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Abstract

Recent years have seen fast emergence and adoption of chemical foundation models1

in computational material science for property prediction and generation tasks that2

are focused mostly on small molecules or crystals. Despite these paradigm shifts,3

integration of newly discovered materials in real world devices continues to be a4

challenge due to design problems. New candidate material must be optimized to5

achieve compatibility with other components in the system and deliver the target6

performance. Chemical foundation model benchmarks must evaluate their scope7

in predicting macro scale outcomes that are the result of chemical interactions8

in multi-variate design space. This study evaluates performance of chemical9

foundation models that are pre-trained primarily with SMILES of small molecules,10

in extrapolating learning from molecules to material design challenges across11

multiple length scale in batteries. Ten prediction models are trained covering12

molecular properties, formulations performance, and battery device measurement.13

Material representations from several foundation models are compared and their14

performance is benchmarked against conventional molecular representations such15

as Morgan Fingerprints. The study further examines their capacity to generalize16

to out-of-distribution cases by quantifying prediction errors for novel material17

designs that differ substantially from the training data. Finally, interpretability of18

the trained predictors is assessed by correlating actual outcomes and predictions19

to the chemical moieties in the datasets, with the aim of enabling researchers to20

interpret design rules in chemical space where model has high confidence.21

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



1 Introduction22

With evolving technologies and world economy demands, the field of material discovery has remained23

strongly relevant. Recently, this field has acquired critical importance as new sustainable materials are24

sought to overcome limitations of current material systems (1). Battery technologies are one strong25

societally relevant area of research where the scope of known materials appears to be exhausted, and26

new materials that can deliver high capacities, fast charging and longer cycle stability are continuously27

sought to meet future demands (2; 3). Despite shifts in material research paradigms from slow, labor-28

intensive experiments, to faster data-driven models (4; 1), it remains challenging to integrate new29

materials in real world devices. This is due to several reasons: (i) most computational models30

including simulations and machine learning (ML) can be used to determine intrinsic properties of31

materials based on their chemical structure, but lack in extrapolating their outcome to meso or macro32

scale phenomenon (5); (ii) device performance is governed by complex interactions among several33

constituent materials, presenting vast multivariate design space difficult to screen or optimize (6); (iii)34

limited data availability for extrinsic characteristics such as temperature and concentration dependence35

of multi-constituent properties (7). While ML models accelerate several prediction, generative and36

optimization problems in material science, the field continues to face challenges stemming from37

opaque nature of the model’s decision making, impractical proposed chemical structures, scarcity of38

quality datasets and inability to generalize out-of-distribution (OOD) (8).39

Foundation models (FMs) have emerged as promising models to overcome some aforementioned40

challenges of data scarcity and generalization. These are a class of large language models (LLMs),41

that are pre-trained on a textual or multi-modal representations of materials in open-source databases42

like PubChem and ZINC through self-supervised learning (9; 10). Studies have demonstrated that43

embedding space of these transformer models segregates chemically relevant features of molecules44

making them a suitable general-purpose tool for material science research. These base models can be45

utilized to perform specific functions based on smaller labeled datasets with fine-tuning or transfer46

learning (11). FMs are rapidly evolving, and their adoption in different application areas is on47

the rise (12). Large portion of studies report their use in property prediction and inverse design of48

small molecules or crystals (11). Prior studies also evaluate their scope in predicting performance49

metrics for formulations (mixtures of more than two molecules in certain compositions) based on50

electrolyte-performance experimental datasets curated from literature. Results demonstrate best51

prediction accuracies from foundation models in comparison to other data-driven models (13; 14).52

The research on representing advanced material systems such as formulations, composites and devices53

to learning models is currently in nascent stages due to less understood chemical phenomenon and54

lack of quality datasets. Prior studies on formulation datasets present strong evidence that foundation55

models can extrapolate molecular features to multi-constituent properties.56

In this work, we evaluate the capability of chemical FMs pre-trained with molecular representation57

SMILES (15), to predict material properties and performance resulting from interplay of complex58

chemical phenomenon at macroscale. We take battery electrolytes as an example where electrolyte59

engineering has emerged as a promising approach to improve battery performance metrics such60

as columbic efficiency (CE), cycle life and capacity. To achieve this, electrolytes are carefully61

designed based on the individual properties of constituent molecules, their collective performance62

as formulation and their compatibility with other battery components such as electrodes, separator63

and current collector. Electrolyte Genome initiative in 2015 accelerated electrolyte discovery cycle64

for new emerging battery chemistries by integrating computational workflows with experimentation65

(16). High-throughput screening enabled selection of candidate molecules meeting threshold values66

for HOMO-LUMO energy levels, toxicity and electrochemical stability. Once down-selection is67

done, laborious experimentation is required to find their right combination for a functional electrolyte68

formulation (17). Here, data availability is a primary roadblock in adoption of ML models since69

public datasets are inconsistent and industrial datasets are propriety (18). Thus, models that can be70

efficient with scarce datasets are desired in the domain.71

We use FMs to map electrolyte formulations along with device variables to key performance72

indicators at multiple length scale in batteries as illustrated in Figure 1. In particular,73

• We target prediction of key properties that are considered in electrolyte discovery such as74

molecular properties, formulation performance, manufacturability, surface contact char-75

acteristics and device performance. FMs are used to generate input features for these76
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multivariate battery datasets and predictive capability is compared with standard molecular77

representations like Morgan Fingerprints (MF ) (19).78

• We evaluate out-of-distribution (OOD) capability of prediction models for multi-variate79

battery datasets.80

• Next, extrapolation capability of the models to new material designs is estimated based on81

the semantic similarity between train and test data. This presents a method to approximate82

errors in model predictions across new material landscape.83

• We investigate interpretability of FM -based predictors and evaluate their promise in infer-84

encing new material design rules.85

Figure 1: (a) Scheme illustrating electrolyte design problems at multiple scales. (b) Schematic
summarizing the data representation for material design using pre-trained foundation models for
molecules.

2 Datasets and Foundation Models86

Data availability is a major enabler for artificial intelligence (AI) workflows aiming for material87

discovery and design. To discover new material design that meets the performance goals, series of data88

driven predictors must be realized to allow material identification, characterization and optimization89

for achieving compatibility with the device. For present study, we utilize several battery datasets and90

performance indicators that are used across multiple length scale for electrolyte development. Most91

datasets are curated from literature and some are experimentally generated in the laboratory. Dataset92

details are summarized in Supplementary Materials section A.1, while present section differentiates93

FMs evaluated.94

There is a plethora of pre-trained transformer models in literature that are used for specific downstream95

scientific tasks (20; 10; 21; 22; 23). Particularly in the domain of chemistry and material science,96

sequence prediction, molecular property prediction and chemical description generation are a few97

tasks that are used in benchmarking FM . In this work, we aim to evaluate scope of FMs pre-trained98
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on molecular representations in addressing material design challenges across multiple length scale99

in batteries. Comparative analyses were performed across multiple FM to elucidate the extent to100

which model performance and generalization behaviors are influenced by differences in pretraining101

modalities.102

SMI-TED: SMI-TED (SMILES Transformer Encoder Decoder) is an open-source chemical FM103

developed by IBM Research (10). This model has acquired a deep understanding of molecular104

structural representations through self-supervised pre-training on a vast dataset containing string105

representation (SMILES) of 91 million molecules, corresponding to 4 billion molecular tokens. Model106

has been previously validated to surpass the performance of conventional data-driven alternatives in107

downstream tasks.108

MolT5: MolT5 (Molecular T5) is another open sourced chemical FM that is pre-trained with 100109

million SMILES along with 33,000 natural language description of molecules (23). By correlat-110

ing SMILES sequences to textual description of functionalities, the model has shown remarkable111

capabilities in manipulating molecules for discovery tasks.112

Galactica: Galactica is a large language model developed for general scientific tasks by Meta AI113

(22). The model is trained on large corpus of scientific literature, natural sequences of proteins and 2114

million chemical strings (SMILES). The inclusion of broad data makes is a reliable model for general115

scientific tasks such as equation probing, citation prediction, reasoning, etc.116

GraphMVP: GraphMVP is a graphs based pre-trained model that formulates a multi-view self-117

supervised learning, integrating both 2D molecular graphs and rich 3D spatial arrangements of atoms118

(24). The GraphMVP learning framework allows its encoder to integrate topological and geometric119

information within a unified embedding space. It is worth noting that GraphMVP uses much smaller120

graph/conformer datasets in representation learning.121

Morgan Fingerprints: As a benchmark, MF are employed as an established molecular descriptor122

(19). MF are highly effective for predicting molecular properties in ML models because they123

efficiently capture the substructural features of a molecule (25). By representing a molecule as a124

fixed-length binary vector, they encode the presence or absence of specific circular substructures and125

each atom’s chemical environments. The resulting numerical representation is both computationally126

efficient and chemically intuitive, making it an ideal input for various learning algorithms, which can127

then identify complex patterns and relationships that are predictive of a molecule’s behavior.128

For downstream tasks, transfer learning approach is adopted to retain chemical information from the129

pre-trained model as molecular embeddings, and map these to the output label using a regressor model130

such as feed forward neural networks (NN). It is noted that fine-tuning the pre-trained FM containing131

several million parameters with labeled datasets can be computationally expensive. Furthermore,132

fine-tuning current state-of-the-art FM is not expandable to the string representations of formulations133

used in ref(14) as these are vastly different from the molecule representations models were pre-trained134

on. Meanwhile, transfer learning approach is relatively robust and deliver consistently reliable results135

(see Table S1). Therefore, embeddings from the FMs and MF are used to represent individual136

molecules in the battery datasets. Derived molecular embeddings are aggregated into a system137

representation based on their composition, and additional design variables in the dataset such as138

separator, temperature and cathode loading (indicated in Figure 1b). Details of feature engineering139

for appropriate representation of molecules, formulations and devices are described in A.4. For each140

prediction task, feed forward neural network (NN) architectures are optimized and trained using141

FM -derived and aggregated features (described in A.5). NNs were trained using five independent142

80%-20% train–test splits, and prediction errors were quantified using the mean absolute error (MAE)143

metric.144

3 Results and Discussion145

3.1 Model performance146

We use FMs that recognize SMILES modality for training electrolyte design predictors due to ease of147

chemical data representation and their demonstrated best performance in predicting molecular proper-148

ties in several benchmark datasets (10). Prediction results for 10 battery datasets are summarized in149

Table 1 for FMs and MF . Tabulated are the average MAE across 5 random train-test splits for all150

models. Results show that SMI-TED and MolT5 based representations outperform MF in 7 out of151
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10 datasets. Meanwhile predictive capability of Galactica and GraphMVP is observed to be the lowest152

in all 10 datasets. Particularly for molecular properties, where several prior studies have backed that153

2048 bits of MF are more predictive than domain-intuitive features (25), results in Table1 indicate154

SMI-TED outperforms MF . SMI-TED demonstrates notable computational efficiency despite using155

significantly smaller feature vector size (768). This efficacy of SMI-TED embeddings testifies that156

learnt representations encode more comprehensive set of structural features that are meaningful and157

comprehensive.158

In the context of more complex systems, such as formulations, we observed a systematic divergence159

in model performance based on data size. On datasets characterized by a large volume of data, such160

as solubility (3300 data) and IC (18,000 data), MF outperform all FM in the present evaluation,161

categorizing miscible and immiscible electrolytes with 93.77% accuracy, and predicting log IC with162

MAE 0.0629, surpassing previously best reported results in ref (14). This outcome is consistent with163

the design of conventional ML methods that are optimized for large-scale data problems. MF ’s164

enhanced performance on these datasets suggests that the fundamental properties like IC and solubility165

are more contingent on specific functional groups in the system that are captured precisely by MF .166

This finding presents a critical consideration for the future development of foundation models.167

SMI-TED and MolT5 demonstrated clear and consistent advantage over MF in low data regimes (100168

to 200 data points), achieving superior predictive accuracy and robustness across these challenging169

multiscale problems. Particularly MolT5, having pre-trained on largest corpus of molecular data (100170

Million SMILES), has the lowest prediction errors for contact angle (MAE 12.944 Degrees) and LiI171

capacity ( MAE 22.408 mAh/g) datasets, and is second to MF for solubility (93.65% Accuracy) and172

IC (log IC MAE 0.0722) prediction. SMI-TED demonstrates next best predictive capability among173

FMs, reporting low prediction errors for all formulation datasets and outperforming all models for174

CE dataset (6; 3). These results highlight applicability of FM pretrained with molecules alone to175

multi-variate material design problems. Possible interpretation is that macroscale outcomes, such as176

electrolyte performance, are dictated by hierarchical interactions between chemical moieties. Ion177

aggregates and solvation substructures are examples of chemical moiety interactions responsible for178

charge-discharge kinetics in battery electrolytes. Models such as MolT5 and SMI-TED successfully179

predicts these macroscale outcomes due to having rich chemical vocabulary comprising of thousands180

of unique chemical tokens or moieties as reported in ref(10). Hence, latent space of SMILES-based181

FM is enriched with basic understanding of the chemical space formed by the combinations of182

chemical moieties in molecules (10). The downstream training utilizing aggregated formulation183

embeddings vs performance label is useful to correlate chemical moieties and compositions to the184

label, enabling multi-scale learning (see Figure 2). This knowledge transfer is particularly useful in185

low data regimes. Li-ICl Capacity data is a singular instance where MF outperforms FMs despite186

low data regime, highlighting FMs are likely not suitable for datasets lacking chemical variability.187

Results from MolT5 present additional interesting observations on multi-modal pre-training. Latent188

space of MolT5 is augmented with semantic understanding of molecular string representation,189

correlating molecule structures to specific functions (23). In Table 1, advantages of pretraining with190

multi-modal datasets is noted in multi-variate battery datasets but not in molecular datasets. Despite191

pre-training on largest SMILES corpus, predictive capability of MolT5 model is lower than SMI-TED192

for molecular properties, likely due to noted functional biases and scarcity of natural language193

datasets used during model development(23). Regardless, good predictive performance on multi-194

variate datasets underscore the critical importance of incorporating multi-modal data representations195

during the pretraining, enabling model to learn complex inter-dependencies and semantic nuances196

across datasets.197

Poor performance of Galactica in predicting material properties underline limitations of high gen-198

erality. Despite training on large corpus of scientific knowledge and 2 Million SMILES, model199

lacks sufficient specificity required to capture critical domain-relevant features. In lieu, GraphMVP200

also shows poor predictive power despite high specialization in molecular geometries. The model201

captures the 3-D topological and geometric features of molecules but lacks sufficient representational202

capacity to resolve finer substructural moieties and their inter-dependencies. Ultimately, the choice203

of representation is critical and must be determined by the nature of downstream task, quantity and204

the quality of the labeled dataset.205
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Table 1: Average mean absolute error (MAE) and prediction accuracy (%) for the battery datasets
using embeddings from foundation models

Model ⇓ Oxidation Reduction HOMO LUMO Solubility IC Contact Angle LiI Capacity CE Li-ICl Capacity
MAE Units → eV eV eV eV Accuracy % Log Degrees mAh/g Log mAh/g

SMI-TED 0.2559 0.5825 0.4405 0.3663 93.11 0.0910 16.243 22.449 0.185 47.93
MolT5 0.2679 1.7375 0.4451 0.3836 93.65 0.0722 12.944 22.408 0.188 37.57

Galactica 0.2714 0.7134 0.4802 0.4283 93.05 0.1035 23.982 25.011 0.225 39.570
GraphMVP 0.3355 0.6586 0.4987 0.4432 91.17 0.0939 22.099 29.051 0.209 42.451

MF 0.2594 0.5854 0.4580 0.3746 93.77 0.0629 17.815 28.990 0.223 32.24

3.2 Quantifying out-of-distribution performance206

Formulations present multi-variate design space with infinite possibilities emerging from several207

million known compounds, their inestimable potential combinations, and composition variations.208

Given this, electrolyte design discovery becomes inherently an OOD problem as novel formulations209

will most likely be in unseen or unfamiliar data. Thus, evaluating OOD performance is crucial210

for ensuring the reliability and robustness of models. One can define OOD based on divergence211

between train-test sets with respect to either input distribution (chemical and composition space) or212

output distribution (property values). Presented OOD evaluation of FMs for formulation and device213

performance datasets spans both input and output distributions.214

First, we start with most accepted OOD evaluation based on output distribution (26). We separate test215

sets based on tail ends of numerical outcome distribution, for instance, lower and upper end values of216

ionic conductivity, capacity, contact angle, etc. Tail-end distributions used as tests in 5 electrolyte217

regression datasets are highlighted in A.6. This distribution estimates extrapolation capabilities of218

the models beyond the training data. Results of OOD predictions are presented in Table 2 along219

with prediction uncertainty observed across 3 predictions. Both SMI-TED and MolT5 demonstrate220

best OOD prediction with each having lowest MAE in 2 out of 5 datasets. Both models also had221

high consistency in predicted outcomes as indicated by low uncertainty. Overall extrapolation across222

outcome values is promising for electrolyte datasets except for Li-ICl Capacity dataset where models223

perform poorly as seen in previous section.224

Table 2: Mean absolute error (MAE) for out-of-distribution predictions using foundation models and
Morgan Fingerprints

Model ⇓ CE Contact Angle LiI Capacity IC Li-ICl Capacity
MAE Units → Log Degrees mAh/g Log mAh/g

SMI-TED 0.0548 ±0.04 13.5216 ±0.41 27.128 ±0.70 0.1938 ±0.01 109.21 ±0.95
MolT5 0.0819 ±0.00 14.0539 ±0.98 31.2229 ±1.61 0.1669 ±0.01 108.2197 ±0.93

Galactica 0.4635 ±0.39 31.4742 ±0.82 28.2692 ±14.38 0.2262 ±0.08 110.391 ±1.50
GraphMVP 2.7758 ±2.36 34.8031 ±1.88 7.9974 ±4.17 0.7429 ±0.04 108.6611 ±0.03

MF 0.1295 ±0.05 19.3304 ±1.26 29.5058 ±2.22 0.1717 ±0.03 114.3028 ±31.07

Next, ML models frequently show poor transferability across chemical spaces and fall short in225

predicting properties for materials outside their training scope (27). Generalizable base models like226

FM have seen increased adoption in the community for these reasons (27). Unlike small molecules,227

where property can be traced to substructures and chemical motifs (10), cause-effect in formulations-228

like materials are more complex and intertwined in multi-variate dynamic inter-dependencies (14).229

Therefore, the boundaries of OOD for dynamic multi-variate chemical space is needed to be explored230

in a focused study. In present study, we use chemical similarity as a metric for characterizing OOD231

Figure 2: Multi-step training capturing complex chemical interactions at multiple length scale.
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based on inputs. A chemical similarity score is employed as an approximation for how close test data232

is to training data in model’s latent space, and is estimated by calculating maximum of average cosine233

similarity (normalized) of each test datapoint with all training samples. Upon evaluating the chemical234

similarity between embeddings of train-test sets for tail-end OOD evaluation in Table S3, we observe235

there is an inverse trend between chemical similarity of OOD train-test sets and prediction MAE from236

the models, suggesting model prediction errors are high for chemically disparate test sets. These237

results confirm chemical similarity can be a reliable metric to determine distance between test and238

train sets in model’s latent space and characterize OOD.239

This trend paves the way to ascertain reliability of a model when extrapolating to unexplored regions240

of the materials design space. By error estimation, we can systematically pinpoint regions where241

model lacks predictive capability, facilitating intelligent allocation of resources toward targeted242

experimental validation and data enrichment. We create several subsets of train-test data for battery243

across different length scale based on their relative distance in latent space of SMI-TED, given its244

reliable performance in both molecules and macroscale outcomes. These subsets were carefully245

curated to represent a different testing scenario than the ones used in the tail-end OOD evaluation246

such as distinct constituent count and chemicals. Relationship between semantic similarity between247

the input embeddings of train-test distributions (in red) across datasets is compared with prediction248

MAE for the respective train-test subset (in blue) in Figure 3. Trends confirm an inverse relationship249

between prediction MAE and semantic proximity of test data to the training samples, yielding a250

linear relationship MAE = m.Similarity + c that estimates the approximate MAE of model251

predictions on new data points by quantifying their Similarity to the model’s training data. The252

slope (m) and intercept (c) for analyzed datasets are presented in Table S4. This approach enables253

systematic assessment of prediction uncertainty and confidence for new data, thereby supporting254

efficient screening in materials design and discovery.255

Figure 3: Relationship between prediction MAE (in blue) and chemical similarity (in red) between
train and test datasets.

3.3 Interpretability256

A widely embraced strategy in materials discovery involves interpreting chemical data into useful257

knowledge and chemical insights, uncovering conclusive design rules and trends for decision making258

(28; 29). The efficacy of this approach is maximized when it leverages accurate empirical data259

or highly reliable model-generated outputs spanning the intended design landscape. However,260

interpretability is frequently hindered by the intrinsic opacity of AI models, which predominantly261

operate as “black boxes” with internal mechanisms that remain inaccessible to researchers. This262

challenge is further exacerbated as training pipeline grow in complexity, for instance, input features263

are derived from transformer model and post processed before the training (18). Quantifying model264
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uncertainty in new material regions can facilitate users in identifying scope of the model. However,265

application of these models to uncover material design rules for interpretability remains a persistent266

challenge.267

We propose a method to evaluate interpretability of FM derived predictors by investigating correlation268

of performance outcomes with chemical moieties in the datasets and compare trends in train and269

test subsets. First, a list of several potential chemical substructures and their SMARTS (SMILES270

Arbitrary Target Specification) string is devised (30). Over 550 chemical substructures are defined271

including general and specific moieties. For instance, amine is a general functional group of material272

containing Nitrogen atom with lone pair of electrons, and specific derivatives for the same include273

aromatic amine, heterocyclic amine, tertiary amine etc. Chemical moieties in molecules are identified274

by matching SMARTS and presence of every moiety is indicated by a bit in a fixed length vector.275

This vector is taken as molecular fingerprints and aggregated for constituents in each formulation by276

composition scaling and addition to represent concentration of each chemical moiety in a formulation.277

We adopt Spearman’s correlation coefficient (SCC) (31) to determine strength and direction of278

monotonic relationship between chemical moieties in the dataset and the outcome performance. The279

analysis provides meaningful insights towards the positive or negative influence of a chemical moeity280

in the formulation towards the outcome. Analysis is performed for data used in training and test set to281

correlate moieties to actual outcomes. Simultaneously, the analysis is also extended to the outcomes282

predicted by the models based on SMI-TED representation for the very same test set. Figure 4283

illustrates these correlations in three formulation datasets CE, LiI capacity and IC.284

Figure 4: Correlation of chemical functional groups in formulations with performance in train
(orange) - test (blue) dataset, compared with correlation to the predicted outcomes (green) in test
data.

Comparison of correlation analysis for model prediction outcomes and actual performance within285

test sets is meant to demonstrate the capability of model in deriving sound chemical insights across286

unseen datapoints. Particularly in Figure 4, examples highlighted in green illustrate cases where the287

correlations in the training and test datasets were opposite, and the model correctly predicted the288

opposing trends. Instances highlighted in yellow represent scenarios where the model accurately289

identified chemical trends for the outcome, despite these trends being absent from the training data.290

Cases highlighted in pink show perfect alignment among all three correlations. The remaining291

instances in white indicate correlations that the foundation model misinterpreted. This analysis292
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reveals the chemical insights misunderstood by the model and allows users to selectively apply these293

models for design interpretation and discovery within a chemical space where confidence is justified.294

4 Conclusion295

In this work, we evaluate the scope of foundation models in addressing material design challenges296

across multiple length scale in batteries: molecules, formulations and device. Multiple foundation297

models are used to derive multi-variate representations of datasets by combining molecular represen-298

tations with other variables such as compositions, temperature, electrode and separator variations.299

Results show FMs pre-trained with large corpus of SMILES modality, such as SMI-TED and MolT5,300

can be used to extrapolate learning from moiety-level interactions to macroscopic outcomes like301

specific capacity, surface characteristics, and battery performance using scarce datasets. These models302

are particularly useful in low data regimes where conventional molecular representations such as303

Morgan Fingerprints are found to be limiting. It is also observed that pre-training on multi-modal data304

representations has the scope to achieve superior performance in multi-variate material design space.305

The study also presents a method to analyze model’s ability to generalize out-of-distribution and306

quantify model prediction errors across new material designs based on chemical similarity between307

train-test sets. SMILES-based models demonstrated reliable out-of-distribution performance trends.308

However, it is noted that out-of-distribution criterion for dynamic multi-variate chemical space309

needs further comprehensive investigation. Lastly, we demonstrate an approach to identify chemical310

space where model confidence is high by correlating actual outcomes and predicted outcomes to the311

chemical moieties in the datasets. The approach allows dependable material design interpretation312

from the model for discovery tasks.313
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A Supplementary Material405

A.1 Electrolyte Datasets406

Molecule screening: Battery electrolytes can comprise of one or more organic solvent, and one or more salt,407

which facilitate Li+ ion transport between electrodes and electrode surface conditioning to prevent unwanted408

degrading side reactions. Each electrolyte component plays a crucial role in this ecosystem and is therefore409

selectively picked based on certain properties like HOMO-LUMO levels and redox potentials. While there is410

plethora of labeled dataset available in literature for these properties (32; 33; 16), we use a data from a singular411

source to train and evaluate model’s performance, i.e., D3TaLES, a database of DFT simulated properties of412

40,000 organic molecules for battery systems (33).413

Manufacturability: Screened solvents and salts are combined in certain compositions to form electrolyte formu-414

lations. These formulations must be completely miscible (or soluble) to enable ion transport and manufacturing.415

We curate a heterogeneous dataset containing solubility information of single salt-single solvent mixtures, single416

salt-multi solvent formulations, and multi salt- multi solvent electrolytes, enabling development of a generalized417

model for electrolyte miscibility prediction. Refer to A.2 for details on electrolyte solubility data generation. For418

inclusion of heterogeneous datasets, we simplify approach to binary classification indicating insoluble (0) or419

soluble (1). The combined 3,300 dataset contained rich diversity of salts, solvents and electrolyte mixtures.420

Formulation property: Another crucial property to consider during electrolyte design is ionic conductivity421

(IC). The salts dissociated into ions within an electrolyte form solvation structures that facilitate transport of422

charge between two electrodes and are responsible for battery’s charge-discharge kinetics. For IC, we use 18,000423

reported empirical values of electrolyte formulations at different temperatures in published literature (7; 14).424

The dataset constitutes diverse set of solvents and salts.425

Surface contact characterization: An electrolyte interfaces with multiple internal components within a battery,426

including electrodes, separators, and current collectors. Consequently, optimizing the surface interactions427

between the electrolyte formulation and various device constituents is crucial for achieving peak performance.428

Traditionally, such evaluations have relied on the empirical expertise of domain experts and expensive computa-429

tional simulations. Nevertheless, data collected from evaluation of one similar system can be used to automate430

future screening and assessment of electrolytes. We use one such in-house generated empirical dataset of 119431

electrolyte formulations and their contact angle on four different separators to predict surface contact angle of432

electrolytes (see A.3 for experimental details).433

Device performance: The ultimate objective of developing a new battery electrolyte formulation is to achieve434

superior performance metrics, such as enhanced capacity, Coulombic Efficiency (CE), and cycle life. The public435

dissemination of such data is often limited, as its relevance is typically highly specific to a particular device436

configuration, thereby precluding its full adherence to FAIR (Findable, Accessible, Interoperable, and Reusable)437

data principles. To address this challenge, we leverage three distinct datasets from previous publications. The438

first dataset, derived from a study by Kim et al. (3), examines the relationship between electrolyte composition439

and CE across 150 datapoints. A second dataset containing 125 electrolytes, originally reported by Sharma440

et al. (6), explores the influence of electrolyte formulation on the specific capacity of a LiI conversion battery.441

Finally, the third dataset constituting 91 datapoints focuses on capacity metric for an interhalogen conversion442

(Li-ICl) battery, incorporating variations in cathode loading, separator type, and electrolyte compositions with443

fixed chemicals (18).444

A.2 Solubility Data Collection445

Complete electrolyte miscibility is desired in batteries for manufacturing to ensure that the electrolyte composi-446

tion is consistent batch to batch and devoid of any phase separation for uniformity in battery performance at447

production scale. Therefore, it is essential to identify potentially miscible formulations from the vast combinato-448

rial design space. Heterogeneous solubility dataset is generated through experimentation:449

Single salt- single solvent solubility assessment: A dataset of binary system containing single salt and450

a single organic solvent was collected experimentally in the laboratory. The dataset spans five most popular451

electrolyte salts, LiNO3, LiFSI, LiBOB, LiFOB, and LiPF6, and up to fifty organic solvents. The experiments452

were conducted in an inert glovebox (Argon, < 0.1 ppm H2O and O2) and all salts were dried on a hotplate at453

150 °C, except for LiFSI and LiPF6 , which were used as received due to their lower thermal stability. Solvents454

were dried over 3Å molecular sieves for at least 24 hours prior to use. An upper salt concentration limit of 2M455

was set during the data collection. Salts were weighed to make 2M solution and the respective organic solvent456

was then added to decrease the concentration by a 0.25M interval until the solutions were visually clear without457

any precipitation or undissolved materials. The salt-solvent combination was considered insoluble if the solution458

was not clear at 0.25M concentration.459
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Single salt- Multi solvent solubility assessment: The dataset has measurement of the highest molar con-460

centration of single salt dissolved in mixture of organic solvents. The data was curated during the development461

of electrolyte for our prior study where four salts and four solvents were shortlisted for lithium metal battery462

electrolyte (18). The four salts, LiCl, LiNO3, LiTFSI and LiBOB, are individually dissolved in solvent formula-463

tions containing different compositions of ethylene carbonate, Tetraglyme, 1,3-Dimethyl-2-imidazolidinone and464

1,3-Dioxolane. The solubility measurements were made as per the method described above.465

Multi salt-multi solvent solubility assessment: Conventionally, functioning and high-performing466

electrolytes are published in literature (3; 18; 6). We also share a few "failed" non-miscible electrolytes in467

our previous works (18; 14). We curated 300 electrolyte formulations from these studies. Simplification of468

solubility metric to (0) or (1) enabled inclusion and test across widespread electrolyte dataset. The combined469

dataset contained rich diversity of salts, solvents and electrolyte mixtures.470

Post processing: The solubility of single salt- single solvent pairs and single salt- multi solvent formulations471

were measured in terms of highest soluble molarity of the salt. To further add context to the solute molarity472

noted as metric in empirical dataset, data augmentation was done to interpolate solubility of target salt in each473

respective solvent system to include soluble(1) datapoints below highest soluble molarity, and insoluble(0)474

datapoints above recorded metric until the tested molarity. Next, the constituent moles in each formulation system475

were converted to molar percentage (mole%). Post data processing, there are 3300 electrolyte formulation vs476

solubility data that is used in the study.477

A.3 Contact Angle Measurement Experiments478

Electrolyte uptake by separator is an important parameter that determines ion transport and electrolyte per-479

formance. There are several separators in the commercial market based on constitution such as polymer and480

quartz. Within a single category like polymer separators, vast variations can be noted based in changes in481

polymer monomers and ratios. Electrolyte formulations are prepared inside an Ar-filled glove box (<1 ppm O2,482

<1 ppm H2O). Prior to mixing, solvents that are liquid at room temperature are dried using molecular sieves483

(Millipore Sigma, 3 ) and salts are dried on a hot plate at 100 °C. Electrolytes are mixed for 24 hrs prior to484

contact angle measurement. Contact angle measurements were conducted using an OCA video-based contact485

angle goniometer (FDS Future Digital Scientific Corporation) employing the sessile drop technique. Prior to486

measurement, the separator was carefully placed on a flat silicon wafer substrate to ensure a uniform surface. A487

2L droplet of electrolyte was then dispensed onto the separator surface and allowed to equilibrate for 800ms.488

Image analysis was performed on a selected video frame by manually defining the baseline and applying an489

ellipse-fitting algorithm to achieve optimal conformity to the droplet profile. The reported static contact angles490

represent the average of 3–5 independent measurements. All procedures were carried out with minimal air491

exposure to preserve the integrity of the electrolyte and ensure reproducibility. A dataset of 119 experiments is492

created using the electrolyte constituents, their respective concentrations, the experimentally measured contact493

angle, and a separator label. There are four different Celgard separators in the dataset, identified by unique label494

(1-3).495

A.4 Feature engineering496

The application of data-driven models in material systems rely on the correct transformation of system into497

a numerical representation suitable for mathematical operations. Accordingly, the intricate description of a498

battery’s formulation, which includes the identity of constituent molecules, their composition, and additional499

configuration parameters, must be systematically converted into a relevant numerical descriptor. For this500

purpose, pretrained FMs are used to acquire molecular representations which are then transformed to represent501

multi-scale systems as described below:502

Molecules: FMs are used to derive numerical embeddings of molecules present in the target datasets similar to503

previous studies (10; 34).504

Formulations: Three formulation datasets including solubility, CE and LiI battery capacity map electrolyte505

formulations to the outcome. Formulation inputs constitute multiple constituents per datapoint and their506

respective composition as mole percent (mol%) in the mixture. Here, constituent molecules are transformed to507

FM embeddings, and are then scaled based on their mol% in the formulation to indicate their activity within the508

system. The scaled embeddings are aggregated to form a formulation descriptor by addition as also summarized509

in Figure 1. There are more than one method to aggregate formulation descriptor (18; 35; 13). Each method has510

its own merit and preferred use. We observe that scaled addition is most convenient aggregation as the resultant511

formulation descriptor size is invariant to the formulation constituent count. IC dataset contains temperature as512

an additional extrinsic variable that is concatenated with the formulation descriptor for training.513

Surface contact characterization: In present study, contact angle of electrolyte on several polymer-based514

separators are measured to assess their compatibility. For best representation, a FM for polymer can be515
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used. However, since present study is focused on assessing molecular FM , separator representation has been516

simplified by the use of labels. There are four polymer separators in the dataset labeled 0-3. These labels are517

concatenated with formulation representation analogous to temperature in IC dataset.518

Device: Li-ICl battery dataset reports specific capacity of the battery with varying compositions of 8 electrolyte519

constituents for a range of active material loadings (30% to 60%) in cathode and varying separators (18).520

Electrolyte formulations are aggregated as defined for formulations and additional cell variables are concatenated521

to formulation descriptor as model inputs.522

For each dataset, neural network (NN) architectures are individually optimized and trained using the derived523

dataset inputs. This feature engineering for representing molecules, formulations and devices was consistent524

across all FMs and MF .525

A.5 Model Training526

It is noted that fine-tuning FMs such as SMI-TED with string representation of formulations could result in527

relatively higher mean squared error (MSE) than the transfer learning approach where formulation descriptor528

aggregates pre-learned molecular embeddings scaled with the composition. MSE for both the approaches are529

compared in Table S1 for IC dataset where finetuning achieves MSE 0.155 and transfer learning combined by530

NN regressor achieved MSE 0.025.531

Table S1: Mean squared error (MSE) for property prediction using SMI-TED

Dataset MSE
Fine-tuning Transfer learning

Reduction Potential 0.65 0.68
Oxidation Potential 0.13 0.14
Ionic Conductivity 0.155 0.025

Hyperparameter Tuning: Neural network (NN) architectures were individually optimized and trained532

using FM–derived molecular embeddings or formulation descriptor. NN with 2 or 3 hidden layers, with nodes533

500-250-100 or 500-250, and activation function relu was found optimum. Model was trained with learning rate534

0.0001, factoring 0.5 every 200 epochs of no reduction in loss function. The model was trained for maximum of535

2500 epochs or until 200 iterations of no improvement in validation loss. Batch size was varied based on data536

size. For datasets < 200, batch size was kept 1, batch size was 12 for dataset <5000, and batch size of 32 was537

used for data >5000. Regression loss was measured using mean squared error (MSE) and mean absolute error538

(MAE) was the used metric. For binary classification of electrolyte solubility, binary cross entropy was the loss539

function and accuracy was the metric.540

Table S2: Tuning neural network hyperparameters for SMI-TED predictors
Dataset Hidden layers Activation Function MAE

LCE 500-250-100 relu 0.17
LCE 500-250 relu 0.16
LCE 500-250 sigmoid 0.32
LCE 500-250-100 sigmoid 0.32
LCE 500-250-250 relu 0.16
LCE 500-500 relu 0.17
LCE 250-100 relu 0.16
IC 500-250-100 relu 0.08
IC 500-250-100 sigmoid 0.22
IC 500-250 relu 0.09
IC 500-500 relu 0.10
IC 250-250-250 relu 0.08
IC 700-700 relu 0.11
IC 500-250-100-50 relu 0.08

HOMO 500-250-100 relu 0.43
HOMO 500-250-100 sigmoid 0.44
HOMO 500-250 relu 0.44
HOMO 250-100 relu 0.44
HOMO 500-500-500 relu 0.44
HOMO 250-250-250 relu 0.44

A.6 Out-of-distribution (OOD) evaluation541

Two-fold OOD evaluation is done: (1) tail end evaluation based on numerical distribution of outcome labels, and542

(2) chemical design evaluation based on chemical similarity between train-test sets. For tail-end evaluation, test543

set are created from the training data to include lower and upper end values. In certain cases such as in Figure S3544
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and Figure S4, only one end of data was considered as the outcome label was highly biased towards the other545

end.546

Figure S1: Tail-end OOD and parity plots for ionic conductivity test sets using benchmarking models.

Figure S2: Tail-end OOD and parity plots for contact angle test sets using benchmarking models.
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Figure S3: Tail-end OOD and parity plots for LiI capacity test sets using benchmarking models.

Figure S4: Tail-end OOD and parity plots for LCE test sets using benchmarking models.
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Figure S5: Tail-end OOD and parity plots for Li-ICl Capacity test sets using benchmarking models.

Table S3: Chemical similarity of out-of-distribution test datasets with training data using embeddings
from foundation models and Morgan Fingerprints

Model CE Contact Angle LiI Capacity IC Li-ICl Capacity
SMI-TED 0.3324 0.6791 0.2557 0.9244 0.6021

MolT5 0.2592 0.5472 0.1868 0.8209 0.641
Galactica 0.1925 0.6556 0.4531 0.9178 0.681

GraphMVP 0.0514 0.1099 0.0619 0.1814 0.0206
MF 0.2198 0.3281 0.1144 0.751 0.4748

Table S4: Parameters to estimate mean absolute error (MAE) in model prediction based on similarity
between test-train data for SMI-TED

Datasets Slope(m) Intercept(c)
HOMO -0.1602 0.5699
Ionic Conductivity -0.5724 0.6377
Contact Angle -19.6820 0.7601
Specific Capacity -24.9776 33.2050
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