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Abstract

Transcriptional regulation through cis-regulatory elements (CREs) is crucial for numer-
ous biological functions, with its disruption potentially leading to various diseases. It is
well-known that these CREs often exhibit redundancy, allowing them to compensate for
each other in response to external disturbances, highlighting the need for methods to iden-
tify CRE sets that collaboratively regulate gene expression effectively. To address this,
we introduce GRIDS, an in silico computational method that approaches the task as a
global feature explanation challenge to dissect combinatorial CRE effects in two phases.
First, GRIDS constructs a differentiable surrogate function to mirror the complex gene
regulatory process, facilitating cross-translations in single-cell modalities. It then employs
learnable perturbations within a state transition framework to offer global explanations,
efficiently navigating the combinatorial feature landscape. Through comprehensive bench-
marks, GRIDS demonstrates superior explanatory capabilities compared to other leading
methods. Moreover, GRIDS’s global explanations reveal intricate regulatory redundancy
across cell types and states, underscoring its potential to advance our understanding of
cellular regulation in biological research.
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1. Introduction

Transcriptional regulation via cis-regulatory elements (CREs) is essential to maintaining cell
identity, responding to intra- and extra-cellular signals, and coordinating gene activities,
whereas its dysregulation can cause a broad range of diseases (Hoch et al., 1990). Unfortu-
nately, after decades of CRE identification efforts, it is still challenging to directly validate
single CREs’ impacts at either intermediate (e.g., gene expression) or clinical phenotype
level (Hong et al., 2008; Barolo, 2012). Most recent research has found that multiple CREs
may target a specific gene to drive overlapping spatiotemporal expression patterns, so if
one CRE is damaged, another can step in to fulfill appropriate functions (Kassis, 1990).
Such combinatorial CRE effects, usually referred to as regulatory redundancy, widely
exist in most genomes as a regulation buffer to provide phenotypic robustness (Kvon et al.,
2021). Existing research has primarily focused on using computational methods to uncover
individual CRE-to-gene regulatory effects, while combinatorial regulatory redundancy re-
mains largely unknown due to the complexities in accounting for interactions among CREs.
In this work, we present an in silico computational method for identifying combinatorial
regulatory redundancy at the single-cell level by connecting this problem with global feature
importance explanations of black-box models.

Most existing computational and experimental methods for dissecting regulatory redun-
dancy are designed to analyze individual CRE-to-gene effects at the tissue-level sequencing
assays, rather than the combinatorial effects of multiple CREs using single-cell sequencing
assays. For instance, several pioneer studies showed that seemingly redundant CREs (e.g.,
shadow enhancers) precise modulate gene expression during development and improve phe-
notypic robustness to physiological or genetic stress (Frankel et al., 2010). However, such
studies mainly focused on CRE redundancy using single-locus approaches and reporter
genes, lacking genome-wide insights (Perry et al., 2011). Technological advancements and
efforts by consortia like ENCODE led to the identification of millions of CREs across var-
ious tissues (Luo et al., 2020), with large-scale transgenic reporter assays characterizing
their in vivo activities (Manning et al., 2012). However, such tissue-level sequencing ap-
proaches overlooked regulatory heterogeneity across cell states and populations. Recently,
the single-cell sequencing revolution, particularly the multi-modal genomic profiling, enables
finer resolution analysis of transcriptional regulation at the cellular level. Computational
methods developed for single-cell data have been successful in elucidating complex, cell
type-specific regulatory mechanisms (Granja et al., 2021; Zhang et al., 2022). However,
these approaches still focus on individual CRE-to-gene relationships, neglecting synergistic
effects across multiple CREs.

To address this challenge, our initial step involves developing a black-box model capable
of predicting gene expressions from a set of CREs. This leads us to naturally consider
the task of identifying multi-CRE-to-gene relationships as a fundamental feature impor-
tance explanation task (Sood and Craven, 2022). In this context, various methods have
been proposed, falling into two main categories: local feature importance and global feature
importance. Most local feature importance explanation methods, such as LIME (Ribeiro
et al., 2016) and SHAP (Lundberg and Lee, 2017), focused on explaining individual pre-
dictions based on important features (instance-wise feature importance). Recent work also
tried to address the black-box model explanations using a differentiable surrogate model
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via generating explanations through learning minimal adversarial perturbations Chapman-
Rounds et al. (2021). In addition, (Chen et al., 2018) developed a method to jointly train
the surrogate model and generate explanations. However, identifying generalizable combi-
natorial effects of CREs is crucial for providing regulatory insights applicable across a broad
spectrum of cells, a task best approached through global feature importance explanations
(Doshi-Velez and Kim, 2017; Ibrahim et al., 2019). While numerous methods have been
developed, they simplified the challenge of explaining combinatorial features as additive
importance metrics, failing to account for complex, nonlinear interactions between CREs.
Later, Schwab and Karlen (2019) and Lundberg and Lee (2017) approached global expla-
nations through feature perturbation, masking feature values to zero. Covert et al. (2020)
recently proposed a sampling-based approximated Shapley value method to consider subset
feature effects in global explanations. However, this random sampling approximation strug-
gled to converge and yield effective explanations in high-dimensional feature spaces (Sood
and Craven, 2022), which is common in single-cell multi-modal data.

In this work, we propose GRIDS, a global feature explanation approach for efficient
regulatory redundancy dissection using single-cell multi-modal data. Specifically, GRIDS
comprises two components: a differentiable cross-modality surrogate mapping and a global
explanation method for regulatory redundancy dissection via learnable subset perturba-
tions. To elucidate the black-box regulatory model, the cross-modality surrogate mapping
component initially learns modality-specific cell representations and then aligns them into
a common semantic space through adversarial training. In the second step, GRIDS designs
a learnable subset perturbation method with a state transition model, which dissects gene
regulatory redundancy by generating a subset of globally important features to maximally
modify a target gene’s cell-type-specific expression. Our explanation approach belongs to
the class of perturbation or removal-based model explanation methods. Unlike approaches
that formulate combinatorial subset interactions as additive measures or use sampling ap-
proximation, our learnable subset perturbation method directly adds perturbation effects to
the input CRE modality like a discrete replacement operation, while still using the standard
auto-differentiation mechanism to update the subset elements as if they were continuous
variables. This unique approach enables the generation of precise and efficient global feature
importance explanations, crucial for analyzing large-scale biological datasets.

We evaluated GRIDS against various baseline models using image classification bench-
marks and single-cell multi-modal datasets. The findings indicate that GRIDS provides
more semantically meaningful feature importance values, enabling effective analysis of
regulatory redundancy across extensive genome regions. To our knowledge, this study
is the first to integrate global feature explanations with regulatory redundancy analysis
in the context of single-cell multi-modal data. The source code is available at https:

//github.com/jhliu17/nnpert.

2. Preliminary

2.1. Problem Definition of Regulatory Redundancy Dissection

According to the definition proposed by Wu et al. (2021), the CRE is typically represented
by the ATAC-seq x ∈ {0, 1}da , which is a binary vector. Each dimension of this vector
indicates the peak state in chromosomes, with “1” denoting an open state and “0” indicating

https://github.com/jhliu17/nnpert
https://github.com/jhliu17/nnpert
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a closed state. It is important to note that ATAC-seq data is usually high-dimensional, with
da > 105. The gene expression values (i.e., RNA-seq) regulated by the CRE are denoted as a
real value vector y ∈ Rdr . da and dr represent the number of peaks and genes. We provide a
detailed discussion on the relationship between ATAC-seq and RNA-seq in Appendix A.
For a single-cell multi-omics dataset, it is a collection of N single-cell multi-modal data
C = {c(1), c(2), . . . , c(N)}, where each cell c(i) = (x(i),y(i)) contains a ATAC-seq vector x(i)

and its corresponding RNA-seq vector y(i). Besides, each cell c(i) has a semantic label
ℓ(i) ∈ {1, . . . , T} to indicate its cell type in T classes. Given a cell type T = k, we define Ck

as a subset of C, where each cell c(i) ∈ Ck has the same label ℓ(i) = k.
As mentioned above, gene expression level is precisely controlled by transcriptional

regulation via CREs, executed through complex biological processes within cells. This can
be formulated as a regulatory function y = F(x), where F(x) : Rda → Rdr . The regulatory
function F , a black-box model, is challenging to query frequently due to experimental costs.
The problem of regulatory redundancy dissection aims to find a subset of L peak indices r =
{r1, . . . , rL} within the CRE (i.e., the subset feature in the ATAC-seq xr ≡ {xj |j ∈ r}) that
are crucial for regulating the target gene’s expression across a cell population. Therefore,
the domain of r is the binomial combination subset

(
da
L

)
, which constitutes a large search

space, especially considering that x typically contains more than 105 dimensions.

2.2. Global Feature Explanations for Regulatory Redundancy Dissection

To resolve the regulatory redundancy dissection problem, we propose an in silico compu-
tational method by modeling it within a global feature explanation framework. Conven-
tionally, global explanation is defined by how much a model’s performance degrades over
an observed population of samples when features are removed (Chapman-Rounds et al.,
2021). In the context of regulatory redundancy, the global explanation objective can be
expressed as

r∗ = argmin
r

Ec∼C [L(F(x\r),y)] (1)

where L is a loss measurement for expected gene expression degradation. x\r denotes the
perturbed CREs induced by r, replacing the original feature xr with preset perturbation
values p ∈ Rda at indices indicated by r (i.e., x\r,rj = prj ). If p = 0, this equates
to removal-based perturbation. The choice of loss function depends on the model and
task (Covert et al., 2020). For example, the cross-entropy can be adopted to measure
probability degradation in binary classification, while in our task, we use a mean-squared
loss to describe gene expression value degradation. The optimal subset r∗ in Eq. 1 is the
solution to the regulatory redundancy problem defined in Section 2.1.

However, the regulatory function F is a black box and inefficient to query, which means
that even model-agnostic explanation methods can be intractable in this setting. Therefore,
we further define a surrogate F̂(x; θf ) : Rda → Rdr , which is a neural network trained to
be a differentiable approximation of F using the collected single-cell multi-modal data C.
Substituting F̂(x; θf ) for F in Eq. 1 yields a tractable objective

r∗ = argmin
r

Ec∼C [L(F̂(x\r),y)]. (2)

We discuss the surrogate modeling and training details in Section 3.1. However, even with a
tractable objective, previous global explanation methods are still inefficient in large feature
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Figure 1: Overview of our proposed GRIDS method. It comprises two steps: training a
cross-modality surrogate model and using a global explanation method to dissect regulatory
redundancy. The left panel visualizes the learned ATAC-RNA joint embeddings and the
heatmap of GAD1 gene expression.

spaces and infeasible in high-dimensional ATAC-seq. These methods either simplify the
combinatorial subset effects as additive measures without considering interactions among
different input features (Schwab and Karlen, 2019; Lundberg and Lee, 2017), or they use
random sampling strategies to measure these effects (Covert et al., 2020). We describe our
solution to this challenge in Section 3.2.

3. Methodology

We now describe the two key components of GRIDS: the cross-modality surrogate mapping
and the global explanation method to efficiently dissect regulatory redundancy in the high-
dimensional ATAC-seq space. The overview of our method is shown in Figure 1.

3.1. Cross-Modality Surrogate Mapping

Recalling the collection of single-cell multi-modal data C, we can train the surrogate model
F̂ by mapping RNA and ATAC modalities into the same embedding space E . The advantage
of using the embedding model is that it allows us to easily extend our surrogate model, which
learns from paired RNA and ATAC data with known paired cell type labels, to unpaired
data without prior knowledge of cell type class labels. We adopt two autoencoders to model
the modality-specific feature. For ATAC-seq, each dimension in x is considered a binary
categorical feature, with one low-dimensional embedding for each category. The encoder
projects the raw input into semantics features as

h(i)
a = fa

Enc(W
a
Emb(x

(i))), h(i)
r = f r

Enc(W
r
Emb(y

(i))) (3)

whereWa
Emb ∈ Rdh×da is a category embedding module to accommodate the high-dimensional

ATAC-seq data, Wr
Emb ∈ Rdh×dr is an embedding matrix for RNA-seq, fa

Enc and f r
Enc are

encoder networks to generate embeddings ha,hr ∈ Rdh in E of dimension dh. The decoder

generates reconstructions via x̂(i) = fa
Dec(h

(i)
a ), ŷ(i) = f r

Dec(h
(i)
r ), where fa

Dec and f r
Dec are
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two decoder networks for the two modalities, x̂(i) and ŷ(i) represent the reconstructions
with objective defined as

LRec = Ec∼C [BCE(x̂(i),x(i)) +MSE(ŷ(i),y(i))] (4)

where BCE is the binary cross-entropy loss, and MSE is the mean-squared error.

Alignment Embedding Adversarial Training To align the modality-specific embed-
dings and capture the regulatory regulations between them, two mapping layers are adopted
to jointly align the two modalities

h̃(i)
r = fAR(h

(i)
a ), h̃(i)

a = fRA(h
(i)
r ) (5)

where fAR aims to map the ATAC embeddings to the RNA embeddings and fRA does
the opposite. We use a generative adversarial training mechanism (Arjovsky et al., 2017;
Goodfellow et al., 2014) to let both encoders and mapping layers act as two generators to
learn the modality-agnostic latent space E . And then we apply the discriminator Dk

a in
each cell type k for binary classification, aiming to differentiate whether ha and h̃a of the
ATAC embedding belongs to the cell type k or not. The Dk

r does the similar operation for
the RNA embeddings hr and h̃r. Then, the discrimination loss can be formulated as

Lk
Dis =Ex∼Ck [logDk

a(ha)] + Ey∼Ck [log(1−Dk
a(h̃a))]

+Ey∼Ck [logDk
r (hr)] + Ex∼Ck [log(1−Dk

r (h̃r))].
(6)

The generators are trained to simultaneously fool the discriminator and keep the cycle
consistency (Zhu et al., 2017)

Lk
Gen =Ex∼Ck [− logDk

r (h̃r) +MSE(fRA(h̃r),ha)]

+Ey∼Ck [− logDk
a(h̃a) +MSE(fAR(h̃a),hr)].

(7)

Therefore, the adversarial training process can be summarized in the following objec-
tive function

LAdv = min
θGen

max
θDis

Ek∼T [Lk
Gen + Lk

Dis] (8)

where θGen is the trainable parameters of encoders f r
Enc, f

a
Enc and the cross-mapping layers

fAR, fRA, θDis collects parameters of all T pairs of discriminators Dk
a , D

k
r . The overall

objective of the surrogate F̂ is

LInt = LRec + γLAdv (9)

where γ is a hyperparameter to weigh the adversarial loss. After the training, the surrogate
F̂(x; θf ) is defined as

F̂(x; θf ) = f r
Dec(fAR(f

a
Enc(W

a
Emb(x)))). (10)

3.2. Learnable Global Subset Explanations for Regulatory Redundancy

Our global explanation method aligns closely with the class of perturbation or removal-based
methods. The objective in Eq. 2 illustrates how the replacement perturbation, induced by
the selected subset r, can affect the performance degradation of the surrogate model across
a population of cells.
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Global Explanation Objective Given the differentiable surrogate F̂ and the removal
perturbation p = 0, we define the loss measurement of expected gene expression degradation
perturbed by a given perturbation subset r as:

L(F̂(x\r),y) = (F̂(x\r)i/yi)
2 +

β

dr − 1

dr∑
j=1,j ̸=i

(F̂(x\r)j/yj − 1)2 (11)

where i is the target gene index, β is a hyperparameter used to guide the learned pertur-
bation r to be independent of non-target genes, and dr is the total number of genes. This
definition aligns with our objective of multi-CRE-to-gene regulatory redundancy outlined
in Section 2.1. To optimize this objective, the domain of potential perturbations r, repre-
sented as

(
da
L

)
, is too large to allow for either a comprehensive or a sampling-based search,

particularly in the extremely high-dimensional ATAC-seq space (da > 105). Given that
the surrogate F̂ is a differentiable approximation, we keep the parameters in the surrogate
frozen and propose that the gradient of the Eq. 2 can be leveraged to efficiently learn the
CRE subset r.

Learning Optimal Subset Perturbations r∗ As we mentioned in Section 2.2, the fea-
tures x\r with replacement perturbations p, induced by a subset r, are given by x\r,rj = prj ,
where rj ∈ r. Although the surrogate is fully differentiable, the replacement perturbation
is a discrete operator, which means the subset cannot be directly optimized as a continuous
variable through standard gradient descent methods. To work around the non-differentiable
replacement operation, we observe that replacement with any perturbation values p can be
unified as follows

x\r,j = xj + 1[j ∈ r](pj − xj) (12)

where the jth dimensional feature is replaced by the perturbation value pj if j is in the
subset r; otherwise, it retains its original value. This unified replacement operation allows us
to more easily analyze the feature-changing effects caused by any replacement perturbation
strategies, including removal, mean value filling, etc. Given a randomly initialized subset
r and the global explanation objective in Eq. 2, the objective gradient with respect to
the category embedding (or the perturbed feature if the input is continuous) can be easily
computed through any automatic differentiation framework. This is represented as

G = ∂Ec∼C [L(F̂(x\r),y)]/∂W
a
Emb(x\r) (13)

where G ∈ Rda×dh . Based on the gradient information of G, we update the current
global important subset r by constructing a state transition matrix of indices T ∈ RL×da ,
where each entry Ti,j in the matrix represents the advantage value of transitioning from
replacing the previous index ri with the new index j. The state transition matrix can
be approximated by considering the objective gradient G and the replaced perturbations
Wa

Emb(p)−Wa
Emb(x)

dj = Gj · (Wa
Emb(p)j −Wa

Emb(x)j)

Ti,j = 1[j /∈ r]dj − 1[j ̸= ri]dri

(14)

where dj ∈ Rda represents the approximated objective descent value estimated for apply-
ing the potential perturbation pj . Though it may not be immediately obvious, our subset
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replacement strategy can be directly extended to continuous features (such as images) with-
out requiring an extra embedding module. In this situation, the objective gradient can be
computed with respect to the perturbed input features x\r. Therefore, the approximated
objective descent value d is simplified as dj = Gj × (pj −xj). Meanwhile, the construction
of the advantage value in the indices transition matrix remains the same as in Eq. 14.

Given the estimated state transition matrix of indices T, there are two methods for
updating the global feature subset r. The first method involves coordinate descent, which
means we iteratively update each index in r by selecting the candidate indices with the top-k
advantage values of the corresponding row in T. We further evaluate the best index among
these k candidates by assessing which index can make the updated global feature subset
r′ most significantly decrease the global explanation objective L(F̂(x\r′),y). The other
approach involves updating the entire subset r simultaneously as a sequence generation
process using the beam search algorithm, which consistently maintains the best choices
up to the beam size at each step. In practice, we have found that the coordinate descent
method achieves a good balance between convergence speed and explanation performance.
As a result, the randomly initialized perturbation subset r can be effectively learned, leading
to the optimal solution r∗, through a batch iteration manner.

Our global explanation method enables the learning of the global feature combinatorial
subset r∗ using gradient guidance, rather than relying on random sampling (Covert et al.,
2020). Our experiments prove it to be more efficient and converges more quickly to find
the optimal r∗ in a high-dimensional space. It facilitates the efficient generation of global
explanations in high-throughput biological data, such as the ATAC-seq (da > 104). Our
method can be extended to various kinds of perturbation tasks and can also be applied to
other data modalities, including images and texts. The overall algorithm is summarized in
Algorithm 1, located in Appendix B.

4. Related Work

Cicero (Pliner et al., 2018) was developed to link CREs to target genes using ATAC-seq
data via a graphical lasso model. Then, ArchR relies on pair-wise correlations to link
CREs to genes one at a time (Granja et al., 2021). Later on, DirectNet used a fitting
model to predict gene expression using CRE status and then explore CRE-to-gene linkage
via model selection. While promising, these methods still mainly focused on evaluating
individual CRE’s impact (Zhang et al., 2022). Therefore, it is still challenging to answer
a key question - “upon modification, which set of CREs can jointly change a target genes’
expression to the maximum degree?”.

Feature importance explanation methods, such as LIME (Ribeiro et al., 2016) and
SHAP (Lundberg and Lee, 2017), focus on local explanations of individual predictions.
Recent studies, like those by Chapman-Rounds et al. (2021) and (Chen et al., 2018),
have shifted towards using differentiable surrogate models for explaining black-box models.
Global explanation approaches, such as those by Schwab and Karlen (2019), Lundberg and
Lee (2017), and Covert et al. (2020), involve perturbing features or using Shapley value
methods to interpret complex feature interactions. However, these methods still struggle to
yield effective explanations in high-dimensional feature spaces.
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5. Experiments and Results

5.1. Expermental Setup

Single-Cell Multimodal Dataset We curated a set of deeply-sequenced single-cell
multi-modal data from postmortem human PFC (Emani et al., 2024; Akbarian et al., 2015).
In total, N = 10, 266 cells with T = 8 different cell types were harvested and sequenced
for both chromatin accessibility (ATAC-seq) and transcription activity (RNA-seq). On the
ATAC-seq side, we called da = 127, 219 peaks using Macs2 (Zhang et al., 2008) with an
average sequencing depth (i.e. the number of open state) of 4811.34. For the RNA-seq,
we conducted standard quality control and pre-processing using the default parameters rec-
ommended by Pegasus (Li et al., 2020). The gene number dr is 3000. Details about the
dataset can be found in Appendix C. We test GRIDS to generate different subset size
of global important features r sequence lengths L on multiple target genes by do pertur-
bation in the CRE input using masking p = 0. In each experiment, the full dataset was
randomly split into three subsets (training, validation, and test) with the ratio of 0.7, 0.1,
and 0.2, respectively. The global explanations were learned in the training set and then
evaluated its performance on the test set. The detailed hyperparameter setting can be
found in Appendix D.

MNIST Dataset To illustrate the combinatorial effects found by GRIDS, we conducted
extensive experiments on the binary digit classification using MNIST. We compared both
the global feature explanation estimation performance of GRIDS with strong baselines. We
summarized the experiment results in Appendix E, where we observed that our method
can effectively detect the combinatorial features in the feature space.

Baseline Comparisons We compared GRIDS against several feature importance expla-
nation methods, including global and local: (1) Random, a naive baseline that randomly
selects global important features to perturb the model input. (2) Saliency (Simonyan
et al., 2014), a widely used model interpretation method utilizing the gradient information
w.r.t the input feature to select the most effective ones. We aggregate local feature impor-
tance scores to generate global ones. (3) LIME (Ribeiro et al., 2016), a local explanation
method. It uses the submodular pick algorithm to convert local feature importance scores
into global ones. (4) SmoothGrad (Smilkov et al., 2017), a method commonly used in
computer vision which samples noise to generate neighbor samples and evaluate global fea-
ture importance via the average gradient saliency map, (5) FIMAP (Chapman-Rounds
et al., 2021), a neural network based approach that learns the feature importance through
finding minimal adversarial perturbation. (6)CXPlain (Schwab and Karlen, 2019), a global
approach that involves training a surrogate model for explanations. This method perturbs
features with perturbation values to determine their importance scores. (7) SAGE (Covert
et al., 2020), extends the SHAP method (Lundberg and Lee, 2017) to offer global explana-
tions based on approximated Shapley values by sampling important subsets.

5.2. The Surrogate Model Accurately Models the ATAC-to-RNA Relationship

As GRIDS depends on a differentiable approximating surrogate model F̂ for ATAC-to-
RNA translation, we first evaluated the translation accuracy of the surrogate model in the
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Figure 2: The trained differentiable surrogate model F̂ can accurately predict the RNA-seq
modality from given single-cell ATAC-seq profiles. (A) The comparison of predicted marker
gene expression with actual values across different cell types demonstrated high consistency
and specificity to cell type. (B) The UMAP of real scRNA-seq data, colored according to
both actual and predicted expression levels for marker genes, exhibited a strong similarity.

Table 1: Gene-focused benchmark results by comparing expression drops of marker genes
across all cell types (upper: L = 10, bottom: L = 128).

Cell Random Saliency SmoothGrad FIMAP GRIDS
Type Avg. ∆ Rel. ∆(%) Avg. ∆ Rel. ∆(%) Avg. ∆ Rel. ∆(%) Avg. ∆ Rel. ∆(%) Avg. ∆ Rel. ∆(%)

Astro −0.085 −0.015 −2.163 −0.601 −2.155 −0.621 −13.502 −4.254 −16.696 −5.837
Endo −1.073 −0.138 −4.974 −0.372 −9.726 −0.995 −38.997 −9.303 −57.477 −11.816
Micro −0.012 −0.026 −23.757 −1.545 −32.944 −2.083 −73.752 −6.248 −90.607 −7.671
OPC +0.823 −0.087 −54.645 −2.338 −48.438 −2.067 −77.167 −6.260 −96.661 −8.256
Oligo −0.058 +0.026 −0.558 −0.173 −0.939 −0.220 −10.917 −4.252 −16.760 −6.896
SST +0.159 +0.080 −5.201 −2.006 −5.201 −2.006 −16.453 −5.660 −17.677 −6.365
VIP +0.012 +0.001 −0.654 −1.189 −0.634 −1.160 −2.732 −3.797 −6.804 −7.195

Avg. +0.016 −0.021 −12.988 −1.209 −13.519 −1.290 −30.268 −5.367 −39.103 −7.300

Astro −1.793 −0.533 −15.511 −4.853 −18.505 −6.217 −82.565 −24.766 −100.556 −34.633
Endo +2.554 +0.468 −46.160 −6.217 −52.383 −7.893 −252.338 −41.790 −259.920 −44.601
Micro −9.091 −0.490 −131.512 −9.122 −145.561 −10.116 −451.210 −39.695 −470.430 −44.114
OPC −1.848 −0.165 −193.739 −10.260 −186.235 −9.891 −415.231 −35.687 −392.326 −36.380
Oligo −1.134 −0.211 −19.809 −6.382 −21.136 −7.630 −69.460 −28.175 −93.518 −38.982
SST −1.681 −0.615 −33.589 −11.675 −32.275 −11.115 −86.191 −29.198 −93.772 −33.708
VIP +0.071 +0.002 −4.014 −4.876 −3.872 −4.782 −13.054 −16.757 −19.703 −27.221

Avg. −1.843 −0.237 −68.620 −7.618 −70.292 −8.212 −202.368 −30.787 −209.583 −36.893

single-cell multimodal dataset. Specifically, we selected a curated list of marker genes ac-
cording to previous study Lake et al. (2016) and compared the mean expressions between
cell types and between the observed and translated cohort (Figure 2A). The marker gene,
representing the most expressively indicative gene for each cell type, is akin to the category
label in classification tasks. We found that GRIDS managed to preserve similar expression
patterns with the observed ground truth (mean R2=0.914). We then focused on four key
marker genes–SATB2 for excitatory cells, GAD2 for inhibitory cells, FLT1 for endothe-
lial cells, and MOG for oligodendrocyte cells as they were the well-known marker genes
commonly recognized. The UMAP of them agreed with our previous findings, with the
translated expression highlighting the mentioned cell types, plus a high correlation between
the observed and the translated (R2 = 0.633, 0.603, 0.460, 0.684, Figure 2B). These results
demonstrate that our surrogate model can accurately model the black-box ATAC-to-RNA
translation process.
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5.3. Global Subset Perturbations in Regulatory Redundancy Dissection

We then evaluated the performance of GRIDS to dissect multi-CRE-to-gene regulatory
redundancy by generating global feature importance explanations in the high-throughput
single-cell multi-omics data.

5.3.1. Evaluation of Regulatory Redundancy with Learnable Perturbations

One major challenge of single-cell data analysis is the data’s high dimensionality. For
instance, a typical ATAC-seq dataset generates hundreds of thousands of peaks, leaving it
unrealistic for us to use traditional leave-one-out approaches (Li et al., 2016). We accelerate
this process by using global feature importance explanations. To verify the effectiveness and
robustness of the explanation process, we benchmarked GRIDS with various baselines in
cell-type-focused and gene-focused settings, including (1) focused marker genes of 7 cell
types, and (2) comprehensive highly-expressed gene sets from two representative cell types
(VIP and Microglia). The full list of marker gene of each cell type can be found in the
Appendix C.2. We use two metrics to evaluate each method’s effectiveness in masking
L CRE features to suppress a target gene’s expression, including the averaged expression
change (Avg. ∆) and the ratio of expression change against the original value (Rel. ∆).

We summarize our benchmarking results of the cell-type-focused and gene-focused set-
tings in Table 1 and Table 2, respectively. In our experiments, we observed that although
LIME, CXPlain, and SAGE are effective on the MNIST dataset (see Appendix E), they all
failed to provide global explanations for the high-dimensional ATAC-seq data. Due to the
curse of dimensionality, both LIME and CXPlain failed to generate reasonable explanations
in ATAC-seq, which means using a simple model (K-Lasso in LIME) or a regular masking
strategy (sliding window in CXPlain) to capture the additive effect of the important feature
might be infeasible in the vast dimension space. Meanwhile, the SAGE method could not
converge within a reasonable time frame, since it randomly samples the subset from the
vast combinatorial feature space and then evaluates the expected performance degradation.
This strategy is equivalent to the importance sampling method, which has the problem of
high variance and weight degeneracy in high-dimensional spaces.
As shown in Table 1, in the gene-focused setting,
GRIDS consistently outperforms all baselines across
each cell type by introducing larger marker gene
expression degradation. The average gene expres-
sion change by GRIDS is −7.30%, as compared to
−0.02% to −5.36% in other methods (p-value < 0.01,
one-sided t-test). We also evaluated our method by
removing L = 128 global important features. Simi-
lar trends can be observed in the table, further ver-
ifying the searching performance of GRIDS. In the
cell-type-focused setting, as shown in Table 2, we
compared the top 100 highly expressed genes expres-
sion changes in two cell types by masking L impor-
tant CRE inputs predicted by different explanation
methods. We found that the Random, Saliency, and
SmoothGrad can barely report effective solution.

Table 2: Cell-type-focused bench-
mark results in VIP and Microglia by
comparing expression degradation of
highly expressed genes after masking
CRE features in the global explana-
tion subset r.

Type L Method Avg. ∆ Rel. ∆ (%)

VIP-100 10

Random −0.448 −0.009
Saliency −18.822 −0.915
SmoothGrad −18.424 −0.927
FIMAP −56.469 −3.087

GRIDS −64.016 −3.827

Microglia-100 10

Random −0.333 −0.008
Saliency −42.372 −1.941
SmoothGrad −44.125 −2.073
FIMAP −115.092 −5.863

GRIDS −141.339 −7.466
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A possible reason for the poor performance of these methods is that the RNA-ATAC
cross-mapping relationship is complex and requires multi-step dissections, so gradient infor-
mation with only one step can be misleading without explicit CRE removals. In contrast,
both the FIMAP method and GRIDS can significantly suppress gene expression by mask-
ing only 10 CRE features. Besides, the global future importance generated by GRIDS
introduces noticeably larger expression change than the FIMAP method, demonstrating its
effectiveness and robustness in dissecting the regulatory redundancy. We show the cell-
type-specific marker gene expression changes by removing L = 128 CREs chosen from all
cell types in Figure 3. It is not surprising to observe the largest marker gene expression
drop by removing the explanation chosen from matched cell types (i.e., the diagonal entries
in the heat map). On the other hand, masking important features derived from related cell
types also introduced decent gene expression changes, reflecting the regulatory similarity
in close cell types. For instance, SST and VIP are two sub-types of inhibitory neurons
with a common pan-inhibitory marker gene GAD1. We observed a slightly smaller but still
decent expression drop in SST cells by removing CRE sets chosen by VIP cells. Overall,
GRIDS can identify optimal CRE set in a cell-type-specific manner, which is essential to
characterize regulatory redundancy heterogeneity across diverse cell types.

5.3.2. Evaluation of Relevant Regulatory Effects

To evaluate whether the global explanations generated by several methods can be helpful
for advancing biological discovery. We benchmarked the explanation results produced by
different methods by measuring the CRE-to-gene distance. Since distance has the biggest
impact on CRE-to-gene interaction, we defined a local neighborhood of 10 million base pairs
(MB) to allow direct CRE-to-gene interaction via chromatin looping, which is widely used in
genomics (Phanstiel et al., 2017; Swygert et al., 2021). Then, we adopted the Soft Hit Ratio
(SHR) to measure how many of the reported L CREs are located in this neighborhood. We
also use the Hit Ratio (HR) to calculate an exact match, which describes where the region
found is exactly relevant with the target gene.

Astro-GJA1

Endo-CLDN5

Micro-CX3CR1

OPC-OLIG2

Oligo-MOBP

SST-GAD1

VIP-GAD1
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Figure 3: Normalized pair-wise expres-
sion changes of marker genes.

Table 3: The hit ratio of direct CRE-to-gene in-
teractions.

Method
L = 10 L = 128

HR ↑ SHR ↑ HR ↑ SHR ↑
Saliency 0.00 0.00 6.25 18.75
SmoothGrad 0.00 0.00 0.00 18.75
FIMAP 12.50 12.50 18.75 56.25

GRIDS 18.75 25.00 31.25 68.75

As shown in Table 3, Saliency and SmoothGrad report very few directly interacting
CREs in the local neighborhood for both L = 10 and L = 128 cases, which is not surprising
given their limited expression drop by removing these CRE features. Our GRIDS model
generated the global explanations with a substantially larger percent of directly interacting
CREs as compared to the FIMAP baseline, demonstrating the effectiveness of our method.
We also conducted an independent validation using cell-type-matched Hi-C experiments,
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as reported in Appendix F. It is worth noting that it is usually difficult for expression-
guided searching schemes to distinguish direct CRE-gene relations via physical contact
from those via indirect mechanisms. For instance, some CREs may only physically regulate
upstream transcription factors (TFs), which can pass the indirect effects to the target genes
without requiring physical interactions. Modeling the regulatory function with additional
side information would help to more accurately capture global feature interactions using
model explanation methods.

6. Conclusions

In this paper, we proposeGRIDS, a global feature importance explanation method designed
to dissect complex multi-CRE-to-gene regulatory redundancy using single-cell multi-modal
data. To achieve this goal, GRIDS first facilitates cross-modality surrogate mapping to
create a differentiable approximation of the black-box regulatory function. This surrogate
enables us to unify the regulatory redundancy problem with global feature importance ex-
planations. Furthermore, GRIDS introduces a subset perturbation learning framework for
efficiently generating subsets of global feature importance explanations. Our explanation
method can be efficiently applied across various data modalities, including high-throughput
biological sequence data. Experimental results on the image benchmark and single-cell data
demonstrate the superiority of the GRIDS method over other state-of-the-art baselines.
Additionally, cross-cell type and regional analysis reveal that GRIDS can effectively and
efficiently characterize cell-type-specific regulatory redundancy mechanisms by generating
global explanations using single-cell multi-modal data. These results offer significant poten-
tial for directing experimental validations in wet labs, highlighting the practical relevance
of our method in biological research.
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and et al. Cumulus provides cloud-based data analysis for large-scale single-cell and
single-nucleus rna-seq. Nature Methods, 17(8):793–798, 2020. ISSN 1548-7091. doi:
10.1038/s41592-020-0905-x.

Jiwei Li, Will Monroe, and Dan Jurafsky. Understanding neural networks through repre-
sentation erasure. arXiv preprint arXiv:1612.08220, 2016.

Scott M Lundberg and Su-In Lee. A Unified Approach to Interpreting Model Predictions.
In Advances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017.

Y. Luo, B. C. Hitz, I. Gabdank, J. A. Hilton, M. S. Kagda, B. Lam, Z. Myers, P. Sud,
J. Jou, K. Lin, U. K. Baymuradov, K. Graham, C. Litton, S. R. Miyasato, J. S. Strattan,
O. Jolanki, J. W. Lee, F. Y. Tanaka, P. Adenekan, E. O’Neill, and J. M. Cherry. New
developments on the encyclopedia of dna elements (encode) data portal. Nucleic Acids
Res, 48(D1):D882–d889, 2020. ISSN 0305-1048 (Print) 0305-1048. doi: 10.1093/nar/
gkz1062.

Laurina Manning, Ellie, Maria, Jourdain Roberts, Alysha, Jason, Jill, Marie, Josh, Anna,
and et al. A resource for manipulating gene expression and analyzing cis-regulatory
modules in the drosophila cns. Cell Reports, 2(4):1002–1013, 2012. ISSN 2211-1247. doi:
10.1016/j.celrep.2012.09.009.

Michael W. Perry, Alistair N. Boettiger, and Michael Levine. Multiple enhancers ensure
precision of gap gene-expression patterns in the drosophila embryo. Proceedings of the
National Academy of Sciences, 108(33):13570–13575, 2011. ISSN 0027-8424. doi: 10.
1073/pnas.1109873108.

D. H. Phanstiel, K. Van Bortle, D. Spacek, G. T. Hess, M. S. Shamim, I. Machol, M. I. Love,
E. L. Aiden, M. C. Bassik, and M. P. Snyder. Static and dynamic dna loops form ap-
1-bound activation hubs during macrophage development. Mol Cell, 67(6):1037–1048.e6,
2017. ISSN 1097-2765 (Print) 1097-2765. doi: 10.1016/j.molcel.2017.08.006.

Hannah A. Pliner, Jonathan S. Packer, and et al. Cicero predicts cis-regulatory dna inter-
actions from single-cell chromatin accessibility data. Molecular Cell, 71(5):858–871.e8,
2018. ISSN 1097-2765. doi: 10.1016/j.molcel.2018.06.044.



Liu Xu Riffle Duan Min Zhang

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”Why Should I Trust You?”:
Explaining the Predictions of Any Classifier. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’16, pages
1135–1144, New York, NY, USA, August 2016. Association for Computing Machinery.
ISBN 978-1-4503-4232-2. doi: 10.1145/2939672.2939778.

Patrick Schwab and Walter Karlen. CXPlain: Causal Explanations for Model Interpretation
under Uncertainty. In Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep Inside Convolutional Net-
works: Visualising Image Classification Models and Saliency Maps, April 2014.

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg.
Smoothgrad: removing noise by adding noise. arXiv preprint arXiv:1706.03825, 2017.

Akshay Sood and Mark Craven. Feature Importance Explanations for Temporal Black-Box
Models. Proceedings of the AAAI Conference on Artificial Intelligence, 36(8):8351–8360,
June 2022. ISSN 2374-3468, 2159-5399. doi: 10.1609/aaai.v36i8.20810.

S. G. Swygert, D. Lin, S. Portillo-Ledesma, P. Y. Lin, D. R. Hunt, C. F. Kao, T. Schlick,
W. S. Noble, and T. Tsukiyama. Local chromatin fiber folding represses transcription
and loop extrusion in quiescent cells. Elife, 10, 2021. ISSN 2050-084x. doi: 10.7554/
eLife.72062.

Kevin E. Wu, Kathryn E. Yost, Howard Y. Chang, and James Zou. Babel enables cross-
modality translation between multiomic profiles at single-cell resolution. Proceedings of
the National Academy of Sciences, 118(15):e2023070118, 2021. ISSN 0027-8424. doi:
10.1073/pnas.2023070118.

Lihua Zhang, Jing Zhang, and Qing Nie. DIRECT-NET: An efficient method to discover cis-
regulatory elements and construct regulatory networks from single-cell multiomics data.
Science Advances, 8(22), June 2022. doi: 10.1126/sciadv.abl7393.

Yong Zhang, Tao Liu, Clifford A Meyer, Jérôme Eeckhoute, David S Johnson, Bradley E
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