graph algorithms. https://github.com/hermish/cvx-graph-algorithms, 2019.

Maxime Mulamba, Jayanta Mandi, Michelangelo Diligenti, Michele Lombardi, Victor Bucarey, and Tias
Guns. Contrastive losses and solution caching for predict-and-optimize. arXiv preprint arXiv:2011.05354,
2020.

Hartmut Neven, Geordie Rose, and William G Macready. Image recognition with an adiabatic quantum
computer i. mapping to quadratic unconstrained binary optimization. arXiv preprint arXiv:0804.4457,
2008.

Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: algorithms and complexity.
Courier Corporation, 1998.

Thierry Petit and Andrew C Trapp. Finding diverse solutions of high quality to constraint optimization
problems. In IJCAI International Joint Conference on Artificial Intelligence, 2015.

Thierry Petit and Andrew C Trapp. Enriching solutions to combinatorial problems via solution engineering.
INFORMS Journal on Computing, 31(3):429-444, 2019.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The graph
neural network model. IEEE transactions on neural networks, 20(1):61-80, 2008.

Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Combinatorial optimization with physics-
inspired graph neural networks. Nature Machine Intelligence, 4(4):367-377, 2022a.

Martin JA Schuetz, J Kyle Brubaker, Zhihuai Zhu, and Helmut G Katzgraber. Graph coloring with physics-
inspired graph neural networks. Physical Review Research, 4(4):043131, 2022b.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad. Collec-
tive classification in network data. AI magazine, 29(3):93-93, 2008.

Haoran Sun, Etash K Guha, and Hanjun Dai. Annealed training for combinatorial optimization on graphs.
arXiv preprint arXiv:2207.11542, 2022.

Haoyu Wang and Pan Li. Unsupervised learning for combinatorial optimization needs meta-learning. arXiv
preprint arXiv:2301.03116, 2023.

Haoyu Peter Wang, Nan Wu, Hang Yang, Cong Hao, and Pan Li. Unsupervised learning for combinatorial
optimization with principled objective relaxation. Advances in Neural Information Processing Systems,
35:31444-31458, 2022.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma, Lingfan Yu,
Yu Gai, et al. Deep graph library: A graph-centric, highly-performant package for graph neural networks.
arXiv preprint arXiv:1909.01315, 2019.

Y. Ye. The gset dataset. https://web.stanford.edu/~yyye/yyye/Gset/, 2003.

12

https://github.com/hermish/cvx-graph-algorithms
https://web.stanford.edu/~yyye/yyye/Gset/

Under review as submission to TMLR

Hejia Zhang, Matthew Fontaine, Amy Hoover, Julian Togelius, Bistra Dilkina, and Stefanos Nikolaidis.
Video game level repair via mixed integer linear programming. In Proceedings of the AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment, volume 16, pp. 151-158, 2020.

13

Under review as submission to TMLR

A Derivations

A.1 Proof of Theorem 3.1

Following the proof of [Ichikawa, (2024), we show Theorem based on following three lemmas.

Lemma A.1l. For any even natural number o = 2,4, ..., the function ¢(p) =1 — (2p — 1)* defined on [0, 1]
achieves its mazimum value of 1 when p = 1/2 and its minimum value of 0 when p =0 orp=1.

Proof. The derivative of ¢(p) relative to p is ¢'(p) = —2a(2p—1), which is zero when p = 1/2. This is a point
where the function is maximized because the second derivative ¢”(p) = —4a < 0. In addition, this function
is concave and symmetric relative to p = 1/2 because « is an even natural number, i.e., ¢(p) = ¢(1 — p),
thereby achieving its minimum value of 0 when p=0or p = 1. O

Lemma A.2. For any even natural number o = 2,4,... and a matriz P € [0,1]N*5 if X\ — 400, mini-
mizing the penalty term ®(P;vy) =~ ZSS:1 ZlN:l(l — (2P, — 1)) = 725:1 vazl @(P;s;) enforces that the
components of Pis must be either 0 or 1 and, if v — —oo, the penalty term enforces P = 1515/2.

Proof. From Lemma as 7y — 400, the case where ¢(P;5) becomes minimal occurs when, for each i, s,
pis = 0 or p; = 1. In addition, as v — —oo, the case where ¢(p;~) is minimized occurs when, for each i, P
reaches its maximum value with P;; = 1/2. O

Lemma A.3. &(P;v) =7~ Z‘sg:l Ziv:l(l —2p;i—1)%) = 'nyﬂ Zfil o(pi; @) is concave when X\ is positive
and is a convex function when A is negative.

Proof. Note that ®(P;y) = 72521 Zf\il d(Pis;) = 'yzi]\;l(l — (2P;s — 1)®) is separable across its com-
ponents P;;. Thus, it is sufficient to prove that each v¢(P;s;) is concave or convex in P;; because the
sum of the concave or convex functions is also concave (and vice versa). Therefore, we consider the second
derivative of v¢;(P;s;) with respect to Pi:

Here, if 7 > 0, the second derivative is negative for all p; € [0, 1], and this completes the proof that ®(P;~, a)
is a concave function when « is positive over the domain p € [0, 1]V O

Theorem A.4. Under the assumption that the objective function), i(RS;CS,AS) is bounded within the
domain [0,1]V*5 for any S € N, C; € Cs and A\; € Ag, as v — +oo, each column P’ of the soft
solutions P* € argminpR(P;Cs,Ag,7) converges to the original solutions ®* € argmingl(x; Cs, X). In
addition, as v — —oo, the loss function I:E(P;CS,AS) becomes convexr and the soft solution 1N1;/2 =
argminp R(P;Cg, Ag,v) is unique.

Proof. As A — 00, the penalty term ®(P;X) dominates the loss function R(p;C,X,v). According to
Lemma @, this penalty term forces the optimal solution P* to have components p;, that are either 0 or 1
because any nonbinary value will result in an infinitely large penalty. This effectively restricts the feasible
region to the vertices of the unit hypercube, which correspond to the binary vector in {0, 1}V, Thus, as A —
+00, the solutions to the relaxed problem converge to X = argminXe{m}Nst(X;s; Cs, As). Futhermore,

argmin y ¢ (o,13nxs (X5 Cs, As) is separable as Zf:l argminge (o 13~ (25 Cs, As), which indicate that each
columns X7, € argminme{o’l}z\zl(az; Cs,As). As A = —oo, the penalty term ®(p;) also dominates the loss
function #(p; C, A, v) and the #(p; C,) convex function from Lemma According to Lemma this
penalty term forces the optimal solution P* = 1xy1x/2. O

14

Under review as submission to TMLR

A.2 Proof of Proposition [3.2]

In this section, we derive the following Proposition.

Proposition A.5. For binary sequences {:cs}sszl, Vs, x, € {0,1}N, following equality holds

N
S2D VAR [{w,:}1<ocs] = D du(@s, @) (7)

i=1 s<l

where the right-hand side of Fq. 1s the max-sum Hamming distance.

Proof. We first note that, for binary vectors x,x; € {0,1}", the Hamming distance is expressed as follows:

dy(xs, ;) = (acg2 + m%l — 2xsyixlﬁ-) .

-

Il
-

?

Based on this expression, the diversity metric) _, dy(X.s, X.;) can be expanded for a binary matrix X €
{0,135 as follows:

ZdH(X:saX:l)

s<l

1 2
5 (dH X:saX:l) - ZdH(X€7X€)

N
Z i 2X:s,iX:l,i)

i=1 s,l

N
= SZ ZX%” — ;X;X:s,ix:l,i

DN | =

On the other hand, the variance of each column in a binary matrix X can be expanded as follows:

2
1
. (X:s/,i - E ZS:X:s,z‘>

N
5?2 ZVAR {Xs,iti<s<s] =S

.MZ
M«

i=1 i=1s'=
N S
_ 2 Zs X:s,i Zs,l X:s,iX:l,i
SO (X =2 Eaglnt y Zenl T
=1 s'=1
N
22 ’ X:s’ iX:si Z lX:s iX:li
-9 X . s’,s) , s,) ,
; < s’ S " S
al 1
; < s’ S ; - ")
= du(X.s, Xa).
s<l
By this, we finish the proof. O

B Additional Implementation Details

B.1 Graph Neural Networks

A graph neural network (GNN) (Gilmer et al., |2017; [Scarselli et al., |2008]) is a specialized NN for represen-
tation learning of graph-structured data. GNNs learn a vectorial representation of each node through two
steps. (I) Aggregate step: This step employs a permutation-invariant function to generate an aggregated

15

Under review as submission to TMLR

node feature. (II) Combine step: Subsequently, the aggregated node feature is passed through a trainable
layer to generate a node embedding, known as ‘message passing’ or ‘readout phase. Formally, for given
graph G = (V, E), where each node feature h9 € RV ° is attached to each node v € V', the GNN iteratively
updates the following two steps. First, the aggregate step at each k-th layer is defined by

ak = Aggregatelg ({hﬁ_l,vu € Nv}))

where the neighorhood of v € V is denoted as N, = {u € V | (v,u) € E}, hE~! is the node feature of
neighborhood, and a” is the aggregated node feature of the neighborhood. Second, the combined step at
each k-th layer is defined by

h* = Combinej (hF~1, ak),

v

where hF € RV " denotes the node representation at k-th layer. The total number of layers, K, and the
intermediate vector dimension, N*, are empirically determined hyperparameters. Although numerous im-
plementations for GNN architectures have been proposed, the most basic and widely used GNN architecture
is a graph convolutional network (GCN) (Scarselli et al.| [2008) given by

hkfl
hi=o|WF > 4 BFRETT)
ueN (v) |N(U)|

. . . k ko,
where W* and B¥ are trainable parameters, |\(v)| serves as normalization factor, and o : RY" — RN" is
some component-wise nonlinear activation function such as sigmoid or ReLLU function.

C Experiment Details

This section describes the details of the experiments .

C.1 Architecture of GNNs

We describe the details of the GNN architectures used in our numerical experiments. For each node v € V,
the first convolutional layer takes a node embedding vectors, hgﬂ for each node, yielding feature vectors
hi,e € R, Then, the ReLU function is used as a component-wise nonlinear transformation. The second
convolutional layer takes the feature vector, h}, as input, producing a feature vector hzﬂ € R®. Finally, a
sigmoid function is applied to the vector h(%, producing the tensor solutions P,. ¢ € [0, 1]V>3. Here, for MIS
and MaxCut problems, we set |Hy| = int(N°8) as in [Schuetz et al. (20224)); Ichikawa) (2024), and for the
DBM problems, we set it to 2,500. Across all problems, we set H; = Hy, and Hy = S. We conducted all
experiments by using V100GPU.

C.2 Training setting and post-rounding method

We use the AdamW (Kingma & Bal, 2014) optimizer with a learning rate as = 10~% and weight decay as
10~2. The training the GNNs conducted for a duration of up to 5 x 10* epochs with early stopping, which
monitors the summarized loss function Zf:l I(P.,) and penalty term ®(P;~,a) with tolerance 10~ and
patience 103. After the training phase, we apply projection heuristics to round the obtained soft solutions
back to discrete solutions using simple projection, where for all i € [N],s € [S], we map Py, s to 0 if
Ppis <05 and Py;s tolif Py;s > 0.5. Note that due to the annealing, CTRA-PI-GNN solver ensures
that the soft solution are nearly binary for all benchmarks, making them robust against the threshold 0.5 in
our experiments.

C.3 Problem specification

Maximum independent set problems There are some theoretical results for MIS problems on RRGs
with the node degree set to d, where each node is connected to exactly d other nodes. The MIS problem is
a fundamental NP-hard problem (Karpl [2010)) defined as follows. Given an undirected graph G(V, E), an

16

Under review as submission to TMLR

Table 1: The objective functions for the three problems to be studied.

‘ Objective Function ‘ Parameters
MIS ‘ Uw; GoN) = = iy Ti + A3 jyep i) ‘ V| =
MaxCut ‘ l(z;G) = EK]. A2z — x; — x5) ‘ A e RNxN

DBM l(m, C = {A, M}, >\) = — Zij Aijxij +A1 Zi ReLU(ZJ Ti5 —1) A € RN1xN2
+A2 Z RGLU(Z Tij — 1) +)\3R6LU(p Zij Tij — Zij Mij:cij) M e RN1xN2
+A4R€LU((]Z xzy Zij(l — M”)Z”) p,q S R

independent set (IS) is a subset of nodes Z € V where any two nodes in the set are not adjacent. The MIS
problem attempts to find the largest IS, which is denoted Z*. In this study, p denotes the IS density, where
p = |Z|/|V]. To formulate the problem, a binary variable z; is assigned to each node ¢ € V. Then the MIS
problem is formulated as follows:

flx; G, A) = sz—i—/\ Z TiT;,

i€V (.9)eE

where the first term attempts to maximize the number of nodes assigned 1, and the second term penalizes
the adjacent nodes marked 1 according to the penalty parameter A. In our numerical experiments, we set
A = 2, following |Schuetz et al.| (2022a)), no violation is observed as in (Schuetz et all |2022al). First, for every
d, a specific value pj, which is dependent on only the degree d, exists such that the independent set density
|Z*|/|V| converges to p}; with a high probability as N approaches infinity (Bayati et al., 2010)). Second, a
statistical mechanical analysis provides the typical MIS density pghcory, and we clarify that for d > 16, the
solution space of Z undergoes a clustering transition, which is associated with hardness in sampling (Barbier
et al.| [2013]) because the clustering is likely to create relevant barriers that affect any algorithm searching for
the MIS Z*. Finally, the hardness is supported by analytical results in a large d limit, which indicates that,
while the maximum independent set density is known to have density p}_, .. = 2log(d)/d, to the best of our

knowledge, there is no known algorithm that can find an independent set density exceeding p°, d & =log(d)/d
(Coja-Oghlan & Efthymiou, |2015)).

Diverse bipartite matching (DBM) problems We adopt this CO problem from |Ferber et al.| (2020);
Mulamba et al| (2020); Mandi et al. (2022)) as a practical example. The topologies are sourced from the
CORA citation network (Sen et al.l 2008), where each node signifying a scientific publication, is characterized
by 1,433 bag-of-words features, and the edges represents represents the likelihood of citation links. [Mandi
et al.| (2022) focused on disjoint topologies, creating 27 distinct instances. Each instance is composed of 100
nodes, categorised into two group of 50 nodes, labeled N7 and N,. The objective of DBM problems is to
find the maximum matching under diversity constraints for similar and different fields. It is formulated as
follows:

Ny Ny
I(z; C, M, \) = ZC’”x”—i—MZReLU(Zm”)+AQZReLU(inj—1)
j=1 i=1

+ A3ReLU (pzxij - Z Mijmij) + AReLU (q Zl‘ij - Z(l - Mij)l“ij),

1] iJ 1] 7]

where a reward matrix C € RN1*M2 indicates the likelihood of a link between each node pair, for all i, 7,
M;; is assigned 0 if articles ¢ and j belong to the same field, or 1 if they don’t. The parameters p,q € [0, 1]
represent the probability of pairs being in the same field and in different fields, respectively. Following
(Mandi et al., |2022), we examine two variations of this problem: Matching-1 and Matching-2, characterized
by p and ¢ values of 25% and 5%.

17

Under review as submission to TMLR

Lot MIS (N=10000) 106 MIS (N=10000, d=5) 106 MIS (N=10000, d=20)
» —— CRA-PI-GNN —— CRA-PI-GNN —— CRA-PI-GNN
8 CTRA-PI-GNN CTRA-PI-GNN CTRA-PI-GNN
]
feu 107 10° 10°
3
2 © 2
o o
5 £ £
o 10° Z 10t £ 10t
3
%
ES
E}
Z 107 10% 10°
10° 107 107 10° 10° 107 107 10 10° 107 107 10°
Number of shots Number of shots Number of shots

Figure 7: The runtime of the CTRA-PI-GNN solver, compared to S individual runs of the CRA-PI-GNN
solver, as a function of number of shots S. Error bars represent the standard deviations of 5 random seeds.

Maximum cut problems The MaxCut problem, a well-known NP hard problems (Karp, [2010), has
practical application in machine scheduling (Alidaee et al.l [1994)), image recognition (Neven et al., 2008
and electronic circuit layout design (Deza & Laurent, [1994). It is defined as follows: In an undirected graph
G = (V,E), a cut set C € E, which is a subset of edges, divides the nodes into two groups (V1,V, | V1UV; =
V, ViNVa =). The objective the MaxCut problem is to find the largest cut set. To formulate this problem,
each node is assigned a binary variable: x; = 1 signifies that node ¢ is in V;, while x; = 0 indicates node
is in V5. For an edge (4,), x; + «; — 2z;2; = 1 is true if (¢, j) € C; otherwise, it equal 0. This leads to the
following objective function:
l(:l); G) = Z A”(Z’EZZL'] — X; — l'j)
1<j

where A;; is the adjacency matrix, where A;; = 0 signifies the absence of an edge, and A;; > 0 indicates a
connecting edge. Following [Schuetz et al.| (2022a); Ichikawal (2024]), this experiments employ seven instances
from Gset dataset (Yel 2003]), recognized as a standard MaxCut benchmark. These seven instances are de-
fined on distinct graphs, including Erdés-Renyi graphs with uniform edge probability, graphs with gradually
decaying connectivity from 1 to N, 4-regular toroidal graphs, and one of the largest instance with 10,000
nodes.

D Additional Experiments

D.1 Runtime and # Params as a function of number of shots

In this section, we investigate the runtime of CTRA-PI-GNN solver as a function of the number of shots,
S, compared to the runtime for S individual runs of CRA-PI-GNN solver. Fig. [7] shows each runtime as a
function of the number of shots S. For this analysis, we incrementally increase the number of shots, further
dividing the range of penalty parameters from 272 to 2'7. The results indicate that CTRA-PI-GNN solver
can find penalty-diversified solutions within a runtime nearly identical to that of a single run of CRA-PI-
GNN solver for shot numbers S from 2° to 2'0. However, for S > 102, we observe a linear increase in
runtime as the number of shots S grows because of the limitation of memory of GPUs. Fig. (right)
shows the distribution of Hamming distances combination, {dg (P.s, Pi)}1<s<i<300, and the count of unique
solutions with different » = 0.00,0.05,0.10,0.20, whereas Fig. (right) shows the maximum ApR, i.e.,
maxs—1... 300 APR(P.) as a function of the parameter v. These results indicate that the CTRA-PI-GNN
solver can find more variation-diversified solutions as the parameter v increases. Furthermore, This result
indicates that the CTRA-PI-GNN solver can boost the exploration capabilities of the CRA-PI-GNN solver,
leading to the discovery of better solutions.

D.2 Additional results of variation-diversified solutions for MIS

Fig. [§] (right) shows the distribution of Hamming distances combination, {dg (P.s, Pi)}1<s<i<300, and the
count of unique solutions with different v = 0.00, 0.05, 0.10, 0.20, whereas Fig. [8|(right) shows the maximum
ApR, i.e., maxs=1, . 300 ApR(P. s) as a function of the parameter v. These results indicate that the CTRA-

18

Under review as submission to TMLR

v=0.00, #unique solution 2

2508 0.94

%.0 0.1 0.2 0.3 0.93}

v=0.05, #unique solution 3

100f o 0.92+
%o 0.1 0.2 0.3 < %
v=0.10, #unique solution 9 > 0.917
100§ g
| | | 0.90r
%o 01 02 03 }
- v=0.20, #unique solution 241 0.89¢t
o o1 0.2 0.3 088901 02 03 04

Hamming distance U

Figure 8: The density of Hamming distance combination of the solution, {dg (P.s, Pi) }1<s<i<300, with differ-
ent parameters v and the count of unique solutions (left), and the maximum ApR, maxs—1, ... 300 ApR(P.s),
as a function of the parameter v.

v=0.2, #unique solution 2 v=0.4, #unique solution 8 v=0.6, #unique solution 19 v=0.8, #unique solution 35
12.5
1 8 | |
10.0 6
20 (|
; | |
| '
4 ']]
5.0
10 Il M, W i
2.5 ! H 2 2
. IIL : P
%0 02 04 06 08 10 %0 02 04 06 08 1090 02 04 06 08 1090 02 04 06 08 1.0
Hamming distance Hamming distance Hamming distance Hamming distance

Figure 9: The density of Hamming distance combination of the solution, {dg (P.s, P.;) }1<s<i<1000 in MaxCut
G14, with different parameters v and the count of unique solutions

PI-GNN solver can find more variation-diversified solutions as the parameter v increases. Furthermore, This
result indicates that the CTRA-PI-GNN solver can boost the exploration capabilities of the CRA-PI-GNN
solver, leading to the discovery of better solutions.

D.3 Additional results of variation-diversified solutions for MaxCut G14.

In this section, to supplement the results of the variation-diversified solutions for MaxCut G14 in Section[5.3]
we present the results of the Hamming distance distribution. Fig. [9shows the distribution of combinations
of solution Hamming distances under the same settings as in Section [5.1] From these results, it is evident
that the CTRA-PI-GNN solver has acquired solutions in four distinct clusters.

D.4 Additional results for validation of exploration ability
These improvement is consistent across other Gset instances on distict graphs with varying nodes, as shown

in Table. [2| In these experiment, we fix as v = 6 and evaluate the maximum ApR, max—1 . 1000 APR(P.s).
This result shows that CTRA-PI-GNN solver outperforme CRA-PI-GNN, PI-GNN, and RUN-CSP solvers.

19

Under review as submission to TMLR

Table 2: Numerical results for MaxCut on Gset instances

(NoDEs, EDGES) CSp PI CRA CTRA
G14 (800, 4,694) 0.960 0.988 0.994 0.997
G15 (800, 4,661) 0.960 0.980 0.992 0.995

G22 (2,000, 19,990) 0.975 0.987 0.998 0.999
G49 (3,000, 6,000) 1.000 0.986 1.000 1.000
G50 (3,000, 6,000) 1.000 0.990 1.000 1.000
G55 (5,000, 12,468) 0.982 0.983 0.991 0.994
G70 (10,000, 9,999) — 0982 0992 0.997

- CRA PI GNN

[T]]] eiatiiouy

12345 6 7 8 9 101112131415161718192021222324252627
Instance ID

Figure 10: The ApR of DBM (Matching-1) using CTRA-PI-GNN and CRA-PI-solvers (Ichikawa) 2024]).

D.5 CTRA for Multi-instance Solutions

In this section, we numerically demonstrate that the CTRA-PI-GNN solver can efficiently solve multiple
problems with similar structures. The numerical experiments solve all 27 DBM instances using the CTRA-
PI-GNN solver with the following loss function:

S
R(O;CS7 Z 0C5,>\ +S(0;CSa7?O‘)7
s=1
N S
S(O,CS,’Y, éﬁyzz 1_ 2P015 S)_l)a)'
i=1 s=1

where Cs = {Cy, M, }27, represents the instance parameters, and [is defined as follows:

I(2;C, M,) ZCH%
Y ZReLU(inj —1) + ZReLU(ZxU -1)
l + AgRJeLU(pZ wij — XJ: Myji;) |
ij ij
+ A4ReLU (q > o=y (1= Mz‘j)xz‘j)’

i ij

20

Under review as submission to TMLR

where A is fixed as A = (A1, A2, A3, A1) = (2,2,12,12). The parameters for the CTRA-PI-GNN solver is set
the same as in Section On the other hand, the CRA-PI-GNN solver repeatedly solve the 27 problems
using the same settings as |[chikawa, (2024). As a result, the CTRA-PI-GNN solver can explore global
optimal solutions for all problems. Fig. showcases the solutions yielded by both the CRA-PI-GNN
and CTRA-PI-GNN solvers for the 27 Matching-1 instances. Matching-2 is excluded from this comparison,
given that both solvers achieved global solutions for these instances. The CRA-PI-GNN solver, applied
27 times for Matching-1, accumulated a total runtime of 36,925 4 445 seconds, significantly longer than the
CTRA-PI-GNN’s efficient 5,617+20 seconds. For Matching-2, the CRA-PI-GNN solver required 36,816+149
seconds, whereas the CTRA-PI-GNN solver completed its tasks in just 2,907 4+ 19 seconds. The reported
errors correspond to the standard deviation from five random seeds. These findings not only highlight the
CTRA-PI-GNN solver’s superior efficiency in solving a multitude of problems but also its ability to achieve
higher Acceptance Probability Ratios (ApR) compared to the CRA-PI-GNN solver. The consistency of these
advantages across different problem types warrants further investigation.

D.6 Additional Results of penalty-diversified solutions for DBM problems

This section extends our discussion on penalty-diversified solutions for DBM problems, as introduced in
Section In these numerical experiments, we used the same Ag as in Section and executed the
CTRA-PI-GNN under the same settings as in Section [5.1} As shown in Fig. [II] the CTRA-PI-GNN can
acquire penalty-diversified solutions for all instances of the DBM.

21

Under review as submission to TMLR

Instance-1/ Matching-2 Instance-2 / Matching-1 Instance-2 / Matching-2 Instance-3 / Matching-1 Instance-3 / Matching-2
B3 K] CK: B = of <

C - 2m0fy & BN - 2
& : X . 2 :
o w . . 28 N
° X »
= nfossible |z N # infassible 22 infossble
b p o bRy
<5 < . s <
L »
a 2
a 2t
G s 2 R R & TEE 20| v o
7LD PP L S S LA T T I PO TR TN D
ha e A ok
Instance-4 / Matching-1 Instance-5 / Matching-1 Instance 5 / Matching-2 Instance-6 / Matching-2
v CEES -) o] 2 X3 - 3
'EXEE . : . :
. . * N
K infoasiblo E K infoasible E - infoasiblo
SETEEE Y 2 e 20| Ty
PAP LA U L T I Y e T S T PP AP L P L P I T T
ey ok nn L2 nh
Instance-7 / Matching-1 Instance7 / Matching-2 Instance-8 / Matching-1 Instance-9 / Matching-1 Instance-9 / Matching-2
EEEEE R - B XK EEEX] s C B
. g a N
; .) - R 10
K 1 infoasiblo 1 2 infoasiblo 1 1 infoasiblo
y o g 20} oy 2 oy y
I E I PP AP P S Ll T I S T I I I I B 2 T Y
i W2 n Ik A W2
Instance-10 / Matching-1 Instance-10 / Matching-2 Instance-11/ Matching-1 Instance-11 / Matching-2 Instance-12 / Matching-1 Instance-12 / Matching-2
B wan 20[% EE: ApR=00 R Y) AR =00 ey TR 10 r ApR=00
: - D mn e S saval |
rrwsoRn 2| ’ . AR=0s £y e . AR-06 3 2w N 5
w9 e 2| ApR =08 ‘ AP = 0.8 . w 8
s <% ¢ A I ¢ 2 Moae| 2 1 P il
® ae S ° b b py p '
eaw R < ° < < £ .
LY 2| " = =%
g o " % e
o 2! ® o k4 v
LR 2} ¢ %W v MEroeseegry TEEE TEE
I F 2 PRI I Y 2 e I I 2 T BERGEEE P I
s Wi hn pos i ok
Instance-13 / Matching-1 Instance-13 / Matching-2. Instance-14 / Matching-1 Instance-14 / Matching-2 Instance-15 / Matching-1 Instance-15 / Matching-2
2 e E e s AR e R - 20fr > 0w 1 : . W - EXCEK & 21 BEE:
3 : 2% % ® : 2| :
. > w . 2 * -
@ 2
ApR = e AR = 2] ApR = 10
Fl infoasiblo 3 infoasiblo a2 infoasiblo
& & ‘ 52
£) < <5
. | .
] 2
o 2 o
2 2| : 2|

3 5 & u . v
2TIT 2T 2T 25 25 27 2 272" 272 T 2T 9T 25 25 27 2F 272

-
23T 2T 2T 3T 25 25 27 27 272
1 ¥ Ania

27AT 2T 2T 9T 25 25 27 27 272" 2022 25 2T 2F 2
A2 14

Instance-16 / Matching-1 Instance-16 / Matching- Instance-17 / Matching-2 Instance-18 / Matching-1 Instance-16 / Matching-2
] oo G o e T @ of7

o 210 g 210 - x
€ . 2 . seee :
6o . 2 . -
. 2
o ApR = 10
infeasible 3 e infeasible 3 infeasible
b by ‘ b
$ <0 4
»
2
° 2
Lk E 201% @ % 20 ? 2°| LA v 200 2 9 %
2727 27 2727 25 25 27 2 2920 2027 2T 27 27 2 27 27 27 202" 22T 27 2727 2 25 20 27 2720 22T 2727 27 2 27 20 2 202" 2027 T 27 21 7 25 27 2F 22"
dda s 1k Ak ok
Instance-19 / Matching-1 Instance-19 / Matching-2 Instance-20 / Matching-2 Instance-21 / Matching-1 Instance-21 / Matching-2
> T o AR=00 B AR 00 TR 'K AR=00
- . Ap-02 . . ApR-02
" * ApR=04 - . . R =0.4
ol * ApR=06 * . * ApR=06
> ApR = 0.8 ApR - 08
> o ApR=10
a3 : I infeasible El infeasible. 7 infeasible.
: % 2} TR x r o -
2027 2723 2725 26 2728 29210 2027 27 2% 27 25 26 27 28 2921 20 2027 27232725 26 2728 29210 2T 27 23 27 25 25 27 28 292"
i, &2 A, Ao i At
Instance-22 / Matching-1 Instance-22 / Matching-2 Instance-23 / Matching-2 Instance-24 / Matching-1
21°) tTeawawn 210 o 21 ° wea
2°) 29) N 2% N < g N
2w @ 28] . . T .
27 27 4
2] 2 p ApR =10
E . infeasile | 7 infeasible : 1 infeasible
b 3 : h P
<0 < £ < £
23] 23]
22| 22|
2! 2! %
2°) o 2°| > K i k- Ed 2 * a2 o & 2004 b B
20 2T 2725 2725 25 27 28 2921 2027 27 2% 27 25 25 27 28 27 2T 2027 27 2% 27 25 26 27 28 27 2T 20 2T 2723 2725 25 27 2% 27210 2027 27 2% 27 25 25 27 28 27 2T 202727 2% 27 25 25 27 28 2
i 2 Audy Ak » Az i A2 Ak
Instance-25 / Matching-1 Instance-25 / Matching-2 Instance-26 / Matching-1 Instance-26 / Matching-2 Instance-27 / Matching-1 Instance-27 / Matching-2
210 ol ER R R & : LA] o« E oo W ApR = 0.0 * - b o & k ApR = 0.0
. . mR=-02 A . apr-02
. - - + ApR=04 h - b * ApR=04
. r oo * ApR=06 = b > o + ApR=06
2 % AR = 08 @ ApR= 08
R oww o= . 20w ApR=10
E infeasible 1 infeasible infeasible
3 : o ¢ b oows
< h S = L
cawy bl
v 8 o
1 o -
20 R 24 r g EEEELEEY X
202727 2% 27 25 25 27 28 27 2T 20 2T 27 23 2725 25 27 28 2721 20 2T 27 2% 27 25 25 27 28 27 2T 2727252725 25 2
o A N N

Figure 11: ApR of the DBM problems on th grid Ag using CTRA-PI-GNN solver. Each point on the
coordinate plane represents the results from five different random seed, with the colors indicating the ApR.
The constraints violation are marked with a cross symbol.

22

	Introduction
	Background
	Combinatorial Optimization (CO)
	Continuous Relaxation and UL-based Solvers

	Continuous Tensor Relaxation Annealing for Diverse Solutions
	Continuous Tensor Relaxation (CTRA)
	CTRA for Finding Penalty-Diversified Solutions
	CTRA for Finding Variation-Diversified Solutions

	Related work
	Experiments
	Settings
	Finding Penalty-Diversified Solutions
	Finding Variation-Diversified Solutions

	Conclusion
	Derivations
	Proof of Theorem 3.1
	Proof of Proposition 3.2

	Additional Implementation Details
	Graph Neural Networks

	Experiment Details
	Architecture of GNNs
	Training setting and post-rounding method
	Problem specification

	Additional Experiments
	Runtime and # Params as a function of number of shots
	Additional results of variation-diversified solutions for MIS
	Additional results of variation-diversified solutions for MaxCut G14.
	Additional results for validation of exploration ability
	CTRA for Multi-instance Solutions
	Additional Results of penalty-diversified solutions for DBM problems

