
Foundation Models Enabling Multi-Scale Battery Materials Discovery: From Molecules To Devices

Vidushi Sharma

IBM Almaden Research
San Jose, CA, USA
vidushis@ibm.com

Andy Tek

IBM Almaden Research
San Jose, CA, USA
atek@us.ibm.com

Maxwell Giammona

IBM Almaden Research
San Jose, CA, USA
Maxwell.Giammona@ibm.com

Murtaza Zohair

IBM Research Almaden
San Jose, CA, USA
mzohair@ibm.com

Nathaniel Park

IBM Research Almaden
San Jose, CA, USA
npark@us.ibm.com

Tim Erdmann

IBM Research Almaden
San Jose, CA, USA
tim.erdmann@ibm.com

Linda Sundberg

IBM Almaden Research
San Jose, CA, USA
lindas@us.ibm.com

Eduardo Soares

IBM Research Brazil
Rio de Janeiro, RJ, Brazil
eduardo.soares@ibm.com

Khanh Nguyen

IBM Almaden Research
San Jose, CA, USA
khanh.vinh.nguyen@ibm.com

Young-Hye Na

IBM Almaden Research
San Jose, CA, USA
yna@us.ibm.com

Emilio Ashton Vital Brazil

IBM Research Brazil
Rio de Janeiro, RJ, Brazil
evital@br.ibm.com

Abstract

1 Recent years have seen fast emergence and adoption of chemical foundation models
2 in computational material science for property prediction and generation tasks that
3 are focused mostly on small molecules or crystals. Despite these paradigm shifts,
4 integration of newly discovered materials in real world devices continues to be a
5 challenge due to design problems. New candidate material must be optimized to
6 achieve compatibility with other components in the system and deliver the target
7 performance. Chemical foundation model benchmarks must evaluate their scope
8 in predicting macro scale outcomes that are the result of chemical interactions
9 in multi-variate design space. This study evaluates performance of chemical
10 foundation models that are pre-trained primarily with SMILES of small molecules,
11 in extrapolating learning from molecules to material design challenges across
12 multiple length scale in batteries. Ten prediction models are trained covering
13 molecular properties, formulations performance, and battery device measurement.
14 Material representations from several foundation models are compared and their
15 performance is benchmarked against conventional molecular representations such
16 as Morgan Fingerprints. The study further examines their capacity to generalize
17 to out-of-distribution cases by quantifying prediction errors for novel material
18 designs that differ substantially from the training data. Finally, interpretability of
19 the trained predictors is assessed by correlating actual outcomes and predictions
20 to the chemical moieties in the datasets, with the aim of enabling researchers to
21 interpret design rules in chemical space where model has high confidence.

22 **1 Introduction**

23 With evolving technologies and world economy demands, the field of material discovery has remained
24 strongly relevant. Recently, this field has acquired critical importance as new sustainable materials are
25 sought to overcome limitations of current material systems (1). Battery technologies are one strong
26 societally relevant area of research where the scope of known materials appears to be exhausted, and
27 new materials that can deliver high capacities, fast charging and longer cycle stability are continuously
28 sought to meet future demands (2; 3). Despite shifts in material research paradigms from slow, labor-
29 intensive experiments, to faster data-driven models (4; 1), it remains challenging to integrate new
30 materials in real world devices. This is due to several reasons: (i) most computational models
31 including simulations and machine learning (ML) can be used to determine intrinsic properties of
32 materials based on their chemical structure, but lack in extrapolating their outcome to meso or macro
33 scale phenomenon (5); (ii) device performance is governed by complex interactions among several
34 constituent materials, presenting vast multivariate design space difficult to screen or optimize (6); (iii)
35 limited data availability for extrinsic characteristics such as temperature and concentration dependence
36 of multi-constituent properties (7). While ML models accelerate several prediction, generative and
37 optimization problems in material science, the field continues to face challenges stemming from
38 opaque nature of the model's decision making, impractical proposed chemical structures, scarcity of
39 quality datasets and inability to generalize out-of-distribution (OOD) (8).

40 Foundation models (*FMs*) have emerged as promising models to overcome some aforementioned
41 challenges of data scarcity and generalization. These are a class of large language models (LLMs),
42 that are pre-trained on a textual or multi-modal representations of materials in open-source databases
43 like PubChem and ZINC through self-supervised learning (9; 10). Studies have demonstrated that
44 embedding space of these transformer models segregates chemically relevant features of molecules
45 making them a suitable general-purpose tool for material science research. These base models can be
46 utilized to perform specific functions based on smaller labeled datasets with fine-tuning or transfer
47 learning (11). *FMs* are rapidly evolving, and their adoption in different application areas is on
48 the rise (12). Large portion of studies report their use in property prediction and inverse design of
49 small molecules or crystals (11). Prior studies also evaluate their scope in predicting performance
50 metrics for formulations (mixtures of more than two molecules in certain compositions) based on
51 electrolyte-performance experimental datasets curated from literature. Results demonstrate best
52 prediction accuracies from foundation models in comparison to other data-driven models (13; 14).
53 The research on representing advanced material systems such as formulations, composites and devices
54 to learning models is currently in nascent stages due to less understood chemical phenomenon and
55 lack of quality datasets. Prior studies on formulation datasets present strong evidence that foundation
56 models can extrapolate molecular features to multi-constituent properties.

57 In this work, we evaluate the capability of chemical *FMs* pre-trained with molecular representation
58 SMILES (15), to predict material properties and performance resulting from interplay of complex
59 chemical phenomenon at macroscale. We take battery electrolytes as an example where electrolyte
60 engineering has emerged as a promising approach to improve battery performance metrics such
61 as columbic efficiency (CE), cycle life and capacity. To achieve this, electrolytes are carefully
62 designed based on the individual properties of constituent molecules, their collective performance
63 as formulation and their compatibility with other battery components such as electrodes, separator
64 and current collector. Electrolyte Genome initiative in 2015 accelerated electrolyte discovery cycle
65 for new emerging battery chemistries by integrating computational workflows with experimentation
66 (16). High-throughput screening enabled selection of candidate molecules meeting threshold values
67 for HOMO-LUMO energy levels, toxicity and electrochemical stability. Once down-selection is
68 done, laborious experimentation is required to find their right combination for a functional electrolyte
69 formulation (17). Here, data availability is a primary roadblock in adoption of ML models since
70 public datasets are inconsistent and industrial datasets are propriety (18). Thus, models that can be
71 efficient with scarce datasets are desired in the domain.

72 We use *FMs* to map electrolyte formulations along with device variables to key performance
73 indicators at multiple length scale in batteries as illustrated in Figure 1. In particular,

74 • We target prediction of key properties that are considered in electrolyte discovery such as
75 molecular properties, formulation performance, manufacturability, surface contact char-
76 acteristics and device performance. *FMs* are used to generate input features for these

77 multivariate battery datasets and predictive capability is compared with standard molecular
 78 representations like Morgan Fingerprints (*MF*) (19).

79 • We evaluate out-of-distribution (OOD) capability of prediction models for multi-variate
 80 battery datasets.

81 • Next, extrapolation capability of the models to new material designs is estimated based on
 82 the semantic similarity between train and test data. This presents a method to approximate
 83 errors in model predictions across new material landscape.

84 • We investigate interpretability of *FM*-based predictors and evaluate their promise in infer-
 85 encing new material design rules.

Figure 1: (a) Scheme illustrating electrolyte design problems at multiple scales. (b) Schematic summarizing the data representation for material design using pre-trained foundation models for molecules.

86 2 Datasets and Foundation Models

87 Data availability is a major enabler for artificial intelligence (AI) workflows aiming for material
 88 discovery and design. To discover new material design that meets the performance goals, series of data
 89 driven predictors must be realized to allow material identification, characterization and optimization
 90 for achieving compatibility with the device. For present study, we utilize several battery datasets and
 91 performance indicators that are used across multiple length scale for electrolyte development. Most
 92 datasets are curated from literature and some are experimentally generated in the laboratory. Dataset
 93 details are summarized in Supplementary Materials section A.1, while present section differentiates
 94 *FMs* evaluated.

95 There is a plethora of pre-trained transformer models in literature that are used for specific downstream
 96 scientific tasks (20; 10; 21; 22; 23). Particularly in the domain of chemistry and material science,
 97 sequence prediction, molecular property prediction and chemical description generation are a few
 98 tasks that are used in benchmarking *FM*. In this work, we aim to evaluate scope of *FMs* pre-trained

99 on molecular representations in addressing material design challenges across multiple length scale
100 in batteries. Comparative analyses were performed across multiple *FM* to elucidate the extent to
101 which model performance and generalization behaviors are influenced by differences in pretraining
102 modalities.

103 **SMI-TED:** SMI-TED (SMILES Transformer Encoder Decoder) is an open-source chemical *FM*
104 developed by IBM Research (10). This model has acquired a deep understanding of molecular
105 structural representations through self-supervised pre-training on a vast dataset containing string
106 representation (SMILES) of 91 million molecules, corresponding to 4 billion molecular tokens. Model
107 has been previously validated to surpass the performance of conventional data-driven alternatives in
108 downstream tasks.

109 **MolT5:** MolT5 (Molecular T5) is another open sourced chemical *FM* that is pre-trained with 100
110 million SMILES along with 33,000 natural language description of molecules (23). By correlat-
111 ing SMILES sequences to textual description of functionalities, the model has shown remarkable
112 capabilities in manipulating molecules for discovery tasks.

113 **Galactica:** Galactica is a large language model developed for general scientific tasks by Meta AI
114 (22). The model is trained on large corpus of scientific literature, natural sequences of proteins and 2
115 million chemical strings (SMILES). The inclusion of broad data makes is a reliable model for general
116 scientific tasks such as equation probing, citation prediction, reasoning, etc.

117 **GraphMVP:** GraphMVP is a graphs based pre-trained model that formulates a multi-view self-
118 supervised learning, integrating both 2D molecular graphs and rich 3D spatial arrangements of atoms
119 (24). The GraphMVP learning framework allows its encoder to integrate topological and geometric
120 information within a unified embedding space. It is worth noting that GraphMVP uses much smaller
121 graph/conformer datasets in representation learning.

122 **Morgan Fingerprints:** As a benchmark, *MF* are employed as an established molecular descriptor
123 (19). *MF* are highly effective for predicting molecular properties in ML models because they
124 efficiently capture the substructural features of a molecule (25). By representing a molecule as a
125 fixed-length binary vector, they encode the presence or absence of specific circular substructures and
126 each atom's chemical environments. The resulting numerical representation is both computationally
127 efficient and chemically intuitive, making it an ideal input for various learning algorithms, which can
128 then identify complex patterns and relationships that are predictive of a molecule's behavior.

129 For downstream tasks, transfer learning approach is adopted to retain chemical information from the
130 pre-trained model as molecular embeddings, and map these to the output label using a regressor model
131 such as feed forward neural networks (NN). It is noted that fine-tuning the pre-trained *FM* containing
132 several million parameters with labeled datasets can be computationally expensive. Furthermore,
133 fine-tuning current state-of-the-art *FM* is not expandable to the string representations of formulations
134 used in ref(14) as these are vastly different from the molecule representations models were pre-trained
135 on. Meanwhile, transfer learning approach is relatively robust and deliver consistently reliable results
136 (see Table S1). Therefore, embeddings from the *FMs* and *MF* are used to represent individual
137 molecules in the battery datasets. Derived molecular embeddings are aggregated into a system
138 representation based on their composition, and additional design variables in the dataset such as
139 separator, temperature and cathode loading (indicated in Figure 1b). Details of feature engineering
140 for appropriate representation of molecules, formulations and devices are described in A.4. For each
141 prediction task, feed forward neural network (NN) architectures are optimized and trained using
142 *FM*-derived and aggregated features (described in A.5). NNs were trained using five independent
143 80%-20% train–test splits, and prediction errors were quantified using the mean absolute error (MAE)
144 metric.

145 3 Results and Discussion

146 3.1 Model performance

147 We use *FMs* that recognize SMILES modality for training electrolyte design predictors due to ease of
148 chemical data representation and their demonstrated best performance in predicting molecular proper-
149 ties in several benchmark datasets (10). Prediction results for 10 battery datasets are summarized in
150 Table 1 for *FMs* and *MF*. Tabulated are the average MAE across 5 random train-test splits for all
151 models. Results show that SMI-TED and MolT5 based representations outperform *MF* in 7 out of

152 10 datasets. Meanwhile predictive capability of Galactica and GraphMVP is observed to be the lowest
153 in all 10 datasets. Particularly for molecular properties, where several prior studies have backed that
154 2048 bits of MF are more predictive than domain-intuitive features (25), results in Table 1 indicate
155 SMI-TED outperforms MF . SMI-TED demonstrates notable computational efficiency despite using
156 significantly smaller feature vector size (768). This efficacy of SMI-TED embeddings testifies that
157 learnt representations encode more comprehensive set of structural features that are meaningful and
158 comprehensive.

159 In the context of more complex systems, such as formulations, we observed a systematic divergence
160 in model performance based on data size. On datasets characterized by a large volume of data, such
161 as solubility (3300 data) and IC (18,000 data), MF outperform all FM in the present evaluation,
162 categorizing miscible and immiscible electrolytes with 93.77% accuracy, and predicting log IC with
163 MAE 0.0629, surpassing previously best reported results in ref (14). This outcome is consistent with
164 the design of conventional ML methods that are optimized for large-scale data problems. MF 's
165 enhanced performance on these datasets suggests that the fundamental properties like IC and solubility
166 are more contingent on specific functional groups in the system that are captured precisely by MF .
167 This finding presents a critical consideration for the future development of foundation models.

168 SMI-TED and MolT5 demonstrated clear and consistent advantage over MF in low data regimes (100
169 to 200 data points), achieving superior predictive accuracy and robustness across these challenging
170 multiscale problems. Particularly MolT5, having pre-trained on largest corpus of molecular data (100
171 Million SMILES), has the lowest prediction errors for contact angle (MAE 12.944 Degrees) and LiI
172 capacity (MAE 22.408 mAh/g) datasets, and is second to MF for solubility (93.65% Accuracy) and
173 IC (log IC MAE 0.0722) prediction. SMI-TED demonstrates next best predictive capability among
174 FM s, reporting low prediction errors for all formulation datasets and outperforming all models for
175 CE dataset (6; 3). These results highlight applicability of FM pretrained with molecules alone to
176 multi-variate material design problems. Possible interpretation is that macroscale outcomes, such as
177 electrolyte performance, are dictated by hierarchical interactions between chemical moieties. Ion
178 aggregates and solvation substructures are examples of chemical moiety interactions responsible for
179 charge-discharge kinetics in battery electrolytes. Models such as MolT5 and SMI-TED successfully
180 predicts these macroscale outcomes due to having rich chemical vocabulary comprising of thousands
181 of unique chemical tokens or moieties as reported in ref(10). Hence, latent space of SMILES-based
182 FM is enriched with basic understanding of the chemical space formed by the combinations of
183 chemical moieties in molecules (10). The downstream training utilizing aggregated formulation
184 embeddings vs performance label is useful to correlate chemical moieties and compositions to the
185 label, enabling multi-scale learning (see Figure 2). This knowledge transfer is particularly useful in
186 low data regimes. Li-ICI Capacity data is a singular instance where MF outperforms FM s despite
187 low data regime, highlighting FM s are likely not suitable for datasets lacking chemical variability.

188 Results from MolT5 present additional interesting observations on multi-modal pre-training. Latent
189 space of MolT5 is augmented with semantic understanding of molecular string representation,
190 correlating molecule structures to specific functions (23). In Table 1, advantages of pretraining with
191 multi-modal datasets is noted in multi-variate battery datasets but not in molecular datasets. Despite
192 pre-training on largest SMILES corpus, predictive capability of MolT5 model is lower than SMI-TED
193 for molecular properties, likely due to noted functional biases and scarcity of natural language
194 datasets used during model development(23). Regardless, good predictive performance on multi-
195 variate datasets underscore the critical importance of incorporating multi-modal data representations
196 during the pretraining, enabling model to learn complex inter-dependencies and semantic nuances
197 across datasets.

198 Poor performance of Galactica in predicting material properties underline limitations of high generality.
199 Despite training on large corpus of scientific knowledge and 2 Million SMILES, model
200 lacks sufficient specificity required to capture critical domain-relevant features. In lieu, GraphMVP
201 also shows poor predictive power despite high specialization in molecular geometries. The model
202 captures the 3-D topological and geometric features of molecules but lacks sufficient representational
203 capacity to resolve finer substructural moieties and their inter-dependencies. Ultimately, the choice
204 of representation is critical and must be determined by the nature of downstream task, quantity and
205 the quality of the labeled dataset.

Table 1: Average mean absolute error (MAE) and prediction accuracy (%) for the battery datasets using embeddings from foundation models

Model ↓	Oxidation <i>eV</i>	Reduction <i>eV</i>	HOMO <i>eV</i>	LUMO <i>eV</i>	Solubility Accuracy %	IC <i>Log</i>	Contact Angle <i>Degrees</i>	LiI Capacity <i>mAh/g</i>	CE <i>Log</i>	Li-ICl Capacity <i>mAh/g</i>
MAE Units →										
SMI-TED	0.2559	0.5825	0.4405	0.3663	93.11	0.0910	16.243	22.449	0.185	47.93
MolT5	0.2679	1.7375	0.4451	0.3836	93.65	0.0722	12.944	22.408	0.188	37.57
Galactica	0.2714	0.7134	0.4802	0.4283	93.05	0.1035	23.982	25.011	0.225	39.570
GraphMVP	0.3355	0.6586	0.4987	0.4432	91.17	0.0939	22.099	29.051	0.209	42.451
MF	0.2594	0.5854	0.4580	0.3746	93.77	0.0629	17.815	28.990	0.223	32.24

206 3.2 Quantifying out-of-distribution performance

207 Formulations present multi-variate design space with infinite possibilities emerging from several
 208 million known compounds, their inestimable potential combinations, and composition variations.
 209 Given this, electrolyte design discovery becomes inherently an OOD problem as novel formulations
 210 will most likely be in unseen or unfamiliar data. Thus, evaluating OOD performance is crucial
 211 for ensuring the reliability and robustness of models. One can define OOD based on divergence
 212 between train-test sets with respect to either input distribution (chemical and composition space) or
 213 output distribution (property values). Presented OOD evaluation of *FMs* for formulation and device
 214 performance datasets spans both input and output distributions.

215 First, we start with most accepted OOD evaluation based on output distribution (26). We separate test
 216 sets based on tail ends of numerical outcome distribution, for instance, lower and upper end values of
 217 ionic conductivity, capacity, contact angle, etc. Tail-end distributions used as tests in 5 electrolyte
 218 regression datasets are highlighted in A.6. This distribution estimates extrapolation capabilities of
 219 the models beyond the training data. Results of OOD predictions are presented in Table 2 along
 220 with prediction uncertainty observed across 3 predictions. Both SMI-TED and MolT5 demonstrate
 221 best OOD prediction with each having lowest MAE in 2 out of 5 datasets. Both models also had
 222 high consistency in predicted outcomes as indicated by low uncertainty. Overall extrapolation across
 223 outcome values is promising for electrolyte datasets except for Li-ICl Capacity dataset where models
 224 perform poorly as seen in previous section.

Table 2: Mean absolute error (MAE) for out-of-distribution predictions using foundation models and Morgan Fingerprints

Model ↓	CE <i>Log</i>	Contact Angle <i>Degrees</i>	LiI Capacity <i>mAh/g</i>	IC <i>Log</i>	Li-ICl Capacity <i>mAh/g</i>
MAE Units →					
SMI-TED	0.0548 ± 0.04	13.5216 ± 0.41	27.128 ± 0.70	0.1938 ± 0.01	109.21 ± 0.95
MolT5	0.0819 ± 0.00	14.0539 ± 0.98	31.2229 ± 1.61	0.1669 ± 0.01	108.2197 ± 0.93
Galactica	0.4635 ± 0.39	31.4742 ± 0.82	28.2692 ± 14.38	0.2262 ± 0.08	110.391 ± 1.50
GraphMVP	2.7758 ± 2.36	34.8031 ± 1.88	7.9974 ± 4.17	0.7429 ± 0.04	108.6611 ± 0.03
MF	0.1295 ± 0.05	19.3304 ± 1.26	29.5058 ± 2.22	0.1717 ± 0.03	114.3028 ± 31.07

225 Next, ML models frequently show poor transferability across chemical spaces and fall short in
 226 predicting properties for materials outside their training scope (27). Generalizable base models like
 227 *FM* have seen increased adoption in the community for these reasons (27). Unlike small molecules,
 228 where property can be traced to substructures and chemical motifs (10), cause-effect in formulations-
 229 like materials are more complex and intertwined in multi-variate dynamic inter-dependencies (14).
 230 Therefore, the boundaries of OOD for dynamic multi-variate chemical space is needed to be explored
 231 in a focused study. In present study, we use chemical similarity as a metric for characterizing OOD

Figure 2: Multi-step training capturing complex chemical interactions at multiple length scale.

232 based on inputs. A chemical similarity score is employed as an approximation for how close test data
 233 is to training data in model’s latent space, and is estimated by calculating maximum of average cosine
 234 similarity (normalized) of each test datapoint with all training samples. Upon evaluating the chemical
 235 similarity between embeddings of train-test sets for tail-end OOD evaluation in Table S3, we observe
 236 there is an inverse trend between chemical similarity of OOD train-test sets and prediction MAE from
 237 the models, suggesting model prediction errors are high for chemically disparate test sets. These
 238 results confirm chemical similarity can be a reliable metric to determine distance between test and
 239 train sets in model’s latent space and characterize OOD.

240 This trend paves the way to ascertain reliability of a model when extrapolating to unexplored regions
 241 of the materials design space. By error estimation, we can systematically pinpoint regions where
 242 model lacks predictive capability, facilitating intelligent allocation of resources toward targeted
 243 experimental validation and data enrichment. We create several subsets of train-test data for battery
 244 across different length scale based on their relative distance in latent space of SMI-TED, given its
 245 reliable performance in both molecules and macroscale outcomes. These subsets were carefully
 246 curated to represent a different testing scenario than the ones used in the tail-end OOD evaluation
 247 such as distinct constituent count and chemicals. Relationship between semantic similarity between
 248 the input embeddings of train-test distributions (in red) across datasets is compared with prediction
 249 MAE for the respective train-test subset (in blue) in Figure 3. Trends confirm an inverse relationship
 250 between prediction MAE and semantic proximity of test data to the training samples, yielding a
 251 linear relationship $MAE = m \cdot Similarity + c$ that estimates the approximate MAE of model
 252 predictions on new data points by quantifying their *Similarity* to the model’s training data. The
 253 slope (m) and intercept (c) for analyzed datasets are presented in Table S4. This approach enables
 254 systematic assessment of prediction uncertainty and confidence for new data, thereby supporting
 255 efficient screening in materials design and discovery.

Figure 3: Relationship between prediction MAE (in blue) and chemical similarity (in red) between train and test datasets.

256 3.3 Interpretability

257 A widely embraced strategy in materials discovery involves interpreting chemical data into useful
 258 knowledge and chemical insights, uncovering conclusive design rules and trends for decision making
 259 (28; 29). The efficacy of this approach is maximized when it leverages accurate empirical data
 260 or highly reliable model-generated outputs spanning the intended design landscape. However,
 261 interpretability is frequently hindered by the intrinsic opacity of AI models, which predominantly
 262 operate as “black boxes” with internal mechanisms that remain inaccessible to researchers. This
 263 challenge is further exacerbated as training pipeline grow in complexity, for instance, input features
 264 are derived from transformer model and post processed before the training (18). Quantifying model

265 uncertainty in new material regions can facilitate users in identifying scope of the model, However,
 266 application of these models to uncover material design rules for interpretability remains a persistent
 267 challenge.

268 We propose a method to evaluate interpretability of *FM* derived predictors by investigating correlation
 269 of performance outcomes with chemical moieties in the datasets and compare trends in train and
 270 test subsets. First, a list of several potential chemical substructures and their SMARTS (SMILES)
 271 Arbitrary Target Specification) string is devised (30). Over 550 chemical substructures are defined
 272 including general and specific moieties. For instance, amine is a general functional group of material
 273 containing Nitrogen atom with lone pair of electrons, and specific derivatives for the same include
 274 aromatic amine, heterocyclic amine, tertiary amine etc. Chemical moieties in molecules are identified
 275 by matching SMARTS and presence of every moiety is indicated by a bit in a fixed length vector.
 276 This vector is taken as molecular fingerprints and aggregated for constituents in each formulation by
 277 composition scaling and addition to represent concentration of each chemical moiety in a formulation.
 278 We adopt Spearman's correlation coefficient (SCC) (31) to determine strength and direction of
 279 monotonic relationship between chemical moieties in the dataset and the outcome performance. The
 280 analysis provides meaningful insights towards the positive or negative influence of a chemical moiety
 281 in the formulation towards the outcome. Analysis is performed for data used in training and test set to
 282 correlate moieties to actual outcomes. Simultaneously, the analysis is also extended to the outcomes
 283 predicted by the models based on SMI-TED representation for the very same test set. Figure 4
 284 illustrates these correlations in three formulation datasets CE, LiI capacity and IC.

Figure 4: Correlation of chemical functional groups in formulations with performance in train (orange) - test (blue) dataset, compared with correlation to the predicted outcomes (green) in test data.

285 Comparison of correlation analysis for model prediction outcomes and actual performance within
 286 test sets is meant to demonstrate the capability of model in deriving sound chemical insights across
 287 unseen datapoints. Particularly in Figure 4, examples highlighted in green illustrate cases where the
 288 correlations in the training and test datasets were opposite, and the model correctly predicted the
 289 opposing trends. Instances highlighted in yellow represent scenarios where the model accurately
 290 identified chemical trends for the outcome, despite these trends being absent from the training data.
 291 Cases highlighted in pink show perfect alignment among all three correlations. The remaining
 292 instances in white indicate correlations that the foundation model misinterpreted. This analysis

293 reveals the chemical insights misunderstood by the model and allows users to selectively apply these
294 models for design interpretation and discovery within a chemical space where confidence is justified.

295 4 Conclusion

296 In this work, we evaluate the scope of foundation models in addressing material design challenges
297 across multiple length scale in batteries: molecules, formulations and device. Multiple foundation
298 models are used to derive multi-variate representations of datasets by combining molecular repres-
299 entations with other variables such as compositions, temperature, electrode and separator variations.
300 Results show *FMs* pre-trained with large corpus of SMILES modality, such as SMI-TED and MolT5,
301 can be used to extrapolate learning from moiety-level interactions to macroscopic outcomes like
302 specific capacity, surface characteristics, and battery performance using scarce datasets. These models
303 are particularly useful in low data regimes where conventional molecular representations such as
304 Morgan Fingerprints are found to be limiting. It is also observed that pre-training on multi-modal data
305 representations has the scope to achieve superior performance in multi-variate material design space.
306 The study also presents a method to analyze model's ability to generalize out-of-distribution and
307 quantify model prediction errors across new material designs based on chemical similarity between
308 train-test sets. SMILES-based models demonstrated reliable out-of-distribution performance trends.
309 However, it is noted that out-of-distribution criterion for dynamic multi-variate chemical space
310 needs further comprehensive investigation. Lastly, we demonstrate an approach to identify chemical
311 space where model confidence is high by correlating actual outcomes and predicted outcomes to the
312 chemical moieties in the datasets. The approach allows dependable material design interpretation
313 from the model for discovery tasks.

314 References

- 315 [1] A. Merchant, S. Batzner, S. S. Schoenholz, M. Aykol, G. Cheon, and E. D. Cubuk, "Scaling deep learning
316 for materials discovery," *Nature*, vol. 624, no. 7990, pp. 80–85, 2023.
- 317 [2] J. Datta, A. Nadimpally, N. Koratkar, and D. Datta, "Generative ai for discovering porous oxide materials
318 for next-generation energy storage," *Cell Reports Physical Science*, 2025.
- 319 [3] S. C. Kim, S. T. Oyakhire, C. Athanitis, J. Wang, Z. Zhang, W. Zhang, D. T. Boyle, M. S. Kim, Z. Yu,
320 X. Gao *et al.*, "Data-driven electrolyte design for lithium metal anodes," *Proceedings of the National
321 Academy of Sciences*, vol. 120, no. 10, p. e2214357120, 2023.
- 322 [4] E. O. Pyzer-Knapp, J. W. Pitera, P. W. Staar, S. Takeda, T. Laino, D. P. Sanders, J. Sexton, J. R. Smith, and
323 A. Curioni, "Accelerating materials discovery using artificial intelligence, high performance computing
324 and robotics," *npj Computational Materials*, vol. 8, no. 1, p. 84, 2022.
- 325 [5] J. Li, K. Lim, H. Yang, Z. Ren, S. Raghavan, P.-Y. Chen, T. Buonassisi, and X. Wang, "Ai applications
326 through the whole life cycle of material discovery," *Matter*, vol. 3, no. 2, pp. 393–432, 2020.
- 327 [6] V. Sharma, M. Giannonna, D. Zubarev, A. Tek, K. Nugyuen, L. Sundberg, D. Congiu, and Y.-H. La,
328 "Formulation graphs for mapping structure-composition of battery electrolytes to device performance,"
329 *Journal of Chemical Information and Modeling*, vol. 63, no. 22, pp. 6998–7010, 2023, pMID: 37948621.
330 [Online]. Available: <https://doi.org/10.1021/acs.jcim.3c01030>
- 331 [7] P. de Blasio, J. Elsborg, T. Vegge, E. Flores, and A. Bhowmik, "Calisol-23: Experimental electrolyte
332 conductivity data for various li-salts and solvent combinations," *Scientific Data*, vol. 11, no. 1, p. 750,
333 2024.
- 334 [8] A. K. Cheetham and R. Seshadri, "Artificial intelligence driving materials discovery? perspective on
335 the article: Scaling deep learning for materials discovery," *Chemistry of Materials*, vol. 36, no. 8, pp.
336 3490–3495, 2024.
- 337 [9] J. Ross, B. Belgodere, V. Chenthamarakshan, I. Padhi, Y. Mroueh, and P. Das, "Large-scale chemical
338 language representations capture molecular structure and properties," *Nature Machine Intelligence*, vol. 4,
339 no. 12, pp. 1256–1264, 2022.
- 340 [10] E. Soares, E. Vital Brazil, V. Shirasuna, D. Zubarev, R. Cerqueira, and K. Schmidt, "An open-source family
341 of large encoder-decoder foundation models for chemistry," *Communications Chemistry*, vol. 8, no. 1, p.
342 193, 2025.

343 [11] J. Choi, G. Nam, J. Choi, and Y. Jung, “A perspective on foundation models in chemistry,” *JACS Au*, vol. 5, 344 no. 4, pp. 1499–1518, 2025.

345 [12] E. O. Pyzer-Knapp, M. Manica, P. Staar, L. Morin, P. Ruch, T. Laino, J. R. Smith, and A. Curioni, 346 “Foundation models for materials discovery—current state and future directions,” *Npj Computational 347 Materials*, vol. 11, no. 1, p. 61, 2025.

348 [13] I. Priyadarsini, V. Sharma, S. Takeda, A. Kishimoto, L. Hamada, and H. Shinohara, “Improving 349 performance prediction of electrolyte formulations with transformer-based molecular representation 350 model,” in *ICML’24 Workshop ML for Life and Material Science: From Theory to Industry Applications*.

351 [14] M. Zohair, V. Sharma, E. A. Soares, K. Nguyen, M. Giammona, L. Sundberg, A. Tek, E. A. Vital, and 352 Y.-H. La, “Chemical foundation model-guided design of high ionic conductivity electrolyte formulations,” 353 *npj Computational Materials*, vol. 11, no. 1, p. 283, 2025.

354 [15] D. Weininger, “Smiles, a chemical language and information system. 1. introduction to methodology and 355 encoding rules,” *Journal of Chemical Information and Computer Sciences*, vol. 28, pp. 31–36, 1988.

356 [16] L. Cheng, R. S. Assary, X. Qu, A. Jain, S. P. Ong, N. N. Rajput, K. Persson, and L. A. Curtiss, “Accelerating 357 electrolyte discovery for energy storage with high-throughput screening,” *The journal of physical chemistry 358 letters*, vol. 6, no. 2, pp. 283–291, 2015.

359 [17] A. Benayad, D. Diddens, A. Heuer, A. N. Krishnamoorthy, M. Maiti, F. L. Cras, M. Legallais, F. Rahamanian, 360 Y. Shin, H. Stein *et al.*, “High-throughput experimentation and computational freeway lanes for accelerated 361 battery electrolyte and interface development research,” *Advanced Energy Materials*, vol. 12, no. 17, p. 362 2102678, 2022.

363 [18] V. Sharma, A. Tek, K. Nguyen, M. Giammona, M. Zohair, L. Sundberg, and Y.-H. La, “Improving 364 electrolyte performance for target cathode loading using an interpretable data-driven approach,” *Cell 365 Reports Physical Science*, vol. 6, no. 1, 2025.

366 [19] D. Rogers and M. Hahn, “Extended-connectivity fingerprints,” *Journal of chemical information and 367 modeling*, vol. 50, no. 5, pp. 742–754, 2010.

368 [20] J. Pan, “Large language model for molecular chemistry,” *Nature Computational Science*, vol. 3, no. 1, pp. 369 5–5, 2023.

370 [21] J. Ross, B. Belgodere, S. C. Hoffman, V. Chenthamarakshan, J. Navratil, Y. Mroueh, and P. Das, “Gp- 371 molformer: A foundation model for molecular generation,” *Digital Discovery*, 2025.

372 [22] R. Taylor, M. Kardas, G. Cucurull, T. Scialom, A. Hartshorn, E. Saravia, A. Poulton, V. Kerkez, and 373 R. Stojnic, “Galactica: A large language model for science,” *arXiv preprint arXiv:2211.09085*, 2022.

374 [23] C. Edwards, T. Lai, K. Ros, G. Honke, K. Cho, and H. Ji, “Translation between molecules and natural 375 language,” *arXiv preprint arXiv:2204.11817*, 2022.

376 [24] S. Liu, H. Wang, W. Liu, J. Lasenby, H. Guo, and J. Tang, “Pre-training molecular graph representation 377 with 3d geometry,” *arXiv preprint arXiv:2110.07728*, 2021.

378 [25] H. Zhou and J. Skolnick, “Utility of the morgan fingerprint in structure-based virtual ligand screening,” 379 *The Journal of Physical Chemistry B*, vol. 128, no. 22, pp. 5363–5370, 2024.

380 [26] E. R. Antoniuk, S. Zaman, T. Ben-Nun, P. Li, J. Diffenderfer, B. Demirci, O. Smolenski, T. Hsu, A. M. 381 Hiszpanski, K. Chiu *et al.*, “Boom: Benchmarking out-of-distribution molecular property predictions of 382 machine learning models,” *arXiv preprint arXiv:2505.01912*, 2025.

383 [27] M. A. Skinner, R. G. Stacey, D. S. Wishart, and L. J. Foster, “Chemical language models enable 384 navigation in sparsely populated chemical space,” *Nature Machine Intelligence*, vol. 3, no. 9, pp. 759–770, 385 2021.

386 [28] H. Choubisa, P. Todorović, J. M. Pina, D. H. Parmar, Z. Li, O. Voznyy, I. Tamblyn, and E. H. Sargent, 387 “Interpretable discovery of semiconductors with machine learning,” *NPJ Computational Materials*, vol. 9, 388 no. 1, p. 117, 2023.

389 [29] J. Dean, M. Scheffler, T. A. Purcell, S. V. Barabash, R. Bhowmik, and T. Bazhirov, “Interpretable machine 390 learning for materials design,” *Journal of Materials Research*, vol. 38, no. 20, pp. 4477–4496, 2023.

391 [30] X. Liu, S. Swaminathan, D. Zubarev, B. Ransom, N. Park, K. Schmidt, and H. Zhao, “Accfg: Accurate 392 functional group extraction and molecular structure comparison,” *Journal of Chemical Information and 393 Modeling*, 2025.

394 [31] P. Schober, C. Boer, and L. A. Schwarte, “Correlation coefficients: appropriate use and interpretation,”
395 *Anesthesia & analgesia*, vol. 126, no. 5, pp. 1763–1768, 2018.

396 [32] R. Ramakrishnan, P. O. Dral, M. Rupp, and O. A. Von Lilienfeld, “Quantum chemistry structures and
397 properties of 134 kilo molecules,” *Scientific data*, vol. 1, no. 1, pp. 1–7, 2014.

398 [33] R. Duke, V. Bhat, P. Sornberger, S. A. Odom, and C. Risko, “Towards a comprehensive data infrastructure
399 for redox-active organic molecules targeting non-aqueous redox flow batteries,” *Digital Discovery*, vol. 2,
400 no. 4, pp. 1152–1162, 2023.

401 [34] I. Priyadarsini, S. Takeda, L. Hamada, E. V. Brazil, E. Soares, and H. Shinohara, “Self-bart: A transformer-
402 based molecular representation model using selfies,” *arXiv preprint arXiv:2410.12348*, 2024.

403 [35] H. Zhang, T. Lai, J. Chen, A. Manthiram, J. M. Rondinelli, and W. Chen, “Learning molecular mixture
404 property using chemistry-aware graph neural network,” *PRX Energy*, vol. 3, no. 2, p. 023006, 2024.

405 **A Supplementary Material**

406 **A.1 Electrolyte Datasets**

407 **Molecule screening:** Battery electrolytes can comprise of one or more organic solvent, and one or more salt,
408 which facilitate Li⁺ ion transport between electrodes and electrode surface conditioning to prevent unwanted
409 degrading side reactions. Each electrolyte component plays a crucial role in this ecosystem and is therefore
410 selectively picked based on certain properties like HOMO-LUMO levels and redox potentials. While there is
411 plethora of labeled dataset available in literature for these properties (32; 33; 16), we use a data from a singular
412 source to train and evaluate model's performance, i.e., D3TaLES, a database of DFT simulated properties of
413 40,000 organic molecules for battery systems (33).

414 **Manufacturability:** Screened solvents and salts are combined in certain compositions to form electrolyte formulations.
415 These formulations must be completely miscible (or soluble) to enable ion transport and manufacturing.
416 We curate a heterogeneous dataset containing solubility information of single salt-single solvent mixtures, single
417 salt-multi solvent formulations, and multi salt- multi solvent electrolytes, enabling development of a generalized
418 model for electrolyte miscibility prediction. Refer to A.2 for details on electrolyte solubility data generation. For
419 inclusion of heterogeneous datasets, we simplify approach to binary classification indicating insoluble (0) or
420 soluble (1). The combined 3,300 dataset contained rich diversity of salts, solvents and electrolyte mixtures.

421 **Formulation property:** Another crucial property to consider during electrolyte design is ionic conductivity
422 (IC). The salts dissociated into ions within an electrolyte form solvation structures that facilitate transport of
423 charge between two electrodes and are responsible for battery's charge-discharge kinetics. For IC, we use 18,000
424 reported empirical values of electrolyte formulations at different temperatures in published literature (7; 14).
425 The dataset constitutes diverse set of solvents and salts.

426 **Surface contact characterization:** An electrolyte interfaces with multiple internal components within a battery,
427 including electrodes, separators, and current collectors. Consequently, optimizing the surface interactions
428 between the electrolyte formulation and various device constituents is crucial for achieving peak performance.
429 Traditionally, such evaluations have relied on the empirical expertise of domain experts and expensive computational
430 simulations. Nevertheless, data collected from evaluation of one similar system can be used to automate
431 future screening and assessment of electrolytes. We use one such in-house generated empirical dataset of 119
432 electrolyte formulations and their contact angle on four different separators to predict surface contact angle of
433 electrolytes (see A.3 for experimental details).

434 **Device performance:** The ultimate objective of developing a new battery electrolyte formulation is to achieve
435 superior performance metrics, such as enhanced capacity, Coulombic Efficiency (CE), and cycle life. The public
436 dissemination of such data is often limited, as its relevance is typically highly specific to a particular device
437 configuration, thereby precluding its full adherence to FAIR (Findable, Accessible, Interoperable, and Reusable)
438 data principles. To address this challenge, we leverage three distinct datasets from previous publications. The
439 first dataset, derived from a study by Kim et al. (3), examines the relationship between electrolyte composition
440 and CE across 150 datapoints. A second dataset containing 125 electrolytes, originally reported by Sharma
441 et al. (6), explores the influence of electrolyte formulation on the specific capacity of a LiI conversion battery.
442 Finally, the third dataset constituting 91 datapoints focuses on capacity metric for an interhalogen conversion
443 (Li-ICl) battery, incorporating variations in cathode loading, separator type, and electrolyte compositions with
444 fixed chemicals (18).

445 **A.2 Solubility Data Collection**

446 Complete electrolyte miscibility is desired in batteries for manufacturing to ensure that the electrolyte composition
447 is consistent batch to batch and devoid of any phase separation for uniformity in battery performance at
448 production scale. Therefore, it is essential to identify potentially miscible formulations from the vast combinatorial
449 design space. Heterogeneous solubility dataset is generated through experimentation:

450 **Single salt- single solvent solubility assessment:** A dataset of binary system containing single salt and
451 a single organic solvent was collected experimentally in the laboratory. The dataset spans five most popular
452 electrolyte salts, LiNO₃, LiFSI, LiBOB, LiFOB, and LiPF₆, and up to fifty organic solvents. The experiments
453 were conducted in an inert glovebox (Argon, < 0.1 ppm H₂O and O₂) and all salts were dried on a hotplate at
454 150 °C, except for LiFSI and LiPF₆, which were used as received due to their lower thermal stability. Solvents
455 were dried over 3 Å molecular sieves for at least 24 hours prior to use. An upper salt concentration limit of 2M
456 was set during the data collection. Salts were weighed to make 2M solution and the respective organic solvent
457 was then added to decrease the concentration by a 0.25M interval until the solutions were visually clear without
458 any precipitation or undissolved materials. The salt-solvent combination was considered insoluble if the solution
459 was not clear at 0.25M concentration.

460 **Single salt- Multi solvent solubility assessment:** The dataset has measurement of the highest molar concentration of single salt dissolved in mixture of organic solvents. The data was curated during the development 461 of electrolyte for our prior study where four salts and four solvents were shortlisted for lithium metal battery 462 electrolyte (18). The four salts, LiCl, LiNO₃, LiTFSI and LiBOB, are individually dissolved in solvent formulations 463 containing different compositions of ethylene carbonate, Tetraglyme, 1,3-Dimethyl-2-imidazolidinone and 464 1,3-Dioxolane. The solubility measurements were made as per the method described above.

466 **Multi salt-multi solvent solubility assessment:** Conventionally, functioning and high-performing 467 electrolytes are published in literature (3; 18; 6). We also share a few "failed" non-miscible electrolytes in 468 our previous works (18; 14). We curated 300 electrolyte formulations from these studies. Simplification of 469 solubility metric to (0) or (1) enabled inclusion and test across widespread electrolyte dataset. The combined 470 dataset contained rich diversity of salts, solvents and electrolyte mixtures.

471 **Post processing:** The solubility of single salt- single solvent pairs and single salt- multi solvent formulations 472 were measured in terms of highest soluble molarity of the salt. To further add context to the solute molarity 473 noted as metric in empirical dataset, data augmentation was done to interpolate solubility of target salt in each 474 respective solvent system to include soluble(1) datapoints below highest soluble molarity, and insoluble(0) 475 datapoints above recorded metric until the tested molarity. Next, the constituent moles in each formulation system 476 were converted to molar percentage (mole%). Post data processing, there are 3300 electrolyte formulation vs 477 solubility data that is used in the study.

478 A.3 Contact Angle Measurement Experiments

479 Electrolyte uptake by separator is an important parameter that determines ion transport and electrolyte per- 480 formance. There are several separators in the commercial market based on constitution such as polymer and 481 quartz. Within a single category like polymer separators, vast variations can be noted based in changes in 482 polymer monomers and ratios. Electrolyte formulations are prepared inside an Ar-filled glove box (<1 ppm O₂, 483 <1 ppm H₂O). Prior to mixing, solvents that are liquid at room temperature are dried using molecular sieves 484 (Millipore Sigma, 3) and salts are dried on a hot plate at 100 °C. Electrolytes are mixed for 24 hrs prior to 485 contact angle measurement. Contact angle measurements were conducted using an OCA video-based contact 486 angle goniometer (FDS Future Digital Scientific Corporation) employing the sessile drop technique. Prior to 487 measurement, the separator was carefully placed on a flat silicon wafer substrate to ensure a uniform surface. A 488 2L droplet of electrolyte was then dispensed onto the separator surface and allowed to equilibrate for 800ms. 489 Image analysis was performed on a selected video frame by manually defining the baseline and applying an 490 ellipse-fitting algorithm to achieve optimal conformity to the droplet profile. The reported static contact angles 491 represent the average of 3–5 independent measurements. All procedures were carried out with minimal air 492 exposure to preserve the integrity of the electrolyte and ensure reproducibility. A dataset of 119 experiments is 493 created using the electrolyte constituents, their respective concentrations, the experimentally measured contact 494 angle, and a separator label. There are four different Celgard separators in the dataset, identified by unique label 495 (1-3).

496 A.4 Feature engineering

497 The application of data-driven models in material systems rely on the correct transformation of system into 498 a numerical representation suitable for mathematical operations. Accordingly, the intricate description of a 499 battery's formulation, which includes the identity of constituent molecules, their composition, and additional 500 configuration parameters, must be systematically converted into a relevant numerical descriptor. For this 501 purpose, pretrained *FMs* are used to acquire molecular representations which are then transformed to represent 502 multi-scale systems as described below:

503 **Molecules:** *FMs* are used to derive numerical embeddings of molecules present in the target datasets similar to 504 previous studies (10; 34).

505 **Formulations:** Three formulation datasets including solubility, CE and LiI battery capacity map electrolyte 506 formulations to the outcome. Formulation inputs constitute multiple constituents per datapoint and their 507 respective composition as mole percent (*mol%*) in the mixture. Here, constituent molecules are transformed to 508 *FM* embeddings, and are then scaled based on their *mol%* in the formulation to indicate their activity within the 509 system. The scaled embeddings are aggregated to form a formulation descriptor by addition as also summarized 510 in Figure 1. There are more than one method to aggregate formulation descriptor (18; 35; 13). Each method has 511 its own merit and preferred use. We observe that scaled addition is most convenient aggregation as the resultant 512 formulation descriptor size is invariant to the formulation constituent count. IC dataset contains temperature as 513 an additional extrinsic variable that is concatenated with the formulation descriptor for training.

514 **Surface contact characterization:** In present study, contact angle of electrolyte on several polymer-based 515 separators are measured to assess their compatibility. For best representation, a *FM* for polymer can be

516 used. However, since present study is focused on assessing molecular FM , separator representation has been
517 simplified by the use of labels. There are four polymer separators in the dataset labeled 0-3. These labels are
518 concatenated with formulation representation analogous to temperature in IC dataset.

519 **Device:** Li-ICl battery dataset reports specific capacity of the battery with varying compositions of 8 electrolyte
520 constituents for a range of active material loadings (30% to 60%) in cathode and varying separators (18).
521 Electrolyte formulations are aggregated as defined for formulations and additional cell variables are concatenated
522 to formulation descriptor as model inputs.

523 For each dataset, neural network (NN) architectures are individually optimized and trained using the derived
524 dataset inputs. This feature engineering for representing molecules, formulations and devices was consistent
525 across all FM s and MF .

526 A.5 Model Training

527 It is noted that fine-tuning FM s such as SMI-TED with string representation of formulations could result in
528 relatively higher mean squared error (MSE) than the transfer learning approach where formulation descriptor
529 aggregates pre-learned molecular embeddings scaled with the composition. MSE for both the approaches are
530 compared in Table S1 for IC dataset where finetuning achieves MSE 0.155 and transfer learning combined by
531 NN regressor achieved MSE 0.025.

Table S1: Mean squared error (MSE) for property prediction using SMI-TED

Dataset	MSE	
	Fine-tuning	Transfer learning
Reduction Potential	0.65	0.68
Oxidation Potential	0.13	0.14
Ionic Conductivity	0.155	0.025

532 **Hyperparameter Tuning:** Neural network (NN) architectures were individually optimized and trained
533 using FM -derived molecular embeddings or formulation descriptor. NN with 2 or 3 hidden layers, with nodes
534 500-250-100 or 500-250, and activation function relu was found optimum. Model was trained with learning rate
535 0.0001, factoring 0.5 every 200 epochs of no reduction in loss function. The model was trained for maximum of
536 2500 epochs or until 200 iterations of no improvement in validation loss. Batch size was varied based on data
537 size. For datasets < 200 , batch size was kept 1, batch size was 12 for dataset < 5000 , and batch size of 32 was
538 used for data > 5000 . Regression loss was measured using mean squared error (MSE) and mean absolute error
539 (MAE) was the used metric. For binary classification of electrolyte solubility, binary cross entropy was the loss
540 function and accuracy was the metric.

Table S2: Tuning neural network hyperparameters for SMI-TED predictors

Dataset	Hidden layers	Activation Function	MAE
LCE	500-250-100	relu	0.17
LCE	500-250	relu	0.16
LCE	500-250	sigmoid	0.32
LCE	500-250-100	sigmoid	0.32
LCE	500-250-250	relu	0.16
LCE	500-500	relu	0.17
LCE	250-100	relu	0.16
IC	500-250-100	relu	0.08
IC	500-250-100	sigmoid	0.22
IC	500-250	relu	0.09
IC	500-500	relu	0.10
IC	250-250-250	relu	0.08
IC	700-700	relu	0.11
IC	500-250-100-50	relu	0.08
HOMO	500-250-100	relu	0.43
HOMO	500-250-100	sigmoid	0.44
HOMO	500-250	relu	0.44
HOMO	250-100	relu	0.44
HOMO	500-500-500	relu	0.44
HOMO	250-250-250	relu	0.44

541 A.6 Out-of-distribution (OOD) evaluation

542 Two-fold OOD evaluation is done: (1) tail end evaluation based on numerical distribution of outcome labels, and
543 (2) chemical design evaluation based on chemical similarity between train-test sets. For tail-end evaluation, test
544 set are created from the training data to include lower and upper end values. In certain cases such as in Figure S3

545 and Figure S4, only one end of data was considered as the outcome label was highly biased towards the other
 546 end.

Figure S1: Tail-end OOD and parity plots for ionic conductivity test sets using benchmarking models.

Figure S2: Tail-end OOD and parity plots for contact angle test sets using benchmarking models.

Figure S3: Tail-end OOD and parity plots for LiI capacity test sets using benchmarking models.

Figure S4: Tail-end OOD and parity plots for LCE test sets using benchmarking models.

Figure S5: Tail-end OOD and parity plots for Li-ICl Capacity test sets using benchmarking models.

Table S3: Chemical similarity of out-of-distribution test datasets with training data using embeddings from foundation models and Morgan Fingerprints

Model	CE	Contact Angle	LiI Capacity	IC	Li-ICl Capacity
SMI-TED	0.3324	0.6791	0.2557	0.9244	0.6021
MolT5	0.2592	0.5472	0.1868	0.8209	0.641
Galactica	0.1925	0.6556	0.4531	0.9178	0.681
GraphMVP	0.0514	0.1099	0.0619	0.1814	0.0206
MF	0.2198	0.3281	0.1144	0.751	0.4748

Table S4: Parameters to estimate mean absolute error (MAE) in model prediction based on similarity between test-train data for SMI-TED

Datasets	Slope(m)	Intercept(c)
HOMO	-0.1602	0.5699
Ionic Conductivity	-0.5724	0.6377
Contact Angle	-19.6820	0.7601
Specific Capacity	-24.9776	33.2050