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Abstract

Opponent modeling methods typically involve two
crucial steps: building a belief distribution over op-
ponents’ strategies, and exploiting this opponent
model by playing a best response. However, ex-
isting approaches typically require domain-specific
heurstics to come up with such a model, and algo-
rithms for approximating best responses are hard to
scale in large, imperfect information domains.

In this work, we introduce a scalable and generic
multiagent training regime for opponent model-
ing using deep game-theoretic reinforcement learn-
ing. We first propose Generative Best Respoonse
(GenBR), a best response algorithm based on
Monte-Carlo Tree Search (MCTS) with a learned
deep generative model that samples world states
during planning. This new method scales to large
imperfect information domains and can be plug and
play in a variety of multiagent algorithms. We
use this new method under the framework of Pol-
icy Space Response Oracles (PSRO), to automate
the generation of an offline opponent model via it-
erative game-theoretic reasoning and population-
based training. We propose using solution concepts
based on bargaining theory to build up an opponent
mixture, which we find identifying profiles that are
near the Pareto frontier. Then GenBR keeps up-
dating an online opponent model and reacts against
it during gameplay. We conduct behavioral studies
where human participants negotiate with our agents
in Deal-or-No-Deal, a class of bilateral bargain-
ing games. Search with generative modeling finds
stronger policies during both training time and test
time, enables online Bayesian co-player prediction,
and can produce agents that achieve comparable so-
cial welfare and Nash bargaining score negotiating
with humans as humans trading among themselves.

1 Introduction

A central challenge for agent designers is how to build agents
that can be well-adapted to unknown opponents in a dynamic
multiagent environment. Opponent modeling methods [Al-

brecht and Stone, 2018] typically build a profile or a prior be-
lief of opponent strategies and produce agents that are best re-
sponse against such opponent models. These techniques have
achieved success in fields like Poker [Johanson and Bowling,
2009; Bard et al., 2013], automated negotiation [Baarslag et
al., 2016] and robotic soccer [Kitano et al., 1998].

However, most of these approaches use domain-specific
heurstics to handcraft an opponent model. Such knowledge is
typically encoded in certain interpretations of game rules or
experiences reflected by human plays. These techniques are
hard to transfer to domains where relevant data are missing.
Meanwhile, even if an opponent model is present, there is no
existing best response method that work well in large imper-
fect information games where computing a posterior distribu-
tion over world state is intractable.

In this work, we propose a general-purpose training regime
using multiagent reinforcement learning to address the above
issues. We adopt extensive-form games (EFG) as a generic
formulation for multiagent environments for our algorithmic
developments, as opposed to a domain-specific ruleset. We
propose Generative Best Response (GenBR), a best response
method that extends AlphaZero-style RL and MCTS methods
to large general-sum, imperfect information games. GenBR
enhances best response strength by leveraging test-time com-
putation and an approximate world model learned by deep
neural nets. While GenBR can be plug and play in a variety
of multiagent training algorithms, we focus on Policy Space
Response Oracles (PSRO) [Lanctot et al., 2017] as our train-
ing loop for offline opponent modeling. Our agent thereafter
at test-time employs GenBR for both planning and updating
an online opponent model via Bayesian learning.

Contributions. We provide three significant contribu-
tions. First, we propose enhanced version of AlphaZero-style
MCTS to train a best response strategy, thereby equipping
our agent with the capability to both plan and infer the envi-
ronmental state as well as opponents’ strategic choices dur-
ing online decision-making. This novel search method inte-
grates deep RL with Information Set MCTS (IS-MCTS). To
handle large imperfect information, we augment the policy-
and-value network (PVN) in AlphaZero with a generative
model that samples world states at the root of the search tree.
This results in a novel policy-value-and-generative network
(PVGN), which iteratively refines its quality using RL trajec-
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Figure 1: Example negotiation game in extensive-form. In “Deal or
No Deal”, the game starts at the empty history (&), chance samples
a public pool of resources and private preferences (with some con-
ditions; see Section 5.1) for three different items (books, hats, and
basketballs). Then, players alternate proposals for how to split the
resources. Rewards are defined by a dot product between received
resources and preferences.

tory data during the training loop.

Second, we introduce several novel meta-strategy solvers
in the PSRO framework based on the Nash bargaining solu-
tion [Nash, 1950]. Lastly, we show an empirical evaluation of
several RL agents trained by the combined algorithm against
humans in a negotiation game, finding the best ones to be as
efficient as humans trading with other humans.

2 Preliminaries

An N-player normal-form game consists of a set of players
A ={1,2,...,N}, N finite pure strategy sets II; (one per
player) with a joint strategy set II = I} x Iy x --- Iy,
and a utility tensor (one per player), u; : Il — R, and we
denote player 4’s utility as u;(mw). Two-player (2P) normal-
form games are called matrix games. A two-player zero-sum
(purely adversarial) game is such that, N = 2 and for all joint
strategies m € I : >},  , u;(m) = 0, whereas a common-
payoff (purely cooperative) game: Vr € II,Vi,j € A :
u; (1) = u;(m). A general-sum game is one without any re-
strictions on the utilities. A mixed strategy for player i is a
probability distribution over II; denoted o; € A(I;), and a
strategy profile 0 = 01 x -+ x oy, and for convenience we
denote u;(0) = Ers[u;(m)]. By convention, —i refers to
player ¢’s opponents. A best response is a strategy b;(o_;) €
BR(o_;) € A(II;), that maximizes the utility against a spe-
cific opponent strategy: for example, o7 = by (0_1) is a best
response to o_1 if ui(oy,0-1) = max, ui(oy,0-1). An
approximate e-Nash equilibrium is a profile o such that for
alli € A u;(bi(0-;),0-;) —ui(o) < ¢ with e = 0 corre-
sponding to an exact Nash equilibrium.

In an extensive-form game, play takes place over a se-
quence of actions a € A. Examples of such games include
chess, Go, and poker. A history h € H is a sequence of ac-
tions from the start of the game taken by all players. Legal
actions are at h are denoted A(h) and the player to act at h
as 7(h). Players only partially observe the state and hence
have imperfect information. There is a special player called
chance that plays with a fixed stochastic policy (selecting out-

comes that represent dice rolls or private preferences). Poli-
cies m; (also called behavioral strategies) is a collection of
distributions over legal actions, one for each player’s infor-
mation state, s € S;, which is a set of histories consistent with
what the player knows at decision point s (e.g.all the possible
private preferences of other players), and m;(s) € A(A(s)).
An illustrative example of interaction in an extensive-form
game is “Deal or No Deal shown in Figure 1.

There is a subset of the histories Z < H called terminal
histories, and utilities are defined over terminal histories, e.g.
u;(z) for z € Z could be —1 or 1 in Go (representing a loss
and a win for player ¢, respectively). As before, expected util-
ities of a joint profile 7 = 71 X - - - X7y is defined as an expec-
tation over the terminal histories, u;(7) = E,..[u;(z)], and
best response and Nash equilibria are defined with respect to
a player’s full policy space.

2.1 Combining MCTS and RL for Best Response

Computing approximate best responses is critical in a variety
of multiagent training algorithms. There have been many pre-
vious works that consider enhancing best response strength
via deep RL and game-tree search. For example, the original
PSRO algorithm [Lanctot et al., 2017] proposed using deep
RL in place of value iteration in the double-oracle frame-
work [McMabhan et al., 2003] which scales game solving in
environments with large state spaces. Approximate Best Re-
sponse (ABR) [Timbers et al., 2022; Wang et al., 2023] uses
MCTS as a best response method which identifies weakness
in human-level Go playing agents. However, they only focus
on domain where a posterior world belief can be computed
exactly. Another relevant work is Best Response Expert Iter-
ation (BREXIT) [Hernandez et al., 20231, which uses MCTS
to exploit an opponent mixture trained with an auxiliary loss.
However, they only concern perfect information games.

In general, using deep RL+MCTS as a best response
method leverages both generalization capability of neural
nets and test-time computation by the search method. We
elaborate this by explaining how ABR algorithm works.
When computing an approximate best response in imperfect
information games, ABR uses a variant of Information Set
Monte Carlo tree search [Cowling et al., 2012] called IS-
MCTS-BR. At the root of the IS-MCTS-BR search (start-
ing at information set s), the posterior distribution over world
states, Pr(h | s,m_;) is computed explicitly, which requires
both (i) enumerating every history in s, and (ii) computing
the opponents’ reach probabilities for each history in s. Then,
during each search round, a world state is sampled from this
belief distribution, then the game-tree regions are explored in
a similar way as in the vanilla MCTS, and finally the statistics
are aggregated on the information-set level. Steps (i) and (ii)
are prohibitively expensive in games with large belief spaces.



Algorithm 1 GenBR Training Loop

function GenBR(%, 0, num_eps)
Initialize value nets v, v’, policy nets p,p’, generative nets
g,g’, data buffers Dy, Dy, Dg
for eps = 1,...,num_eps do
h « initial state. 7 = {s;(h)}
Sample opponents m_; ~ o_;.
while A not terminal do
if 7(h) = chance then
Sample chance event a ~ 7
else if 7(h) = ¢ then
Sample a ~ 7, (n)
else
a,m < Search(s;(h),o,v',p',g")
Dy < Dy {(s:(h). ™)}
Dy« Dg J{(s:(h), 1)}
end if
h — h.apply(a), T — T U{s:(h)}
end while
Dy «— Dy J{(s,7) | s € T}, where r is the payoff of 7 in
this trajectory
U,p,g Update(vapvg7 D’Ua DP’ DQ)
Replace parameters of v’, p’, g’ by the latest parameters of
v, p, g periodically.
end for
return Search(-,0,v,p,g)
end function

Algorithm 2 GenBR Search

function Search(s, o, v,p, g)
for iter = 1,...,num_sim do
T=1{}
Sample a world state (gen. model): h ~ g(h | s)
Sample an opponent profile using Bayes’ rule: 7’; ~
Pr(m—; | h,o0_;). Replace opponent nodes with chance
events according to 7_;
while do
if h is terminal then
r <« payoff of 7. Break
else if 7(h) = chance then
a « sample according to chance
else if s;(h) not in search tree then
Add s;(h) to search tree.
r o v(si(h))
else
a «— MaxPUCT(s;(h),
T T U {(si(h), a)}
end if
h.apply(a)
end while
for (s,a) € T do
s.child(a).visits < s.child(a).visits + 1
s.child(a).value < s.child(a).value + 7
s.total wisits < s.total visits + 1
end for
end for
return action a™ that receives max visits among children of s,
and a policy m* that represents the visit frequency of children
of s
end function

D)

3 GenBR: Learning Best Response Search
with a Generative Model

We propose Generative Best Response (GenBR), a new best
response method based on AlphaZero-styled MCTS with
Pr(h|s,m_;) learned by a deep generative model. On a high-
level, GenBR is parameterized by three deep neural nets: a
policy net p, a value net v and a generative net g. Just as
in the AlphaZero training loop [Silver et al., 2018], GenBR
training loop generates multiple RL trajectories by calling
GenBR search procedure at each decision point to gather data
for training these neural nets. These neural nets will fur-
ther guide and refine the search procedure, producing higher
quality data for later training. During the search procedure,
the world states are sampled directly from the model given
only their information state descriptions, leading to a succinct
representation of the posterior that generalizes to large state
spaces. Next we explain our algorithms in more details.

The GenBR training loop (Algorithm 1) proceeds analo-
gously to AlphaZero’s self-play based training, which trains
a value net v, a policy net p, along with a generative net-
work g using trajectories generated by search. We assume
we are given an offline opponent model o represented by a
mixed strategy profile of the opponents. There are impor-
tant differences from AlphaZero. Only one player is learning
(e.g.player 7). The (set of) opponents are fixed, sampled at the
start of each episode from the opponent model o_;. When-
ever it is player ¢’s turn to play, since we are considering im-
perfect information games, it runs a POMDP search proce-
dure based on Algorithm 2 from its current information state
s;. The search procedure produces a policy target 7*, and an
action choice a™ that will be taken at s; at that episode. Data
about the final outcome and policy targets for player ¢ are
stored in data sets D,, and D, which are used to improve the
value net and policy net that guide the search. Data about the
history, h, in each information set, s(h), reached is stored in
a data set Dy, which is used to train the generative network g
by supervised learning. We call the combination of v, p, and
g as the policy-value-and-generative network (PVGN).

The GenBR MCTS search used (Algorithm 2) is based
on IS-MCTS-BR in [Timbers et al., 2022] (described in
Section 2.1) and POMCP [Silver and Veness, 2010]. Here
it utilizes value net v to truncate the search at an unex-
panded node and policy net p for action selection at an ex-

panded node s using the PUCT [Silver et al., 2018] formula:

- s.child(a).value
MaxPUCT(s,p) = argmaXuca(s)s child(a) visits +

—
p(s,a) p5totauiets m , for some constant c,,.;. Then at the

Cuct *

end of the search call, it returns an action a® which receives
the most visits at the root node, and a policy 7* representing
the action distribution of the search at the root node.

Algorithm 2 has two important differences from previous
methods. First, rather than computing exact posteriors, we
use the deep generative model g learned in Algorithm 1 to
sample world states. As such, this approach may be capable
of scaling to large domains where previous approaches such
as particle filtering [Somani er al., 2013] fail.

Second, the imperfect information of the underlying
POMDRP consists of both (i) the actual world state h and (ii)



opponents’ pure-strategy commitment 7_;. We make use of
the fact Pr(h,m_; | s,0_;) = Pr(h|s,0_;) Pr(n_; | h,0_;)
such that we approximate Pr(h | s,0_;) by g and com-
pute Pr(m_; | h,o_;) exactly via Bayes’ rule. Computing
Pr(n_; | h,o_;) can be viewed as a Bayesian learning proce-
dure [Kreps and Wilson, 1982; Hernandez-Leal and Kaisers,
2017; Albrecht et al., 2016; Kalai and Lehrer, 1993] that
keeps updating an online opponent model Pr(mw_; | h,o_;).
Therefore, our agent is capable of performing test-time search
while automatically inferring environmental state as well as
opponents’ strategies during online decision making.

Algorithm 3 Opponent Modeling via PSRO and GenBR

function PSRO(G, MSS)
Initialize strategy sets Vi, [I; = {7}, mixed
strategies o; (7)) = 1, Vi, payoff tensor U°.
fort e {0,1,2--- T} do
forie ./ do
II; — II; | ) {GenBR(i, 0, num_eps)}
end for
Update missing entries in U? via simulations
o — MSS(U?)
end for
return I] = (I, I, --- ,IIN),0
end function

4 Game-Theoretic Opponent Modeling

In this section, we describe our complete training algorithm
for opponent modeling. We use Policy Space Response Or-
acles to obtain an offline opponent model o_; for training
GenBR in Algorithm 1. We first introduce empirical game-
theoretic analysis (EGTA) and PSRO, and then propose new
solution concepts in PSRO based on bargaining theory, and
provide empirical results of our new meta-strategy solvers at
the end of this section.

4.1 Empirical Game-Theoretic Analysis and
Policy-Space Response Oracles

Empirical game-theoretic analysis (EGTA) [Wellman er al.,
2025] is an approach to reasoning about large sequential
games through normal-form empirical game models, induced
by simulating enumerated subsets of the players’ full poli-
cies in the sequential game. Policy-Space Response Oracles
(PSRO) [Lanctot et al., 2017] uses EGTA to incrementally
build up each player’s set of policies (“oracles”) through re-
peated applications of approximate best response using RL.
Each player’s initial set contains a single policy (e.g.uniform
random) resulting in a trivial empirical game U containing
one cell. On epoch ¢, given N sets of policies II} fori € A,
utility tensors for the empirical game U? are estimated via
simulation.

A meta-strategy solver (MSS) derives a profile o, gen-
erally mixed, over the empirical game strategy space. A
best response oracle, say b(c? ), is then computed for each
player ¢ by training against policies sampled from oppo-
nent model o' ;, and are added to strategy sets for the next

epoch: II/** = IIt U {bl(c,)}. Since the opponent poli-
cies are fixed, the oracle response step is a single-agent prob-
lem [Oliehoek and Amato, 2014]; RL and search can feasibly
handle large state and policy spaces. Our full algorithm (Al-
gorithm 3) employs GenBR as the oracle step in PSRO.

PSRO naturally fits our focus of automating opponent
modeling as it generates opponent models o_; through pure
game-theoretic reasoning and reinforcement learning. Fur-
thermore, since each strategy (except the first ones) in the
pool is a best response against an early-iteration opponent
model (which itself consists of best responses), it in fact in-
duces a cognitive hierarchy [Camerer er al., 2004] of ratio-
nalizable strategies [Bernheim, 1984]. An important question
is choosing which MSS' to compute an opponent mixture.
Since our primary application domain of interest in this paper
is negotiation game, it is natural to consider solution concepts
from bargaining theory as MSSs. Next we introduce compu-
tational results of new MSSs based on Nash bargaining solu-
tion which were not investigated in previous works.

4.2 Empirical Game Nash Bargaining Solution

In contrast to non-cooperative game theory, bargaining the-
ory considers scenarios where players’ utilities are not en-
tirely in conflict, and need to negotiate to achieve a possible
cooperative outcome. The Nash Bargaining solution (NBS)
selects a Pareto-optimal payoff profile that uniquely satisfies
axioms specifying desirable properties of invariance, symme-
try, and independence of irrelevant alternatives [Nash, 1950;
Ponsati and Watson, 1997]. The axiomatic characterization
of NBS abstracts away the process by which said outcomes
are obtained through strategic interaction.

Define the set of achievable payoffs as all expected utilities
u;(x) under a joint-policy profile x. Denote the disagreement
outcome of player ¢, which is the payoff it gets if no agree-
ment is achieved, as d;. The NBS is the set of policies that
maximizes the Nash bargaining score (A.K.A. Nash prod-
uct):

s Wiex (uwi(x) — di) (D

which, when N = 2, leads to a quadratic program (QP)

with the constraints derived from the policy space struc-

ture [Griffin, 2010]. However, even in this simplest case of

two-player matrix games, the non-concave objective poses

a problem for most QP solvers. Furthermore, scaling to N
players requires higher-order polynomial solvers.

Instead of using higher-order polynomial solvers, we pro-
pose an algorithm based on (projected) gradient ascent [Singh
et al., 2000; Boyd and Vandenberghe, 2004]. Note that the
Nash product is non-concave, so instead of maximizing it,
we maximize the log Nash product g(x) =

log (e (ui(x) — di)) = Y log(ui(x) — di), (2)
eN

'Tn App. G.1, we conduct extensive experiments over 16 MSSs
on 12 different benchmark games on OpenSpiel [Lanctot et al.,
2019]; see Appendix for detailed analysis. Appendices can be found
in an arXiv version of this paper [Li et al., 2023].



Algorithm 4 NBS by projected gradient ascent

Input: Initial iterate x, payoff tensor U.
function NBs(x°, U)
Let g(x) be the log Nash product defined in eqn (2)
fort =0,1,2--- ;T do
yl — xt + atVg(xt)
X+ proj(ytth)
end for
Return arg max,—o.r g(x*)
end function

which has the same maximizers as (1), and is a sum of con-
cave functions, hence concave. The process is depicted in
Algorithm 4; Proj is the ¢5 projection onto the simplex. We
can prove it has a convergence rate of O(T~'/2). For a proof,
see App. C.

Theorem 4.1. Assume any deal is better than no deal by
k>0, ie, uj(x) —d; =k > 0 forall i,x. Let {x'} be
the sequence generated by Algorithm 4 with starting point

x0 = |II|711 and step size sequence o' = % (t+
1)71/2. Then, for all t > 0 one has
u™* N\ /|IT|

N

max
xeAlTl-1

3

_ S
g(x) Jnax, g(x?)

KVt + 1

where u™™ = max; x u;(x), |II| is the number of possible
pure joint strategies, and x is assumed to be a joint correla-
tion device ().

Besides directly using NBS, we also consider (1) using
NBS to select a correlated equilibrium (CE) and coarse cor-
related equilibrium (CCE) as an MSS, which we denote as
max-NBS-(C)CE and (2) profile that maximizes social wel-
fare. A comprehensive list of MSSs that we investigated in
our experiments is in App. A.

4.3 Empirical Results on Colored Trails

Here we study the performance of our NBS-based MSSs on
colored trails, a highly configurable negotiation game played
on a grid [Gal et al., 2010] of colored tiles, which has been
actively studied by the AI community [Grosz er al., 2004;
Ficici et al., 2008]. Colored Trails does not require search
since the number of moves is small, so we use classical RL
based oracles (DQN and Boltzmann DQN) to isolate the ef-
fects of the new meta-strategy solvers.

We use a three-player variant [Ficici et al., 2008] depicted
in Figure 2. At the start of each episode, an instance (a board
and colored chip allocation per player) is randomly sampled
from a database of strategically interesting and balanced con-
figurations [de Jong et al., 2011, Section 5.1]. There are two
proposers (P1 and P2) and a responder (R). R can see all play-
ers’ chips, both P1 and P2 can see R’s chips; however, pro-
posers cannot see each other’s chips. Each proposer, makes
an offer to the receiver. The receiver than decides to accept
one offer and trades chips with that player, or passes. Then,
players spend chips to get as close to the flag as possible (each
chip allows a player to move to an adjacent tile if it is the same
color as the chip). For any configuration (player ¢ at position

Figure 2: Three-Player Colored Trails.
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Figure 3: Empirical reduction in Pareto Gap on test game configu-
rations, and example evolution toward Pareto front (right).

p), define SCORE(p, i) = (—25)d + 10¢, where d is the Man-
hattan distance between p and the flag, and ¢ is the number of
player ¢’s chips. The utility for player ¢ is their gain: score at
the end of the game minus the score at the start. We compute
the Pareto frontier for a subset of configurations, and define
the Pareto Gap (P-Gap) as the minimal ¢, distance from the
outcomes to the outer surfaces of the convex hull of the Pareto
front, which is then averaged over the set of configurations in
the database.

Figure 3 shows representative results of PSRO agents with
different MSSs on Colored Trails (for full graphs, and evolu-
tion of score diagrams, see App. G.2). The best-performing
MSS is NBS-joint, beating the next best by a full 3 points.
The NBS meta-strategy solvers comprise five of the six best
MSSs under this evaluation. An example of the evolution of
the expected score over PSRO iterations is also shown, mov-
ing toward the Pareto front, though not via a direct path.

5 Experiments

In this section, we report our major results on the Deal-or-
No-Deal (DoND) negotiation game.

5.1 Negotiation Game: Deal or No Deal

“Deal or No Deal” (DoND) is a simple alternating-offer bar-
gaining game with incomplete information, which has been
used in many Al studies [Lewis et al., 2017; Cao et al., 2018].
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Our focus is to train RL agents to play against humans without
human data, similar to previous work [Strouse et al., 2021].
An example game of DoND is shown in Figure 1. Two play-
ers are assigned private preferences w; = 0,wy > 0 for
three different items (books, hats, and basketballs). At the
start of the game, there is a pool c of 5 to 7 items drawn ran-
domly such that: (i) the total value for a player of all items
is 10: wy - ¢ = ws - ¢ = 10, (ii) each item has non-zero
value for at least one player: w; + ws > 0, (iii) some items
have non-zero value for both players, w; © wo #+ 0, where
© represents element-wise multiplication.

The players take turns proposing how to split the pool of
items, for up to 10 turns (5 turns each). If an agreement is
not reached, the negotiation ends and players both receive 0.
Otherwise, the agreement represents a split of the items to
each player, o1 + 02 = ¢, and player ¢ receives a utility of
w; - 0;. DoND is an imperfect information game because the
other player’s preferences are private. We use a database of
6796 bargaining instances made publicly available in [Lewis
et al., 2017]. Deal or No Deal is a significantly large game,
with an estimated 1.32 - 10'3 information states for player 1
and 5.69 - 10*! information states for player 2 (see App. D.2
for details).

5.2 Generative World State Sampling

We now show that both the search and the generative model
contribute to achieving higher reward than RL alone. The
input of our deep generative model is one’s private values
v; and public observations, and the output is a distribution
over v_; (detailed in the Appendix). We compute approx-
imate best responses to three opponents: uniform random,
a DQN agent trained against uniform random, and a DQN
agent trained in self-play. We compare different world state
sampling models as well to DQN in Figure 4, where the deep
generative model approach is denoted as simple_learn.

The benefit of search is clear: the search methods achieve
a high value in a few episodes, a level that takes DQN many
more episodes to reach (against random and DQN response
to random) and a value that is not reached by DQN against
the self-play opponent. The best generative models are the
true posterior (exact) and the actual underlying world state
(cheat). However, the exact posterior is generally intractable

and the underlying world state is not accessible to the agent at
test-time, so these serve as idealistic upper-bounds. Uniform
seems to be a compromise between the bad and ideal mod-
els. The deep generative model approach is roughly compa-
rable to uniform at first, but learns to approximate the pos-
terior as well as the ideal models as data is collected. In
contrast, DQN eventually reaches the performance of the uni-
form model against the weaker opponent but not against the
stronger opponent even after 20000 episodes.

5.3 Studies with Human Participants

We recruited participants from Prolific [Pe’er et al., 2021;
Pe’er et al., 2017] to evaluate the performance of our agents
in DoND (overall 346; 41.4% female, 56.9% male, 0.9%
trans or nonbinary; median age range: 30—40), following es-
tablished ethical guidelines for research with human partici-
pants [McKee, 2024]. Crucially, participants played DoND
for real monetary stakes, with an additional payout for each
point earned in the game. Participants first read game instruc-
tions and completed a short comprehension test to ensure they
understood key aspects of DoND’s rules. Participants then
played five episodes of DoND with a randomized sequence
of opponents. Episodes terminated after players reached a
deal, after 10 moves without reaching a deal, or after 120
seconds elapsed. After playing all five episodes, participants
completed a debrief questionnaire collecting standard demo-
graphic information and open-ended feedback on the study.

Training Details Our infrastructure restricts that each hu-
man participant can only play five matches with our bots.
Therefore we decided to select five different agents so ev-
ery participant can play each of these once. For comparison,
we decided to include one independent RL agent and four
search-improved PSRO agents of different playing styles. For
the independent RL agent, we trained two classes of indepen-
dent RL agents in self-play: (1) DQN [Mnih et al., 2015] and
Boltzmann DQN [Cui and Koeppl, 2021], and (2) policy gra-
dient algorithms such as A2C, QPG, RPG and RMPG [Srini-
vasan et al., 2018]. We fine-tuned their hyperparameters and
eventually select an instance of self-play DQN based on both
individual returns and social welfare performances.

For PSRO agents, we consider 16 different meta-strategy



Agent | Uymans ‘ UAgent ‘ “Comb NBS
IndRL | 5.86 [5.37,6.40] | 6.50 [5.93,7.06] | 6.18  [5.82,6.56] | 38.12
Compl | 514  [4.56,5.63] | 549  [4.87,6.11] | 530  [4.93,5.76] | 28.10
Comp2 6.00 [5.49,6.55] 5.54 [4.96,6.10] 5.76 [5.33,6.12] | 33.13
Coop 6.71 [6.23,7.20] 6.17 [5.66,6.64] 6.44 [6.11,6.75] | 41.35
Fair | 7.39  [6.89,7.87] | 598  [5.44.6.49] | 6.69 [6.34,7.01] | 44.23

Table 1: Humans vs. agents performance with 129 human participants, 547 games total. @ x refers to the average utility to group X (for the
humans when playing the agent, or for the agent when playing the humans), Comb refers to Combined (human and agent). Square brackets
indicate 95% confidence intervals. IndRL refers to Independent RL (DQN), Compl and Comp2 are the two top-performing competitive
agents, Coop is the most cooperative agent, and Fair is fairest agent. NBS is the Nash bargaining score (Eq 1).

solvers, and 4 different back-propagating value types during
the tree search procedure, making it 64 different combina-
tion in total. Notice that the original MCTS algorithm (Al-
gorithm 2) back-propagates individual rewards during each
simulation phase for the search agent.

We consider two way of extracting the final agents given
sets of policies II produced by PSRO, one based on the
final-iteration MSS mixture and another based on the final-
iteration search-based best response (details are in App F).
We trained over 100 PSRO agents with different combina-
tions of MSS, back-propagation targets, and extraction meth-
ods. To select among these agents, we apply empirical game-
theoretic analysis [Wellman et al., 2025] and obtain a head-
to-head empirical game matrix. We eventually selected: (i)
two most competitive agents (Compl, Comp2) (maximizing
utility), (ii) the most cooperative agents (Coop) (maximizing
social welfare), the (iii) the fairest agent (Fair) (minimizing
social inequity [Fehr and Schmidt, 1999]); (iv) a separate
top-performing independent RL agent (IndRL) trained in self-
play (DQN). Both Coop and Fair are using Nash product as
the back-propagating values during tree search, while Comp1
uses inequity aversion and Comp?2 uses individual rewards.
Compl, Comp2 and Fair are trained using max-Gini corre-
lated equilibrium notions [Marris ef al., 2021], while Coop
uses uniform distribution as the MSS.

Results We collect data under two conditions: human vs.
human (HvH), and human vs. agent (HvA). In the HvH con-
dition, we collect 483 games: 482 end in deals made (99.8%),
and achieve a return of 6.93 (95% c.i. [6.72, 7.14]), on ex-
pectation. We collect 547 games in the HvA condition: 526
end in deals made (96.2%; see Table 1). DQN achieves the
highest individual return. By looking at the combined re-
ward, it achieves this by aggressively reducing the human
reward (down to 5.86)—possibly by playing a policy that is
less human-compatible. The competitive PSRO agents seem
to do the same, but without overly exploiting the humans, re-
sulting in the lowest social welfare overall. The cooperative
agent achieves significantly higher combined utility playing
with humans. Better yet is Human vs. Fair, the only Human
vs. Agent combination to achieve social welfare comparable
to the Human vs. Human social welfare.

Another metric is the objective value of the empirical NBS
from Eq. 1, over the symmetric game (randomizing the start-
ing player) played between the different agent types. This
metric favors Pareto-efficient outcomes, balancing between
the improvement obtained by both sides. From App G.3, the

NBS of Coop decreases when playing humans, from 44.51 —
41.35— perhaps due to overfitting to agent-learned conven-
tions. Fair increases slightly (42.56 — 44.23). The NBS
of DQN rises from 23.48 — 38.12. The NBS of the com-
petitive agents also rises playing against humans (24.70 —
28.10, and 25.44 — 28.10), and also when playing with Fair
(24.70 — 29.63, 25.44 — 28.73). The fair agent is both
adaptive to many different types of agents, and cooperative,
increasing the social welfare in all groups it negotiated with.
This could be due to its MSS putting significant weight on
many policies leading to Bayesian prior with high support,
or its backpropagation of the product of utilities rather than
individual return.

6 Conclusion

We proposed a general-purpose multiagent training regime
that combines the power of MCTS search and a population-
based training framework, for general-sum imperfect infor-
mation domains. We developed a novel search technique that
combines IS-MCTS with a deep belief learning module cou-
pled with the RL training loop, which scale to large belief
and state spaces. The outer loop of our algorithm is imple-
mented by PSRO, which iteratively trains and adds search
strategies guided by game-theoretic analysis. On one hand,
search serves as a strong best response method within the
PSRO loop, which provides an instance of the framework of
its own interests. On the other hand, PSRO automatically pro-
duces a belief hierarchy over the opponents’ strategies, which
endows the search with the capability of inferring opponent
types during online decision makings. This dual view of the
whole training architecture illustrates its effectiveness in pro-
ducing agents that are capable of opponent modeling through
game-theoretic analysis and planning forward at test-time.

Ethics Statement

We believe our GenBR method with the PSRO training loop
advances the general opponent modeling and planning tech-
niques in multi-agent systems with little domain knowledge.
Our methods can be potentially deployed in a variety of appli-
cations, including automated bidding in auctions, negotiation,
cybersecurity, warehouse robotics, and autonomous vehicle
systems. All of these are multi-agent scenarios that involve
general-sum, imperfect information elements.

One of the potential risks is value misalignment in nego-
tiation. The method can produce strategies that are unpre-



dictable and not easily explained, which could lead to ex-
ploitative behaviors in negotiation that are misaligned with
the users’ intents. This could potentially cause harm in the
economic system and reduce market efficiency. Any de-
ployed use of artificial agents built using our algorithm would
need to first be thoroughly tested, ideally by third party, and
undergo a controlled private study with humans to identify
any potentially harmful behavior.
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