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Abstract

Recent years have seen fast emergence and adoption of chemical foundation models1

in computational material science for property prediction and generation tasks that2

are focused mostly on small molecules or crystals. Despite these paradigm shifts,3

integration of newly discovered materials in real world devices continues to be4

a challenge due to design problems. New candidate material must be optimized5

to achieve compatibility with other components in the system to attain the target6

performance. Chemical foundation model benchmarks must evaluate their scope7

in predicting macro scale outcomes that are the result of chemical interactions in8

multivariate design space. This study evaluates performance of chemical foundation9

model, pre-trained with 91 million SMILES of small molecules, in extrapolating10

learning from molecules to material design challenges across multiple length scale11

in batteries. The base model is fine-tuned using ten datasets covering molecular12

structures, formulations, and battery device measurements, and its performance13

is benchmarked against conventional molecular representations such as Morgan14

Fingerprints. The study further examines the model’s capacity to generalize to15

out-of-distribution (OOD) cases by quantifying prediction errors for novel material16

designs that differ substantially from the training data. Finally, interpretability of17

the resulting models is assessed, with the aim of enabling researchers to apply18

them selectively for design interpretation within regions of chemical space where19

prediction confidence can be reasonably established.20

1 Introduction21

With evolving technologies and world economy demands, the field of material discovery has remained22

strongly relevant. Recently, this field has acquired critical importance as new sustainable materials are23

sought to overcome limitations of current material systems (1). Battery technologies are one strong24

societally relevant area of research where the scope of known materials appears to be exhausted, and25

new materials that can deliver high capacities, fast charging and longer cycle stability are continously26

sought to meet future demands (2; 3). Despite shifts in material research paradigms from slow,27

labor-intensive experiments, to faster data-driven models (4; 1), it remains challenging to integrate28

new materials in real world devices. This is due to several reasons: (i) most computational models29

including simulations and machine learning (ML) can be used to determine intrinsic properties of30

materials based on their chemical structure, but lack in extrapolating their outcome to meso or macro31

scale phenomenon (5); (ii) device performance is governed by complex interactions among several32

constituent materials, presenting vast multivariate design space difficult to screen or optimize (6); (iii)33

limited data availability for extrinsic characteristics such as temperature and concentration dependence34

of multi-constituent properties (7). While ML models accelerate several prediction, generative and35

optimization problems in material science, the field continues to face challenges stemming from36
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opaque nature of the model’s decision making, impractical proposed chemical structures, scarcity of37

quality datasets and inability to generalize out-of-distribution (OOD) (8).38

Foundation models for materials (FM4M) have emerged as promising models to overcome some39

aforementioned challenges of data scarcity and generalization. These are a class of large language40

models (LLMs), that are pre-trained on a textual or multi-modal representations of materials in41

open-source databases like PubChem and ZINC through self-supervised learning (9). Studies have42

demonstrated that embedding space of these transformer models segregates chemically relevant43

features of molecules making them a suitable general-purpose tool for material science research.44

These base models can be utilized to perform specific functions based on smaller labeled datasets with45

fine-tuning or transfer learning (10). Foundation models (FM) are rapidly evolving, and their adoption46

in different application areas is on the rise (11). Large portion of studies report their use in property47

prediction and inverse design of small molecules or crystals (10). Prior studies also evaluate their48

scope in predicting performance metrics for formulations (mixtures of more than two molecules in49

certain compositions) based on electrolyte-performance experimental datasets curated from literature.50

Results demonstrate best prediction accuracies in comparison to other data-driven models (12; 13).51

The research on representing advanced material systems such as formulations, composites and devices52

to learning models is currently in nascent stages due to less understood chemical phenomenon and53

lack of quality datasets. These results on formulation datasets present strong evidence that foundation54

models can extrapolate molecular features to multi-constituent properties.55

In this work, we evaluate the capability of a chemical foundation model pre-trained with molecular56

representations SMILES (14), to predict properties and performances of materials that are the result57

of interplay of complex chemical phenomenon at macroscale. We take battery electrolytes as an58

example where electrolyte engineering has emerged as a promising approach to improve battery59

performance metrics such as columbic efficiency (CE), cycle life and capacity. To achieve this,60

electrolytes are carefully designed based on the individual properties of constituent molecules, their61

collective performance as formulation and their compatibility with other battery components such62

as electrodes, separator and current collector. Electrolyte Genome initiative in 2015 accelerated63

electrolyte discovery cycle for new emerging battery chemistries by integrating computational64

workflows with experimentation (15). High-throughput screening enabled selection of candidate65

molecules meeting threshold values for HOMO-LUMO energy levels, toxicity and electrochemical66

stability. Once down-selection is done, laborious experimentation is required to find their right67

combination for a functional electrolyte formulation (16). Here, data availability is a primary68

roadblock in adoption of ML models since public datasets are inconsistent and industrial datasets are69

propriety (17). Thus, models that can be efficient with scarce datasets are desired in the domain.70

We use FM4M to map electrolyte formulations along with device variables to key performance71

indicators at multiple length scale in batteries as illustrated in Figure 1. In particular,72

• We target prediction of key properties that are considered in electrolyte discovery such as73

molecular properties, formulation performance, manufacturability, surface contact char-74

acteristics and device performance. The results are compared with standard molecular75

representations like Morgan Fingerprints (MF ) (18).76

• We evaluate extrapolation capability of the trained models to new material designs based on77

the semantic similarity between train and test data. This presents a method to approximate78

errors and confidence in model predictions across new material landscape.79

• We investigate interpretability of FM4M-based predictors and evaluate their promise in80

inferencing new material design rules.81

2 Datasets82

Data availability is a major enabler for artificial intelligence (AI) workflows aiming for material83

discovery and design. While ‘material discovery’ targets generating new candidates with specialized84

properties, ‘material design’ leans towards customization and optimization of candidates for com-85

patibility with system or device to achieve target performance. Therefore, to meet the performance86

goals for respective application, series of data driven predictors must be realized to enable material87

identification, characterization and optimization for achieving compatibility with the device. Several88

datasets used in present study are curated from literature, while some are experimentally generated in89

the laboratory ( see section Supplementary Materials for details).90
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Figure 1: (a) Scheme illustrating electrolyte design problems at multiple scales. (b) Schematic
summarizing the data representation for material design using pre-trained foundation models for
molecules.

Molecule screening: Battery electrolytes can comprise of one or more organic solvent, and one or91

more salt, which facilitate Li+ ion transport between electrodes and electrode surface conditioning to92

prevent unwanted degrading side reactions. Each electrolyte component plays a crucial role in this93

ecosystem and is therefore selectively picked based on certain properties like HOMO-LUMO levels,94

redox potentials and solvation energy. While there is plethora of labeled dataset available in literature95

for these properties (19; 20; 15), there are inconsistencies between these datasets due to differences96

in the calculation methods. To avoid these inconsistencies, we use a data from a singular source to97

train and evaluate model’s performance, i.e., D3TaLES, a database of DFT simulated properties of98

40,000 organic molecules for battery systems (20).99

Manufacturability: Shortlisted solvents and salts are combined in certain compositions to form100

electrolyte formulations. These formulations must be completely soluble to enable ion transport101

and manufacturing. Complete electrolyte miscibility is desired in batteries for manufacturing to102

ensure that the electrolyte composition is consistent batch to batch and devoid of any phase separation103

for uniformity in battery performance at production scale. Yet, prediction of miscibility during104

electrolyte discovery faces technical challenges due to limited knowledge on physical properties105

and phase behavior of non-aqueous solutions. While aqueous solubility remains widely reported,106

literature on solubility of non-aqueous electrolytes remains lacking on two fronts (i) empirical107

observations, and (ii) multi-constituent mixtures. Here we use a heterogeneous dataset containing108

solubility information of single salt-single solvent mixtures, single salt-multi solvent formulations,109

and multi salt- multi solvent electrolytes, enabling development of a generalized model for electrolyte110

miscibility prediction. Solubility metric considered across the literature have been numerous and111

inconsistent (21). To prevent these limitations and simplify data ingestion in prediction model, we112

do not target any specific parameter but a binary classification of soluble (1) or insoluble (0). This113

simplification of solubility metric to (0) or (1) enabled inclusion of widespread electrolyte datasets.114

The combined 3300 datapoints contained rich diversity of salts, solvents and electrolyte mixtures.115
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Formulation Property: Another crucial property to consider during electrolyte design is ionic116

conductivity (IC). Salts within an electrolyte dissociate into anions and cations. These dissociated117

ions form solvation structures to facilitate transport of charge ions between two electrodes and are118

responsible for battery’s charge-discharge kinetics. For IC, we use 18,000 reported empirical values119

of electrolyte formulations at different temperatures in published literature (7; 13). The dataset120

constitutes diverse set of solvents and salts.121

Surface contact characterization: An electrolyte interfaces with multiple internal components122

within a battery, including electrodes, separators, and current collectors. Consequently, optimizing123

the surface interactions between the electrolyte formulation and these various device constituents is124

crucial for achieving peak performance. Traditionally, such evaluations have relied on the empirical125

expertise of domain experts and expensive computational simulations. Data generated from these126

studies, however, is often specific to a particular system and lacks the generalizability of fundamental127

properties like solubility and IC. Nevertheless, data collected from evaluation of one similar system128

can be used to develop ML model to automate future screening and assessment of electrolytes. We129

use one such in-house generated empirical dataset of electrolyte formulation and their contact angle130

on four different separators to assess surface wettability of electrolytes. A dataset of 119 experiments131

is constructed using the electrolyte constituents, their respective concentrations, the experimentally132

measured contact angle, and a separator label. Four different Celgard separators were included in the133

dataset.134

Device Performance: The ultimate objective of developing a new battery electrolyte formulation135

is to achieve superior performance metrics, such as enhanced capacity, Coulombic Efficiency (CE),136

and cycle life. The public dissemination of such data is often limited, as its relevance is typically137

highly specific to a particular device configuration, thereby precluding its full adherence to FAIR138

(Findable, Accessible, Interoperable, and Reusable) data principles. To address this challenge, we139

leverage three distinct datasets from our previous publications. The first dataset, derived from a140

study by Kim et al. (3), examines the relationship between electrolyte composition and CE across141

150 datapoints. A second dataset containing 125 electrolytes, originally reported by Sharma et al.142

(6), explores the influence of electrolyte formulation on the specific capacity of a LiI conversion143

battery. Finally, the third dataset constituting 125 datapoints focuses on capacity metric for an144

interhalogen conversion (Li-ICl) battery, incorporating variations in cathode loading, separator type,145

and electrolyte composition (17).146

3 Data Representation147

The application of data-driven models in material systems rely on the correct transformation of148

system into a numerical representation suitable for mathematical operations. Accordingly, the149

intricate description of a battery’s formulation, which includes the identity of constituent molecules,150

their composition, and additional configuration parameters, must be systematically converted into a151

relevant numerical descriptor. For this purpose, we utilize SMI-TED (SMILES Transformer Encoder152

Decoder), an open-source chemical foundation model developed by IBM Research (9). This model153

has acquired a deep understanding of molecular structural representations through self-supervised154

pre-training on a vast dataset of 91 million molecules and has been previously validated to surpass155

the performance of conventional data-driven alternatives in downstream tasks.156

Molecules: SMI-TED encoder is used to derive numerical embeddings of molecules present in the157

target datasets similar to previous studies (9; 22).158

Formulations: Three formulation datasets including solubility, CE and LiI battery capacity map159

electrolyte formulations to the outcome. Formulation inputs constitute multiple constituents per160

datapoint and their respective composition as mole percent (mol%) in the mixture. Here, constituent161

molecules are transformed to SMI-TED embeddings, and are then scaled based on their mol% in162

the formulation to indicate their activity within the system. The scaled embeddings are aggregated163

to form a formulation descriptor by addition as summarized in Figure 1. There are more than one164

method to aggregate formulation descriptor (17; 23; 12). Each method has its own merit and preferred165

use. We observe that scaled addition is most convenient aggregation as the resultant formulation166

descriptor size is invariant to the formulation constituent count. IC dataset contains temperature as an167

additional extrinsic variable that is concatenated with the formulation descriptor for training.168
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Surface contact characterization: Electrolyte uptake by separator is an important parameter that169

determines ion transport and electrolyte performance. There are several separators in the commercial170

market based on constitution such as polymer and quartz. Within a single category like polymer171

separators, vast variations can be noted based in changes in polymer monomers and ratios. For best172

material representation, a foundation model (FM) for polymer can be used. However, since present173

study is focused on assessing molecular FM, separator representation has been simplified by the use174

of labels. There are four polymer separators in the dataset labeled 0-3. These labels are concatenated175

with formulation representation analogous to temperature in IC dataset.176

Device: Li-ICl battery dataset reports specific capacity of the battery with varying compositions of 8177

electrolyte constituents for a range of active material loadings (30% to 60%) in cathode and varying178

separators (17). Electrolyte formulations are aggregated as defined for formulations and additional179

cell variables are concatenated to formulation descriptor as model inputs.180

For each dataset, neural network (NN) architectures are individually optimized and trained using181

SMI-TED–derived molecular embeddings or formulation descriptor (see section Supplementary182

Materials for details). As a benchmark, Morgan fingerprints(MF ) were employed as an established183

molecular descriptor (18).184

4 Results and Discussion185

4.1 Material representation and model performance186

We use a SMILES-based foundation model for training electrolyte design predictors due to their187

demonstrated best performance against several benchmark models (9). SMI-TED takes string188

representation of material as an input. Fine-tuning the pre-trained SMI-TED encoder with labeled189

datasets can be computationally expensive considering FM are relatively large models with over190

several million parameters. The most efficient approach is to retain chemical information from the191

pre-trained model as molecular embeddings, and map these to the output label using a regressor192

model such as NN, XGBoost or random forest. This transfer learning approach is relatively robust193

and deliver comparative results in predicting molecular properties, such as reduction potential and194

oxidation potential, as indicated in Table 2. Moreover, fine-tuning SMI-TED is not expandable195

to the datasets targeting formulations as the string representations of formulations used in ref(13)196

are vastly different from the molecule representations SMI-TED was pre-trained on. Consequently,197

it is noted that fine-tuning SMI-TED with string representation of formulations could result in198

relatively higher mean squared error (MSE) than the transfer learning approach where formulation199

descriptor aggregates pre-learned molecular embeddings scaled with the composition. MSE for both200

the approaches are compared in Table 2 for IC dataset where finetuning achieves MSE 0.155 and201

transfer learning combined by NN regressor achieved MSE 0.025. Thus, transfer learning approach202

was used to train all datasets.203

Results are summarized in Table 3 for SMI-TED embeddings and Table 4 for MF . As tabulated204

in the respective tables, SMI-TED based predictors outperform MF in 7 out of 10 datasets. For205

molecular properties, SMI-TED is marginally better than MF . Several prior studies have backed that206

2048 bits of MF are more predictive than domain-intuitive features for molecular properties (24).207

Meanwhile, SMI-TED demonstrates notable computational efficiency by achieving lower MAE to208

that of MF , despite using significantly smaller feature vector size (768). This efficacy of SMI-TED209

embeddings testifies that learnt representations encode more comprehensive set of structural features210

that are meaningful and comprehensive.211

In the context of more complex systems, such as formulations, we observed a systematic divergence in212

model performance. SMI-TED demonstrated a clear and consistent advantage over MF in low data213

regimes (100 to 200 data points), achieving superior predictive accuracy and robustness across these214

challenging multiscale problems. Proposed approach reports lower prediction errors for LiI capacity215

and CE datasets, outperforming previously published models (6; 3) using the same datasets or their216

subsets. These results highlight applicability of foundation models to multivariate material design217

problems. Possible interpretation is that macroscale outcomes, such as electrolyte performance,218

are dictated by hierarchical interactions between chemical moieties. Ion aggregates and solvation219

substructures are examples of chemical moiety interactions responsible for charge-discharge kinetics220

in battery electrolytes. SMI-TED successfully predicts these macroscale outcomes due to having rich221

chemical vocabulary comprising of 2988 unique chemical tokens or moieties. Hence, model latent222
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space is enriched with basic understanding of the chemical space formed by the combinations of223

chemical moieties in molecules (9). The fine-tuning step utilizing aggregated formulation embeddings224

vs performance label is useful to correlate chemical moieties and compositions to the label, enabling225

multi-scale learning (see Figure 2). This knowledge transfer is particularly useful in low data regimes.226

On datasets characterized by a large volume of data, such as solubility (3300 data) and IC (18,000227

data), MF outperform SMI-TED embeddings in the present evaluation. This outcome is consistent228

with the design of conventional ML methods that are optimized for large-scale data problems. MF ’s229

enhanced performance on these datasets also suggests that the fundamental properties like IC and230

solubility are more contingent on specific functional groups in the system that are captured precisely231

by MF . This finding presents a critical consideration for the future development of foundation232

models. Nevertheless, SMI-TED approach still outperforms the array of ML approaches evaluated233

in literature for IC prediction as reported in ref (13). Another instance where MF outperforms234

SMI-TED despite low data regime is Li-ICl Capacity (MF MAE 32.24 mAh/g vs SMI-TED MAE235

47.94 mAhg), highlighting present approach is not suitable for datasets lacking chemical variability.236

Ultimately, the choice of representation is a critical and must be determined by the nature of output237

label, quantity and the variability in the dataset, and the desired interpretability of the model.238

Figure 2: Multi-step training capturing complex chemical interactions at multiple scale.

4.2 Quantifying model uncertainty for out of distribution data239

ML models frequently show poor transferability across chemical spaces and fall short in predicting240

properties for materials outside their training scope (25). Task-specific models trained on labeled data241

lack robustness when faced with new material classes. Improvements via transfer learning, domain242

adaptation, and embedding physics constraints are underway, but broad generalization remains243

elusive (6). Generalizable base models like foundation models have seen increased adoption in the244

community for these reasons (25). Latest works show discovery of new electrolyte formulations245

achieving high ionic conductivity (above 10 mS/cm) by screening a large generated formulation246

design space with a fine-tuned SMI-TED model(13). These results exhibit that 44% (7 in 16) of the247

electrolytes recommended by the model met the performance target during experimental validation.248

We observe there is further potential to ascertain the reliability of these models when extrapolating249

to unexplored regions of the materials design space. There are factors intrinsic to material design250

including scale and end-use application that inject additional complexity, fundamentally constraining251

the generalizability and reliability of OOD predictions in these contexts. This insight highlights the252

need for more nuanced evaluation strategies and tailored model development when extending AI253

methods to new regimes of materials science.254

By incorporating uncertainty quantification into the model, we can systematically pinpoint regions255

where model lacks confidence. This capability is critical, as it allows for the intelligent allocation256

of resources toward targeted experimental validation and data enrichment, which is essential for257

improving the model’s reliability and performance. We compared semantic similarity between the258

input embeddings of train-test distributions across several datasets in Figure 3. A similarity score259

(indicated in red) is employed as an approximation for how close test data is to training data, and is260

estimated by calculating maximum of average cosine similarity (normalized) of each test datapoint261

with all training samples. This metric is compared with prediction MAE for the respective train-test262

subset (in blue). These subsets were not random splits, but were instead carefully curated to represent263

a different testing scenario than the ones used in the previous section. Our evaluations confirm there264

is an inverse relationship between prediction MAE and semantic proximity of test data to the training265

samples.266
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These trends yield a linear relationship MAE = m.Similarity + c that estimates the approximate267

MAE of model predictions on new data points by quantifying their Similarity to the model’s268

training data. The slope (m) and intercept (c) for analyzed datasets are presented in Table 5. This269

approach enables systematic assessment of prediction uncertainty and confidence for new data,270

thereby supporting efficient screening in materials design and discovery.271

Figure 3: Relationship between prediction MAE (in blue) and chemical similarity (in red) between
train and test datasets.

4.3 Foundation model interpretability272

A widely embraced strategy in materials discovery involves interpreting chemical data into useful273

knowledge and chemical insights, uncovering conclusive design rules and trends for decision making274

(26; 27). The efficacy of this approach is maximized when it leverages accurate empirical data275

or highly reliable model-generated outputs spanning the intended design landscape. However,276

interpretability is frequently hindered by the intrinsic opacity of AI models, which predominantly277

operate as “black boxes” with internal mechanisms that remain inaccessible to researchers. This278

challenge is further exacerbated as training pipeline grow in complexity, for instance, input features279

are derived from transformer model and post processed before the training (17). Quantifying model280

uncertainty in new material regions can facilitate users in identifying scope of the model. However,281

application of these models to uncover material design rules for interpretability remains a persistent282

challenge.283

To evaluate interpretability of proposed foundation model derived predictors, we investigate cor-284

relation of performance outcomes with chemical moieties in the datasets and compare trends in285

train and test subsets. First, a list of several potential chemical substructures and their SMARTS286

(SMILES Arbitrary Target Specification) string is devised (28). Over 550 chemical substructures are287

defined including general and specific moieties. For instance, amine is a general functional group288

of material containing Nitrogen atom with lone pair of electrons, and specific derivatives for the289

same include aromatic amine, heterocyclic amine, tertiary amine etc. Chemical moieties in molecules290

are identified by matching SMARTS and presence of every moiety is indicated by a bit in a fixed291

length vector. This vector is taken as molecular fingerprints and aggregated for constituents in each292

formulation by composition scaling and addition to represent concentration of each chemical moiety293

in a formulation. We adopt Spearman’s correlation coefficient (SCC) (29) to determine strength294

and direction of monotonic relationship between chemical moieties in the dataset and the outcome295

performance. The analysis provides meaningful insights towards the positive or negative influence of296

a chemical moeity in the formulation towards the outcome. Analysis is performed for data used in297

training and test set to correlate moieties to actual outcomes. Simultaneously, the analysis is also298

7



extended to the outcomes predicted by the trained model for the very same test set. Figure 4 illustrates299

these correlations in three formulation datasets CE, LiI capacity and IC.300

Comparison of correlation analysis for model prediction outcomes and actual performance within301

test sets is meant to demonstrate the capability of model in deriving sound chemical insights across302

unseen datapoints. Particularly in Figure 4, examples highlighted in green illustrate cases where the303

correlations in the training and test datasets were opposite, and the model correctly predicted the304

opposing trends. Instances highlighted in yellow represent scenarios where the model accurately305

identified chemical trends for the outcome, despite these trends being absent from the training data.306

Cases highlighted in pink show perfect alignment among all three correlations. The remaining307

instances in white indicate correlations that the foundation model misinterpreted. This analysis308

reveals the chemical insights misunderstood by the model and allows users to selectively apply these309

models for design interpretation and discovery within a chemical space where confidence is justified.310

Figure 4: Correlation of chemical functional groups in formulations with performance in train
(orange) - test (blue) dataset, compared with correlation to the predicted outcomes (green) in test
data.

5 Conclusion311

In this study, we evaluated the scope of foundation models in addressing material design challenges312

across multiple length scale in batteries: molecules, formulations and device. Open source SMI-TED313

model is used to encode molecular representations, then combined with other variables such as314

compositions, temperature, electrode and separator variations. The results showcase models like315

SMI-TED can be used to extrapolate learning from moiety-level interactions to macroscopic outcomes316

such as specific capacity, surface characteristics, and battery performance using both simulation317

and scarce empirical datasets. Results highlight that foundation model outperform alternatives318

methods especially in low data regimes. The study also presents methods to analyze model’s ability319

to generalize out of distribution (OOD) and quantify model prediction errors across new material320

designs that are dissimilar to the training datasets. Lastly, we evaluate interpretability of these models321

and suggest users to selectively apply these models for design interpretation and discovery within a322

chemical space where confidence is justified.323
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A Supplementary Material401

A.1 Solubility Data Collection402

Single salt- single solvent solubility assessment: A dataset of binary system containing single salt and403

a single organic solvent was collected experimentally in the laboratory. The dataset spans five most popular404

electrolyte salts, LiNO3, LiFSI, LiBOB, LiFOB, and LiPF6, and up to fifty organic solvents. The experiments405

were conducted in an inert glovebox (Argon, < 0.1 ppm H2O and O2) and all salts were dried on a hotplate at406

150 °C, except for LiFSI and LiPF6 , which were used as received due to their lower thermal stability. Solvents407

were dried over 3Å molecular sieves for at least 24 hours prior to use. An upper salt concentration limit of 2M408

was set during the data collection. Salts were weighed to make 2M solution and the respective organic solvent409

was then added to decrease the concentration by a 0.25M interval until the solutions were visually clear without410

any precipitation or undissolved materials. The salt-solvent combination was considered insoluble if the solution411

was not clear at 0.25M concentration.412

Single salt- Multi solvent solubility assessment: The dataset has measurement of highest molar413

concentration of single salt dissolved in mixture of organic solvents. The four salts, LiCl, LiNO3, LiTFSI and414

LiBOB, are individually dissolved in solvent formulations containing different compositions of EC, G4, DMI415

and DOL. The solubility measurements were made as per the method described above.416

Multi salt-multi solvent solubility assessment: Conventionally, functioning and high-performing417

electrolytes are published in literature (3; 17; 6) along with a few "failed" non miscible electrolytes (17; 13). We418

curated 300 electrolyte formulations from these studies. Simplification of solubility metric to (0) or (1) enabled419

inclusion and test across widespread electrolyte dataset. The combined dataset contained rich diversity of salts,420

solvents and electrolyte mixtures.421

The solubility of single salt- single solvent pairs and single salt- multi solvent formulations were measured in422

terms of highest soluble molarity of the salt. To further add context to the solute molarity noted as metric in423

empirical dataset, data augmentation was done to interpolate solubility of target salt in each respective solvent424
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system to include soluble (1) datapoints below highest soluble molarity, and insoluble (0) datapoints above425

recorded metric until the tested molarity. Next, the constituent moles in each formulation system were converted426

to molar percentage (mole%). Post processings, there are 3300 electrolyte formulation vs solubility data that is427

used in the study.428

A.2 Contact Angle Experiments429

Electrolyte formulations are prepared inside an Ar-filled glove box (<1 ppm O2, <1 ppm H2O). Prior to mixing,430

solvents that are liquid at room temperature are dried using molecular sieves (Millipore Sigma, 3 ) and salts are431

dried on a hot plate at 100 °C. Electrolytes are mixed for 24 hrs prior to contact angle measurement. Contact432

angle measurements were conducted using an OCA video-based contact angle goniometer (FDS Future Digital433

Scientific Corporation) employing the sessile drop technique. Prior to measurement, the separator was carefully434

placed on a flat silicon wafer substrate to ensure a uniform surface. A 2L droplet of electrolyte was then435

dispensed onto the separator surface and allowed to equilibrate for 800ms. Image analysis was performed on436

a selected video frame by manually defining the baseline and applying an ellipse-fitting algorithm to achieve437

optimal conformity to the droplet profile. The reported static contact angles represent the average of 3–5438

independent measurements. All procedures were carried out with minimal air exposure to preserve the integrity439

of the electrolyte and ensure reproducibility. A dataset of 119 experiments is constructed using the electrolyte440

constituents, their respective concentrations, the experimentally measured contact angle, and a separator label.441

There are four different Celgard separators in the dataset.442

A.3 Model Training443

Neural network (NN) architectures were individually optimized and trained using SMI-TED–derived molecular444

embeddings or formulation descriptor. NN with 2 or 3 hidden layers, with nodes 500-250-100 or 500-250, and445

activation function relu was found optimum. Model was trained with learning rate 0.0001, factoring 0.5 every446

200 epochs of no reduction in loss function. The model was trained for maximum of 2500 epochs or until 200447

iterations of no improvement in validation loss. Batch size was varied based on data size. For datasets < 200,448

batch size was kept 1, batch size was 12 for <5000, and for >5000 batch size of 32 was used. Regression loss449

was measured using mean squared error (MSE) and mean absolute error (MAE) was the used metric. For binary450

classification of electrolyte solubility, binary cross entropy was the loss function and accuracy was the metric.451

Table 1: Tuning neural network hyperparameters for SMI-TED predictors
Dataset Hidden layers Activation Function MAE

LCE 500-250-100 relu 0.17
LCE 500-250 relu 0.16
LCE 500-250 sigmoid 0.32
LCE 500-250-100 sigmoid 0.32
LCE 500-250-250 relu 0.16
LCE 500-500 relu 0.17
LCE 250-100 relu 0.16
IC 500-250-100 relu 0.08
IC 500-250-100 sigmoid 0.22
IC 500-250 relu 0.09
IC 500-500 relu 0.10
IC 250-250-250 relu 0.08
IC 700-700 relu 0.11
IC 500-250-100-50 relu 0.08

HOMO 500-250-100 relu 0.43
HOMO 500-250-100 sigmoid 0.44
HOMO 500-250 relu 0.44
HOMO 250-100 relu 0.44
HOMO 500-500-500 relu 0.44
HOMO 250-250-250 relu 0.44

A.4 Foundation model performance for downstream tasks452

For each dataset, NNs were trained using five independent 80%-20% train–test splits, and prediction errors were453

quantified using the mean absolute error (MAE) metric.454
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Table 2: Mean squared error (MSE) for property prediction using SMI-TED
Dataset MSE

Fine-tuning Transfer learning
Reduction Potential 0.65 0.68
Oxidation Potential 0.13 0.14
Ionic Conductivity 0.155 0.025

Table 3: Mean absolute error (MAE) and prediction accuracy (%) across multiple train-test splits for
the battery datasets using SMI-TED embeddings

Split Oxidation Reduction HOMO LUMO Solubility IC Contact Angle LiI Capacity CE Li-ICl Capacity
MAE Units eV eV eV eV Accuracy % Log Degrees mAh/g Log mAh/g

1 0.2519 0.5870 0.4421 0.3673 93.80 0.0986 16.556 22.078 0.170 50.66
2 0.2547 0.5881 0.4374 0.3661 94.11 0.0871 15.610 29.904 0.185 55.19
3 0.2560 0.5842 0.4460 0.3688 92.29 0.1001 17.053 19.501 0.204 43.87
4 0.2609 0.5795 0.4404 0.3645 93.35 0.0867 9.937 15.348 0.192 50.46
5 0.2564 0.5741 0.4367 0.3651 91.99 0.0812 22.063 25.417 0.175 39.60

Average 0.2559 0.5825 0.4405 0.3663 93.11 0.0910 16.243 22.449 0.185 47.93

Table 4: Mean absolute error (MAE) and prediction accuracy (%) across multiple train-test splits for
the battery datasets using Morgan Fingerprints

Split Oxidation Reduction HOMO LUMO Solubility IC Contact Angle LiI Capacity CE Li-ICl Capacity
MAE Units eV eV eV eV Accuracy % Log Degrees mAh/g Log mAh/g

1 0.2563 0.5895 0.4617 0.3781 93.80 0.0648 16.876 29.940 0.199 9.77
2 0.2598 0.5922 0.4552 0.3762 94.86 0.0673 18.521 34.550 0.228 49.87
3 0.2608 0.5885 0.4572 0.3734 93.05 0.0633 17.355 27.848 0.244 17.16
4 0.2638 0.5773 0.4576 0.3720 93.95 0.0598 12.889 15.513 0.199 46.42
5 0.2580 0.5798 0.4587 0.3737 93.20 0.0597 23.438 37.101 0.244 37.97

Average 0.2594 0.5854 0.4580 0.3746 93.77 0.0629 17.815 28.990 0.223 32.24

Table 5: Parameters to estimate mean absolute error (MAE) in model prediction based on similarity
between test-train data

Datasets Slope(m) Intercept(c)
HOMO -0.1602 0.5699
Ionic Conductivity -0.5724 0.6377
Contact Angle -19.6820 0.7601
Specific Capacity -24.9776 33.2050
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