Continuous Tensor Relaxation for Finding Diverse Solutions in Combinatorial Optimization Problems Anonymous authors Paper under double-blind review ## **Abstract** Finding the optimal solution is often the primary goal in combinatorial optimization (CO). However, real-world applications frequently require diverse solutions rather than a single optimum, particularly in two key scenarios. First, when directly handling constraints is challenging, penalties are incorporated into the cost function, reformulating the problem as an unconstrained CO problem. Tuning these penalties to obtain a desirable solution is often time-consuming. Second, the optimal solution may lack practical relevance when the cost function or constraints only approximate a more complex real-world problem. To address these challenges, generating (i) penalty-diversified solutions by varying penalty intensities and (ii) variation-diversified solutions with distinct structural characteristics provides valuable insights, enabling practitioners to post-select the most suitable solution for their specific needs. However, efficiently discovering these diverse solutions is more challenging than finding a single optimal one. This study introduces Continual Tensor Relaxation Annealing (CTRA), a computationally efficient framework for unsupervised-learning (UL)-based CO solvers that generates diverse solutions within a single training run. CTRA leverages representation learning and parallelization to automatically discover shared representations, substantially accelerating the search for these diverse solutions. Numerical experiments demonstrate that CTRA outperforms existing UL-based solvers in generating these diverse solutions while significantly reducing computational costs. ## 1 Introduction Constrained combinatorial optimization (CO) problems aim to find an optimal solution within a feasible space, a fundamental problem in various scientific and engineering applications (Papadimitriou & Steiglitz, 1998; Korte et al., 2011). However, real-world applications often require diverse solutions rather than a single optimal solution, particularly in two key situations. The first situation involves integrating the constraints of a CO problem as penalty terms in the cost function, thereby converting it into an unconstrained CO problem. This approach is used when handling hard constraints directly is difficult or when allowing some degree of constraint violation is acceptable to explore solutions with a lower cost function. However, balancing the trade-off between the cost function and penalty terms to obtain desirable solutions can be computationally expensive. To address this issue, an effective strategy is to explore a set of solutions under varying penalty strengths, referred to as (i) penalty-diversified solutions. Once penalty-diversified solutions are obtained, users can select the most suitable one during post-processing based on specific application needs, as illustrated in Fig. 1. The second scenario arises when the formulated cost function or constraints merely approximate a complex real-world problem. These simplified formulations often fail to capture all critical aspects and implicit conditions practitioners consider important. In such cases, the optimal solution to the simplified formulation may not always be practical or desirable. To address this, exploring a set of solutions with diverse characteristics and reasonably good performance, referred to as (ii) *variation-diversified solutions*, is beneficial. These diverse solutions enable users to post-select the most suitable one tailored to real-world complexities, as shown in Fig. 1. Additionally, variation-diversified solutions have practical advantages across domains such Figure 1: Overview of CTRA UL-based solver and post-processing for diverse solutions. as game-level design, where generating levels with the same fundamental constraints but distinct characteristics is particularly valuable (Zhang et al., 2020). However, efficiently discovering these diverse solutions is more challenging than identifying one solution. We propose <u>C</u>ontinual <u>T</u>ensor <u>R</u>elaxation <u>A</u>nnealing (CTRA) method for unsupervised learning (UL)-based CO solvers (Schuetz et al., 2022a; Karalias & Loukas, 2020), a computationally efficient framework that finds diverse solutions in a single training run by effectively using GPUs. CTRA effectively learns common representations across multiple problem instances, enabling efficient and automatic parallelization. This approach enables the exploration of diverse solutions while maintaining comparable model parameters and runtime to UL-based solvers that produce a single solution. Numerical experiments demonstrate the effectiveness of several benchmark CO problems. Additionally, CTRA enhances search capabilities, yielding higher-quality solutions than existing UL-based solvers and greedy algorithms. **Notation.** We use the shorthand expression $[N] = \{1, 2, \dots, N\}$, $N \in \mathbb{N}$. $I_N \in \mathbb{R}^{N \times N}$ represents an identity matrix of size $N \times N$. Here, $\mathbf{1}_N$ and $\mathbf{0}_N$ represent the all-ones vector and all-zeros vector in \mathbb{R}^N , respectively. G(V, E) represents an undirected graph, where V is the set of nodes and $E \subseteq V \times V$ is the set of edges. For a graph G(V, E), A denote the adjacency matrix with $A_{ij} = 0$ if an edge (i, j) does not exist and $A_{ij} > 0$ if an edge connects i and j. For a sequence $\{a_k \mid a_k \in \mathbb{R}\}_{k=1}^K$, the empirical variance is defined as $\mathbb{VAR}[\{a_k\}_{k=1}^K] = \sum_{k=1}^K (a_k - \sum_{k'=1}^K a_{k'}/K)^2/K$, and the empirical standard deviation is given by $\mathbb{STD}[\{a_k\}_{k=1}^K] = (\mathbb{VAR}[\{a_k\}_{k=1}^K])^{1/2}$. For binary vectors $a, b \in \{0, 1\}^N$, we define the Hamming distance as $d_H(a, b) = \sum_{i=1}^N \mathbf{1}[a_i \neq b_i]$ where $\mathbf{1}[\cdot]$ denotes the indicator function. # 2 Background #### 2.1 Combinatorial Optimization (CO) Constrained CO problems are defined as follows: $$\min_{\boldsymbol{x} \in \mathcal{X}(C)} f(\boldsymbol{x}; C), \quad \mathcal{X}(C) = \left\{ \boldsymbol{x} \in \{0, 1\}^N \; \left| \begin{array}{cc} g_i(\boldsymbol{x}; C) \leq 0, & \forall i \in [I], \\ h_j(\boldsymbol{x}; C) = 0 & \forall j \in [J] \end{array} \right\}, \quad I, J \in \mathbb{N},$$ where $C \in \mathcal{C}$ denotes instance parameters, such as a graph G = (V, E), where \mathcal{C} denotes the set of all possible instances. The binary vector $\mathbf{x} = (x_i)_{1 \leq i \leq N} \in \{0, 1\}^N$ is the decision variable to be optimized, and $\mathcal{X}(C)$ denotes the feasible solution space. $f : \mathcal{X} \times \mathcal{C} \to \mathbb{R}$ denotes the cost function and, for all $i \in [I]$ and $j \in [J]$, $g_i : \mathcal{X} \times \mathcal{C} \to \mathbb{R}$ and $h_j : \mathcal{X} \times \mathcal{C} \to \mathbb{R}$ denote constraints. In practical scenarios, constrained CO problems are often converted into unconstrained CO problems using the penalty method: $$\min_{\boldsymbol{x} \in \{0,1\}^N} l(\boldsymbol{x}; C, \boldsymbol{\lambda}), \quad l(\boldsymbol{x}; C, \boldsymbol{\lambda}) \stackrel{\Delta}{=} f(\boldsymbol{x}; C) + \sum_{i=1}^{I+J} \lambda_i v_i(\boldsymbol{x}; C).$$ where, for all $i \in [I+J]$, $v_i : \{0,1\}^N \times \mathcal{C} \to \mathbb{R}$ is the penalty term that increases when constraints are violated. For example, the penalty term is defined as follows: $$\forall i \in [I], \ v_i(\boldsymbol{x}; C) = \max(0, g_i(\boldsymbol{x}; C)), \ \forall j \in [J], \ v_i(\boldsymbol{x}; C) = (h_i(\boldsymbol{x}; C))^2$$ and $\lambda = (\lambda_i)_{1 \leq i \leq I+J} \in \mathbb{R}^{I+J}_+$ represents the penalty parameters that balance satisfying the constraints and optimizing the cost function. Tuning these penalty parameters λ to obtain the desired solutions is a challenging and time-consuming task. This process often requires solving the problem multiple times while iteratively adjusting the penalty parameters λ until an acceptable solution is obtained. #### 2.2 Continuous Relaxation and UL-based Solvers The continuous relaxation strategy reformulate a CO problem by converting discrete variables into continuous ones as follows: $$\min_{\boldsymbol{p} \in [0,1]^N} \hat{l}(\boldsymbol{p}; C, \boldsymbol{\lambda}), \quad \hat{l}(\boldsymbol{p}; C, \boldsymbol{\lambda}) \stackrel{\Delta}{=} \hat{f}(\boldsymbol{p}; C) + \sum_{i=1}^{I+J} \lambda_i \hat{v}_i(\boldsymbol{p}; C),$$ where $\boldsymbol{p}=(p_i)_{1\leq i\leq N}\in[0,1]^N$ denotes relaxed continuous variables, i.e., each binary variable $x_i\in\{0,1\}$ is relaxed to a continuous one $p_i\in[0,1]$, and $\hat{f}:[0,1]^N\times\mathcal{C}\to\mathbb{R}$ is the relaxation of f, satisfying $\hat{f}(\boldsymbol{x};C)=f(\boldsymbol{x};C)$ for any $\boldsymbol{x}\in\{0,1\}^N$. The relation between the constraint v_i and its relaxation \hat{v}_i is similar for $i\in[I+J]$, i.e., $\forall i\in[I+J]$, $\hat{v}_i(\boldsymbol{x};C)=v_i(\boldsymbol{x};C)$ for any $\boldsymbol{x}\in\{0,1\}^N$. UL-based solvers employ this continuous relaxation strategy for training neural networks (NNs) (Wang et al., 2022; Schuetz et al., 2022a; Karalias & Loukas, 2020; Ichikawa, 2024). The relaxed continuous variables are parameterized by $\boldsymbol{\theta}$ as $\boldsymbol{p}_{\theta} \in [0,1]^N$ and optimized by directly minimizing the following loss function: $$\hat{l}(\boldsymbol{\theta}; C, \boldsymbol{\lambda}) \stackrel{\Delta}{=} \hat{f}(\boldsymbol{p}_{\boldsymbol{\theta}}(C); C) + \sum_{i=1}^{I+J} \lambda_i \hat{v}_i(\boldsymbol{p}_{\boldsymbol{\theta}}(C); C). \tag{1}$$ After training, the relaxed solution p_{θ} is converted into discrete variables by rounding p_{θ} using a threshold (Schuetz et al., 2022a) or by applying a greedy method (Wang et al., 2022). Two types of schemes have been
developed based on this framework. - (I) Learning Generalized Heuristics from History/Data. One approach, proposed by Karalias & Loukas (2020), seeks to automatically learn commonly effective heuristics from historical dataset instances $\mathcal{D} = \{C_{\mu}\}_{\mu=1}^{P}$ and then apply these learned heuristics to a new instance C^* via inference. Specifically, given a set of training instances, independently and identically distributed from a distribution P(C), the objective is to minimize the average loss function $\min_{\boldsymbol{\theta}} \sum_{\mu=1}^{P} l(\boldsymbol{\theta}; C_{\mu}, \boldsymbol{\lambda})$. However, this method does not guarantee high-quality performance for a test instance C^* . Even if the training instances \mathcal{D} are abundant and the test instance C is drawn from the same distribution P(C), achieving a low average performance $\mathbb{E}_{C \sim P(C)}[\hat{l}(\boldsymbol{\theta}; C)]$ does not necessarily guarantee a low $l(\boldsymbol{\theta}; C)$ for a specific C. To address this issue, Wang & Li (2023) introduced a meta-learning approach where NNs aim to provide good initialization for new instances. - (II) Learning Effective Heuristics on Specific Single Instance. Another approach, referred to as the physics-inspired graph neural networks (PI-GNN) solver (Schuetz et al., 2022a;b), automatically learns instance-specific heuristics for a given single instance using the instance parameter C by directly employing Eq. (1). This approach has been applied to CO problems on graphs, i.e., C = G(V, E), using graph neural networks (GNN) to model the relaxed variables $p_{\theta}(G)$. An L-layered GNN is trained to directly minimize $\hat{l}(\theta; C, \lambda)$ in Eq. (1), taking as input a graph G along with node embedding vectors and producing the relaxed solution $p_{\theta}(G) \in [0,1]^N$. A detailed description of GNNs can be found in Appendix B.1. Note that this setting is applicable even when the training dataset \mathcal{D} is difficult to obtain. However, learning to minimize Eq. (1) for a single instance can be time-consuming than the inference process. Nonetheless, for large-scale problems, it has demonstrated superiority over other solvers in terms of both time and solution performance (Schuetz et al., 2022a;b; Ichikawa, 2024). UL-based solvers face two practical issues: (I) "optimization issues", where they tend to get stuck in local optima, and (II) "rounding issues", which arise when an artificial post-learning rounding process is needed to map solutions from the continuous space back to the original discrete space, undermining the robustness of the results. To address the first issue, Ichikawa (2024); Sun et al. (2022) proposed annealing schemes to escape local optima by introducing the following entropy term $s(\theta; C)$: $$\hat{r}(\boldsymbol{\theta}; C, \boldsymbol{\lambda}, \gamma) = \hat{l}(p_{\boldsymbol{\theta}}(C); C, \boldsymbol{\lambda}) + \gamma s(p_{\boldsymbol{\theta}}(C)), \ s(p_{\boldsymbol{\theta}}(C)) = \sum_{i=1}^{N} \left\{ (2p_{\boldsymbol{\theta},i}(C) - 1)^{\alpha} - 1 \right\}, \ \alpha \in \left\{ 2n \mid n \in \mathbb{N} \right\}, \ (2)$$ where $\gamma \in \mathbb{R}$ denotes a penalty parameter. They anneal the penalty parameter from positive $\gamma > 0$ to $\gamma \approx 0$ to smooth the non-convexity of the objective function $\hat{l}(\boldsymbol{\theta}; C, \boldsymbol{\lambda})$ similar to simulated annealing (Kirkpatrick et al., 1983). To address the second issue, Ichikawa (2024) further annealed the entropy term to $\gamma \leq 0$ until the entropy term approaches zero, i.e., $s(\boldsymbol{\theta}, C) \approx 0$, enforcing the relaxed variable to take on discrete values and further smoothing the continuous loss landscape for original discrete solutions. This method is referred to as $\underline{\mathbf{C}}$ ontinuous $\underline{\mathbf{R}}$ elaxation $\underline{\mathbf{A}}$ nnealing (\mathbf{CRA}), and the solver that applies the CRA to the PI-GNN solver is referred to as CRA-PI-GNN solver. # 3 Continuous Tensor Relaxation Annealing for Diverse Solutions We propose an extension of CRA, termed $\underline{\mathbf{C}}$ ontinuous $\underline{\mathbf{T}}$ ensor $\underline{\mathbf{R}}$ elaxation (\mathbf{CTRA}), which enables UL-based solvers to efficiently handle multiple problem instances within a single training run. Beyond this core advancement, we demonstrate how CTRA can be effectively tailored to discover both *penalty-diversified* solutions and variation-diversified solutions. # 3.1 Continuous Tensor Relaxation (CTRA) Let us consider solving multiple instances $C_S = \{C_s \mid C_s \in \mathcal{C}\}_{1 \leq s \leq S}$ with different penalty parameters $\Lambda_S = \{\lambda_s\}_{1 \leq s \leq S}$ simultaneously. To handle these instances, we relax a binary vector $\boldsymbol{x} \in \{0,1\}^N$ into an augmented continual matrix $P \in [0,1]^{N \times S}$ that is trained via minimizing the following loss function: $$\hat{R}(P; \mathcal{C}_S, \Lambda_S, \gamma) = \sum_{s=1}^{S} \hat{l}(P_{:s}; C_s, \lambda_s) + \gamma S(P), \quad S(P) \triangleq \sum_{i=1}^{N} \sum_{s=1}^{S} (1 - (2P_{is} - 1)^{\alpha}),$$ where $P_{:s} \in [0,1]^N$ denotes s-the column in P, i.e. $P = (P_{:s})_{1 \le s \le S} \in [0,1]^{N \times S}$. Optimizing \hat{R} drives each column $P_{:s}$ to minimize its respective objective function $\hat{l}(P_{:s}; C_s, \lambda_s)$. Additionally, we also generalize the entropy term s(p) in Eq. (2) into S(P) for this augmented tensor. Specifically, the following theorem holds. **Theorem 3.1.** Under the assumption that for all $s \in [S]$, each objective function $\hat{l}(P_{:s}; C_s, \lambda_s)$ remains bounded on $[0,1]^N$, each column solutions $P_{:s}^*$ such that $P^* \in \operatorname{argmin}_P \hat{R}(P; \mathcal{C}_S, \Lambda_S, \gamma)$ converges to the corresponding discrete optimal $\mathbf{x}^* \in \operatorname{argmin}_{\mathbf{x}} l(\mathbf{x}; C_s, \lambda_s)$ as $\gamma \to +\infty$. Furthermore, as $\gamma \to -\infty$, the loss function $\hat{R}(P; \mathcal{C}_S, \Lambda_S)$ becomes convex and admits a unique half-integral solution $\mathbb{I}_N \mathbb{I}_N^{\top} / 2 = \operatorname{argmin}_P \hat{R}(P; \mathcal{C}_S, \Lambda_S, \gamma)$. A detailed proof of Theorem 3.1 is available in Appendix A.1. The relaxation approach naturally extends to higher-order tensors, $P \in [0,1]^{N \times S_1 \times \cdots}$, potentially enabling more powerful GPU-based parallelization. A comprehensive exploration of such higher-dimensional implementations remains an exciting avenue for future research. For UL-based solvers, we parameterize the soft tensor P as P_{θ} , leading to $$\hat{R}(\boldsymbol{\theta}; \mathcal{C}_S, \Lambda_S, \gamma) = \sum_{s=1}^{S} \hat{l}(P_{\boldsymbol{\theta},:s}(\mathcal{C}_S); C_s, \boldsymbol{\lambda}_s) + \gamma S(P_{\boldsymbol{\theta}}(\mathcal{C}_S)), \ S(P_{\boldsymbol{\theta}}(\mathcal{C}_S)) \stackrel{\triangle}{=} \sum_{i=1}^{N} \sum_{s=1}^{S} (1 - (2P_{\boldsymbol{\theta},is}(\mathcal{C}_S) - 1)^{\alpha}), \quad (3)$$ where γ is also annealed from a positive to a negative value as in CRA-PI-GNN solver in Section 2. Following the UL-based solvers (Karalias & Loukas, 2020; Schuetz et al., 2022b; Ichikawa, 2024), we encode P_{θ} via a GNN-based architecture. This study refer to the solver that applies CTRA to PI-GNN solver as CTRA-PI-GNN solver. In this study, we leverage a specialized GNN-based architecture, closely following the core designs of PI-GNN (Schuetz et al., 2022a) and CRA-PI-GNN (Ichikawa, 2024), to simultaneously address multiple problem instances defined by Eq. (3). Unlike existing solvers that produce a single solution for each instance, CTRA-PI-GNN solver only expands the node-embedding dimension of the final-layer from 1 to S when handling S instances, as shown in Fig. 1. Therefore, the number of parameters grows linearly solely in the output layer. This design is both memory- and cost-efficient, as the overall network size remains constant, and the training time remains comparable to solving a single instance. Moreover, to further reduce computation, we can initially train on a smaller representative subset $S' \subset S$ of problems and then fine-tune the final-layer embeddings as we move from S' to S. This two-stage process enables efficient learning. Details of the GNN architecture are provided in Appendix C.1. By maintaining the same network size except for the output layer, CTRA-PI-GNN solver essentially functions like a bottleneck in an autoencoder as illustrated in Fig. 1, encouraging the GNN to learn compact and shared representations across multiple problem instances. As a result, it naturally executes efficient parallel processing. Indeed, numerical experiments show that learning shared representations in this way yields better solutions compared to standard single-solution approaches such as PI-GNN and CTRA-PI-GNN solvers. In Appendix D.5, we present additional results demonstrating that CTRA-PI-GNN solves multiple similar problems more efficiently and effectively than CRA-PI-GNN. ## 3.2 CTRA for Finding Penalty-Diversified Solutions To find *penalty-diversified solutions*, we aim to minimize the following loss function for a problem instance C, which is a special case of Eq. (3): $$\hat{R}(\boldsymbol{\theta}; C, \Lambda_S, \gamma) = \sum_{s=1}^{S} \hat{l}(P_{\boldsymbol{\theta},:s}(C); C, \boldsymbol{\lambda}_s) + \gamma S(P_{\boldsymbol{\theta}}(C)). \tag{4}$$ By solving this optimization problem, each column $P_{\theta,:s}(C_s)$, for all $s \in [S]$, corresponds to the optimal solution for the penalty parameter λ_s . For penalty-diversified solutions, the variation in each s is primarily restricted to the penalty coefficient, leading to a strong correlation among instances. #### 3.3 CTRA for Finding Variation-Diversified Solutions Next, to explore variation-diversified
solutions for a single instance C with a penalty parameter λ , we introduce a diversity penalty into Eq. (3) as follows: $$\hat{R}(\boldsymbol{\theta}; C, \boldsymbol{\lambda}, \gamma, \nu) = \sum_{s=1}^{S} \hat{l}(P_{\boldsymbol{\theta},:s}(C); C, \boldsymbol{\lambda}) + \gamma S(P_{\boldsymbol{\theta}}(C)) + \nu \Psi(P_{\boldsymbol{\theta}}(C)),$$ $$\Psi(P_{\boldsymbol{\theta}}(C)) = -S \sum_{i=1}^{N} \mathbb{STD}\left[\{P_{\boldsymbol{\theta},is}(C)\}_{1 \leq s \leq S}\right], \quad (5)$$ where $\Psi(P_{\theta}(C))$ serves as a constraint term that promotes diversity in each column $P_{\theta,:s}(C)$, and ν is the parameter controlling the strength of this constraints. Setting $\nu=0$ in Eq. (5) is nearly equivalent to solving the same CO problem with different initial conditions. The following proposition establishes that the proposed diversity measure, $\Psi(P_{\theta}(C))$, serves as a natural relaxation of the diversity metric commonly employed in combinatorial optimization (CO) problems, known as the max-sum Hamming distance (Fomin et al., 2020; 2023; Baste et al., 2022; 2019). **Proposition 3.2.** For a set of binary sequences $\{x^{(s)}\}_{s=1}^{S}$, $\forall s, x^{(s)} \in \{0,1\}^{N}$, the following equality holds: $$S^{2} \sum_{i=1}^{N} \mathbb{VAR} \left[\left\{ x_{i}^{(s)} \right\}_{1 \leq s \leq S} \right] = \sum_{s \leq l} d_{H}(\boldsymbol{x}^{(s)}, \boldsymbol{x}^{(l)}), \tag{6}$$ where the right-hand side of Eq. (6) represents the max-sum Hamming distance. The detailed proof can be found in Appendix A.2. Note that Eq. (6) not only provides a natural relaxation of the max-sum Hamming distance but also reduces the computational complexity with respect to the number of parallel runs. Specifically, while computing the max-sum Hamming distance incurs a complexity of $\mathcal{O}(S^2)$, the proposed diversity penalty achieves a more efficient $\mathcal{O}(S)$ complexity. Consequently, as S grows, this formulation enables substantially faster gradient computations. This study employs the standard deviation in Eq. 5 to ensure consistency in scaling and sensitivity with other terms. ## 4 Related work A straightforward approach to obtaining penalty-diversified solutions is to solve multiple instances in parallel using different penalty coefficients with conventional solvers, provided that multiple CPUs are available. Alternatively, the penalty coefficient can be iteratively adjusted, solving the instance multiple times. However, both approaches face computational challenges, typically requiring significant computational resources or a long runtime. CTRA-PI-GNN solver overcomes these bottlenecks by leveraging GPU parallelism to efficiently generate penalty-diversified solutions within a runtime comparable to solving a single instance with a penalty parameter. In contrast, obtaining variation-diversified solutions is non-trivial, and extensive research has been conducted on this topic. A common approach is to select solutions that maximize a diversity measure, typically based on the Hamming distance (Fernau et al., 2019). Traditionally, in fields such as graph algorithms (Baste et al., 2019; 2022; Hanaka et al., 2021), constraint programming (Hebrard et al., 2005; Petit & Trapp, 2015), and mathematical programming (Danna et al., 2007; Danna & Woodruff, 2009; Petit & Trapp, 2019), two primary methods have been proposed (Hebrard et al., 2005): (1) offline diversity problems, where the entire set of solutions is computed at once, and (2) online diversity problems, where solutions are computed incrementally. Offline methods often require enumerating many solutions, many of which are similar, leading to scalability issues. Moreover, utilizing GPUs effectively in this context is not feasible. Due to their sequential nature, online methods are time-consuming, inherently non-parallelizable, and prone to becoming trapped in local optima. To overcome these limitations, we focus on methods that leverage GPUs to simultaneously compute high-quality solutions while maximizing diversity. # 5 Experiments This section evaluate the effectiveness of CTRA-PI-GNN solver in discovering penalty-diversified and variation-diversified solutions across three CO problems: the maximum independent set (MIS), maximum cut (MaxCut), diverse bipartite matching (DBM) problems. Their objective functions are summarized in Table 1 in Appendix C.3; For a detailed explanation, refer to Appendix C.3. #### 5.1 Settings Baseline. Our baseline include results from executing a greedy algorithms, PI-GNN solver (Schuetz et al., 2022a) and CRA-PI-GNN solver (Ichikawa, 2024) multiple times. These solvers are executed multiple times using different penalty parameters for penalty-diversified solutions and different random seeds for variation-diversified solutions, allowing us to assess the search efficiency for both types of diversified solutions. For the MIS problem, we employ a random greedy search implemented by NetworkX, and for the MaxCut problem, we use a random greedy search implemented by Mehta (2019). Although some online heuristics exist for exploring variation-diversified solutions by generating solutions that are distant from those already obtained, we do not include these methods as benchmarks due to their inefficient GPU utilization and poor scalability to large problems. We measure the runtime t of each execution, from model training to the final output. | | MIS (d = 5) | | | |-----------------------|-------------------------|--|--| | $Method \{ \#Runs \}$ | #Params | Time (s) | ApR^* | | PI-GNN {20} | $ 5,022,865\times20 $ | $13,189\pm60$ | 0.883 ± 0.002 | | $CRA \{20\}$ | $ 5,022,865 \times 20 $ | $14,\!400\!\pm\!42$ | $0.883 \pm 0.002 \\ \underline{0.961 \pm 0.002}$ | | CTRA {1} | 5,083,076 | $\underline{\textbf{1,194} \!\pm\! 8}$ | 0.934 ± 0.002 | | 2.0 | | 1.0 | |----------|---|--| | | ApR | #violations/N | | 1.8 | ▼ PI-GNN | ₹ PI-GNN 0.9 | | 1.6 | ▼ CRA-PI-GNN | ₹ CRA-PI-GNN 0.8 | | <u> </u> | ▼ CTRA-PI-GNN | | | 1.4 | | 0.7 | | 1.2 | | 0.6 v.suoisella 10.4 v. | | AQ 1.0 | | 0.5 T | | | | lates | | 0.8 | | 0.4 5 | | 0.6 | | 0.3 # | | 0.4 | | 0.2 | | 0.4 ₹ | | 0.2 | | 0.2 | | 0.1 | | 0.0 | | * * * * * * * 10.0 | | 2-2 20 : | 2^{2} 2^{4} 2^{6} 2^{8} 2^{8} | 10 212 214 216 | | | λ_s | | | | 743 | | | 2.0 | | 1.0 | | 1.8 | ApR | #violations/N | | | MIS $(d = 20)$ | | | |-----------------------|-----------------------------|--|------------------------------------| | $Method \ \{\#Runs\}$ | #Params | Time (s) | ApR^* | | PI-GNN {20} | $ 5,022,865\times20 $ | $15,191\pm24$ | 0.759 ± 0.007
0.928 ± 0.004 | | $CRA \{20\}$ | $ 5,022,865 \times 20 $ | $14,\!816\!\pm\!40$ | $\underline{0.928{\pm}0.004}$ | | CTRA {1} | $\underline{5,\!083,\!076}$ | $\underline{\textbf{1,254} {\pm} \textbf{10}}$ | 0.878 ± 0.011 | Figure 2: (Left Table) shows runtime (Time), number of parameters (#Params), and maximum ApR (ApR*) for each method. (Right Figure) shows ApRs across different penalty parameters Λ_s . Error represent the standard deviations of 5 random seeds. CTRA-PI-GNN solver can find penalty-diversified solutions in a single run with a comparable #Params and runtime to UL-based solvers that output a single solution. Implementation. This numerical experiment aims to validate that CTRA can generate penalty-diversified and variation-diversified solutions while maintaining a comparable number of parameters and runtime to UL-based solvers, which produce a single solution, as described in Section 3. Therefore, in our experiments, the CTRA-PI-GNN solver utilizes the same network architecture as the PI-GNN (Schuetz et al., 2022a) and CRA-PI-GNN (Ichikawa, 2024) solvers, except for the output size of the final layer as
discussed in Section 3. We use GraphSage, implemented with the Deep Graph Library (Wang et al., 2019). The detailed architectures of these GNNs are provided in Appendix C.1. We employ the AdamW (Kingma & Ba, 2014) optimizer with a learning rate of $\eta=10^{-4}$ and a weight decay of 10^{-2} . The GNNs are trained for up to 5×10^4 epochs with early stopping, which monitors the summarized loss function $\sum_{s=1}^S \hat{l}(P_{:,s})$ and the entropy term $\Phi(P;\gamma,\alpha)$, using a tolerance of 10^{-5} and patience of 10^3 epochs. Further details are provided in Appendix C.2. We set the initial scheduling value to $\gamma(0)=-20$ for the MIS and DBM problems and $\gamma(0)=-6$ for the MaxCut problems, using the same scheduling rate $\varepsilon=10^{-3}$ and curvature rate $\alpha=2$ in Eq. (3). Evaluation Metrics. Following the metric of Wang & Li (2023), we use the approximation rate (ApR) for all experiments, defined as $\operatorname{ApR} = f(\boldsymbol{x};C)/f(\boldsymbol{x}^*;C)$, where \boldsymbol{x}^* represents the optimal solutions. For MIS, these optimal solutions set to the theoretical results (Barbier et al., 2013), for DBM problems, they are identified using Gurobi 10.0.1 solver with default settings, and for MaxCut problems, they are the best-known solutions. To evaluate the quality of penalty-diversified solutions, we compute $\operatorname{ApR}^* = \max_{s \in [S]} (\operatorname{ApR}(\boldsymbol{x}_s))$ as a function of the parallel number S in Eq. (3). To evaluate the quality of variation-diversified solutions, we compute the average ApR , defined as $\operatorname{ApR} = \sum_{s=1}^{S} \operatorname{ApR} s/s$, and introduce a diversity score (DScore) for Figure 3: (Left Table) shows runtime (Time), number of parameters (#Params), and maximum ApR (ApR*) for each method, with errors representing the standard deviations of 5 random seeds. (Right Figure) shows ApRs, where each point represents the results from 5 random seed across various penalty parameters $\Lambda_S = \{\lambda_a, \lambda_a, \lambda_b, \lambda_b \mid \lambda_a, \lambda_b \in \{2^s \mid s = 0, \dots, 10\}\}$. CTRA-PI-GNN solver is capable of finding penalty-diversified solutions in a single run, with a comparable number of parameters and runtime to those of UL-based solvers. the bit sequences $\{x_s\}_{s=1}^S$: $$DScore(\{\boldsymbol{x}_s\}_{s=1}^S) = \frac{2}{NS(S-1)} \sum_{s < l} d_H(\boldsymbol{x}_s, \boldsymbol{x}_l)$$ A higher DScore indicates greater variation among solutions. A desirable variation-diversified solution should exhibit both high-quality solutions and a diverse set of solutions with distinct characteristics. Thus, solutions with higher values of both average ApR and DScore are more desirable. # 5.2 Finding Penalty-Diversified Solutions MIS Problems. First, we compare the performance of CTRA-PI-GNN on MIS problems in RRGs, G(V, E), with |V| = 10,000 nodes and the node degree of 5 and 20. CTRA-PI-GNN solver run using Eq. (4), with a set of penalty parameters, $\Lambda_S = \{2^{s-3} \mid s = 1, \dots, 20\}$. CRA-PI-GNN and PI-GNN solver run multiple times for each penalty parameter $\lambda_s \in \Lambda_S$. Fig. 2 (Right) shows the ApR as a function of penalty parameters $\lambda_s \in \Lambda_S$. Across all penalty parameters, from 2^{-2} to 2^{16} , CTRA-PI-GNN solver performs on par with or slightly underperforms CRA-PI-GNN solver. Table in Fig. 2 shows the runtime and number of paramers (#Params) for CTRA-PI-GNN solver at S = 20, compared to the total runtime and #Params for S runs of PI-GNN and CRA-PI-GNN solvers. These result indicate that CTRA-PI-GNN solver can find penalty-diversified solutions with a comparable number of parameters and runtime to UL-based solvers that output a single solution. For a more detailed discussion on the dependence of the runtime and the #params for number of shot S, refer to Appendix D.1. **DBM Problems.** We next demonstrate the effectiveness of CTRA-PI-GNN solver for DBM problems, which serve as practical CO problems. We focus on the first of the 27 DBM instances; see Appendix Figure 4: The obtained solutions by CTRA-PI-GNN solver for the MIS problem on a RRG with 30 nodes and the degree d = 3. Blue nodes represent the independent set. | | MIS (d = 20) | | | |--------------------------|--------------|-----------------------|--------------| | Method $\{\#Runs\}$ | Time (s) | $\bar{\mathrm{ApR}}$ | DScore | | Greedy {300} | 8 | 0.715 0.712 0.923 | 0.239 | | PI-GNN {300} | 13,498 | | 0.238 | | CRA {300} | 15,136 | | 0.248 | | CTRA ($\nu = 0.0$) {1} | 95 | 0.873 | 0.019 | | CTRA ($\nu = 0.2$) {1} | 154 | 0.936 | 0.260 | | CTRA ($\nu = 0.4$) {1} | 154 | 0.900 | 0.251 | | CTRA ($\nu = 0.6$) {1} | 149 | 0.852 | 0.257 | Figure 5: (Left Table) shows runtime (Time), average ApR (ApR), DScore for each method on MIS problems with a node degree d = 20. (Right Figure) shows the distribution of solutions in a 2-dimensional space using PCA with varying ν . D.6 for the results of the remaining instances. Given that (λ_1, λ_2) and (λ_3, λ_4) share similar properties, CTRA-PI-GNN run with a set of $S = 11 \times 11$ parameters on the a grid, $\Lambda_S = \{\lambda_s = (\lambda_a, \lambda_a, \lambda_b, \lambda_b)\}$, where $\lambda_a, \lambda_b \in \{2^s \mid s = 0, \dots, 10\}$. CRA-PI-GNN and PI-GNN solver run multiple times for each penalty parameter $\lambda_s \in \Lambda_S$ Fig. 3 (Right) shows that the ApR on the grid Λ_S using the CTRA-PI-GNN solver identifies a desirable region where the ApR is nearly 1.0. Table in Fig. 3 demonstrates that CTRA-PI-GNN solver can find penalty-diversified solutions with a comparable number of parameters and runtime to UL-based solvers that output a single solution. #### 5.3 Finding Variation-Diversified Solutions We next demonstrate that CTRA-PI-GNN solver can efficiently find variation-diversified solutions. Furthermore, we also show that the CTRA-PI-GNN solver enhances exploration capabilities and achieves higher-quality solutions. MIS Problems. We first run CTRA-PI-GNN solver using Eq. (5) to find variation-diversified solutions for MIS problems on small-scaled RRGs with 30 nodes and the node degree set to 3. We set the parameter $\nu=0.5$ and the number of shots tp S=100 in Eq. (5). As shown in Fig. 4, CTRA-PI-GNN solver successfully obtain 6 solutions, each with 13 independent sets, which is the global optimum. We extend the investigation to large-scale RRG with 10,000 nodes and a node degree d=20, which is known for its optimization challenges (Angelini & Ricci-Tersenghi, 2023). These experiments investigate how the quality of variation-diversified solutions depends on the parameter ν , using a fixed number of shots S=300. Fig. 5 (Right) shows a low dimensional visualization of the normalized solutions $\{P_{:s}\}_{s=1}^{300}$ using two-dimensional principal component analysis (PCA) mapping. The two principal components with the highest contribution rates are selected for different parameters $\nu=0.0,0.2,0.4,0.6$. These results indicate that increasing parameter ν leads to more diverse solutions, with the solution space becoming increasingly separated in the high-contribution region. Table in Fig. 5 measures the computation time, $A\bar{p}R$, and DScore when the parallel execution | | MaxCut G14 | | | | |--|--------------------------|---|---|--| | Method $\{\#Runs\}$ | Time (s) | $\bar{\mathrm{ApR}}$ | DScore | | | Greedy {1,000} PI-GNN {1,000} CRA {1,000} | 25,871
48,639 | 0.936
0.963
0.988 | 0.479
0.499
0.499 | | | CTRA ($\nu = 0.0$) {1}
CTRA ($\nu = 0.4$) {1}
CTRA ($\nu = 0.8$) {1}
CTRA ($\nu = 1.2$) {1} | 144
138
141
147 | 0.977
0.991
0.989
0.985 | 0.497
0.501
0.501
0.502 | | Figure 6: (Left Table) shows runtime (Time), average ApR (ApR), DScore for each method on MaxCut G14, with error representing the standard deviations of 5 random seeds. (Right Figure) shows the distribution of solutions in a 2-dimensional space using PCA with varying ν . number S=300 using different random seeds. The results show that although the time of CTRA-PI-GNN solver takes longer than executing the greedy algorithm multiple times, both ApR and DScore reach their maximum at $\nu=0.2$, yielding the highest quality variation-diversified solutions. Furthermore, increasing parameter ν enhances the exploration capability of GNN, leading to better solutions than those obtained by conventional PI-GNN and CRA-PI-GNN; see Appendix D.2. MaxCut Problems. Next, we evaluate the ability to find variation-diversified solutions in the G14 instance of Gset, which primarily has four-clustered solution space. We set the number of shot S=1,000 in Eq. (5). Fig. 6 (Right) demonstrates that CTRA-PI-GNN solver can capture four-clustered solutions beyond a certain value of ν . Table in Fig. 6 measures the computation time, ApR, and DScore when the parallel execution number S=1,000 is performed using different random seeds. The results show that although the runtime of CTRA-PI-GNN solver is slower compared to executing the greedy algorithm multiple times, ApR and DScore reach their maximum at $\nu=0.4$ and $\nu=1.2$, respectively. Additionally, similar to MIS problems, exploration enhancement is consistent across various instances of Gset. For further details; see Appendix D.3. # 6 Conclusion This study introduces the CTRA framework for UL-based solvers designed to efficiently find penalty-diversified and variation-diversified solutions within a single training process. Our numerical experiments demonstrate that CTRA can produce penalty-diversified and variation-diversified solutions while
maintaining a comparable number of parameters and runtime to conventional UL-based solvers that generate only a single solution. This approach not only enhances the computational efficiency in finding these diversified solutions but also improves the search capabilities, leading to higher-quality solutions compared to existing UL-based solvers that find a single solution and greedy algorithms. ## References Bahram Alidaee, Gary A Kochenberger, and Ahmad Ahmadian. 0-1 quadratic programming approach for optimum solutions of two scheduling problems. *International Journal of Systems Science*, 25(2):401–408, 1994. Maria Chiara Angelini and Federico Ricci-Tersenghi. Modern graph neural networks do worse than classical greedy algorithms in solving combinatorial optimization problems like maximum independent set. *Nature Machine Intelligence*, 5(1):29–31, 2023. - Jean Barbier, Florent Krzakala, Lenka Zdeborová, and Pan Zhang. The hard-core model on random graphs revisited. In *Journal of Physics: Conference Series*, volume 473, pp. 012021. IOP Publishing, 2013. - Julien Baste, Lars Jaffke, Tomáš Masařík, Geevarghese Philip, and Günter Rote. Fpt algorithms for diverse collections of hitting sets. *Algorithms*, 12(12):254, 2019. - Julien Baste, Michael R Fellows, Lars Jaffke, Tomáš Masařík, Mateus de Oliveira Oliveira, Geevarghese Philip, and Frances A Rosamond. Diversity of solutions: An exploration through the lens of fixed-parameter tractability theory. *Artificial Intelligence*, 303:103644, 2022. - Mohsen Bayati, David Gamarnik, and Prasad Tetali. Combinatorial approach to the interpolation method and scaling limits in sparse random graphs. In *Proceedings of the forty-second ACM symposium on Theory of computing*, pp. 105–114, 2010. - Amin Coja-Oghlan and Charilaos Efthymiou. On independent sets in random graphs. Random Structures & Algorithms, 47(3):436–486, 2015. - Emilie Danna and David L Woodruff. How to select a small set of diverse solutions to mixed integer programming problems. *Operations Research Letters*, 37(4):255–260, 2009. - Emilie Danna, Mary Fenelon, Zonghao Gu, and Roland Wunderling. Generating multiple solutions for mixed integer programming problems. In *International Conference on Integer Programming and Combinatorial Optimization*, pp. 280–294. Springer, 2007. - Michel Deza and Monique Laurent. Applications of cut polyhedra—ii. *Journal of Computational and Applied Mathematics*, 55(2):217–247, 1994. - Aaron Ferber, Bryan Wilder, Bistra Dilkina, and Milind Tambe. Mipaal: Mixed integer program as a layer. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 34, pp. 1504–1511, 2020. - Henning Fernau, Petr Golovach, Marie-France Sagot, et al. Algorithmic enumeration: Output-sensitive, input-sensitive, parameterized, approximative (dagstuhl seminar 18421). In *Dagstuhl Reports*, volume 8. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019. - Fedor V Fomin, Petr A Golovach, Lars Jaffke, Geevarghese Philip, and Danil Sagunov. Diverse pairs of matchings. arXiv preprint arXiv:2009.04567, 2020. - Fedor V Fomin, Petr A Golovach, Fahad Panolan, Geevarghese Philip, and Saket Saurabh. Diverse collections in matroids and graphs. *Mathematical Programming*, pp. 1–33, 2023. - Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message passing for quantum chemistry. In *International conference on machine learning*, pp. 1263–1272. PMLR, 2017. - Tesshu Hanaka, Yasuaki Kobayashi, Kazuhiro Kurita, and Yota Otachi. Finding diverse trees, paths, and more. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pp. 3778–3786, 2021. - Emmanuel Hebrard, Brahim Hnich, Barry O'Sullivan, and Toby Walsh. Finding diverse and similar solutions in constraint programming. In AAAI, volume 5, pp. 372–377, 2005. - Yuma Ichikawa. Controlling continuous relaxation for combinatorial optimization. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Information Processing Systems, volume 37, pp. 47189-47216. Curran Associates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/54191f424e9013fc1d7b923f6e45dff4-Paper-Conference.pdf. - Nikolaos Karalias and Andreas Loukas. Erdos goes neural: an unsupervised learning framework for combinatorial optimization on graphs. Advances in Neural Information Processing Systems, 33:6659–6672, 2020. - Richard M Karp. Reducibility among combinatorial problems. Springer, 2010. - Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. - Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. Optimization by simulated annealing. *science*, 220(4598):671–680, 1983. - Bernhard H Korte, Jens Vygen, B Korte, and J Vygen. Combinatorial optimization, volume 1. Springer, 2011. - Jayanta Mandi, Victor Bucarey, Maxime Mulamba Ke Tchomba, and Tias Guns. Decision-focused learning: through the lens of learning to rank. In *International Conference on Machine Learning*, pp. 14935–14947. PMLR, 2022. - Hermish Mehta. Cvx graph algorithms. https://github.com/hermish/cvx-graph-algorithms, 2019. - Maxime Mulamba, Jayanta Mandi, Michelangelo Diligenti, Michele Lombardi, Victor Bucarey, and Tias Guns. Contrastive losses and solution caching for predict-and-optimize. arXiv preprint arXiv:2011.05354, 2020. - Hartmut Neven, Geordie Rose, and William G Macready. Image recognition with an adiabatic quantum computer i. mapping to quadratic unconstrained binary optimization. arXiv preprint arXiv:0804.4457, 2008. - Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: algorithms and complexity. Courier Corporation, 1998. - Thierry Petit and Andrew C Trapp. Finding diverse solutions of high quality to constraint optimization problems. In *IJCAI*. International Joint Conference on Artificial Intelligence, 2015. - Thierry Petit and Andrew C Trapp. Enriching solutions to combinatorial problems via solution engineering. *INFORMS Journal on Computing*, 31(3):429–444, 2019. - Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The graph neural network model. *IEEE transactions on neural networks*, 20(1):61–80, 2008. - Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Combinatorial optimization with physics-inspired graph neural networks. *Nature Machine Intelligence*, 4(4):367–377, 2022a. - Martin JA Schuetz, J Kyle Brubaker, Zhihuai Zhu, and Helmut G Katzgraber. Graph coloring with physics-inspired graph neural networks. *Physical Review Research*, 4(4):043131, 2022b. - Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad. Collective classification in network data. *AI magazine*, 29(3):93–93, 2008. - Haoran Sun, Etash K Guha, and Hanjun Dai. Annealed training for combinatorial optimization on graphs. arXiv preprint arXiv:2207.11542, 2022. - Haoyu Wang and Pan Li. Unsupervised learning for combinatorial optimization needs meta-learning. arXiv preprint arXiv:2301.03116, 2023. - Haoyu Peter Wang, Nan Wu, Hang Yang, Cong Hao, and Pan Li. Unsupervised learning for combinatorial optimization with principled objective relaxation. *Advances in Neural Information Processing Systems*, 35:31444–31458, 2022. - Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma, Lingfan Yu, Yu Gai, et al. Deep graph library: A graph-centric, highly-performant package for graph neural networks. arXiv preprint arXiv:1909.01315, 2019. - Y. Ye. The gset dataset. https://web.stanford.edu/~yyye/yyye/Gset/, 2003. Hejia Zhang, Matthew Fontaine, Amy Hoover, Julian Togelius, Bistra Dilkina, and Stefanos Nikolaidis. Video game level repair via mixed integer linear programming. In *Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment*, volume 16, pp. 151–158, 2020. # **A** Derivations ## A.1 Proof of Theorem 3.1 Following the proof of Ichikawa (2024), we show Theorem 3.1 based on following three lemmas. **Lemma A.1.** For any even natural number $\alpha = 2, 4, ...$, the function $\phi(p) = 1 - (2p - 1)^{\alpha}$ defined on [0, 1] achieves its maximum value of 1 when p = 1/2 and its minimum value of 0 when p = 0 or p = 1. *Proof.* The derivative of $\phi(p)$ relative to p is $\phi'(p) = -2\alpha(2p-1)$, which is zero when p = 1/2. This is a point where the function is maximized because the second derivative $\phi''(p) = -4\alpha \le 0$. In addition, this function is concave and symmetric relative to p = 1/2 because α is an even natural number, i.e., $\phi(p) = \phi(1-p)$, thereby achieving its minimum value of 0 when p = 0 or p = 1. **Lemma A.2.** For any even natural number $\alpha=2,4,\ldots$ and a matrix $P\in[0,1]^{N\times S}$, if $\lambda\to+\infty$, minimizing the penalty term $\Phi(P;\gamma)=\gamma\sum_{s=1}^{S}\sum_{i=1}^{N}(1-(2P_{is}-1)^{\alpha})=\gamma\sum_{s=1}^{S}\sum_{i=1}^{N}\phi(P_{is};\alpha)$ enforces that the components of P_{is} must be either 0 or 1 and, if $\gamma\to-\infty$, the penalty term enforces $P=\mathbf{1}_N\mathbf{1}_N^\top/2$. *Proof.* From Lemma A.1, as $\gamma \to +\infty$, the case where $\phi(P_{is})$ becomes minimal occurs when, for each $i, s, p_{is} = 0$ or $p_i = 1$. In addition, as $\gamma \to -\infty$, the case where $\phi(p; \gamma)$ is minimized occurs when, for each i, P_{is} reaches its maximum value with $P_{is} = 1/2$. **Lemma A.3.** $\Phi(P; \gamma) = \gamma \sum_{s=1}^{S} \sum_{i=1}^{N} (1 - (2p_i - 1)^{\alpha}) = \gamma \sum_{s=1}^{S} \sum_{i=1}^{N} \phi(p_i; \alpha)$ is concave when λ is positive and is a convex function when λ is negative. Proof. Note that $\Phi(P;\gamma) = \gamma \sum_{s=1}^{S} \sum_{i=1}^{N} \phi(P_{is};\alpha) = \gamma \sum_{i=1}^{N} (1 - (2P_{is} - 1)^{\alpha})$ is separable across its components P_{is} . Thus, it is sufficient to
prove that each $\gamma \phi(P_{is};\alpha)$ is concave or convex in P_{is} because the sum of the concave or convex functions is also concave (and vice versa). Therefore, we consider the second derivative of $\gamma \phi_i(P_{is};\alpha)$ with respect to P_{is} : $$\gamma \frac{d^2 \phi_i(P_{is}; \alpha)}{dP_{is}^2} = -4\gamma \alpha$$ Here, if $\gamma > 0$, the second derivative is negative for all $p_i \in [0, 1]$, and this completes the proof that $\Phi(P; \gamma, \alpha)$ is a concave function when γ is positive over the domain $\mathbf{p} \in [0, 1]^N$ **Theorem A.4.** Under the assumption that the objective function $\sum_s \hat{l}(P_{:s}; C_s, \lambda_s)$ is bounded within the domain $[0,1]^{N\times S}$, for any $S\in\mathbb{N}$, $C_s\in\mathcal{C}_S$ and $\lambda_s\in\Lambda_S$, as $\gamma\to+\infty$, each column $P_{:s}^*$ of the soft solutions $P^*\in \mathrm{argmin}_P\hat{R}(P;\mathcal{C}_S,\Lambda_S,\gamma)$ converges to the original solutions $\mathbf{x}^*\in \mathrm{argmin}_{\mathbf{x}}l(\mathbf{x};C_s,\lambda_s)$. In addition, as $\gamma\to-\infty$, the loss function $\hat{R}(P;\mathcal{C}_S,\Lambda_S)$ becomes convex and the soft solution $\mathbf{1}_N\mathbf{1}_N^\top/2=\mathrm{argmin}_P\hat{R}(P;\mathcal{C}_S,\Lambda_S,\gamma)$ is unique. Proof. As $\lambda \to +\infty$, the penalty term $\Phi(P; \lambda)$ dominates the loss function $\hat{R}(\mathbf{p}; C, \lambda, \gamma)$. According to Lemma A.2, this penalty term forces the optimal solution P^* to have components p_{is}^* that are either 0 or 1 because any nonbinary value will result in an infinitely large penalty. This effectively restricts the feasible region to the vertices of the unit hypercube, which correspond to the binary vector in $\{0,1\}^{NS}$. Thus, as $\lambda \to +\infty$, the solutions to the relaxed problem converge to $X = \operatorname{argmin}_{X \in \{0,1\}^{N \times S}} R(X_{:s}; C_s, \lambda_s)$. Furthermore, $\operatorname{argmin}_{X \in \{0,1\}^{N \times S}} R(X_{:s}; C_s, \lambda_s)$ is separable as $\sum_{s=1}^{S} \operatorname{argmin}_{x \in \{0,1\}^{N}} l(x; C_s, \lambda_s)$, which indicate that each columns $X_{:s}^{*} \in \operatorname{argmin}_{x \in \{0,1\}^{N}} l(x; C_s, \lambda_s)$. As $\lambda \to -\infty$, the penalty term $\Phi(p; \alpha)$ also dominates the loss function $\hat{r}(p; C, \lambda, \gamma)$ and the $\hat{r}(p; C, \lambda)$ convex function from Lemma A.3. According to Lemma A.2, this penalty term forces the optimal solution $P^* = \mathbf{1}_N \mathbf{1}_N / 2$. ## A.2 Proof of Proposition 3.2 In this section, we derive the following Proposition. **Proposition A.5.** For binary sequences $\{x_s\}_{s=1}^S$, $\forall s, x_s \in \{0,1\}^N$, following equality holds $$S^{2} \sum_{i=1}^{N} \mathbb{VAR}\left[\{\boldsymbol{x}_{s,i}\}_{1 \leq s \leq S} \right] = \sum_{s < l} d_{H}(\boldsymbol{x}_{s}, \boldsymbol{x}_{l}). \tag{7}$$ where the right-hand side of Eq. (7) is the max-sum Hamming distance. *Proof.* We first note that, for binary vectors $x_s, x_l \in \{0,1\}^N$, the Hamming distance is expressed as follows: $$d_H(\boldsymbol{x}_s, \boldsymbol{x}_l) = \sum_{i=1}^{N} (x_{s,i}^2 + x_{l,i}^2 - 2x_{s,i}x_{l,i}).$$ Based on this expression, the diversity metric $\sum_{s< l} d_H(X_{:s}, X_{:l})$ can be expanded for a binary matrix $X \in \{0,1\}^{N \times S}$ as follows: $$\sum_{s $$= \frac{1}{2} \sum_{i=1}^N \sum_{s,l} (X_{:s,i}^2 + X_{:l,i}^2 - 2X_{:s,i}X_{:l,i})$$ $$= S \sum_i^N \left(\sum_s X_{:s,i}^2 - \frac{1}{S} \sum_{s,l} X_{:s,i}X_{:l,i} \right).$$$$ On the other hand, the variance of each column in a binary matrix X can be expanded as follows: $$\begin{split} S^2 \sum_{i=1}^N \mathbb{VAR} \left[\{X_{s,i}\}_{1 \leq s \leq S} \right] &= S \sum_{i=1}^N \sum_{s'=1}^S \left(X_{:s',i} - \frac{1}{S} \sum_s X_{:s,i} \right)^2 \\ &= S \sum_{i=1}^N \sum_{s'=1}^S \left(X_{:s',i}^2 - 2X_{:s',i} \frac{\sum_s X_{:s,i}}{S} + \frac{\sum_{s,l} X_{:s,i} X_{:l,i}}{S^2} \right) \\ &= S \sum_{i=1}^N \left(\sum_{s'} X_{:s',i}^2 - \frac{2 \sum_{s',s} X_{:s',i} X_{:s,i}}{S} + \frac{\sum_{s,l} X_{:s,i} X_{:l,i}}{S} \right) \\ &= S \sum_{i=1}^N \left(\sum_{s'} X_{:s',i}^2 + \frac{1}{S} \sum_{sl} X_{:s,i} X_{:l,i} \right) \\ &= \sum_{s \leq l} d_H(X_{:s}, X_{:l}). \end{split}$$ By this, we finish the proof. #### **B** Additional Implementation Details #### B.1 Graph Neural Networks A graph neural network (GNN) (Gilmer et al., 2017; Scarselli et al., 2008) is a specialized NN for representation learning of graph-structured data. GNNs learn a vectorial representation of each node through two steps. (I) Aggregate step: This step employs a permutation-invariant function to generate an aggregated node feature. (II) Combine step: Subsequently, the aggregated node feature is passed through a trainable layer to generate a node embedding, known as 'message passing' or 'readout phase.' Formally, for given graph G = (V, E), where each node feature $\mathbf{h}_v^0 \in \mathbb{R}^{N^0}$ is attached to each node $v \in V$, the GNN iteratively updates the following two steps. First, the aggregate step at each k-th layer is defined by $$\boldsymbol{a}_{v}^{k} = \operatorname{Aggregate}_{\theta}^{k} \left(\left\{ h_{u}^{k-1}, \forall u \in \mathcal{N}_{v} \right\} \right),$$ where the neighborhood of $v \in V$ is denoted as $\mathcal{N}_v = \{u \in V \mid (v, u) \in E\}$, \boldsymbol{h}_u^{k-1} is the node feature of neighborhood, and \boldsymbol{a}_v^k is the aggregated node feature of the neighborhood. Second, the combined step at each k-th layer is defined by $$\boldsymbol{h}_{v}^{k} = \text{Combine}_{\theta}^{k}(\boldsymbol{h}_{v}^{k-1}, \boldsymbol{a}_{v}^{k}),$$ where $\mathbf{h}_v^k \in \mathbb{R}^{N^k}$ denotes the node representation at k-th layer. The total number of layers, K, and the intermediate vector dimension, N^k , are empirically determined hyperparameters. Although numerous implementations for GNN architectures have been proposed, the most basic and widely used GNN architecture is a graph convolutional network (GCN) (Scarselli et al., 2008) given by $$m{h}_v^k = \sigma \left(W^k \sum_{u \in \mathcal{N}(v)} rac{m{h}_u^{k-1}}{|\mathcal{N}(v)|} + B^k m{h}_v^{k-1} ight),$$ where W^k and B^k are trainable parameters, $|\mathcal{N}(v)|$ serves as normalization factor, and $\sigma: \mathbb{R}^{N^k} \to \mathbb{R}^{N^k}$ is some component-wise nonlinear activation function such as sigmoid or ReLU function. # **C** Experiment Details This section describes the details of the experiments. #### C.1 Architecture of GNNs We describe the details of the GNN architectures used in our numerical experiments. For each node $v \in V$, the first convolutional layer takes a node embedding vectors, $\boldsymbol{h}_{v,\boldsymbol{\theta}}^0$ for each node, yielding feature vectors $\boldsymbol{h}_{v,\boldsymbol{\theta}}^1 \in \mathbb{R}^{H_1}$. Then, the ReLU function is used as a component-wise nonlinear transformation. The second convolutional layer takes the feature vector, $\boldsymbol{h}_{\boldsymbol{\theta}}^1$, as input, producing a feature vector $\boldsymbol{h}_{v,\boldsymbol{\theta}}^2 \in \mathbb{R}^S$. Finally, a sigmoid function is applied to the vector $\boldsymbol{h}_{\boldsymbol{\theta}}^2$, producing the tensor solutions $P_{v,\boldsymbol{\theta}} \in [0,1]^{N \times S}$. Here, for MIS and MaxCut problems, we set $|H_0| = \operatorname{int}(N^{0.8})$ as in Schuetz et al. (2022a); Ichikawa (2024), and for the DBM problems, we set it to 2,500. Across all problems, we set $H_1 = H_0$, and $H_2 = S$. We conducted all experiments by using V100GPU. #### C.2 Training setting and post-rounding method We use the AdamW (Kingma & Ba, 2014) optimizer with a learning rate as $\eta=10^{-4}$ and weight decay as 10^{-2} . The training the GNNs conducted for a duration of up to 5×10^4 epochs with early stopping, which monitors the summarized loss function $\sum_{s=1}^S \hat{l}(P_{:,s})$ and penalty term $\Phi(P;\gamma,\alpha)$ with tolerance 10^{-5} and patience 10^3 . After the training phase, we apply projection heuristics to round the obtained soft solutions back to discrete solutions using simple projection, where for all $i \in [N], s \in [S]$, we map $P_{\theta,i,s}$ to 0 if $P_{\theta,i,s} \leq 0.5$ and $P_{\theta,i,s}$ to 1 if $P_{\theta,i,s} > 0.5$. Note that due to the annealing, CTRA-PI-GNN solver ensures that the soft solution are nearly binary for all benchmarks, making them robust against the threshold 0.5 in our experiments. #### C.3 Problem specification Maximum independent set problems There are some theoretical results for MIS problems on RRGs with the node degree set to d, where each node is connected to exactly d other nodes. The MIS problem is a fundamental NP-hard problem (Karp, 2010) defined as follows. Given an undirected graph G(V, E), an | Table 1: The objective functions for the three problems to be studied. | | | | |--|---|--|--| | Objective Function | Parameters | | | | MIS $l(\boldsymbol{x}; G, \lambda) = -\sum_{i \in V} x_i + \lambda \sum_{(i,j) \in E} x_i x_j$ | V = N | | | | MaxCut $ l(\boldsymbol{x}; G) = \sum_{i < j} A_{ij} (2x_i x_j - x_i - x_j)$ | $A \in \mathbb{R}^{N \times N}$ | | | | DBM $ l(\boldsymbol{x}; C = \{A, M\}, \boldsymbol{\lambda}) = -\sum_{ij} A_{ij} x_{ij} + \lambda_1 \sum_i \text{ReLU}(\sum_j x_{ij} - 1) $ $ + \lambda_2 \sum_j \text{ReLU}(\sum_i x_{ij} - 1) + \lambda_3 \text{ReLU}(p \sum_{ij} x_{ij} - \sum_{ij} M_{ij} x_{ij}) $ $ + \lambda_4 \text{ReLU}(q \sum_{ij} x_{ij}
- \sum_{ij} (1 - M_{ij}) x_{ij}) $ | $A \in \mathbb{R}^{N_1 \times N_2}$ $M \in \mathbb{R}^{N_1 \times N_2}$ $p, q \in \mathbb{R}$ | | | independent set (IS) is a subset of nodes $\mathcal{I} \in V$ where any two nodes in the set are not adjacent. The MIS problem attempts to find the largest IS, which is denoted \mathcal{I}^* . In this study, ρ denotes the IS density, where $\rho = |\mathcal{I}|/|V|$. To formulate the problem, a binary variable x_i is assigned to each node $i \in V$. Then the MIS problem is formulated as follows: $$f(\mathbf{x}; G, \lambda) = -\sum_{i \in V} x_i + \lambda \sum_{(i,j) \in E} x_i x_j,$$ where the first term attempts to maximize the number of nodes assigned 1, and the second term penalizes the adjacent nodes marked 1 according to the penalty parameter λ . In our numerical experiments, we set $\lambda = 2$, following Schuetz et al. (2022a), no violation is observed as in (Schuetz et al., 2022a). First, for every d, a specific value ρ_d^* , which is dependent on only the degree d, exists such that the independent set density $|\mathcal{I}^*|/|V|$ converges to ρ_d^* with a high probability as N approaches infinity (Bayati et al., 2010). Second, a statistical mechanical analysis provides the typical MIS density ρ_d^{Theory} , and we clarify that for d > 16, the solution space of \mathcal{I} undergoes a clustering transition, which is associated with hardness in sampling (Barbier et al., 2013) because the clustering is likely to create relevant barriers that affect any algorithm searching for the MIS \mathcal{I}^* . Finally, the hardness is supported by analytical results in a large d limit, which indicates that, while the maximum independent set density is known to have density $\rho_{d\to\infty}^* = 2\log(d)/d$, to the best of our knowledge, there is no known algorithm that can find an independent set density exceeding $\rho_{d\to\infty}^{\text{alg}} = \log(d)/d$ (Coja-Oghlan & Efthymiou, 2015). Diverse bipartite matching (DBM) problems We adopt this CO problem from Ferber et al. (2020); Mulamba et al. (2020); Mandi et al. (2022) as a practical example. The topologies are sourced from the CORA citation network (Sen et al., 2008), where each node signifying a scientific publication, is characterized by 1,433 bag-of-words features, and the edges represents represents the likelihood of citation links. Mandi et al. (2022) focused on disjoint topologies, creating 27 distinct instances. Each instance is composed of 100 nodes, categorised into two group of 50 nodes, labeled N_1 and N_2 . The objective of DBM problems is to find the maximum matching under diversity constraints for similar and different fields. It is formulated as follows: $$l(\boldsymbol{x}; C, M, \boldsymbol{\lambda}) = -\sum_{ij} C_{ij} x_{ij} + \lambda_1 \sum_{i=1}^{N_1} \text{ReLU} \Big(\sum_{j=1}^{N_2} x_{ij} - 1 \Big) + \lambda_2 \sum_{j=1}^{N_2} \text{ReLU} \Big(\sum_{i=1}^{N_1} x_{ij} - 1 \Big)$$ $$+ \lambda_3 \text{ReLU} \Big(p \sum_{ij} x_{ij} - \sum_{ij} M_{ij} x_{ij} \Big) + \lambda_4 \text{ReLU} \Big(q \sum_{ij} x_{ij} - \sum_{ij} (1 - M_{ij}) x_{ij} \Big),$$ where a reward matrix $C \in \mathbb{R}^{N_1 \times N_2}$ indicates the likelihood of a link between each node pair, for all i, j, M_{ij} is assigned 0 if articles i and j belong to the same field, or 1 if they don't. The parameters $p, q \in [0, 1]$ represent the probability of pairs being in the same field and in different fields, respectively. Following (Mandi et al., 2022), we examine two variations of this problem: Matching-1 and Matching-2, characterized by p and q values of 25% and 5%. Figure 7: The runtime of the CTRA-PI-GNN solver, compared to S individual runs of the CRA-PI-GNN solver, as a function of number of shots S. Error bars represent the standard deviations of 5 random seeds. Maximum cut problems The MaxCut problem, a well-known NP hard problems (Karp, 2010), has practical application in machine scheduling (Alidaee et al., 1994), image recognition (Neven et al., 2008) and electronic circuit layout design (Deza & Laurent, 1994). It is defined as follows: In an undirected graph G = (V, E), a cut set $C \in E$, which is a subset of edges, divides the nodes into two groups $(V_1, V_2 \mid V_1 \cup V_2 = V, V_1 \cap V_2 = \emptyset)$. The objective the MaxCut problem is to find the largest cut set. To formulate this problem, each node is assigned a binary variable: $x_i = 1$ signifies that node i is in V_1 , while $x_i = 0$ indicates node i is in V_2 . For an edge (i, j), $x_i + x_j - 2x_ix_j = 1$ is true if $(i, j) \in C$; otherwise, it equal 0. This leads to the following objective function: $$l(\boldsymbol{x};G) = \sum_{i < j} A_{ij} (2x_i x_j - x_i - x_j)$$ where A_{ij} is the adjacency matrix, where $A_{ij} = 0$ signifies the absence of an edge, and $A_{ij} > 0$ indicates a connecting edge. Following Schuetz et al. (2022a); Ichikawa (2024), this experiments employ seven instances from Gset dataset (Ye, 2003), recognized as a standard MaxCut benchmark. These seven instances are defined on distinct graphs, including Erdös-Renyi graphs with uniform edge probability, graphs with gradually decaying connectivity from 1 to N, 4-regular toroidal graphs, and one of the largest instance with 10,000 nodes. # **D** Additional Experiments ## D.1 Runtime and # Params as a function of number of shots In this section, we investigate the runtime of CTRA-PI-GNN solver as a function of the number of shots, S, compared to the runtime for S individual runs of CRA-PI-GNN solver. Fig. 7 shows each runtime as a function of the number of shots S. For this analysis, we incrementally increase the number of shots, further dividing the range of penalty parameters from 2^{-2} to 2^{17} . The results indicate that CTRA-PI-GNN solver can find penalty-diversified solutions within a runtime nearly identical to that of a single run of CRA-PI-GNN solver for shot numbers S from 2^0 to 2^{10} . However, for $S > 10^2$, we observe a linear increase in runtime as the number of shots S grows because of the limitation of memory of GPUs. Fig. 8 (right) shows the distribution of Hamming distances combination, $\{d_H(P_{:s}, P_{:l})\}_{1 \le s < l \le 300}$, and the count of unique solutions with different $\nu = 0.00, 0.05, 0.10, 0.20$, whereas Fig. 7 (right) shows the maximum ApR, i.e., $\max_{s=1,...,300} \text{ApR}(P_{:,s})$ as a function of the parameter ν . These results indicate that the CTRA-PI-GNN solver can find more variation-diversified solutions as the parameter ν increases. Furthermore, This result indicates that the CTRA-PI-GNN solver can boost the exploration capabilities of the CRA-PI-GNN solver, leading to the discovery of better solutions. #### D.2 Additional results of variation-diversified solutions for MIS Fig. 8 (right) shows the distribution of Hamming distances combination, $\{d_H(P_{:s}, P_{:l})\}_{1 \le s < l \le 300}$, and the count of unique solutions with different $\nu = 0.00, 0.05, 0.10, 0.20$, whereas Fig. 8 (right) shows the maximum ApR, i.e., $\max_{s=1,\ldots,300} \text{ApR}(P_{:s})$ as a function of the parameter ν . These results indicate that the CTRA- Figure 8: The density of Hamming distance combination of the solution, $\{d_H(P_{:s}, P_{:l})\}_{1 \le s < l \le 300}$, with different parameters ν and the count of unique solutions (left), and the maximum ApR, $\max_{s=1,...,300} \text{ApR}(P_{:s})$, as a function of the parameter ν . Figure 9: The density of Hamming distance combination of the solution, $\{d_H(P_{:s}, P_{:l})\}_{1 \leq s < l \leq 1000}$ in MaxCut G14, with different parameters ν and the count of unique solutions PI-GNN solver can find more variation-diversified solutions as the parameter ν increases. Furthermore, This result indicates that the CTRA-PI-GNN solver can boost the exploration capabilities of the CRA-PI-GNN solver, leading to the discovery of better solutions. ## D.3 Additional results of variation-diversified solutions for MaxCut G14. In this section, to supplement the results of the variation-diversified solutions for MaxCut G14 in Section 5.3, we present the results of the Hamming distance distribution. Fig. 9 shows the distribution of combinations of solution Hamming distances under the same settings as in Section 5.1. From these results, it is evident that the CTRA-PI-GNN solver has acquired solutions in four distinct clusters. ## D.4 Additional results for validation of exploration ability These improvement is consistent across other Gset instances on distict graphs with varying nodes, as shown in Table. 2. In these experiment, we fix as $\nu = 6$ and evaluate the maximum ApR, $\max_{s=1,...,1000} \text{ApR}(P_{:s})$. This result shows that CTRA-PI-GNN solver outperforme CRA-PI-GNN, PI-GNN, and RUN-CSP solvers. | (Nodes, Edges) | CSP | PΙ | CRA | CTRA | |---------------------|-------|-------|-------|-------| | G14 (800, 4,694) | 0.960 | 0.988 | 0.994 | 0.997 | | G15 (800, 4,661) | 0.960 | 0.980 | 0.992 | 0.995 | | G22 (2,000, 19,990) | 0.975 | 0.987 | 0.998 | 0.999 | | G49 (3,000, 6,000) | 1.000 | 0.986 | 1.000 | 1.000 | | G50 (3,000, 6,000) | 1.000 | 0.990 | 1.000 | 1.000 | | G55 (5,000, 12,468) | 0.982 | 0.983 | 0.991 | 0.994 | | G70 (10,000, 9,999) | _ | 0.982 | 0.992 | 0.997 | Table 2: Numerical results for MaxCut on Gset instances Figure 10: The ApR of DBM (Matching-1) using CTRA-PI-GNN and CRA-PI-solvers (Ichikawa, 2024). ## D.5 CTRA for Multi-instance Solutions In this section, we numerically demonstrate that the CTRA-PI-GNN solver can efficiently solve multiple problems with similar structures. The numerical experiments solve all 27 DBM instances using the CTRA-PI-GNN solver with the following loss function: $$\hat{R}(\boldsymbol{\theta}; \mathcal{C}_S, \boldsymbol{\lambda}, \gamma) = \sum_{s=1}^{S} \hat{l}(\boldsymbol{\theta}; C_s, \boldsymbol{\lambda}_s) + S(\boldsymbol{\theta};
\mathcal{C}_S, \gamma, \alpha),$$ $$S(\boldsymbol{\theta}, \mathcal{C}_S, \gamma, \alpha) \triangleq \gamma \sum_{s=1}^{N} \sum_{s=1}^{S} (1 - (2P_{\boldsymbol{\theta}, is}(C_s) - 1)^{\alpha}).$$ where $C_S = \{C_s, M_s\}_{s=1}^{27}$ represents the instance parameters, and \hat{l} is defined as follows: $$\begin{split} l(\boldsymbol{x}; C, M, \boldsymbol{\lambda}) &= -\sum_{i,j} C_{ij} x_{ij} \\ &+ \lambda_1 \sum_i \text{ReLU} \Big(\sum_j x_{ij} - 1 \Big) + \lambda_2 \sum_j \text{ReLU} \Big(\sum_i x_{ij} - 1 \Big) \\ &+ \lambda_3 \text{ReLU} \Big(p \sum_{ij} x_{ij} - \sum_{ij} M_{ij} x_{ij} \Big) \\ &+ \lambda_4 \text{ReLU} \Big(q \sum_{ij} x_{ij} - \sum_{ij} (1 - M_{ij}) x_{ij} \Big), \end{split}$$ where λ is fixed as $\lambda = (\lambda_1, \lambda_2, \lambda_3, \lambda_4) = (2, 2, 12, 12)$. The parameters for the CTRA-PI-GNN solver is set the same as in Section 5.1. On the other hand, the CRA-PI-GNN solver repeatedly solve the 27 problems using the same settings as Ichikawa (2024). As a result, the CTRA-PI-GNN solver can explore global optimal solutions for all problems. Fig. 10 showcases the solutions yielded by both the CRA-PI-GNN and CTRA-PI-GNN solvers for the 27 Matching-1 instances. Matching-2 is excluded from this comparison, given that both solvers achieved global solutions for these instances. The CRA-PI-GNN solver, applied 27 times for Matching-1, accumulated a total runtime of $36,925 \pm 445$ seconds, significantly longer than the CTRA-PI-GNN's efficient $5,617 \pm 20$ seconds. For Matching-2, the CRA-PI-GNN solver required $36,816 \pm 149$ seconds, whereas the CTRA-PI-GNN solver completed its tasks in just $2,907 \pm 19$ seconds. The reported errors correspond to the standard deviation from five random seeds. These findings not only highlight the CTRA-PI-GNN solver's superior efficiency in solving a multitude of problems but also its ability to achieve higher Acceptance Probability Ratios (ApR) compared to the CRA-PI-GNN solver. The consistency of these advantages across different problem types warrants further investigation. ## D.6 Additional Results of penalty-diversified solutions for DBM problems This section extends our discussion on penalty-diversified solutions for DBM problems, as introduced in Section 5.2. In these numerical experiments, we used the same Λ_S as in Section 5.2 and executed the CTRA-PI-GNN under the same settings as in Section 5.1. As shown in Fig. 11, the CTRA-PI-GNN can acquire penalty-diversified solutions for all instances of the DBM. Figure 11: ApR of the DBM problems on th grid Λ_S using CTRA-PI-GNN solver. Each point on the coordinate plane represents the results from five different random seed, with the colors indicating the ApR. The constraints violation are marked with a cross symbol.