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ABSTRACT

Polyak-Łojasiewicz (PL) (Polyak, 1963) condition is a weaker condition than the
strong convexity but suffices to ensure a global convergence for the Gradient De-
scent algorithm. In this paper, we study the lower bound of algorithms using
first-order oracles to find an approximate optimal solution. We show that any
first-order algorithm requires at least Ω

(
L
µ log 1

ε

)
gradient costs to find an ε-

approximate optimal solution for a general L-smooth function that has an µ-PL
constant. This result demonstrates the optimality of the Gradient Descent algo-
rithm to minimize smooth PL functions in the sense that there exists a “hard” PL
function such that no first-order algorithm can be faster than Gradient Descent
when ignoring a numerical constant. In contrast, it is well-known that the mo-
mentum technique, e.g. (Nesterov, 2003, chap. 2) can provably accelerate Gradi-
ent Descent to O

(√
L
µ̂ log 1

ε

)
gradient costs for functions that are L-smooth and

µ̂-strongly convex. Therefore, our result distinguishes the hardness of minimizing
a smooth PL function and a smooth strongly convex function as the complexity of
the former cannot be improved by any polynomial order in general.

1 INTRODUCTION

We consider the problem
min
x∈Rd

f(x), (1)

where the function f is L-smooth and satisfies the Polyak-Łojasiewicz condition. A function f is
said to satisfy the Polyak-Łojasiewicz condition if (2) holds for some µ > 0:

∥∇f(x)∥2 ≥ 2µ

(
f(x)− inf

y∈Rd
f(y)

)
, ∀x ∈ Rd. (2)

We refer to (2) as the µ-PL condition and simply denote infy∈Rd f(y) by f∗. The PL condition
may be originally introduced by Polyak (Polyak, 1963) and Łojasiewicz (Lojasiewicz, 1963) in-
dependently. The PL condition is strictly weaker than strong convexity as one can show that any
µ̂-strongly convex function which by definition satisfies:

f(x) ≥ f(y) + ⟨∇f(y),x− y⟩+ µ̂

2
∥x− y∥2

is also µ̂-PL by minimizing both sides with respect to x (Karimi et al., 2016). However, the PL
condition does not even imply convexity. From a geometric view, the PL condition suggests that the
sum of the squares of the gradient dominates the optimal function value gap, which implies that any
local stationary point is a global minimizer. Because it is relatively easy to obtain an approximate
local stationary point by first-order algorithms, the PL condition serves as an ideal and weaker
alternative to strong convexity.

In machine learning, the PL condition has received wide attention recently. Lots of models are
found to satisfy this condition under different regimes. Examples include, but are not limited to,
matrix decomposition and linear neural networks under a specific initialization (Hardt & Ma, 2016;
Li et al., 2018), nonlinear neural networks in the so-called neural tangent kernel regime (Liu et al.,

1



Under review as a conference paper at ICLR 2023

2022), reinforcement learning with linear quadratic regulator (Fazel et al., 2018). Compared with
strong convexity, the PL condition is much easier to hold since the reference point in the latter only
is a minimum point such that x∗ = argminy f(y), instead of any y in the domain.

Turning to the theoretic side, it is known (Karimi et al., 2016) that the standard Gradient Descent
algorithm admits a linear converge to minimize a L-smooth and µ-PL function. To be specific,
in order to find an ε-approximate optimal solution x̂ such that f(x̂) − f∗ ≤ ε, Gradient Decent
needs O(Lµ log 1

ε ) gradient computations. However, it is still not clear whether there exist algo-
rithms that can achieve a provably faster convergence rate. In the optimization community, it is
perhaps well-known that the momentum technique, e.g. Nesterov (2003, chap. 2), can provably ac-
celerate Gradient Descent from O(Lµ̂ log 1

ε ) to O
(√

L
µ̂ log 1

ε

)
for functions that are L-smooth and

µ̂-strongly convex. Even though some works (J Reddi et al., 2016; Lei et al., 2017) have considered
accelerations under different settings, probably faster convergence of first-order algorithms for PL
functions is still not obtained up to now.

In this paper, we study the first-order complexities to minimize a generic smooth PL function and
ask the question:

“Is the Gradient Decent algorithm (nearly) optimal or can we design a much faster algorithm?”

We answer the question in the language of min-max lower bound complexity for minimizing the L-
smooth and µ-PL function class. We analyze the worst complexity of minimizing any function that
belongs to the class using first-order algorithms. Excitingly, we construct a hard instance function
showing that any first-order algorithm requires at least Ω

(
L
µ log 1

ε

)
gradient costs to find an ε-

approximate optimal solution. This answers the aforementioned question in an explicit way: the
Gradient Descent algorithm is already optimal in the sense that no first-order algorithm can achieve
a provably faster convergence rate in general ignoring a numerical constant. For the first time, we
distinguish the hardness of minimizing a PL function and a strongly convex function in terms of first-
order complexities, as the momentum technique for smooth and strongly convex functions provably
accelerates Gradient Descent by a certain polynomial order.

It is worth mentioning that the optimization problem under our consideration is high-dimensional
and the goal is to obtain the complexity bounds that do not have an explicit dependency on the
dimension.

Our technique to establish the lower bound follows from the previous lower bounds in convex (Nes-
terov, 2003) and non-convex optimization (Carmon et al., 2021). The main idea is to construct a
so-called “zero-chain” function ensuring that any first-order algorithm per-iteratively can only solve
one coordinate of the optimization variable. Then for a “zero-chain” function that has a sufficiently
high dimension, some number of entries will never reach their optimal values after the execution of
any first-order algorithm in certain iterations. To obtain the desired Ω

(
L
µ log 1

ε

)
lower bound, we

propose a “zero-chain” function similar to Carmon et al. (2020), which is composed of the worst con-
vex function designed by Nesterov (2003) and a separable function in the form as σ

∑T
i=1 vT,c(xi)

or
∑T

i=1 vyi
(xi) to destroy the convexity. Different from their separable function, the one that we

introduce has a large Lipshictz constant. This property helps us to estimate the PL constant in a
convenient way. This new idea gives new insights into the constructions and analyses of instance
functions, which might be potentially generalized to establish the lower bounds for other non-convex
problems.

NOTATION

We use bold letters, such as x, to denote vectors in the Euclidean space Rd, and bold capital letters,
such as A, to denote matrices. Id denotes the identity matrix of size d × d. We omit the subscript
and simply denote I as the identity matrix when the dimension is clear from context. For x ∈ Rd,
we use xi to denote its ith coordinate. We use supp(x) to denote the subscripts of non-zero entries
of x, i.e. supp(x) = {i : xi ̸= 0}. We use span

{
x(1), · · · ,x(n)

}
to denote the linear subspace

spanned by x(1), · · · ,x(n), i.e.
{
y : y =

∑n
i=1 aix

(i), ai ∈ R
}

. We call a function f L-smooth if
∇f is L-Lipschitz continuous, i.e. ∥∇f(x) − ∇f(y)∥ ≤ L∥x − y∥. We denote f∗ = infx f(x).
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We let x∗ be any minimizer of f , i.e., x∗ = argmin f . We always assume the existence of x∗. We
say that x is an ε-approximate optimal point of f when f(x)− f∗ ≤ ε.

2 RELATED WORK

Lower Bounds There has been a line of research concerning the lower bounds of algorithms on cer-
tain function classes. To the best of our knowledge, (Nemirovskij & Yudin, 1983) defines the oracle
model to measure the complexity of algorithms, and most existing research on lower bounds follow
this formulation of complexity. For convex functions and first-order oracles, the lower bound is
studied in Nesterov (2003), where well-known optimal lower bound Ω(ε−

1
2 ) and Ω(κ log 1

ε ) are ob-

tained. For convex functions and nth-order oracles, lower bounds Ω
(
ε−

2
3n+1

)
have been proposed

in Arjevani et al. (2019b). When the function is non-convex, it is generally NP-hard to find its global
minima, or to test whether a point is a local minimum or a saddle point (Murty & Kabadi, 1985).
Instead of finding ε-approximate optimal points, an alternative measure is finding ε-stationary points
where ∥∇f(x)∥ ≤ ε. Sometimes, additional constraints on the Hessian matrices of second-order
stationary points are needed. Results of this kind include Carmon et al. (2020; 2021); Fang et al.
(2018); Zhou & Gu (2019); Arjevani et al. (2019a; 2020). Though a PL function may be non-
convex, it is tractable to find an ε-approximate optimal point, as local minima of a PL function must
be global minima. In this paper, we give the lower complexity bound for finding ε-approximate
optimal points.

PL Condition The PL condition was introduced by Polyak (Polyak, 1963) and Łojasiewicz (Lo-
jasiewicz, 1963) independently. Besides the PL condition, there are other relaxations of the strong
convexity, including error bounds (Luo & Tseng, 1993), essential strong convexity (Liu et al., 2014),
weak strong convexity (Necoara et al., 2019), restricted secant inequality (Zhang & Yin, 2013), and
quadratic growth (Anitescu, 2000). Karimi et al. (2016) discussed the relationships between these
conditions. All these relaxations implies the PL condition except for the quadratic growth, which
implies that the PL condition is quite general. There are many other papers that study designing prac-
tical algorithms to optimize a PL objective function under different scenarios, for example, Bassily
et al. (2018); Nouiehed et al. (2019); Hardt & Ma (2016); Fazel et al. (2018); J Reddi et al. (2016);
Lei et al. (2017).

3 PRELIMINARIES

3.1 UPPER BOUND ON PL FUNCTIONS

Although the PL condition is a weaker condition than strong convexity, it guarantees linear conver-
gence for Gradient Descent. The result can be found in Polyak (1963) and Karimi et al. (2016). We
present it here for completeness.

Theorem 1. If f is L-smooth and satisfies µ-PL condition, then the Gradient Descent algorithm
with a constant step-size 1

L :

x(k+1) = x(k) − 1

L
∇f(x(k)), (3)

has a linear convergence rate. We have:

f(x(k))− f∗ ≤
(
1− µ

L

)k
(f(x(0))− f∗). (4)

Theorem 1 shows that the Gradient Descent algorithm finds the ε-approximate optimal point of f
in O

(
L
µ log 1

ε

)
gradient computations. This gives an upper complexity bound for first-order algo-

rithms. However, it remains open to us whether there are faster algorithms for smooth PL functions.
We will establish a lower complexity bound on first-order algorithms, which nearly matches the
upper bound.
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3.2 DEFINITIONS OF ALGORITHM CLASSES AND FUNCTION CLASSES

An algorithm is a mapping from real-valued functions to sequences. For algorithm A and f : Rd →
R, we define A[f ] = {x(i)}i∈N to be the sequence of algorithm A acting on f , where x(i) ∈ Rd.

Note here, the algorithm under our consideration works on function defined on any Euclidean space.
We call it the dimension-free property of the algorithm.

The definition of algorithms abstracts away from the the optimization process of a function. We
consider algorithms which only make use of the first-order information of the iteration sequence.
We call them first-order algorithms. If an algorithm is a first-order algorithm, then

x(i) = A(i)
(
x(0),∇f(x(0)), · · · ,x(i−1),∇f(x(i−1))

)
, (5)

where A(i) is a function depending on A. Perhaps the simplest example of first-order algorithms is
Gradient Descent.

We are interested in finding an ε-approximate point of a function f . Given a function f : Rd → R
and an algorithm A, the complexity of A on f is the number of queries to the first-order oracle
needed to find an ε-approximate point. We denote Tε(A, f) to be the gradient complexity of A on f ,
then

Tε(A, f) = min
t

{
t : f(x(t))− f∗ ≤ ε

}
. (6)

In practice, we do not have the full information of the function f . We only know that f is in a
particular function class F , such as L-smooth functions. Given an algorithm A. We denote Tε(A,F)
to be the complexity of A on F , and define Tε(A,F) as follows:

Tε(A,F) = sup
f∈F

Tε(A, f). (7)

Thus, Tε(A,F) is the worst-case complexity of functions f ∈ F .

For searching an ε-approximate optimal point of a function in F , we need to find an algorithm which
have a low complexity on F . Denote an algorithm class by A. The lower bound of an algorithm
class on F describes the efficiency of algorithm class A on function class F , which is defined to be

Tε(A,F) = inf
A∈A

Tε(A,F) = inf
A∈A

sup
f∈F

Tε(A, f). (8)

3.3 ZERO-RESPECTING ALGORITHM

Among all the algorithms, a special algorithm class is called zero-respecting algorithms. If A is
a zero-respecting algorithm and A[f ] =

{
x(t)

}
t∈N, then the following condition holds for all f :

Rd → R:

supp{x(n) − x(0)} ∈
n−1⋃
i=1

supp{∇f(x(i))}. (9)

That is to say, x(n) − x(0) lies in the linear subspace spanned by ∇f(x(0)), · · · ,∇f(x(n−1)). We
denote the collection of first-order zero-respecting algorithms with x(0) = 0 by Azr. It is shown by
Nemirovskij & Yudin (1983) that a lower complexity bound on first-order zero-respecting algorithms
are also a lower complexity bound on all the first-order algorithm when the function class satisfies
the orthogonal invariance property.

3.4 ZERO-CHAIN

A zero-chain f is a function that safisfies the following condition:

supp(x) ⊆ {1, 2, · · · , k} =⇒ supp(∇f(x)) ⊆ {1, 2, · · · , k + 1}, ∀x. (10)

In other words, the support of ∇f(x) lies in a restricted linear subspace depending on the support
of x.
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Figure 1: Illustration of vT,c, v′T,c and bT,c.

The “worst function in the (convex) world” in Nesterov (2003) defined as

fk(x) =
1

2
(x1 − 1)2 +

k−1∑
i=1

(xi+1 − xi)
2 (11)

is a zero-chain, because if xi = 0 for i > n, then (∇fk(x))i+1 = 0 for i > n. A zero-chain is dif-
ficult to optimize for zero-respecting algorithms, because zero-respecting algorithms only discover
one coordinate by one gradient computation.

4 MAIN RESULTS

According to Theorem 1, we already have an upper complexity bound O
(

L
µ log 1

ε

)
by applying

Gradient Descent to all the PL functions. In this section, we establish the lower complexity bound
of first-order algorithms on PL functions. Let P(∆, µ, L) be the collection of all L-smooth and
µ-PL functions f with f(x(0)) − f∗ ≤ ∆. We establish a lower bound of Tε (Azr,P(∆, µ, L))
by constructing a function which is hard to optimize for zero-respecting algorithms, and extend the
result to first-order algorithms. We first propose a relatively simple hard instance which leads to a
Ω
(
κ1−a

)
lower bound in Section 4.1, where a can be any real number that belongs to (0, 1). This

helps in understanding our intuitions. Then we present a more complicated hard instance that can
achieve the desired Ω

(
κ log 1

ε

)
lower bound in Section 4.2.

4.1 Ω
(
κ1−a

)
LOWER BOUND

We introduce a hard function fT,c,σ : RT → R for first-order algorithms:

fT,c,σ(x) = q(x) + σ

T∑
i=1

vT,c(xi), (12)

where

q(x) =
1

2
x2
1 +

1

2

T−1∑
i=1

(xi+1 − xi)
2 (13)

is a quadratic function, and we define vT,c as follows:

vT,c(x) =


1
2x

2, x ≤ 1− 1
32T

−c,
1
2x

2 − 16T c (x− 1 + T−c)
2
, 1− 1

32T
−c < x ≤ 1,

1
2x

2 − 1
32T

−c + 16T c (x− 1− T−c)
2
, 1 < x ≤ 1 + 1

32T
−c,

1
2x

2 − 1
32T

−c, x > 1 + 1
32T

−c

(14)

where T is a positive integer, and c, σ are positive real numbers.

The function q can be rewritten as

q(x) =
1

2
xTAx, (15)
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where

A =


2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 1

 (16)

is a positive-definite symmetric matrix.

From the definition of vT,c in (14), we obtain the derivative of vT,c, which is:

v′T,c(x) =


x, x ≤ 1− 1

32T
−c,

x− 32T c
(
x− 1 + 1

32T
−c
)
, 1− 1

32T
−c < x ≤ 1,

x+ 32T c
(
x− 1− 1

32T
−c
)
, 1 < x ≤ 1 + 1

32T
−c,

x, x > 1 + 1
32T

−c.

(17)

As we can see in (17), v′T,c is a piecewise linear function. To further simplify notations, we define
bT,c(x) in (18):

bT,c(x) =

{
1− 32T c|x− 1|, 1− 1

32T
−c ≤ x ≤ 1 + 1

32T
−c,

0, otherwise.
(18)

Then v′T,c(x) = x− bT,c(x). Figure 1 provides geometric view of vT,c and bT,c.

The quadratic part q is a translation of “the worst function in the (convex) world” in Nesterov (2003),
and the definition of vT,c is inspired by the hard instance in Carmon et al. (2021). Our hard instance
differs from previous ones mainly in the large Lipschitz constant of its gradient. We note that the
controlled degree of nonsmoothness is crucial for our estimate of PL constant. In Lemma 1 we list
some important properties of fT,c,σ , which we prove in Section ??.

Lemma 1. If σ < 1 and T c ≥ 1
2σ

−1, then fT,c,σ satisfies the following.

1. gT,c,σ(x) = fT,c,σ(1− x) is a zero-chain.

2. x∗ = 0, f∗
T,c,σ = 0, fT,c,σ(x) ≤ 1

2x
T (A+ σI)x.

3. fT,c,σ is (4 + σ + 32σT c)-smooth.

4. fT,c,σ satisfies the 1
C1T 1+5c -PL condition, where C1 is a universal constant.

Now we study the lower bound of zero-respecting algorithms first. Let f̃ denote the following
function:

f̃(x) =
LT−1D2

42σT c
fT,c,σ

(
1− T 1/2D−1x

)
, (19)

where D is the distance between 0 and x∗, and T , σ are parameters to be specified later. A change
in D affects f̃(0)− f̃(x∗) and ∥x∗ − 0∥, but does not affect the condition number of f̃ .

In Lemma 2, we show that f̃ is difficult to optimize for all first-order zero-respecting algorithms.

Lemma 2. If σ < 1 and T c > 1
2σ

−1, a first-order zero-respecting algorithm with x(0) = 0 needs
at least T

2 gradient computations to find a point x satisfying f̃(x)− f̃∗ ≤ 1
16 (f̃(x

(0))− f̃∗).

We give the full proof of Lemma 2 in Appendix B.1 . The key point is that each gradient access of
a zero-respecting algorithm only reveals one coordinate of a zero-chain. For i > T

2 , x(k)
i remains

unchanged when k ≤ T
2 , which gives a lower bound of the function value after the first T

2 gradient
computations.

With Lemma 1 and Lemma 2 in hand, we are ready to give our lower complexity bound for zero-
respecting first-order algorithms.
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Theorem 2. Given L ≥ µ > 0 and c < 0.01. When κ = L
µ > C2 where C2 is a universal constant,

we let

T ∈

((
100

C2
κ

)1/(1+6c)

,

(
200

C2
κ

)1/(1+5c)
)

∩ Z, (20)

and

σ =
100

C2
κT−(1+6c). (21)

Then, f̃ is L-smooth and µ-PL. Moreover, any first-order zero-respecting algorithm with x(0) =
0 needs at least Ω

(
κ1/(1+6c)

)
gradient computations to find a point x satisfying f̃(x) − f̃∗ ≤

1
16 (f̃(x

(0))− f̃∗).

The proof of Theorem 2 is provided in Section ??. For a satisfying a
6(1−a) < 0.01, let c = a

6(1−a) ,
then by Theorem 2, any zero-respecting algorithm needs at least Ω(κ1−a) gradient computations to
find an ε-approximate optimal point of the function f̃ .

Using the technique of Nemirovskij & Yudin (1983), for specific function classes such as PL func-
tions, a lower complexity bound on first-order zero-respecting algorithms is also a lower complexity
bound on all the first-order algorithms. Denoting the set of all first-order algorithms by A(1), we
have the following lemma:

Lemma 3.
Tε
(
A(1),P(∆, µ, L)

)
≥ Tε (Azr,P(∆, µ, L)) . (22)

Note that given L and µ, the value f̃(0) can be controlled by choosing an appropriate D. Lemma 2
and 3 leads to the main result of the paper:

Theorem 3. For any 0 < a < 1, when ε ≤ 1
16∆,

Tε
(
A(1),P(∆, µ, L)

)
≥ Ω(κ1−a) (23)

Discussion about parameter setting In the definition of f̃ , f̃ has hyper-parameters T , σ, c. From
our construction, to achieve a lower bound of Ω(κ1−a) when a tends to zero, c also tends to zero.
Parameters T and σ are chosen according to (20) and (21). When c tends to zero, T = Θ(κ) and σ
tends to 1.

4.2 Ω
(
κ log 1

ε

)
LOWER BOUND

We show that the Ω(κ) lower bound can be further improved to Ω
(
κ log 1

ε

)
with a new hard instance

based on fT,c,σ and a similar technique to estimate the PL constant. Detailed proof of Lemmas and
Theorems in this subsection is provided in Appendix C .

We first introduce several components of the new hard instance. We define

vy(x) =


1
2x

2, x ≤ 31
32y,

1
2x

2 − 16
(
x− 31

32y
)2

, 31
32y < x ≤ y,

1
2x

2 − y2

32 + 16
(
x− 33

32y
)2

, y < x ≤ 33
32y,

1
2x

2 − y2

32 , x > 33
32y,

(24)

where y > 0 is a constant. By the definition of vy , we have

v′y(x) =


x, x ≤ 31

32y,

x− 32
(
x− 31

32y
)
, 31

32y < x ≤ y,

x+ 32
(
x− 33

32y
)
, y < x ≤ 33

32y,

x, x > 33
32y.

(25)
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For the non-convex part, we define

by(x) =

{
y − 32|x− y|, 31

32y ≤ x ≤ 33
32y,

0, otherwise.
(26)

Then we have v′y(x) = x− by(x).

For the convex part, we define qT,t(x) as follows (for the convenience of notation, we define x0 =
0):

qT,t(x) =
1

2

t−1∑
i=0

(7

8
xiT − xiT+1

)2

+

T−1∑
j=1

(xiT+j+1 − xiT+j)
2

 , (27)

where x ∈ RTt. qT,t is a quadratic function of x, thus can be written as

qT,t(x) =
1

2
xTBx, (28)

where B is a positive semi-definite symmetric matrix. Like A, B also satisfies 0 ⪯ B ⪯ 4I, because
the sum of absolute value of non-zero entries of each row of B is smaller or equal to 4.

Let y ∈ RTt be a vector satisfying yqT+b =
(
7
8

)q
, where q ∈ N, b ∈ {1, 2, · · · , T}. We define the

hard instance gT,t : RTt → R as follows:

gT,t(x) = qT,t(x) +

Tt∑
i=1

vyi
(xi). (29)

Now we list some properties of gT,t in Lemma 4.
Lemma 4. fT,c,σ satisfies the following.

1. gT,t(y − x) is a zero-chain.

2. x∗ = 0, g∗T,t = 0, gT,t(x) ≤ 1
2x

T (B+ I)x.

3. gT,t is 37-smooth.

4. gT,t satisfies the 1
C3T

-PL condition, where C3 is a universal constant.

Define g̃ to be the following function, which is hard for first-order algorithms:

g̃(x) =
LT−1D2

37
gT,t

(
y − T 1/2D−1x

)
, (30)

Similar to Lemma 2, we show that g̃ is hard for first-order zero-respecting algorithms:

Lemma 5. Assume that ε < 0.01 and let t = 2
⌊
log 8

7

3
2ε

⌋
. A first-order zero-respecting algorithm

with x(0) = 0 needs at least 1
2Tt gradient computations to find a point x satisfying g̃(x) − g̃∗ ≤

ε(g̃(x(0))− g̃∗).

With Lemma 4 and 5, we obtain a lower bound for zero-respeting algorithms:
Theorem 4. Given L ≥ µ > 0. When κ = L

µ > C4 where C4 is a universal constant, there exists
T and t such that g̃ is L-smooth and µ-PL. Moreover, any first-order zero-respecting algorithm with
x(0) = 0 needs at least Ω

(
κ log 1

ε

)
gradient computations to find a point x satisfying g̃(x)− g̃∗ ≤

ε(g̃(x(0))− g̃∗).

Finally, we arrive at a lower bound for first-order algorithms using Lemma 3:
Theorem 5. For any 0 < a < 1, when ε ≤ 1

16∆,

Tε
(
A(1),P(∆, µ, L)

)
≥ Ω

(
κ log

1

ε

)
(31)

This bound matches the convergence rate of Gradient Descent up to a constant.

8



Under review as a conference paper at ICLR 2023

0 200 400 600 800 1000 1200
Gradient queries

14
12
10

8
6
4
2
0
2

log10
f(xk)
f(x0)

Lower bound
GD
AGD, =
AGD, =
Heavy-ball, =
Heavy-ball, =

(a) κ = 4.8384× 108
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Figure 2: Convergence rate under Gradient Descent, Nesterov’s Accelerated Gradient Descent and
Polyak’s Heavy-ball Method

5 NUMERICAL EXPERIMENTS

We conduct numerical experiments on our hard instance. We consider the κ relatively large, which
can reduce the factors from the numerical constants. We κ = 4.8384× 108, c = 0.001 in Figure 2a
and κ = 4.8384 × 1010, c = 0.001 in Figure 2b, then compute corresponding T and σ according
to (20) and (21). We use Gradient Descent, Nesterov’s Accelerated Gradient Descent (AGD) and
Polyak’s Heavy-ball Method to optimize the hard instance. As AGD and the Heavy-ball Method
are designed for convex functions, we need to choose appropriate parameter µ̂ in both algorithms,
because our hard instance is non-convex. The first choice is µ, which is the PL constant of our hard
instance. The second choice is σ, because when xi is far from 1, our hard instance can be treated as
a σ-strongly convex quadratic function.

From Figure 2,we observe that the convergence can be roughly divided into two phases. In phase
one, the optimization methods tries to pull every coordinate of x̃ away from 1, and the function
value does not decrease much. In phase two they converge linearly. This may be due to the fact that
when each x̃i is far from 1, our hard instance is exactly a strongly convex quadratic function. The
observation is consistent with our theoretical results.

6 CONCLUSION

We construct a lower complexity bound on optimizing smooth PL functions with first-order methods.
A first-order algorithm needs at least Ω

(
L
µ log 1

ε

)
gradient access to find an ε-approximate optimal

point of an L-smooth µ-PL function. Our lower bound matches the convergence rate of Gradient
Descent up to constants.

We only focus on deterministic algorithms in this paper. We conjecture that our results can be
extended to randomized algorithms, using the same technique in Nemirovskij & Yudin (1983) and
explicit construction in Woodworth & Srebro (2016) and Woodworth & Srebro (2017). We leave its
formal derivation to the future work.
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