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ABSTRACT

While reinforcement learning (RL) demonstrated remarkable success in enhanc-
ing the reasoning capabilities of language models, the training dynamics of RL
in LLMs remain unclear. In this work, we provide an explanation of the RL
training process through empirical analysis and rigorous theoretical modeling.
First, through systematic reasoning-pattern-level and token-level analysis across
the RL training process, we show that while different reasoning patterns exhibit
relatively stable success rates during training, RL primarily optimizes a sparse
subset of critical tokens, thereby reshaping reasoning pattern distributions to affect
model performance. Building on these empirical insights, we develop a theoretical
framework to understand the training dynamics of RL with two typical rewards:
verifiable reward (RLVR) and model’s internal feedback (RLIF). For RLVR, we
analyze the training dynamics under two special cases: one where models readily
converge to optimal reasoning strategies, and another where optimization becomes
challenging, revealing that the base model’s reasoning quality is crucial for deter-
mining convergence behavior. For RLIF, we examine how internal rewards initially
improve model performance but can potentially lead to degradation with continued
training. Extensive experiments validate our findings, advancing both theoretical
understanding and practical applications of RL in language model enhancement.

1 INTRODUCTION

Recently, state-of-the-art reasoning models such as Gemini2.5 (Comanici et al., 2025)), Qwen3
(Yang et al., |2025), and DeepSeek-R1 (Guo et al.,[2025) demonstrate exceptional performance on
complex logical tasks including mathematics (Shao et al.,[2024; Zeng et al., 2025} [Yu et al.| 2025)
and programming (Zhu et al., 2024} |Yang et al., 2025} |Comanici et al.|[2025). Reinforcement learning
(RL) serves as a key technique behind this success, demonstrating the potential to elevate model
capabilities to a new level.

The success of RL has triggered research into its underlying mechanisms for LLMs. By comparing
pass@k performance, [Yue et al.|(2025a)) show that models post-trained with RL struggle to surpass
base models, suggesting that RL may not elicit fundamentally new reasoning patterns. From an
entropy perspective, Cui et al.|(2025a)); [Zhang et al.|(2025) theoretically prove that RL-based methods
can reduce policy entropy, with|Cui et al.[(2025a) also empirically establishing a connection between
model performance and policy entropy. [Wang et al.| (2025a); Huan et al.|(2025)) further demonstrate
that RL primarily optimizes a sparse subset of critical tokens. Despite these various efforts to
understand RL mechanisms, the underlying dynamics of the RL training process remain incompletely
understood both empirically and theoretically.

To understand the RL training process, we first present a systematic reasoning-pattern-level and
token-level analysis across RL training. Specifically, focusing on the training dynamics, we not only
examine the ranking shifts across training, but also use LLM-based and rule-based methods to extract
and classify reasoning patterns from models’ responses, analyzing the corresponding success rates and
distributions during training. Compared with previous works (Huan et al., 2025} |Yue et al., 2025al),
our experiments provide clearer and more compelling evidence demonstrating that RL primarily
optimizes a sparse subset of critical tokens, thereby reshaping reasoning pattern distributions to affect
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model performance. Moreover, we find that the intrinsic success rate of individual patterns remains
relatively stable. These experimental insights inspire us to develop a mathematical framework to
theoretically understand the RL training process.

Based on our empirical findings, we further develop a theoretical framework that conceptualizes
reasoning as a two-stage question-reason-answer process ¢ — r — a: (1) reasoning pattern selection
based on the question, i.e., m(r|q), and (2) answer generation based on the chosen pattern, i.e.,
m(alr, q). Using this framework, we theoretically analyze the training dynamics of RL in LLMs with
two typical reward types: verifiable reward (RLVR) (Guo et al.| [2025} |Shao et al.| [2024) and the
model’s internal feedback (RLIF) (Zhao et al., [2025b; |/Agarwal et al., [2025)). For RLVR, we show
that it can converge to the reasoning pattern r* with the highest success rate, which precisely matches
our empirical observations. Moreover, we characterize two distinct convergence regimes: models
with strong initial reasoning quality demonstrate rapid convergence to optimal patterns, while weaker
models face entanglement-stage optimization challenges. For RLIF, we provide an explanation
of why RL with internal rewards can improve model performance, and we also show that RLIF
may ultimately converge to a state with worse performance than the base model, aligning with our
empirical findings. Additional experiments validate our theoretical analysis.

The main contributions of this paper are highlighted as follows:

* We conduct systematic reasoning-pattern-level and token-level analysis across the RL training
process. Through examining next token prediction ranking shifts, combined with LLM-based
and rule-based reasoning pattern analysis, we provide clearer and more compelling evidence for
understanding RL training dynamics compared with previous works (Huan et al.| |2025; [Yue et al.|
2025a). Our experiments demonstrate that RL primarily optimizes a sparse subset of critical tokens,
thereby reshaping reasoning pattern distributions to affect model performance, while the intrinsic
success rate of individual patterns remains relatively stable during training.

* We develop a formal two-stage mathematical framework that models reasoning as ¢ — r — a
(question-reason-answer) and theoretically analyze training dynamics for two typical RL-based
approaches. For RLVR, we prove convergence to the reasoning pattern with the highest success
rate and characterize two distinct regimes: rapid convergence for strong base models versus
optimization challenges during entanglement stages for weaker models. For RLIF, we provide
theoretical justification for the performance improvements at early training stages, and explain why
such methods may ultimately converge to worse performance than the base model.

* We validate our theoretical analysis through additional case studies. Our framework provides
practical insights for understanding and improving RL-based LLLM post-training, bridging the gap
between empirical observations and theoretical understanding of RL training dynamics in LLMs.

2 RELATED WORKS

Reinforcement Learning for LLMs Reinforcement learning has demonstrated remarkable success
in enhancing large language models (LLMs), particularly in aligning models with human preferences
(Ouyang et al.l 2022 [Zhu et al., [2023)) and in solving complex mathematical and programming
tasks (Shao et al., 2024; Jaech et al.| 2024; Lambert et al.,[2024). A central component of RL is the
reward model, which traditionally relies on human-annotated datasets (Rafailov et al.| 2023} Ouyang
etall, 2022} |/Achiam et al.,[2023) with extensive training. Recently, the paradigm has shifted toward
leveraging more easily obtainable and verifiable rewards, such as in reinforcement learning with
verifiable rewards (RLVR) (Shao et al.| [2024; |Yang et al.l 2025} |Guo et al.| 2025) and reinforcement
learning with internal feedback (RLIF) (Zhao et al., [2025b; |Agarwal et al.| [2025). Moreover, the
success of RL has spurred the development of new RL algorithms, including GRPO (Shao et al.,
2024)), DAPO (Yu et al., [2025)), and VAPO (Yue et al., 2025b).

Theoretical Analyses and Mechanism Interpretation of RL for LL.Ms. The success of RL in
LLMs has triggered extensive research into theoretical analyses and mechanism interpretation. Initial
efforts mianly focused on a high level analysis of RL such as how to design better reward |Scheid
et all (2024); |[Huang et al.| (2025)); | Xu et al.| (2024)) and how to develop novel training algorithms
Xiong et al.[(2024); Das et al.|(2024); Ji et al|(2024). As RL paradigms shift towards simpler reward
structures like RLVR and RLIF, researchers have sought to understand the fundamental reasons
behind its effectiveness from various perspectives. |Shao et al.| (2025) revealed that spurious rewards
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enhance reasoning by unlocking latent skills from pretraining, while /Agarwal et al.|(2025) explained
performance improvements through entropy minimization. (Gandhi et al.|(2025) identified specific
cognitive behaviors, such as backtracking, that contribute to improved reasoning capabilities. Further
insights came fromZhao et al.|(2025a)), who demonstrated that RL fine-tuning amplifies pre-trained
behaviors, leading to convergence towards dominant output formats, a phenomenon further analyzed
by [Wang et al.|(2025b); (Cui et al.|(2025b) through the lens of entropy collapse. Unlike previous work,
our study presents an analysis of RL training dynamics from the perspective of reasoning pattern
selection, supported by a mathematical framework with theoretical analysis.

3 PRELIMINARIES

Reinforcement Learning for LLMs Let g be a language model with parameters 8, which serves as

the policy to be optimized. Given an input question = (zg, z1, . .., Z, ), the policy mg generates an
answer ¥y = (Yo, Y1, - - - , Ym ). The optimization objective can be formulated as:
PRL(O) = Exup ymrg (o) [To(®, Y)] — BDkL [To(y | @) || meet(y | )], (3.1)

where ¢ is the base reference policy, and 5 is a hyperparameter that controls the KL divergence to
prevent excessive deviation between mg and 7yf.

The reward function r(, y) can be implemented in various formats, such as a trained reward model
Ouyang et al.|(2022) or a rule-based scoring function |Shao et al.[|(2024). In this paper, we focus on
verifiable reward (RLVR) (Guo et al.| 2025} Shao et al.| [2024)) and the model’s internal feedback
(RLIF) (Zhao et al.,|2025b; | Agarwal et al., [2025)).

In RLVR, the reward function r4(x, y) directly evaluates whether the answer y matches the correct
answer to question x. A typical reward function is defined as:

3.2
0 otherwise. (3-2)
Unlike RLVR, RLIF (Zhao et al., [2025b; |Agarwal et al.| [2025) leverages rewards based solely on
intrinsic model-derived signals. Following|Zhao et al.|(2025b), we consider the RLIF reward as the
negative average KL divergence between a uniform distribution U over the vocabulary V and the
model’s next-token distribution
1 lyl lyl V]
ro(@.y) = o > Dkr(Ullmo (-, y<;) = IV\ >N log(V] - m(lz, <), (3.3)

i=1 =1 j=1

1 if y = the ground truth of z,
(z,y) = { £

In this paper, we aim to understand the training dynamics of both RLIF and RLVR through empirical
and theoretical analysis.

4 EXPERIMENTAL EXPLORATION FOR RL TRAINING

To understand the RL training process, we conduct systematic experiments and analysis across RL
training with different rewards. Our experiments begin with a high-level overview of the training
procedure, revealing that RLVR yields steady improvements, whereas RLIF can be unstable and even
degrade performance. To dissect these dynamics, we perform a reasoning-pattern level analysis, which
shows that RLVR’s success stems from its tendency to adopt reasoning patterns with higher success
rates, while RLIF fails to specialize in these patterns. Finally, a token-level analysis investigates
the underlying mechanism for these reasoning pattern dynamics, revealing that they are driven by
changes in the probability ranks of a surprisingly small fraction of tokens. Compared with previous
works (Huan et al., 2025} [Yue et al.,|2025a), our experiments provide clearer and more compelling
evidence of these RL training dynamics, demonstrating that RL primarily optimizes a sparse subset
of critical tokens, thereby reshaping reasoning pattern distributions to affect model performance.

4.1 TRAINING PROCEDURE OVERVIEW FOR RLVR AND RLIF

We first analyze the complete training procedures for both RLVR and RLIF. For a controlled compari-
son, we select Qwen2.5-3B (Yang et al.,[2024)) as the base model and train it on the MATH dataset
(Hendrycks et al., [2021)), keeping all other settings identical for both algorithms.
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Figure 1: (a) The training procedures using RLVR and RLIF, showing the performance on the MATH
dataset. A key finding is that RLVR provides stable gains, while RLIF causes model performance to
initially increase and then decrease. We conduct multiple rounds of experiments for each training
paradigm by setting the random seed. (b) The reasoning-pattern level comparison. The solid line
represents the proportion of a certain pattern in the responses among all patterns (left vertical axis).
The dotted line represents the accuracy corresponding to the pattern (right vertical axis). During
RLVR, the model gradually adopts patterns with higher accuracy and reduces the use of patterns with
lower accuracy, while RLIF exhibits unstable training dynamics. For ease of observation, we sort and
name the different patterns from high to low according to their corresponding accuracy.

As illustrated in Figure [Ta] the two methods exhibit markedly different performance trajectories.
RLVR leads to a stable training process, where model performance continuously improves and
gradually converges throughout training. In contrast, while RLIF initially improves performance in
the early stages, continued training could lead to a performance drop, sometimes resulting in a model
that is worse than the original base model. These results motivate us to conduct a more systematic,
fine-grained empirical analysis to understand the underlying RL training dynamics.

4.2 REASONING-PATTERN LEVEL ANALYSIS

To understand the performance disparities observed between RLVR and RLIF, we conduct a fine-
grained analysis at the reasoning-pattern level. To define and extract these patterns, we first collect
responses from the base model and employ GPT-40 (Hurst et al., [2024) to group them into distinct
categories based on keywords and logical structure, also generating a description for each pattern.
We then use these classifications to analyze the reasoning pattern distribution and their corresponding
success rates throughout the RL training procedure.

Specifically, we analyze the dynamics of reasoning patterns and their accuracy during both RLVR
and RLIF training. Figure [Ib|illustrates our analysis on responses from Number Theory tasks from
the MATH dataset (Hendrycks et al., | 2021)), with additional results for varying models and datasets
provided in Appendix [B] Our analysis reveals three key findings:

* RLVR-trained models consistently shift towards adopting reasoning patterns with higher success
rates, explaining why the model’s overall accuracy steadily improves with RLVR.

* The reasoning pattern distribution for RLIF exhibits unstable training dynamics and fails to
specialize in more effective patterns.

* The success rate of any individual reasoning pattern remains stable throughout the training process
for both methods.

This analysis indicates that the performance difference between RLVR and RLIF stems from their
distinct reasoning pattern dynamics. We therefore conduct further experiments to understand the
underlying mechanisms driving these changes during RL training.

4.3 TOKEN-LEVEL ANALYSIS Table 1: The Ranking Change Ratio after RL.

. . Task  Method Step20 Step40 Step60 Step80 Stepl00
To understand the mechanisms behind the rea-
RLVR 52% 60% 66% 71% 13%

soning pattern dynamics observed during RL ~ GSMSK ./t o5a  s0% 9% 95%  10.1%
training, inspired by Huan et al.[(2025);|Yue et al.

RLVR 53% 58% 6.1% 65% 6.6%
(29253), we further conduct a token-level anal- MATH o1 olo 70% 77% 83%  88%
ysis. We first sgmple responses from the base RIVR  51%  57%  59% 61%  63%
model for questions from the GSM8K (Cobbe| AIME24  pi1r 5609, 65% 74% 82%  8.6%
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et all, [2021)), MATH (Hendrycks et al.l [2021)), and AIME (Codeforces) datasets. Then, for these
identical responses, we examine the corresponding token ranks in both the base and the RL-enhanced
models. Here, a token’s rank refers to the position of its probability among all vocabulary tokens,
given the preceding context. Our analysis, summarized in Table[T] reveals that the ranks of individual
tokens remain largely stable, with less than 10% of tokens experiencing a rank shift in most cases.
This finding indicates that RL selectively modifies the probabilities of a sparse set of critical tokens
while leaving the majority of the reasoning process unchanged.

Our experiments provide clean and compelling evidence for RL training dynamics: RL primarily
optimizes a sparse subset of critical tokens, thereby reshaping reasoning pattern distributions to affect
model performance. Moreover, the intrinsic success rate of individual patterns remains relatively
stable during training.

These empirical findings not only offer a deeper understanding of RL training dynamics but also
provide insights for building a mathematical framework to conduct further theoretical analysis.

5 THEORETICAL CHARACTERIZATION OF RL TRAINING DYNAMICS

Beyond empirical observations, we take a further step toward theoretically understanding the RL
training process. In this section, we first build a theoretical framework based on experimental insights.
We abstract the model’s reasoning procedure as a two-step process: first selecting a reasoning pattern,
then performing answer deduction, where RL specializes in optimizing the first part. Based on this
framework, we provide a theoretical analysis for our observations of RL with different rewards. For
RLVR, we analyze its training dynamics and examine two special cases with distinct optimization
behaviors. For RLIF, we analyze why RL with internal rewards can improve model performance
while also explaining why such methods may ultimately result in models with worse performance
than the base model.

5.1 A THEORETICAL FRAMEWORK FOR REASONING MODELS

Abstract Reasoning Process. We formalize the reasoning process as follows: given a question
g, the model (1) selects a reasoning pattern r from candidate patterns R = {71, 72,...} and (2)
generates a final answera € A = {a1, aq, ... } accordingly. The model selects reasoning pattern 7
with probability p(r;|q), and each reasoning pattern has a distinct success rate. Within this framework,
we can reformulate the RLIF optimization objective (Eq. as followﬂ

ro({r,a},q) = — ( 1 2 s (R mo(rda) + g 3 108 (1Al mo(ay 0. 7)) ) 5.1)

|R| r,€ER ajE.A

Policy Parameterization. Let)V = {gq} UR U A denote the vocabulary setand Y = (7,a),.c 4ca
represent the set of output sequences. Given a question g, the language model produces a distribution
over output sequences y € ) autoregressively:
lyl lyl
(general policy) mo(ylx) = H mo(yilx,y<1) = H softmax( fo(x, Y<i))y,, (5.2)
=1 =1
where fg : V — RVl is a function parameterized by 6, and the model predicts the I-th to-
ken based on the previous context y.;. The next token follows the distribution softmax(z), :=
exp(zy)/ Zv'ev exp(zy ) for z = fo(x,y<).
Due to the complexity of practical models, establishing optimization guarantees for understanding
RL training dynamics has proven very challenging (Agarwal et al.| [2021} L1 et al.,[2021). Following
previous works (Razin et al., 2025} Mei et al., 2020; (Cui et al., 2025b; [Zhang et al.| [2025), we consider
a tabular policy parameterization, which can be viewed as a special case of Eq. [5.2 where each output
is assigned its own trainable logit for the corresponding last token, i.e., for @ € RIVIxIVI:

(tabular policy) To(Yilx, Yy<i) = mo(yi|yi—1) = softmax(6. 4, )y, (5.3)
where 0., |, € RV is the column of @ corresponding to ;1.

'For simplicity, we omit the normalizing coefficient 1/|y| from Eq. which can be treated as a constant
1/2 in our framework.
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Optimization for RL. For our analysis of training dynamics, we consider the tabular policy from
Eq[5.3 with the optimization objective ¢rr,(0) in Eq[3.1} We analyze the policy gradient in the small
learning rate limit using gradient flow:

d

%0(’5) =VorL(0(t)), t=0 (5.4)

where 0(t) represents the parameters of the policy 7g(¢) at training time ¢, initialized with 8(0) = O..s.

Our experiments revealed that success rates for individual reasoning patterns often remain stable
during training. We attribute this to the model’s architectural constraints: optimizing the mapping
from questions to reasoning patterns is substantially easier than optimizing the path from reasoning
patterns to final answers. To formalize this observation, we introduce the following assumption:

Assumption 5.1. The success rate for each reasoning pattern r; € R to provide the correct answer
r*, defined as mg(a*|q, r;), remains constant during training.

In the remaining part of this section, we adopt Assumption [5.1| and use p*(r) = mg(a*|q, ) to
denote the fixed success rate for the given pattern . We first derive the optimal policy for the RL
objective (Eq[3.1)) under the general autoregressive policy (Eq[5.2). We then analyze RLVR and RLIF
training dynamics using the tabular policy (Eq.[5.3).

5.2 THE OPTIMAL POLICY FOR RL

Our empirical results demonstrate that RLVR improves model performance steadily through incen-
tivizing reasoning patterns with a higher success rate, while the RLIF demonstrates an unstable
improvement for the model, here, we first provide a theoretical explanation for the optimal policy for
RLVR and RLIF optimizing objective:

Proposition 5.2. Suppose we maximize the RL objective (Eq using a general autoregressive
policy (Eq[5.2) and Assumption[5.1| holds. Then, the optimal policy satisfies:

1 1
Topt (T]@) = s (ﬂR(T)> To,.;(r|q) forallr € R, (5.5)

where Z = ) 5 €xp (éR('I‘)) To,..(T|q) is the normalizing coefficient, and R(r) denotes the

ref

reasoning path reward. Specifically:
* For RLVR, R(r) equals the success rate of reasoning pattern v, i.e., Rrivr(r) = p*(r).

* for RLIE, R(r) equals to the confidence for the reasoning pattern r for final answer distribution,
i.e., RRLIF (’I") = _%A\ ZaeA 10g(71'9 (a\q, ’I”))

Proposition [5.2] characterizes the optimal solutions for RLVR and RLIF. Assuming 7,y resides
within the general autoregressive policy parameterized space (which always holds for both LLMs
and the tabular policies discussed later), the RLVR-optimized model increases the probability of
a reasoning pattern » when the its probability to deduct the correct answer p*(r) is high enough
such that exp(%p* (r))/Z > 1. In contrast, for RLIF, the formulation of Rryr(7) just consider
the confidence of the final answer distribution, fails to distinguish between correct answer a* and
incorrect alternatives. Consequently, while optimal policy under RLVR could consistently leading to
better performance, the optimal policy for RLIF does not guarantee improved accuracy over the base
model.

Moreover, since [ is typically small (e.g., 0.001) in practice Rafailov et al|(2023); Bai et al.| (2022);
Zeng et al.[(2025)), as 8 — 0, we have:

o1 1 1 r =argmax_ R(r
rops(rla) =l 7 exp (GR) ) mo (i) = {1 WER ) s
In this limit, the policy converges to a deterministic strategy that always selects the reasoning pattern
r with highest R(r), regardless of how the initialized reference model chooses reasoning patterns.
However, due to the non-convexity of the optimization landscape, the dynamics of how RLVR
reliably finds high-reward patterns and why RLIF may exhibit early performance improvements
remain unclear. To address this, we next analyze the training dynamics of both methods under a
tabular policy (Eq. [5.3)), providing further insight into the RL training process.
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5.3 TRAINING DYNAMIC ANALYSIS FOR RLVR

Our experiments demonstrate that RLVR improvements heavily depend on the capacity of the base
model. Here, we focus on the probability of the optimal reasoning pattern, i.e., the pattern r* with the
highest success rate for reaching the correct answer a* r* = arg max,. p*(r). We reveal two distinct
regimes in the training dynamics of RLVR via gradient flow. In the first regime, the probability
of the optimal reasoning pattern g (7*|q) steadily increases until convergence to 1. In the second
regime, the model initially experiences an entanglement stage, where a suboptimal reasoning pattern
r’ = r* hinder the optimizing process for the optimal reasoning pattern. After this entanglement
stage, the model eventually transitions to the dynamics of the first regime and converges to the optimal
reasoning pattern r*.

Theorem 5.3 (Regime 1: Sufficient Condition for Efficient Convergence). Consider the RLVR (Eq
with 3 = 0 for optimizing objective Eq[3.1] using a tabular policy (Eq[5.3) with Assumption
holds. Let v* be the optimal reasoning pattern, if the overall accuracy of the initialized model ..,
defined as ACC,,, = ) .. To,.:(Tq)p*(7), satisfies:

(Regime 1) ACCy,,, > p*(r) forall r € R,v £ r*, (5.7

ref

then for any € > 0, there exists Ty = O(L) such that for t > Ty, we have 1 — (1) (r*|q) < €.

In Theorem[5.3] we consider a case where the base reference model is sufficiently strong such that
its overall accuracy exceeds the success rate of all non-optimal reasoning patterns (Eq[5.7). In this
case, RLVR can efficiently guide the model to select the optimal reasoning pattern at rate O(1/¢),
achieving a high overall accuracy (close to the success rate of the optimal reasoning pattern).

However, practical experience shows that in some scenarios, RLVR optimization can be challenging
Zeng et al.| (2025); [Xie et al.| (2025), which typically occurs when the base reference model is
less powerful. We then consider the second regime, where the model initially experiences an
entanglement stage, and the suboptimal reasoning pattern with the second-highest success rate,
defined as ' = arg max p*(r), slows down the optimization process for the optimal reasoning
pattern:

r,rEP*

Theorem 5.4 (Regime 2: Slow Convergence for optimal reasoning pattern). Consider the RLVR (Eq
with 8 = 0 for optimizing objective Eq[3.1] using a tabular policy (Eq[5.3) with Assumption
holds. Let v* and v’ be the optimal and second optimal reasoning patterns, if the overall accuracy of
the initialized model satisfies:

(Regime 2) ACCe,,, > p*(r) forallT € R/{r*,r'} (5.8

ref
then there exists:
1

To=————
* " 2 2m,,(r']q)

((Cl '%ref)QCZ'Wmf _ 1) , Where v . == Z 6. 7). (rla) (5.9)
4 ’ 7-‘-gx'ef (r* ‘q)
reR/{r'}

with constants C1,Cy depending on the success rates of reasoning patterns, such that for we can
guarantee the model transform from regime 2 (Eq to regime 1 (Eq[5.7), i.e., ACCq(y >
p*(r),Yr € R,r # r* fort > Tp.

In Theorem [5.4] we consider a special regime where only the success rates of the optimal and
suboptimal reasoning patterns exceed the overall accuracy. We consider this case for ease of
theoretical analysis and believe it can be extended to more general settings where at least two
reasoning patterns are allowed to achieve higher success rates than the average, albeit with more
complicated theoretical analysis.

Additionally, the critical insight of Theorem [5.4]is that RLVR may require 7j time steps to ensure
that the overall success rate exceeds the success rate of the suboptimal reasoning pattern, i.e., to reach
the regime discussed in Theorem [5.3| where the selection probability of the optimal reasoning pattern
is sufficiently large. While Theorem |5.3|shows that the convergence time 77 is polynomial in 1/e, the
time step Tp in Theorem [5.4|may grow super-exponentially with respect to ., .—the ratio between
the total success rate through R /{r'} and the success rate through r*. Clearly, when the base model
assigns a very small selection probability to the optimal reasoning pattern, we may have a very large
“Vr..¢» Which leads to a prohibitively large Tj. Consequently, it can take an extremely long training
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period for the model to select the optimal reasoning pattern with a reasonably large probability, which
we refer to as the entanglement stage.

We provide additional experiments and case studies to further illustrate these two regimes in Sec[f]

5.4 THEORETICAL EXPLANATION FOR RLIF

In Proposition [5.2] we reveal that RLIF, which only considers the confidence of the final answer
distribution, fails to distinguish between the correct answer a* and incorrect alternatives. This
indicates that RLIF may eventually lead to performance degradation compared to the base model,
which aligns well with our empirical observations. However, previous studies have demonstrated that
RLIF can improve model performance without external rewards |Agarwal et al.|(2025)); Zhao et al.
(2025b). Here, we provide a theoretical explanation for why RLIF can improve the performance of a
well-trained LLM at the initial training stage.

First, we consider a well-trained LLM satisfying the following assumption:

Assumption 5.5. For the base model, the correct answer a™* has the highest probability across all
possible answers, i.e., argMaX,c 4 Y e ) Thase(@|q; T)Thase(T]q) = a™.

Since majority voting [Wang et al.|(2022)) has proven to be an effective method for improving model
performance, a well-trained LLMs typically assign a higher probability to the correct answer a* than
to incorrect answers, Assumption @] is likely to hold for modern LLMs. Under this constraint, we
consider the case that |A| = 2, the success rate for each reasoning path follows a uniform distribution
and the reasoning pattern selection is high-entropyﬂ In this case, we analyze the overall accuracy
dynamics at ¢ = 0, yielding the following theorem:

Theorem 5.6 (RLIF Increases Overall Accuracy at Initialization). Consider the RLIF (Eq[5.1) with

B = 0 for optimizing objective Eq[3.1] using a tabular policy (Eq with Assumption[5.1|and[5.3]
hold,y, ... (7|q) = ﬁfor all v € R, |A| = 2 and success rate for each reasoning path follows a

uniform distribution p*(r) ~ U|0, 1]. Then when |R| — +o0, the following holds:

1. The accuracy derivative at t = 0 is positive with probability 1, i.e. P(%ACCGU) ’t:O >0)=1.
2. With probability p = 0.5, that arg max,. Rgrir () = arg min,. p*(7).

The first result in Theorem [5.6]shows that overall accuracy increases at initialization, offering a theoret-
ical explanation for RLIFs early performance gains. However, as training progresses, Proposition[5.2]
implies that when 5 = 0, the policy converges deterministically to the reasoning pattern = that maxi-
mizes Rgrir (7). The second result in Theoremreveals that, with probability 0.5, this maximizing
pattern coincides with the one that minimizes the success rate: arg max,. Rrpir(r) = arg min,, p* (7).
In other words, there is a 50% chance the model converges to the least accurate reasoning path.
Consequently, while RLIF initially improves model performance (as the derivative of accuracy is
positive), continued training may cause the model to converge to states that favor reasoning paths
with very low accuracy, ultimately resulting in performance worse than the base model.

6 CASE STUDIES AND NUMERICAL SIMULATIONS

To further validate and interpret our theoretical findings, we present case studies and training simula-
tions to illustrate our theorems. For RLVR, we demonstrate two distinct training regimes discussed
in Theorems and as illustrated in Fig. |2 (upper). For RLIF, we conduct multiple training
simulations where each reasoning path’s success rate follows a uniform distribution, validating our
analysis of RLIF’s behavior during initial training steps and at convergence, as shown in Fig. [2]
(bottom).

6.1 CASE STUDIES FOR RLVR

In Section we identified two distinct regimes in RLVR’s training dynamics. In the first regime
(Eq , the probability of selecting the optimal reasoning pattern 7g (7*|q) monotonically increases

Previous work (Wang et al., [2025a) reveals that RL primarily optimizes high-entropy tokens. Here, we
consider the highest entropy case: mg, . (7|q) = 1/|R|forallr € R.
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Figure 2: Case studies for RLVR (upper) and training simulations for RLIF (bottom). The upper
panels demonstrate two distinct training regimes in RLVR: rapid convergence (left) and entanglement
phase (right). The bottom panels show the probabilities of model convergence to different states (left),
and the probability of initial performance gains (right) for RLIF across varying |R|.

until convergence. In the second regime (Eq[5.8), the model undergoes an initial entanglement phase
and requires a substantially longer training period before transitioning to the dynamics of the first
regime and converging to the optimal reasoning pattern r*. We examine both regimes:

* As demonstrated in Fig. [2| (upper left), when the reference model satisfies the conditions in Eq
where the overall accuracy exceeds the success rates of all non-optimal reasoning patterns, the
model converges rapidly to the optimal reasoning pattern.

* In the second case, corresponding to Theorem|[5.4} when a suboptimal reasoning pattern 7’ achieves
a higher success rate than the initial overall accuracy, the model first experiences an entanglement
phase. A transition period T} (defined in Theorem [5.4) must elapse before the model enters the
rapid optimization phase characteristic of case 1. Fig.|2| (upper right) illustrates a scenario where
V.o (defined in Eq[5.9) is large (v, = 6, as (0.25 4 0.05)/0.05 = 6). In such cases, the
transition time 7g, which scales with fy;yfc“f‘ , becomes prohibitively long, significantly delaying
convergence to the optimal reasoning pattern. The pattern dynamics in Fig. [2] clearly demonstrate
such entanglement stage, align well with our theoretical result.

6.2 NUMERICAL SIMULATIONS FOR RLIF

In Section[5.4] we demonstrated that under Assumption [5.5]and the base model distribution specified
in Theore as |R| — oo, the accuracy derivative at t = 0 is positive with probability 1, while
there exists a 50% probability of convergence to the least accurate reasoning path. Our simulations
validate these findings. Fig. [2[(bottom left) presents RLIF training simulations across varying |R|.
The results confirm that the probability of convergence to an improved state (AC'C 1) approximately
equals the probability of convergence to a degraded state (AC'C' ), validating the second result in
Theorem [5.6] Additionally, our examination of initial training step performance, shown in Fig. 2]
(bottom right), demonstrates that for large |R|, the probability of initial performance improvement
approaches 1, supporting our first result in Theorem [5.6]

7 CONCLUSIONS AND LIMITATIONS

This work analyzes reinforcement learning dynamics in LLMs through both empirical investigations
and theoretical frameworks. We develop mathematical analyses for two representative reward
mechanisms (RLVR and RLIF) and validate our findings through case studies and simulations.
Our analysis has certain limitations that warrant further investigation: the interpretability of LLM-
identified reasoning patterns needs additional validation, our theoretical framework could be extended
to handle more complex real-world reasoning scenarios, and the current analysis could be generalized
beyond specific base model assumptions.



Under review as a conference paper at ICLR 2026

REFERENCES

MAA. 2023. American mathematics competitions. https://artofproblemsolving.com/
wiki/index.php/American Mathematics Competitions, 2023. Online.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy
gradient methods: Optimality, approximation, and distribution shift. Journal of Machine Learning
Research, 22(98):1-76, 2021.

Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable effective-
ness of entropy minimization in llm reasoning. arXiv preprint arXiv:2505.15134, 2025.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

MAA Codeforces. American invitational mathematics examination-aime 2024, 2024.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
arXiv preprint arXiv:2507.06261, 2025.

Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
Fan, Huayu Chen, Weize Chen, Zhiyuan Liu, Hao Peng, Lei Bai, Wanli Ouyang, Yu Cheng,
Bowen Zhou, and Ning Ding. The Entropy Mechanism of Reinforcement Learning for Reasoning
Language Models, May 2025a.

Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for
reasoning language models. arXiv preprint arXiv:2505.22617, 2025b.

Nirjhar Das, Souradip Chakraborty, Aldo Pacchiano, and Sayak Ray Chowdhury. Active preference
optimization for sample efficient rlhf. In ICML 2024 Workshop on Theoretical Foundations of
Foundation Models, 2024.

Amir Dembo. Large deviations techniques and applications. Springer, 2009.

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D Goodman. Cognitive
behaviors that enable self-improving reasoners, or, four habits of highly effective stars. arXiv
preprint arXiv:2503.01307, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,

and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

10


https://artofproblemsolving.com/wiki/index.php/American_Mathematics_Competitions
https://artofproblemsolving.com/wiki/index.php/American_Mathematics_Competitions

Under review as a conference paper at ICLR 2026

Maggie Huan, Yuetai Li, Tuney Zheng, Xiaoyu Xu, Seungone Kim, Minxin Du, Radha Poovendran,
Graham Neubig, and Xiang Yue. Does Math Reasoning Improve General LLM Capabilities?
Understanding Transferability of LLM Reasoning, July 2025.

Jiawei Huang, Bingcong Li, Christoph Dann, and Niao He. Can rlhf be more efficient with imperfect
reward models? a policy coverage perspective. In ICLR 2025 Workshop on Bidirectional Human-Al
Alignment, 2025.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv preprint
arXiv:2412.16720, 2024.

Kaixuan Ji, Jiafan He, and Quanquan Gu. Reinforcement learning from human feedback with active
queries. arXiv preprint arXiv:2402.09401, 2024.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. T\" ulu 3: Pushing frontiers in
open language model post-training. arXiv preprint arXiv:2411.15124, 2024.

Gen Li, Yuting Wei, Yuejie Chi, Yuantao Gu, and Yuxin Chen. Softmax policy gradient methods can
take exponential time to converge. In Conference on Learning Theory, pages 3107-3110. PMLR,
2021.

Jincheng Mei, Chenjun Xiao, Csaba Szepesvari, and Dale Schuurmans. On the global convergence
rates of softmax policy gradient methods. In International conference on machine learning, pages
6820-6829. PMLR, 2020.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:
27730-27744, 2022.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728-53741, 2023.

Noam Razin, Zixuan Wang, Hubert Strauss, Stanley Wei, Jason D Lee, and Sanjeev Arora.
What makes a reward model a good teacher? an optimization perspective. arXiv preprint
arXiv:2503.15477, 2025.

Antoine Scheid, Etienne Boursier, Alain Durmus, Michael I Jordan, Pierre Ménard, Eric Moulines,
and Michal Valko. Optimal design for reward modeling in rlhf. arXiv preprint arXiv:2410.17055,
2024.

Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Simon Shaolei Du,
Nathan Lambert, Sewon Min, Ranjay Krishna, et al. Spurious rewards: Rethinking training signals
in rlvr. arXiv preprint arXiv:2506.10947, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
https://gwenlm.github.io/blog/qwg-32b/.

11


https://qwenlm.github.io/blog/qwq-32b/

Under review as a conference paper at ICLR 2026

Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
Jianxin Yang, Zhenru Zhang, Yuqiong Liu, An Yang, Andrew Zhao, Yang Yue, Shiji Song, Bowen
Yu, Gao Huang, and Junyang Lin. Beyond the 80/20 Rule: High-Entropy Minority Tokens Drive
Effective Reinforcement Learning for LLM Reasoning, June 2025a.

Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
Jianxin Yang, Zhenru Zhang, et al. Beyond the 80/20 rule: High-entropy minority tokens drive
effective reinforcement learning for llm reasoning. arXiv preprint arXiv:2506.01939, 2025b.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqgian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
Zhirong Wu, and Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based reinforcement
learning. arXiv preprint arXiv:2502.14768, 2025.

Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang.
Iterative preference learning from human feedback: Bridging theory and practice for rlhf under
kl-constraint. In International Conference on Machine Learning, pages 54715-54754. PMLR,
2024.

Shusheng Xu, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weilin Liu, Zhiyu Mei, Guangju Wang, Chao Yu,
and Yi Wu. Is dpo superior to ppo for llm alignment? a comprehensive study. In International
Conference on Machine Learning, pages 54983-54998. PMLR, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,
Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yugiong Liu, Zeyu
Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv preprint arXiv:2412.15115,
2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at scale.
arXiv preprint arXiv:2503.14476, 2025.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
reinforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025a.

Yu Yue, Yufeng Yuan, Qiying Yu, Xiaochen Zuo, Ruofei Zhu, Wenyuan Xu, Jiaze Chen, Chengyi
Wang, TianTian Fan, Zhengyin Du, et al. Vapo: Efficient and reliable reinforcement learning for
advanced reasoning tasks. arXiv preprint arXiv:2504.05118, 2025b.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild. arXiv
preprint arXiv:2503.18892, 2025.

Yanzhi Zhang, Zhaoxi Zhang, Haoxiang Guan, Yilin Cheng, Yitong Duan, Chen Wang, Yue Wang,
Shuxin Zheng, and Jiyan He. No Free Lunch: Rethinking Internal Feedback for LLM Reasoning,
June 2025.

Rosie Zhao, Alexandru Meterez, Sham Kakade, Cengiz Pehlevan, Samy Jelassi, and Eran Malach.
Echo chamber: Rl post-training amplifies behaviors learned in pretraining. arXiv preprint
arXiv:2504.07912, 2025a.

Xuandong Zhao, Zhewei Kang, Aosong Feng, Sergey Levine, and Dawn Song. Learning to reason
without external rewards. arXiv preprint arXiv:2505.19590, 2025b.

12



Under review as a conference paper at ICLR 2026

Banghua Zhu, Michael Jordan, and Jiantao Jiao. Principled reinforcement learning with human
feedback from pairwise or k-wise comparisons. In International Conference on Machine Learning,
pages 43037-43067. PMLR, 2023.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li,
Huazuo Gao, Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-source models
in code intelligence. arXiv preprint arXiv:2406.11931, 2024.

13



Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS

In this paper, we utilized LLMs to perform grammatical corrections and to generate code for data
visualization and model training.

B ADDITIONAL EXPERIMENTS

B.1 PATTERN DISTRIBUTION DYNAMICS ON RL-ENHANCED QWEN2.5-3B

In section[d.2} we sample Number Theory tasks from MATH to analyze the dynamics of the reasoning
patterns. We also sample Geometry tasks for dynamic analysis (Figure[3). During RLVR, the model
gradually adopts the reasoning patterns with higher accuracy, whereas the patterns selection for RLIF
is not stable. This result is consistent with the empirical and theoretical results presented in the main

paper.

100% RLVR 100% 100% RLIF 100%
=== Pattern 1 Ratio —»- Pattern 1 Acc === Pattern 1 Ratio —»- Pattern 1 Acc
mmm= Pattern 2 Ratio  —x- Pattern 2 Acc ® === Pattern 2 Ratio  —=- Pattern 2 Acc
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Figure 3: Dynamics of the patterns distribution and corresponding accuracy of RL-enhanced models
on Geometry tasks. In RLVR, the model tends to choose the pattern with the highest accuracy (Pattern
1), but RLIF is not stable.

B.2 QWEN-2.5-7B-INSTRUCT VS. QWEN-2.5-7B-SIMPLERL-Z00

In order to verify whether our findings are applicable to different models, we conduct supplementary
experiments to validate the experimental insights and theoretical conclusions (Figure[). For these
experiments, we use Qwen-2.5-7B-Instruct (Yang et al., |2024) as the base model and compare it
with Qwen-2.5-7B-SimpleRL-Zoo (Zeng et al.| 2025)), a open-source variant enhanced with RLVR
for mathematical reasoning. Our evaluation spans diverse mathematical domains, including number
theory, geometry, algebra, calculus, counting and probability, using challenging problems sampled
from the MATH dataset (Hendrycks et al.,[2021)). We further extend our analysis to include complex
mathematical problems from AMC23 (2023., 2023). The results consistently support our earlier
findings: RLVR enhancement shows an increase in the frequency of high-accuracy reasoning patterns,
while less effective patterns appear less frequently. Detailed task-specific analyses are provided in
Appendix [C.3]

Through reasoning pattern analysis across various tasks, we observe that patterns with the highest
success rates consistently become more prevalent after RLVR enhancement, reinforcing our findings
from Section [ and Section[5] Notably, in tasks such as Algebra and AMC23-19 in Figure [d] we
observe consistent success rates across individual reasoning patterns, which not only aligns with
our previous observations but also provides empirical support for Assumption[5.1]in our theoretical
analysis.

B.3 QWEN-2.5-32B-INSTRUCT VS. QWQ-32B
To further verify our theory, we conduct experiments on a larger model, QwQ-32B (Team, [2025)).

This model is based on Qwen-2.5-32B-Instruct (Yang et al.|[2024) and greatly enhances the reasoning
ability through RLVR. We test the reasoning patterns shift of these two models on four tasks, i.e.
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Figure 4: Evaluation results for reasoning pattern and corresponding success rate of model with/with-
out RLVR enhancement for varying additional tasks, which are aligned well with our experimental
insights and theoretical conclusions. The bar (Pattern Dist) represents the proportion of a certain
pattern in all patterns. The dot (Pattern Acc) represents the accuracy or success rate corresponding to
the pattern.
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number theory and geometry tasks from the MATH dataset (Hendrycks et al, [2021)), task from AIME
2024 (Codeforces), and task from OlympiadBench (He et al., 2024).

We can see that most of the reasoning patterns of QwQ-32B correspond to the most accurate patterns
of Qwen-2.5-32B, which is aligned well with our theoretical results. We do not give the accuracy of
QwQ because we use the API of the models for testing and can not extract the CoT data to allow the
base model to continue to generate answers. In this way, it is impossible to obtain the accuracy of
the reasoning patterns (rather than the accuracy of the model itself). For details, see the “Accuracy
Analysis” in Appendix [C.2]
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Figure 5: Evaluation results on larger models, Qwen-2.5-32B and QwQ-32B. QwQ’s reasoning
patterns converge to the most accurate pattern of Qwen-2.5, which demonstrates the applicability of
our theory to larger-scale models.

C EXPERIMENTAL DETAILS

C.1 EXPERIMENTAL SETUP

Entire Training Procedures: We first select Qwen2.5-3B as the base model and train it on the
MATH dataset, using both RLVR and RLIF. We adopt the verl (Sheng et al.} [2024) framework and
ensure that all parameter settings are identical to the example on the MATH dataset provided by the
verl framework. For RLIF, we only modified the reward calculation method. By setting different
random seeds, we obtain three different training curves for each method.

Token-level Analysis: We use Qwen2.5-3B and the above RL-enhanced models for this experiment.
For GSMS8K and MATH, we randomly sample 400 questions from their test sets respectively. For
AIME24, we use its full dataset. We first sample the corresponding answer from the base model
for each question. Next, we concatenate this answer to the question itself and input it into the
RL-enhanced model as a new prompt. We use the interface in the OpenAl library to calculate the
probability of each token in the prompt and its ranking among the probabilities of all possible tokens
at the current position. By comparing whether the ranking of each token has changed before and after
RL, we can calculate the proportion of tokens whose ranking has changed.
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Reasoning-pattern Level Analysis: For this task, we conduct two types of experiments. We
first study the dynamics of the patterns distribution during training using previously trained models,
namely Qwen2.5-3B and RL-enhanced Qwen2.5-3B. We evaluate every 20 steps. To examine the
applicability of our conclusions on different base models and larger models, we test the open-source
model Qwen-2.5-7B-SimpleRL-Zoo, QwQ-32B, and their corresponding base models. Therefore,
we can only examine the changes in the patterns distribution of model outputs before and after RL,
but cannot examine the dynamics of the patterns distribution during the training process.

C.2 REASONING PATTERNS ANALYSIS PIPELINE

Model Inference: We first randomly sample questions of different task types (such as Geometry,
Algebra, etc.) and different difficulty levels (Level 4, Level 5) from datasets including MATH.
For each question, our model samples 1024 answers in the patterns distribution dynamic task, and
samples answers ranging from 64 to 1024 in the task that only considers the distribution change
before and after RL, depending on the task category. These responses will be used for subsequent
pattern extraction and classification.

Reasoning Patterns Extraction: We sample a subset of responses of the base model and use
GPT-40 (Hurst et al.,[2024) API to summarize patterns categories from these samples. Full prompt
we used for reasoning patterns extraction is given in Appendix [E.I] To ensure the accuracy of patterns
extraction, we set the temperature of GPT-40’s API to 0.

Responses Classification: We again employ GPT-40 to classify all responses according to the
identified pattern categories, also setting the temperature to 0. Full prompt we used for responses
classification is given in Appendix [E.2]

Accuracy Analysis: In order to only consider the impact of the patterns distribution on accuracy,
we construct new prompts by concatenating the original prompt with partial responses from the
base model, assuming these partial responses sufficiently represent specific reasoning patterns. This
ensures that the reasoning process is fixed, which makes it easier for us to determine whether the
change in model accuracy depends only on the change in the distribution of the reasoning pattern,
rather than the change in the reasoning process itself. Specifically, we remove the sentence containing
the final answer from the base model’s response, add the sentence before it to the end of the question,
and input it as a new prompt to the RL-enhanced model. The RL-enhanced model will continue to
predict the answer. We will examine the accuracy of the predicted answer as the accuracy of the
reasoning pattern.

C.3 DETAILS FOR EACH TASK

Below we detail the experimental procedures for each task, including the task descriptions and
examples of reasoning patterns (Tabel [2)). Example task prompts are provided in Appendix [E.3]

Number Theory: This task presents models with problems involving coin distribution across
multiple bags. Initially, bags contain equal numbers of coins. After receiving additional coins
and redistributing them equally, the total must exceed a specified value while maintaining equal
distribution. Models must determine the minimum initial coin count per bag. We derived this
task from a level 5 MATH dataset problem (id: test/number_theory/1055) (Hendrycks et al.| 2021},
creating 32 variants by adjusting parameters like bag count and coin totals as our evaluation dataset.
We employ one-shot prompting with a simple, unrelated example to guide answer formatting using
"boxed" notation without influencing reasoning approaches. For evaluation, we first choose 20
questions from our evaluation dataset with 4 responses each for reasoning pattern extraction. For
each question we sample 64 responses. We then categorize all responses by the extracted reasoning
patterns, allowing us to compare changes in the distribution of models reasoning patterns before and
after RL.

Geometry: For the geometry task, we will give the model the lengths of two sides of a scalene
triangle and ask how many different integer centimeters the length of the third side can be. This
task comes from a level 4 geometry problem in MATH (id: test/geometry/1046). Our evaluation

17



Under review as a conference paper at ICLR 2026

Task Reasoning Patterns Examples Common Elements / Key Words
Modular Congruence with Uses modular arithmetic to
Number Theory Coefficient Simplification express divisibility conditions.
Inequality-Driven Search Often involves substituting back
for Minimal Solution to compute the total coins.
Systematic Inequality Explicitly lists and solves
Geometry Application each of the three inequalities.
Verification of Scalene Adding an extra layer of validation
Condition to verifies the third side length.
Iterative Floor Division Uses floor division to
Algebra with Leftover Tracking. compute new cans per step.
Recursive Recycling with Combines leftovers with newly
Aggregated Leftovers. produced cans before recycling.
Direct Simplification and Assumes inputs fall within
Calculus Principal Value Matching the principal range.

Interval Analysis
with Case Splitting

Splits the whole domain
into different intervals.

Counting and Probability

Direct Probability Setup
and Quadratic Solution

Explicitly calculates combinations
for total and favorable outcomes.

Early Simplification and
Cross-Multiplication

Early cross-multiplication
to eliminate denominators.

Prime Factorization
and Simplification

Counting Digits
in Large Numbers.

AMC23-Q19 Rewriting (8°) as (2™°) Final step of counting digits:
(15°) as (3° - 5°). (3 (from 243) + 15 (zeros) = 18).
Direct Equation Setup Straightforward and relies

AIME24-Q1 and Elimination on algebraic manipulation.

Alternative Equation
Formulation and Solving

Expressing variables in
terms of others early on.

OlympiadBench-Q1631

Direct Calculation
and Empirical Testing

Relying on direct computation
and empirical verification.

Factorization-Based
Reasoning

Using algebraic factorization
to argue certain terms Y, .

Table 2: Reasoning Patterns Examples for Varying Tasks.
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follows the same pipeline as in Number Theory: we construct a synthetic dataset with 32 questions,
sample 20 questions and select 4 responses each from the base model (Qwen2.5-7b-Instruct) for
reasoning pattern extraction, and then we compare the responses for model with and without RLVR
enhancement with all questions in our evaluation dataset with 64 responses each for pattern analysis.

Algebra: The algebra task we use is a can recycling problem. We first have a certain number of
old cans. It is pre-defined that n old cans can be recycled into a new can. The question is how many
cans can be produced in the end. The difficulty of the problem is that in each step of the iterative
calculation, there may be extra cans that cannot be divided evenly. These cans may eventually be
combined together for further recycling. The template for this task comes from a level 4 algebra
problem in MATH (id: test/algebra/2768). For all the following supplementary tasks starting from
this task, we adopt the same settings as the previous tasks, including the data set size, number of
samples, etc.

Calculus: Our calculus task is simple and straightforward. We will present a trigonometric
equation in a single variable, the domain of that variable, and ask the model to determine the
number of solutions to the equation. Although this problem is simple, it can demonstrate the model’s
basic ability in calculus problems. Its prototype is a level 4 pre-calculus problem in MATH (id:
test/precalculus/1140).

Counting and Probability: We also study the performance of the model on the counting and
probability task. There are white balls and black balls. We will randomly sample two balls from
these balls and give the probability that one of the two balls drawn is black and the other is white.
We also provide the number of balls of a certain color and hope that the model can calculate the
minimum number of balls of another color. This is a probability theory task, which comes from a
level 4 counting and probability problem in MATH (id: test/counting_and_probability/79).

AMC23 Question: Here we choose question 19 in AMC23 (2023.| [2023)), for reasoning pattern
extraction, we randomly sample 48 responses, and then sample 1024 response for reasoning pattern
analysis.

C.4 DETAILS FOR EXPERIMENTS ON QWQ-32B AND QWEN-2.5-32B

We conduct experiments on four tasks. Due to the limitations of using the API for testing, we
randomly select one question per task as input, sample 64 responses from each of the two models,
and directly perform reasoning patterns extraction and classification from these answers. Specifically,
for the two tasks of the MATH dataset, we choose question 1055 from the number theory task and
question 1046 from the geometry task. For the remaining two tasks, we question problem 1 from
AIME24 and question 1631 from Olympiad Bench. Examples of patterns are shown in Table 2]

D DEFERRED PROOFS

In this appendix, we provide proofs for our main theoretical results: Proposition[5.2] Theorems[5.3}
Theorems [5.4land Theorems

D.1 PROOF OF PROPOSITION[3.2]

Proof of Proposition In this proof, we utilize the proof techniques in|Rafailov et al.|(2023)), recall
that the optimization objective of RL is

ORL(0) = Eoup yoro () [1o (T, y)] — BDkL [mo(y | ) || mret (y | )], (D.1)

Under our framework, as state in section 5.1, we consider a policy conduct reasoning by first sample
r; € R based on mg(7;|q) and then provide the final answer a € A by mg(a|r;), the reward ¢ry,(0)
can be written as

GRL(O) = Eyrp(rig) | D Tret(a | 7)ro([r,al,q)| — ADkL [mo(y | @) || meet (y | @)], (D.2)
acA
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Let R(1) = >, ca Tret(@ | 7)74([r, a], q), then

PRL(O) = Errg(lg),amma () [R(T) —Aln <7:Zf((7;“|‘il))‘-7:;if((i||?))]

=Errola) {R(r) —fIn (Wﬂ

Wref(r|q)

_ﬁETwﬂe(.‘q) In WQ(T‘q) —InZ
Lexp (LR(r)) mer(rlg)

= — B0k [ (7|q) || mret(y | 2)] + f1In Z.

Where the third equation is by Assumption|S.1jand Z = }_ _r exp (%p*(r)) mo,..(T|q) is the
partition constant that ensures

w(rla) =  exw (3R o(rla)

is a valid probability distribution such that ) . 7*(r|q) = 1. Since Z is not a function of .
Therefore, maximizing the objective in Equation[D.2]is equivalent to:
m?‘X ]EZN'D,yNﬂ(y\m) [m,(:my)] - B]D)KL [ﬂ—(y | {Ii) || ﬂ—ref(y | :E)]
:mﬂinﬁ]D)KL [7*(7|q) || Tret(y | )] — B1In Z.

By the properties of KL-divergence, we know that the optimal policy for the KL-constrained reward
maximization objective satisfies:

1 1
Topt(T]q) = - &xp (BR(r)) 7o, (r|q) forall r € R.

specifically, for RLVR, Rrryvr(r) = p*, for RLIF, we have

R(r)=- ( ] 2 log (IRl mo(rila)) + M‘ > log (Il mo(asla, >>>
T ER a;cA
1
= Z log (g (a;lg, 7)) — <|R| > log (IR - mo(rilq)) + log | A| >,
a;eA r,ER
1 1,
Topt(T[q) = 7 XP ER (r) | 7o, (|q)
exp (31/(r)) 7o, (vlq)
rier D (5(R/(r)) o, (rila)
exp (5(R (1)~ ©)) mo,.,(rla)
Srier D (H(R/(r:) = o)) mo,.,(rila)
So we can write Rrpir(r) = R'(r) —c= —ﬁ ZajeA log (mg(aj|g,r)). This concludes the proof
of the theorem. O

20



Under review as a conference paper at ICLR 2026

D.2 DyNAMICS OF TABULAR POLICY

Consider the RL objective (Eq[3.1), using a tabular policy (Eq[5.3) with Assumption[5.1|holds, the
gradient dynamics of @ can be computed as

Lo(t) = Vore(6(1)
= VErwno(lg) [TgL(TM)]
= Z li’f’gL(rm)v’]rﬂ(t)(T‘q)} 5

TER

Where 7g(1)(r|q) = softmax(0. )., 6.4 € RVl is the column of @ corresponding to g, and
74 (r|q) XL refers to the reward with KL divergence, so

80"57;1(75) — Z {rffa(rﬂq) (Vsoftmax(&’q)rj)ri}

T;€ER
= Z [TgL(Tj\Q) (—We(t)(rj\Q) 'Wo(t)(ri|Q))]
r;ER

+ 155 (rilq) - mo (rila)

where the overall accuracy is defined as ACCo(y) = D _,.cr o, (T1@)p* (T). For mo(;)(7i|q), we
have

Omoy(rilq) 00y, 4(t)

d
a0 = 2 a0, 0o

D.3 PROOF OF THEOREM[3.3]
To proof Theorem 5.3} here we first prove that ACCg(;y > ACCg(q) for t > 0 (Eq|D.4), then we

establish a lower bound for 7g(;)(7*|q) (Eq|D.5), finally we derive the final bound for ¢ stated in
Theorem 5.3.

Proof of Theorem[5.3] Setting 3 = 0, Eq[D.3|becomes:

90r. q()

o e (rilq) - (p*(r;) — ACCq(y)) - (D.3)

For 7 (1) (74|q), we derive:

iﬂ' (7" ) _ 87T9(t)(r’i|q) . 601‘j,q(t>
a0 = 2 "o, (1) ot
=Y (ACCor) — p*(r5)) mo (r5]@) o) (Tilq)
r;ER

+ (p*(r:) — ACCor)) To(1) (Tilq),
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and for the accuracy ACCg(y):

d . d
aAcce(t) :T«ZG;ap (r;) - aw(;@ (rilq)
= > p*(ri)- (ACCor) — p*(r))) mh(s)(r5]@)mo(s) (vilq)
ri,7;ER
+ D (p(ri) — ACCo() mo(q) (rila)
r,€ER
= > ACCo - (ACCo(s) —p*(r))) mo(s)(r;l)
T;ER
+ Y (" (ri) = ACCopr)) ma(r) (il @)p™ (r:)
rER
= Z Tow (rilg) (P (r:) — ACCO(t))2 > 0. (D.4)
rER

As %ACCHG) > 0,50 ACCg(;y > ACCy(q) holds for t > 0, for the optimal reasoning pattern
r*, let 7’ the suboptimal reasoning pattern with the second highest success rate, defined as ' =
arg max,, ,..,.. p*(r), we have:

d * * *
— o) (r7]q) = (ACCo(ry — p"(r5)) T (T51@)To (1) (r*|q)
dt

’I'jER

—i—(p( ") - ACCo(t)W(t)( “lg)

> (ACCopy — p*(r*)) = (t)(’“*\‘I)WGt) r"|q)

+ (p*(r*) — ACCo(r)) (1 (r*|q)

=(p(r) - Accg@)wg ) (77la) (1 = may (r7]a))

> (p*(r*) — p* () w3y (r*@) (1 = T (7] @) > 0. (D.5)

As Loy (rilg) > 0, meu)(rlg) > me()(r*lg) holds for t > 0, define C =
(P*(r*) = p*(r")) T 0 (T"10):

d * * 2
@We(t)(r lq) > C (1 — 7o) (r*]q))" .

This differential inequality yields:

mo(r)(r"|q) > 1 — 1 :
1-7g(0)(r*|q)

For any € > 0, there exists T} = & (1 - m) = O(2), such that

(t)(r*|q) >1—e

This concludes the proof of the theorem. [

D.4 PROOF OF THEOREM [3.4]

To proof Theorem|5.4, we first establish an upper bound for 7g(;)(’|q) (Eq|D.6), then we analyze
the ratio pg(y) (1i) = Mri‘l?;)) (Eq .and prove that for t > Ty, ACCq(yy > p* (7).

We(t)
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Proof of Theorem[5.4] Let r* and 7’ be the optimal and second optimal reasoning patterns. For
o) (r'|q):

d .
dtﬂa(t y(r 'lg) = Z (ACCO(t) -p (Tj)) Wg(t)(rj|Q)7T0(t)(7'/\Q)
‘r‘jER
+ (p* (r') - ACCe(t)) 7"3@)(7’/|‘1)
= Z (ACC9(t) - P*(Tj)) Wg(t) (rjla)ma ) (r'|q)
r; €ER/{r*}
+ (p* (7'/) - ACCe(t)) 7r3<t)(7°’|q) (1 —Te t)( |Q))
< Z Wg(t)(rj|Q)7To(t)(r/|Q)
i €R/{r*}
+ (" (r") = p*("")mo) (171Q)) 751y (r'1@) (1 = To(ry (r*q))
* 2 * * 2
<mow (r'|q) (1 — o) (r*|@))” +p (r’)ﬂ?)(t)(r’lq) (1 — 7ot (r*]q))
<2 (1 — o) (P |Q)) .
This yields:
1
Tow)(r'lq) <1 — ———————. (D.6)
2t + 1—mg0y(r'|q)

o) (Tilq)

) * ol
ol (T 1) then for all 7, € R/{r*, '}, we have

Next, define pg(y)(r:) =

Tow) (T*1q) Lo (1:q) — To) (Tila) o) (r*|q)

We(t)(r*|Q)
T rilq * * [k *
_ 700 T9) ((n (1) ACCo(0)) o (rila) — (5(r") — ACCor) Toro (1))
To (" 10)

— pocy(ri) (p* (1) — ACCo(p)) mo(s) (r*|q) <0

The last inequality is based on the condition for case 2 and ACCg(;y > ACCy(g), so p* (1) <
ACCg(y) holds for all r; € R/{r*},t > 0. Then as % pg()(r;) < 0, we have:

d
%Pe(t) (ri) =

1—71'9(t)( r'|q) > 1—mg t)( r'|q)

To() (r*lg) = >
© D bier/{ry PO (Ti) — Xbery ey PO(0)(Ti)
While ACCg(z) < p(r'), define vr,; = >_,cr/(r} % we have:

d * [k *
L0 (1) < — poy (i) (p*(r*) — ACCoqy)) Moy (7 |q)

— po(ri) (*(r*) —p*(r")) 1— 7o (r'l9)

Vrrves
s I W
~ Po(ri) 2t +
Vet 1-7g(0) (')
Then we have:
d p*(r*) — p*(r') 1
il D) < — i ’ b7
giPe® ) < = Pow (i) Viret 2t + .

1
1-mg(0)(r']q)
this differential inequality leads to:

—A/(27m,gp)
A/ (2 v
(1/(1—#9(0)(r’|q))+2t) /(27 ep)

Po(ty(Ti) <
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Where A = p*(r*) — p*(r’). Recall that:

ACCy(y) — Z T00., (r|Q)D" (1) — p* (1)

reER

=p" (") (") =D () + Y e (ri) (0* (i) —p7 (')

r, €R/{r'}

>p(r) | (0" () =" () = Y e (ri)p* (1)

r,€R/{r'}

Let Cy = 1/A,Cy = p*(r') /A, define:

1

To=——
2 — 2mg,.(r']q)

((Cl : ’VWref)QCQA%rrEf - 1) )
then:

> pocmy(ri)p*(r)
Tﬂ,eR/{r/}
)) *A/(Q'eref)

(1 — To(0)('|q )
N Z Pooy(ri)p*(r')
T (1/(1 = 7o) (r'|@)) + 2To) Y B | 2

—A/(2myer)
(1 — mo(0)(r'|q)) vef
<
= Ve D™ () 2’Y7rref/A A/ 2’Y7rrcf GRZ/{ }pe(o (’I‘z)
(1/<1 — 7o) (r'[q)) - (+) ) ri€R) (7

1 *
= b (Tl)%rmf

NI
((MH)QV/A> TG
A

=A =p*(r") - p"(r').

Finally, for ¢ > T, we have:

ACCory —p"(r') 2 p"(r*) | (0" (r") = p"(')) = D porp(ri)p” (')

ri€R/{r'}
>p (r) [(p*(r") = p"(r)) — (p"(r") = p"(r"))] = 0.

This concludes the proof of the theorem. O

D.5 PROOF OF THEOREM[3.6]

Proof of Theorem@ First, as we consider the case |A| = 2 and 7y, (7|q) = ﬁ, Assumption
holds means |R‘ > rer(P*(7)) > 0.5. The derivative of overall accuracy can be written as

d
T ACCoy = D p"(ri) Trea)(nlq)

7, ER
= Z oy (Tilg) (P (r:) — ACCoy)) <— Z log(me(s) (alri, q)) — COHe(t)> ;
rER acA
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where Cong(yy = — >, cr To(t)(Til@) X qca log(m(t (a|ri, q)). Here we assume A = {a*,a’}
where a’ is the incorrect answer, and g (o) (7:|q) = |72\ for all 7; € R. Then:

d
—ACCy p*(r;) p*(r;
wAu|_,= 3 g (700 g T
— " log(mg (o) (alri, q)) |R| > > log(mgo)(alry, q)
acA r;ER acA
D) Z T;) ZP ;) | - —Zlog(mm(aln,q)) :
|R| rE€ER ‘R| T;ER acA

As we consider the case |R| — +oc and the success rate p*(r) are i.i.d. samples from U[0, 1].
By the Central limit theorem, for large |R|, the sample mean % Y rer(P*(r)) is concentrated

around the its expectation 0.5, the deviation is of order is O(1/+/|R|), We define this deviation as
§ = O(1/|R|*/?) > 0 such that % Y orer(@*(r)) = 0.5+ 0.

According to the Gibbs conditioning principle ((Dembol [2009) Corollary 7.3.5 and Theorem 7.3.8),
as |R| — oo, the empirical distribution of the p*(r) conditioned on their mean ﬁ Yorer (1)) =
0.5 + 0 converges to the density: f(z) = 1+ 126(z — 0.5),z € [0,1]. As |R| — oo, we
can approximate the summation over r with an integral over this limiting distribution f(x). The
derivative becomes:

1
iACCg(t) = / —(14+126(z —0.5)) - (x — 0.5 —0) -log (x(1 — x)) dox = gé >0
dt o Jo 3

Since delta > 0, the derivative is positive. As |R| — oo, this holds with probability 1, proving the
first statement.

To prove the second statement, we first analyze the RLIF reward function. For an action space of size
|A| = 2, the reward for a path T is proportional to the negative log-likelihood of the policy:

Reare(r) = o Y log (mo(ay|a.7) =~ log(o’ (r)(1 = "))
a;eA

The function g(p) = p(1 — p) is maximized at p = 0.5. Therefore, maximizing the reward Rgy1r(r)
is equivalent to choosing the path whose success rate p*(7) is furthest from 0.5.

Let pf,, = minycg p*(r) and pf . = max,cg p*(r). The path with the highest reward will be the
one with success rate py;  if it is further from 0.5 than p} . is. This condition is expressed as:

0.5 — p:nin > p;knax —05 = prrlin + p;knax <1
Thus, the event arg max,. Rrpir(r) = arg min,. p*(7) is equivalent to the event p ;. + pk . < 1.

We now calculate the probability of this event. The success rates p*(r) are drawn from the limiting
distribution f(z) = 1 + 12d(« — 0.5). From the theory of order statistics, the scaled minimum and
maximum of n = |R| samples converge in distribution to independent exponential random variables.
LetY, =n-pf,, and Z, =n- (1 — pl..)- Asn — oo

* Y, converges to Y ~ Exp(\y ), where the rate is the density at the lower bound: \y = f(0) =
1—69.

* Z, converges to Z ~ Exp(\z), where the rate is the density at the upper bound: Az = f(1) =
1+ 66.

The condition p} ;. + Py < 1 can be rewritten in terms of these asymptotic variables:

Y, Z
”+(1—")<1 — Y, < Z,
n

n
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The probability of this event is P(Y < Z). For two independent exponential variables, this is given
by:
Ay 1-66 1-66 1
( ) Av + Az (1—60) 4+ (1+60) 2 2

Since § = O(1/|R|'/?), in the limit as | R| — oo, § — 0. Therefore, the limiting probability is:

1 1

This concludes the proof of the second statement.

E FuLL PROMPTS

E.1 FULL PROMPT FOR REASONING PATTERNS EXTRACTION

Full Prompt for Reasoning Patterns Extraction

You will analyze multiple Al reasoning processes, showing how different models solve
problems.

Analysis Steps:

For each reasoning process, identify:

Key words and recurring phrases

Logical structure of the argument

Problem-solving techniques used

Step-by-step progression

Group similar reasoning processes into exactly 5 patterns based on shared:

Vocabulary patterns (common terms and phrases)

Logical frameworks (how arguments are structured)

Solution approaches (methods used to reach conclusions)

IMPORTANT! You need to categorize general thinking patterns for problem solving, rather
than categorizing types of problems themselves. In other words, each type of thinking pattern
you give can be applied to any problem, rather than being task-specific. What you need to
classify is the way of thinking, not the way of solving problems.

For example, you can classify them into:

1. derivation based on existing knowledge

2. derivation combined with verification

3. independent calculation, suitable for learners starting from the basics,

4. detailed manual derivation, suitable for learners who need to deeply understand each step
5. etc

Or you can classify them into:

1. knowledge call type

2. derivation and verification type

3. etc.

Output Format:

Pattern 1:

Name and description

Defining characteristics

Example processes from input

Common elements

Pattern 2:

Name and description

Defining characteristics

Example processes from input

Common elements

There are reasoning processes:
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{extracted_responses }
Group similar reasoning processes into exactly 5 patterns. Please provide a classification of
reasoning patterns, with each group defined by their common characteristics and examples
from these processes.

E.2 FULL PROMPT FOR RESPONSES CLASSIFICATION

Full Prompt for Responses Classification

Please classify each reasoning process into one of the following five patterns. Output the
classifications in JSON format.

{ patterns_categories }

Here are the reasoning processes to classify:

{extracted_responses}

Please output your classification in this JSON format:

E.3 PROMPT EXAMPLES FOR EVALUATION TASKS

Prompt Example for Easy Countdown

<lim_start/>system

You are a helpful assistant. You first thinks about the reasoning process in the mind and then
provides the user with the answer.<lim_end|>

<lim_startl>

user Using the numbers [1,2,3,7], create an equation that equals 5. You can only use basic
arithmetic addition (+) and subtraction (-), and each number from the list can be used at most
once. Show your work in <think> </think> tags. And return the final answer in <answer>
</answer> tags, for example, to get 5 from [1,2,3,7], we have <answer> 2 + 3 = 5 </answer>;
to get 13 from [1,2,3,7], we have <answer> 1 + 2 + 3 + 7 = 13 </answer>.<lim_endI|>
<lim_startl>assistant

Let me solve this step by step.

<think>

Prompt Example for Long Arithmetic

<lim_start/>system

You are a helpful assistant. You first thinks about the reasoning process in the mind and then
provides the user with the answer.<lim_end|>

<lim_start/>user

Considering the experssion (((((((((16 + 47) + 92) + 84) + 5) + 49) + 82) - 33) - 99) - 69), you
need to start from the innermost bracket and work your way out. You need to give the specific
calculation process. You have to do a certain amount of calculations on each line, and print
each calculation in the format of a+ b =c or a- b = ¢, for example "1 + 2 = 3" .<lim_end|>
<lim_start/>assistant

Let me solve this step by step.

<think>

Prompt Example for Number Theory

<lim_startl>system

You are a helpful assistant.<lim_end|>

<lim_start|>user

You have four bags of copper coins. Each bag has the same number of copper coins. One
day, you find a bag of 23 coins. You decide to redistribute the number of coins you have




Under review as a conference paper at ICLR 2026

so that all five bags you hold have the same number of coins. You successfully manage to
redistribute all the coins, and you also note that you have more than 120 coins. What is the
smallest number of coins you could have had before finding the bag of 23 coins?

Please reason step by step, and put your final answer within \boxed{ }.<lim_end|>
<lim_start/>assistant

Prompt Example for Geometry

<lim_start/>system

You are a helpful assistant.<lim_end[>

<lim_startl>user

Two sides of scalene $\bigtriangleup ABC$ measure $4$ centimeters and $7$ centimeters.
How many different whole centimeter lengths are possible for the third side?

Please reason step by step, and put your final answer within \boxed{ }.<lim_endI>
<lim_startl>assistant

Prompt Example for Algebra

<lim_start/>system

You are a helpful assistant.<lim_end|>

<lim_start/>user

Six aluminum cans can be recycled to make a new can. How many new cans can eventually
be made from 200 aluminum cans? (Remember that the first new cans that are made can then
be recycled into even newer cans!)

Please reason step by step, and put your final answer within \boxed{ }.<lim_endI>
<lim_startl>assistant

Prompt Example for Calculus

<lim_start/>system

You are a helpful assistant.<lim_end|>

<lim_start/>user

For how many values of $x$ in $[0,2\pi]$ is $\cos?{-1}($\cos 4 x) = $ \sin*{-1}(\sin x)$?
Please reason step by step, and put your final answer within \boxed{ } .<lim_end|>
<lim_start/>assistant

Prompt Example for Counting and Probability

<lim_start/>system

You are a helpful assistant.<lim_end[>

<lim_startl>user

7 white balls and $k$ black balls are placed into a bin. Two balls are drawn at random. The
probability that one ball is white and the other is black is $\frac{35}{66}$. Find the smallest
possible value of $kS$.

Please reason step by step, and put your final answer within \boxed{ } .<lim_end|>
<lim_start/>assistant

. J

Prompt Example for AMC23-Q19

<lim_start/>system

You are a helpful assistant.<lim_end[>

<lim_startl>user

How many digits are in the base-ten representation of ‘$845 \cdot 5/{10} \cdot 15°5$"?
Please reason step by step, and put your final answer within \boxed{ }.<lim_endI>
<lim_start/>assistant

28
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Prompt Example for AIME24-Q1

<lim_startl>system

You are a helpful assistant.<lim_endI|>

<lim_start|>user

Every morning Aya goes for a $9$-kilometer-long walk and stops at a coffee shop afterwards.
When she walks at a constant speed of $s$ kilometers per hour, the walk takes her 4 hours,
including $t$ minutes spent in the coffee shop. When she walks $s+2$ kilometers per hour,
the walk takes her 2 hours and 24 minutes, including $t$ minutes spent in the coffee shop.
Suppose Aya walks at $s+\frac{1}{2}$ kilometers per hour. Find the number of minutes the
walk takes her, including the $t$ minutes spent in the coffee shop.

Please reason step by step, and put your final answer within \boxed{ }.<lim_endI>
<lim_start/>assistant

Prompt Example for OlympiadBench-Q1631

<lim_startl>system

You are a helpful assistant.<lim_end|>

<lim_start/>user

For a positive integer $a$, define a sequence of integers $x_{1}, x_{2}, \Idots$ by letting
$x_{1}=a$ and $x_{n+1}=2x_{n}+1$ for $n\geq 1$. Let $y_{n}=2"{x_{n}}-1$. Determine
the largest possible $k$ such that, for some positive integer $a$, the numbers $y_{1}, \Idots,
y_{k}$ are all prime.

Please reason step by step, and put your final answer within \boxed{ }.<lim_end|>
<lim_start/>assistant
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