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University of Tübingen, Germany

Dmitry Kobak dmitry.kobak@uni-tuebingden.de

Hertie Institute for AI in Brain Health,

University of Tübingen, Germany;
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Abstract

The ICLR conference is unique among the top machine learning conferences in that all
submitted papers are openly available. Here we present the ICLR dataset consisting of
abstracts of all 24 thousand ICLR submissions from 2017–2024 with meta-data, decision
scores, and custom keyword-based labels. We find that on this dataset, bag-of-words repre-
sentation outperforms most dedicated sentence transformer models in terms of kNN classi-
fication accuracy, and the top performing language models barely outperform TF-IDF. We
see this as a challenge for the NLP community. Furthermore, we use the ICLR dataset to
study how the field of machine learning has changed over the last seven years, finding some
improvement in gender balance. Using a 2D embedding of the abstracts’ texts, we describe
a shift in research topics from 2017 to 2024 and identify hedgehogs and foxes among the
authors with the highest number of ICLR submissions.

1 Introduction

The International Conference on Learning Representations (ICLR) is one of the most presti-
gious machine learning venues: in Google Scholar Metrics it currently shares with NeurIPS
the second place after CVPR. Since 2017, ICLR submissions are handled through Open-
Review in a fully open way: all submitted papers are publicly visible and are eventually
de-anonymized. This is not the case for most other top conferences in the field which do
not make rejected papers openly visible. As the field of machine learning advances very
fast, one can use ICLR submissions to study how it has changed over recent years.
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Figure 1: Summary statistics of the ICLR dataset (ICLR24v2).
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Here we present the ICLR dataset consisting of abstracts of all ICLR submissions from
2017–2024 with meta-data and keyword-based labels (Figure 1). Our work has two goals.
First, to do a metascience study of machine learning as a field, similar to how González-
Márquez et al. (2024) did it for biomedicine. Second, to frame an NLP challenge: without
using our labels, train a language model that would substantially surpass a näıve TF-IDF
representation in terms of kNN accuracy. We found that most dedicated sentence models
fared worse than TF-IDF, and none outperformed it by a large margin.

2 Dataset

To assemble the dataset, we queried OpenReview and downloaded titles, abstracts, author
lists, keywords, reviewers’ scores, and conference decisions for all 24 445 papers submitted
to ICLR in 2017–2024 with intact abstracts (Figure 1). 26 submissions with placeholder
abstracts (below 100 characters) were excluded. While 2024 submissions were still anony-
mous, we assembled the data into the ICLR24v1 dataset; after the de-anonymisation, we
produced the final ICLR24v2 version. We will use the same naming convention for future up-
dates. The data are openly available at https://github.com/berenslab/iclr-dataset,
together with our analysis code.

We used the gender package (Blevins and Mullen, 2015) to infer genders of the first
and the last author based on their first names. We could infer genders for 41.8% of the
first authors and 49.9% of the last authors; note that the inference model fails at inferring
gender for many non-Western names. We observed a steady increase in the inferred female
ratio (based only on papers with inferred genders) that almost doubled since 2017: from
11% in 2017 to 21% in 2024 for the first authors, and from 10% to 18% for the last authors.

To label the dataset, we relied on the author-provided keywords and used them to assign
papers to 45 non-overlapping classes (Table S1). We took the 200 most frequent keywords,
combined some of them together into one class (e.g. attention and transformer), disregarded
very broad keywords (e.g. deep learning), and assigned papers to rarer keywords first. Using
this procedure, we ended up labeling 53.4% of all papers.

Reviewed papers had on average 3.7 reviews, with 93% having either 3 or 4 reviews.
Across all 244 226 possible pairs of reviews of the same paper, the correlation coefficient
between scores was 0.40. This was substantially higher than what had been reported for
computational neuroscience conferences — 0.16 for CCN (Goodman, 2023) and 0.25 for
Cosyne (Ostojic, 2020), — but note that the ICLR scores are not entirely independent as
the reviewers are allowed to update them after discussion.

3 Embedding challenge

To obtain an embedding of each abstract, we used classic bag-of-words representations
(Schmidt, 2018) as well as modern sentence transformers, pre-trained on large amounts of
text data. We evaluated all of them using kNN classification accuracy (k = 10 and 10-fold
cross-validation). As our main application is 2D visualisation (Section 4) which is based
on the kNN graph, we consider kNN accuracy one of the most relevant metrics quantifying
representation quality.
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Table 1: kNN accuracies in high-dimensional spaces, and in the 2D space after t-SNE. All
values should be interpreted with an uncertainty of ∼1% (see text).

Model High-dim. 2D

TF-IDF 59.2% 52.0%
SVD 58.9% 55.9%
SVD, L2 norm. 60.7% 56.7%

SimCSE 45.1% 36.3%
DeCLUTR-sci 52.7% 47.1%
SciNCL 58.8% 54.9%
SPECTER2 58.8% 54.1%
ST5 57.0% 52.6%
SBERT 61.6% 56.8%

Cohere v3 61.1% 56.4%
OpenAI v3 62.3% 57.1%

We used TF-IDF representation with log-scaling as implemented in scikit-learn (Pe-
dregosa et al., 2011), which showed the best results in our prior benchmark (González-
Márquez et al., 2022). Its kNN accuracy was 59.2% (Table 1). It decreased to 58.9% after
SVD to 100 dimensions, but increased to 60.7% after L2 normalisation in the SVD space
(or, equivalently, using the cosine metric for kNN search).

As sentence transformers, we used three models which were specifically trained to pro-
duce representations of scientific abstracts: DeCLUTR-sci (Giorgi et al., 2021), SciNCL
(Ostendorff et al., 2022), and SPECTER2 (Cohan et al., 2020). We also used SimCSE
(Gao et al., 2021), ST5 (Ni et al., 2022), and the latest version of SBERT (Reimers and
Gurevych, 2019). The SBERT model (all-mpnet-base-v2) was trained on over one bil-
lion documents from different domains and holds state-of-the-art results in recent bench-
marks among all models of its size (Muennighoff et al., 2023). These six models all have
bert-base architecture with 110 M parameters and 768-dimensional embeddings. To get
the representation of each abstract, we used the representation that each model had been
fine-tuned for: either average pooling over all tokens (SBERT, DeCLUTER-sci, ST5) or
the classification token [CLS] (SciNCL, SPECTER2, SimCSE). All models were down-
loaded from Hugging Face. We also benchmarked two commercial models: one by Cohere
(embed-english-v3.0 in clustering mode; 1024-dimensional embeddings), and one by
OpenAI (text-embedding-3-large; 3072-dimensional embeddings). For all models we re-
port kNN accuracy using the Euclidean metric; the cosine metric gave very similar results.

We found that the three models specifically trained to represent scientific abstracts all
had lower kNN accuracy than TF-IDF. Only SBERT and both commercial models could out-
perform TF-IDF, and only marginally, by less than 2 percentage points (Table 1). SBERT
(61.6%) was only surpassed by the OpenAI embedding model (62.3%) with the performance
gap below 1 percentage point. Note that all reported values should be interpreted with an
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Figure 2: t-SNE embedding of the SBERT representation of ICLR abstracts (2017–2024).
Left: coloured by year; right: coloured by topic.

error of around ±1%, corresponding to the binomial standard deviation 100
√

p(1− p)/n
for test set size n ≈ 2500 and accuracy p ≈ 0.6.

These results were surprising for us, because sentence transformers are complex mod-
els pre-trained with masked language modeling (Devlin et al., 2019) and fine-tuned with
contrastive loss functions on large corpora. Yet their representations were not (much) bet-
ter than bag-of-words representations that capture nothing beyond word counts. Modern
benchmarks evaluate embedding models using various metrics and do find that sentence
transformers outperform bag-of-words models (Muennighoff et al., 2023). However, the
kNN graph quality is the only metric relevant for our application (see below), and here the
modern models were not much better than TF-IDF, at least on our dataset.

We hope that this well-defined and practically relevant benchmark will act as a challenge
for the NLP community.

4 Trends in machine learning

For data exploration, we used the SBERT representation and applied t-SNE (van der Maaten
and Hinton, 2008) to embed the 768-dimensional representation in 2D. We chose t-SNE
rather than UMAP (McInnes et al., 2018) because t-SNE performs the best in terms of kNN
classification and kNN recall (González-Márquez et al., 2022, 2024). We used openTSNE
(Poličar et al., 2019) with default parameters. In 2D, kNN classification was 56.8% (Table 1):
very close to what we got using TF-IDF (56.7%) and using the OpenAI model (57.1%).

The resulting embedding showed rich structure with many visible clusters roughly cor-
responding to our classes (Figure 2). Related classes were located close in the embedding,
showing meaningful global organisation.
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"understanding" in the title "rethinking" in the title "?" in the title

Figure 3: ICLR papers containing the words understanding (366), rethinking (155), and a
question mark (550) in the title.

Overlaying the conference year and the class labels over the embedding (Figure 2) high-
lighted many trends in 2017–2024 machine learning. We saw that generative adversarial
networks (GAN) and variational autoencoders (AE) got out of fashion while diffusion models
became fashionable. Natural language processing research got dominated by large language
models (LLM). Within reinforcement learning (RL), offline RL seemed to be the most re-
cently fashionable topic. Recurrent neural networks (RNN) and adversarial examples are
another two topics that lost their popularity.

We also used the 2D embedding to explore the distribution of acceptance decisions
and average scores across machine learning subfields, but found no systematic differences
between them (Figure S1). This suggests that ICLR’s decisions were not biased towards
certain topics. Similarly, we did not see any systematic differences in gender ratio be-
tween machine learning subfields (Figure S2), in stark contrast with biomedical research
(González-Márquez et al., 2024) and academia as a whole (Larivière et al., 2013; Shen
et al., 2018; Bendels et al., 2018).

Which subfields of machine learning are the most controversial? We investigated this
question by looking at the distribution of papers containing the words understanding, re-
thinking, or the question mark in their titles (Figure 3). These distributions were not
uniform and had local modes around language models, vision-language models, adversarial
examples, and also around optimisation/distillation.

Finally, we looked at the authors with the highest number of ICLR submissions (Fig-
ure 4) and saw clear distinction between focused researchers working mostly on one topic
and broad researchers working in many machine learning fields: hedgehogs and foxes, ac-
cording to the famous classification by Isaiah Berlin (1953). Among the top three most
prolific authors, Sergey Levine (170 submissions) and Pieter Abbeel (109) were ‘hedghe-
hogs’ working mostly on reinforcement learning, while Yoshua Bengio (146) was a ‘fox’.
The acceptance rate among the most prolific authors in both categories was often higher
than the average acceptance rate (31%).
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Figure 4: Top 18 authors by the total number of ICLR submissions over 2017–2024. Each
panel shows the total number of submissions and the acceptance rate.

5 Conclusion

Many text datasets are available for training and benchmarking language models. The
benefits of the ICLR dataset suggested here are (i) its compact size; (ii) it not being part of
the training set of existing sentence transformer models; (iii) it covering topics very familiar
to machine learning researchers, allowing qualitative assessment of embedding quality.

We demonstrated that the ICLR dataset can be used to study metascientific questions
and to draw conclusions about the state of machine learning field as a whole. We also argue
that substantially outperforming TF-IDF representation remains an open NLP challenge
(Figures S3, S4).
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González-Márquez & Kobak

Jianmo Ni, Gustavo Hernandez Abrego, Noah Constant, Ji Ma, Keith Hall, Daniel Cer,
and Yinfei Yang. Sentence-T5: Scalable sentence encoders from pre-trained text-to-text
models. In Findings of the Association for Computational Linguistics: ACL 2022, pages
1864–1874, 2022.

Malte Ostendorff, Nils Rethmeier, Isabelle Augenstein, Bela Gipp, and Georg Rehm. Neigh-
borhood contrastive learning for scientific document representations with citation embed-
dings. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, pages 11670–11688, 2022.

Srdjan Ostojic, 2020. URL https://twitter.com/ostojic_srdjan/status/

1215675748444528640.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.
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Appendix A. Supplementary Figures
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Figure S1: Acceptance decisions and average scores. Left: accepted papers are shown on
top. Right: papers are shown in randomized order.

First author
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Last author
?
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Figure S2: Inferred genders of the first and the last authors. Papers are plotted in the
following order: unknown gender, male, female. Female markers are larger.
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SBERT TF-IDF

Figure S3: t-SNE embeddings of the SBERT representation (left) and of the row-normalized
SVD (100 components) of the TF-IDF representation (right). The embedding
on the right was rotated by 90◦ and flipped to align it to the SBERT embedding.
Colours as in Figure 2. Unlabeled papers are shown in gray in the background.

SBERT OpenAI

Figure S4: t-SNE embedding of the SBERT representation (left) and of the OpenAI’s model
representation (right). The embedding on the right was rotated by 90◦ and
flipped. Colours as in Figures 2 and S3.
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Appendix B. Supplementary Tables

Table S1: The list of all 45 classes. From the list of all existing keywords, we selected the 200
most frequent ones and manually grouped some of them together into classes. We
left out too general keywords (e.g. deep learning) as well as all resulting classes
with fewer than 50 papers. Table continues on the next page.

Class Samples Keyword Frequency

RL 1266
reinforcement learning 1608
deep reinforcement learning 298

Adversarial 870

adversarial training 217
adversarial attacks 106
adversarial defense 50
adversarial examples 196
adversarial learning 93
adversarial machine learning 54
adversarial robustness 241
adversarial 60
adversarial attack 121

Language models 802

question answering 59
reasoning 85
language modeling 85
machine translation 91
language models 151
nlp 166
natural language processing 433
language model 105

Optimization 790

optimization 410
gradient descent 86
combinatorial optimization 69
bayesian optimization 64
stochastic gradient descent 77
stochastic optimization 56
convex optimization 57
sgd 86
non-convex optimization 66

Graphs 730

gnn 64
graph 48
graph representation learning 85
graph neural networks 563
graph neural network 230

Transformers 557

transformer 340
self-attention 73
attention 183
attention mechanism 53
transformers 261

LLMs 538

llm 80
prompting 48
large language model 210
large language models 447

Diffusion models 443
diffusion models 280
diffusion model 167
diffusion 69

Transfer learning 419
transfer learning 388
domain generalization 124
domain adaptation 176

GANs 380

generative adversarial networks 190
gan 168
generative adversarial network 70
gans 91

Autoencoders 330

variational autoencoders 83
autoencoders 52
autoencoder 63
variational autoencoder 93
vae 71

Continual learning 313
lifelong learning 82
continual learning 339
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González-Márquez & Kobak

Class Samples Keyword Frequency

Federated learning 298 federated learning 485

Out-of-distribution 275

out-of-distribution generalization 59
distribution shift 96
out-of-distribution detection 92
out-of-distribution 53

Meta learning 275
meta learning 121
meta-learning 301

Self-supervised learning 259 self-supervised learning 473

RNNs 250

lstm 66
recurrent neural networks 114
recurrent neural network 48
rnn 65

CNNs 247
convolutional neural network 76
convolutional neural networks 130
cnn 88

Contrastive learning 244 contrastive learning 344

Privacy 215
differential privacy 154
privacy 99

Compression 214
model compression 135
compression 121

Causality 202
causal inference 104
causality 80
causal discovery 53

Explainability 194
explainable ai 92
explainability 131

Offline RL 184
offline rl 55
offline reinforcement learning 150

Interpretability 177 interpretability 356

Semi-supervised learning 176 semi-supervised learning 253

Robustness 175 robustness 411

Few-shot learning 157 few-shot learning 218

Multi-agent RL 151 multi-agent reinforcement learning 162

Knowledge distillation 150 knowledge distillation 211

Imitation learning 144 imitation learning 171

Time series 140
time series 129
time series forecasting 54

Neural architecture search 138 neural architecture search 180

Pruning 133
network pruning 48
pruning 140

Fairness 133 fairness 182

Optimal transport 132 optimal transport 165

ViTs 130
vision transformers 51
vision transformer 98

Multi-task learning 121 multi-task learning 141

Active learning 111 active learning 131

Vision-language models 108
vision-language models 48
clip 70

Object detection 106 object detection 125

Model-based RL 105 model-based reinforcement learning 111

Clustering 97 clustering 116

Anomaly detection 87 anomaly detection 109

In-context learning 87 in-context learning 105

12


	Introduction
	Dataset
	Embedding challenge
	Trends in machine learning
	Conclusion
	Supplementary Figures
	Supplementary Tables

