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Abstract

Recent years have seen fast emergence and adoption of chemical foundation models
in computational material science for property prediction and generation tasks that
are focused mostly on small molecules or crystals. Despite these paradigm shifts,
integration of newly discovered materials in real world devices continues to be
a challenge due to design problems. New candidate material must be optimized
to achieve compatibility with other components in the system to attain the target
performance. Chemical foundation model benchmarks must evaluate their scope
in predicting macro scale outcomes that are the result of chemical interactions in
multivariate design space. This study evaluates performance of chemical foundation
model, pre-trained with 91 million SMILES of small molecules, in extrapolating
learning from molecules to material design challenges across multiple length scale
in batteries. The base model is fine-tuned using ten datasets covering molecular
structures, formulations, and battery device measurements, and its performance
is benchmarked against conventional molecular representations such as Morgan
Fingerprints. The study further examines the model’s capacity to generalize to
out-of-distribution (OOD) cases by quantifying prediction errors for novel material
designs that differ substantially from the training data. Finally, interpretability of
the resulting models is assessed, with the aim of enabling researchers to apply
them selectively for design interpretation within regions of chemical space where
prediction confidence can be reasonably established.

1 Introduction

With evolving technologies and world economy demands, the field of material discovery has remained
strongly relevant. Recently, this field has acquired critical importance as new sustainable materials are
sought to overcome limitations of current material systems (1). Battery technologies are one strong
societally relevant area of research where the scope of known materials appears to be exhausted, and
new materials that can deliver high capacities, fast charging and longer cycle stability are continously
sought to meet future demands (2} 3). Despite shifts in material research paradigms from slow,
labor-intensive experiments, to faster data-driven models (4; (1), it remains challenging to integrate
new materials in real world devices. This is due to several reasons: (7) most computational models
including simulations and machine learning (ML) can be used to determine intrinsic properties of
materials based on their chemical structure, but lack in extrapolating their outcome to meso or macro
scale phenomenon (5)); (¢7) device performance is governed by complex interactions among several
constituent materials, presenting vast multivariate design space difficult to screen or optimize (6); (¢4)
limited data availability for extrinsic characteristics such as temperature and concentration dependence
of multi-constituent properties (7). While ML models accelerate several prediction, generative and
optimization problems in material science, the field continues to face challenges stemming from

Submitted to Al for Science workshop (NeurIPS 2025).



37
38

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

71
72

73
74
75
76

77
78
79

80
81

82

83
84
85
86
87
88
89
90

opaque nature of the model’s decision making, impractical proposed chemical structures, scarcity of
quality datasets and inability to generalize out-of-distribution (OOD) (8).

Foundation models for materials (FM4M) have emerged as promising models to overcome some
aforementioned challenges of data scarcity and generalization. These are a class of large language
models (LLMs), that are pre-trained on a textual or multi-modal representations of materials in
open-source databases like PubChem and ZINC through self-supervised learning (9). Studies have
demonstrated that embedding space of these transformer models segregates chemically relevant
features of molecules making them a suitable general-purpose tool for material science research.
These base models can be utilized to perform specific functions based on smaller labeled datasets with
fine-tuning or transfer learning (10). Foundation models (FM) are rapidly evolving, and their adoption
in different application areas is on the rise (11)). Large portion of studies report their use in property
prediction and inverse design of small molecules or crystals (10). Prior studies also evaluate their
scope in predicting performance metrics for formulations (mixtures of more than two molecules in
certain compositions) based on electrolyte-performance experimental datasets curated from literature.
Results demonstrate best prediction accuracies in comparison to other data-driven models (12} [13).
The research on representing advanced material systems such as formulations, composites and devices
to learning models is currently in nascent stages due to less understood chemical phenomenon and
lack of quality datasets. These results on formulation datasets present strong evidence that foundation
models can extrapolate molecular features to multi-constituent properties.

In this work, we evaluate the capability of a chemical foundation model pre-trained with molecular
representations SMILES (14), to predict properties and performances of materials that are the result
of interplay of complex chemical phenomenon at macroscale. We take battery electrolytes as an
example where electrolyte engineering has emerged as a promising approach to improve battery
performance metrics such as columbic efficiency (CE), cycle life and capacity. To achieve this,
electrolytes are carefully designed based on the individual properties of constituent molecules, their
collective performance as formulation and their compatibility with other battery components such
as electrodes, separator and current collector. Electrolyte Genome initiative in 2015 accelerated
electrolyte discovery cycle for new emerging battery chemistries by integrating computational
workflows with experimentation (15)). High-throughput screening enabled selection of candidate
molecules meeting threshold values for HOMO-LUMO energy levels, toxicity and electrochemical
stability. Once down-selection is done, laborious experimentation is required to find their right
combination for a functional electrolyte formulation (16). Here, data availability is a primary
roadblock in adoption of ML models since public datasets are inconsistent and industrial datasets are
propriety (1'7). Thus, models that can be efficient with scarce datasets are desired in the domain.

We use FM4M to map electrolyte formulations along with device variables to key performance
indicators at multiple length scale in batteries as illustrated in Figure[l] In particular,

» We target prediction of key properties that are considered in electrolyte discovery such as
molecular properties, formulation performance, manufacturability, surface contact char-
acteristics and device performance. The results are compared with standard molecular
representations like Morgan Fingerprints (M F) (18).

* We evaluate extrapolation capability of the trained models to new material designs based on
the semantic similarity between train and test data. This presents a method to approximate
errors and confidence in model predictions across new material landscape.

* We investigate interpretability of FM4M-based predictors and evaluate their promise in
inferencing new material design rules.

2 Datasets

Data availability is a major enabler for artificial intelligence (AI) workflows aiming for material
discovery and design. While ‘material discovery’ targets generating new candidates with specialized
properties, ‘material design’ leans towards customization and optimization of candidates for com-
patibility with system or device to achieve target performance. Therefore, to meet the performance
goals for respective application, series of data driven predictors must be realized to enable material
identification, characterization and optimization for achieving compatibility with the device. Several
datasets used in present study are curated from literature, while some are experimentally generated in
the laboratory ( see section Supplementary Materials for details).



91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

(@) -

Molecule Selection

o

Ly
(.

Device Performance

&

Formulation Selection

Manufacturability

K]

Data Representation with Pre-trained Foundation Model

(b)/

Formulations

P ABOOERLT T e T )

sviest [ coner | _svmes: [ cons

coc(=0)0C FPIBEE@ELID | 1% | coceopc | ss%

FPIOEOEERL | 1% | cocopc | s

Coccoccoc [Li+][01CI=0X-01-0 | 10% ‘muoccoc[ 0%

|
[Li+][0-1CI-0)-0)-0 ‘ 10% [coccoccoc[ o0

s I £
5858488 588488
$ $ $ $ $ SMI-TED $ $ $ $ $ SMI-TED

]

|| Do ﬂ— || Commme
© [ comin |
?m

\

Figure 1: (a) Scheme illustrating electrolyte design problems at multiple scales. (b) Schematic
summarizing the data representation for material design using pre-trained foundation models for
molecules.
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Molecule screening: Battery electrolytes can comprise of one or more organic solvent, and one or
more salt, which facilitate Li+ ion transport between electrodes and electrode surface conditioning to
prevent unwanted degrading side reactions. Each electrolyte component plays a crucial role in this
ecosystem and is therefore selectively picked based on certain properties like HOMO-LUMO levels,
redox potentials and solvation energy. While there is plethora of labeled dataset available in literature
for these properties (19; 20; [15), there are inconsistencies between these datasets due to differences
in the calculation methods. To avoid these inconsistencies, we use a data from a singular source to
train and evaluate model’s performance, i.e., D3TaLES, a database of DFT simulated properties of
40,000 organic molecules for battery systems (20).

Manufacturability: Shortlisted solvents and salts are combined in certain compositions to form
electrolyte formulations. These formulations must be completely soluble to enable ion transport
and manufacturing. Complete electrolyte miscibility is desired in batteries for manufacturing to
ensure that the electrolyte composition is consistent batch to batch and devoid of any phase separation
for uniformity in battery performance at production scale. Yet, prediction of miscibility during
electrolyte discovery faces technical challenges due to limited knowledge on physical properties
and phase behavior of non-aqueous solutions. While aqueous solubility remains widely reported,
literature on solubility of non-aqueous electrolytes remains lacking on two fronts (i) empirical
observations, and (ii) multi-constituent mixtures. Here we use a heterogeneous dataset containing
solubility information of single salt-single solvent mixtures, single salt-multi solvent formulations,
and multi salt- multi solvent electrolytes, enabling development of a generalized model for electrolyte
miscibility prediction. Solubility metric considered across the literature have been numerous and
inconsistent (21). To prevent these limitations and simplify data ingestion in prediction model, we
do not target any specific parameter but a binary classification of soluble (1) or insoluble (0). This
simplification of solubility metric to (0) or (1) enabled inclusion of widespread electrolyte datasets.
The combined 3300 datapoints contained rich diversity of salts, solvents and electrolyte mixtures.
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Formulation Property: Another crucial property to consider during electrolyte design is ionic
conductivity (IC). Salts within an electrolyte dissociate into anions and cations. These dissociated
ions form solvation structures to facilitate transport of charge ions between two electrodes and are
responsible for battery’s charge-discharge kinetics. For IC, we use 18,000 reported empirical values
of electrolyte formulations at different temperatures in published literature (7 [13)). The dataset
constitutes diverse set of solvents and salts.

Surface contact characterization: An electrolyte interfaces with multiple internal components
within a battery, including electrodes, separators, and current collectors. Consequently, optimizing
the surface interactions between the electrolyte formulation and these various device constituents is
crucial for achieving peak performance. Traditionally, such evaluations have relied on the empirical
expertise of domain experts and expensive computational simulations. Data generated from these
studies, however, is often specific to a particular system and lacks the generalizability of fundamental
properties like solubility and IC. Nevertheless, data collected from evaluation of one similar system
can be used to develop ML model to automate future screening and assessment of electrolytes. We
use one such in-house generated empirical dataset of electrolyte formulation and their contact angle
on four different separators to assess surface wettability of electrolytes. A dataset of 119 experiments
is constructed using the electrolyte constituents, their respective concentrations, the experimentally
measured contact angle, and a separator label. Four different Celgard separators were included in the
dataset.

Device Performance: The ultimate objective of developing a new battery electrolyte formulation
is to achieve superior performance metrics, such as enhanced capacity, Coulombic Efficiency (CE),
and cycle life. The public dissemination of such data is often limited, as its relevance is typically
highly specific to a particular device configuration, thereby precluding its full adherence to FAIR
(Findable, Accessible, Interoperable, and Reusable) data principles. To address this challenge, we
leverage three distinct datasets from our previous publications. The first dataset, derived from a
study by Kim et al. (3)), examines the relationship between electrolyte composition and CE across
150 datapoints. A second dataset containing 125 electrolytes, originally reported by Sharma et al.
(6), explores the influence of electrolyte formulation on the specific capacity of a Lil conversion
battery. Finally, the third dataset constituting 125 datapoints focuses on capacity metric for an
interhalogen conversion (Li-ICl) battery, incorporating variations in cathode loading, separator type,
and electrolyte composition (17).

3 Data Representation

The application of data-driven models in material systems rely on the correct transformation of
system into a numerical representation suitable for mathematical operations. Accordingly, the
intricate description of a battery’s formulation, which includes the identity of constituent molecules,
their composition, and additional configuration parameters, must be systematically converted into a
relevant numerical descriptor. For this purpose, we utilize SMI-TED (SMILES Transformer Encoder
Decoder), an open-source chemical foundation model developed by IBM Research (9). This model
has acquired a deep understanding of molecular structural representations through self-supervised
pre-training on a vast dataset of 91 million molecules and has been previously validated to surpass
the performance of conventional data-driven alternatives in downstream tasks.

Molecules: SMI-TED encoder is used to derive numerical embeddings of molecules present in the
target datasets similar to previous studies (95 22)).

Formulations: Three formulation datasets including solubility, CE and Lil battery capacity map
electrolyte formulations to the outcome. Formulation inputs constitute multiple constituents per
datapoint and their respective composition as mole percent (mol%) in the mixture. Here, constituent
molecules are transformed to SMI-TED embeddings, and are then scaled based on their mol% in
the formulation to indicate their activity within the system. The scaled embeddings are aggregated
to form a formulation descriptor by addition as summarized in Figure|l| There are more than one
method to aggregate formulation descriptor (17;23;12)). Each method has its own merit and preferred
use. We observe that scaled addition is most convenient aggregation as the resultant formulation
descriptor size is invariant to the formulation constituent count. IC dataset contains temperature as an
additional extrinsic variable that is concatenated with the formulation descriptor for training.
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Surface contact characterization: Electrolyte uptake by separator is an important parameter that
determines ion transport and electrolyte performance. There are several separators in the commercial
market based on constitution such as polymer and quartz. Within a single category like polymer
separators, vast variations can be noted based in changes in polymer monomers and ratios. For best
material representation, a foundation model (FM) for polymer can be used. However, since present
study is focused on assessing molecular FM, separator representation has been simplified by the use
of labels. There are four polymer separators in the dataset labeled 0-3. These labels are concatenated
with formulation representation analogous to temperature in IC dataset.

Device: Li-ICl battery dataset reports specific capacity of the battery with varying compositions of 8
electrolyte constituents for a range of active material loadings (30% to 60%) in cathode and varying
separators (17). Electrolyte formulations are aggregated as defined for formulations and additional
cell variables are concatenated to formulation descriptor as model inputs.

For each dataset, neural network (NN) architectures are individually optimized and trained using
SMI-TED-derived molecular embeddings or formulation descriptor (see section Supplementary
Materials for details). As a benchmark, Morgan fingerprints(}M F') were employed as an established
molecular descriptor (18).

4 Results and Discussion

4.1 Material representation and model performance

We use a SMILES-based foundation model for training electrolyte design predictors due to their
demonstrated best performance against several benchmark models (9). SMI-TED takes string
representation of material as an input. Fine-tuning the pre-trained SMI-TED encoder with labeled
datasets can be computationally expensive considering FM are relatively large models with over
several million parameters. The most efficient approach is to retain chemical information from the
pre-trained model as molecular embeddings, and map these to the output label using a regressor
model such as NN, XGBoost or random forest. This transfer learning approach is relatively robust
and deliver comparative results in predicting molecular properties, such as reduction potential and
oxidation potential, as indicated in Table [2l Moreover, fine-tuning SMI-TED is not expandable
to the datasets targeting formulations as the string representations of formulations used in ref(13)
are vastly different from the molecule representations SMI-TED was pre-trained on. Consequently,
it is noted that fine-tuning SMI-TED with string representation of formulations could result in
relatively higher mean squared error (MSE) than the transfer learning approach where formulation
descriptor aggregates pre-learned molecular embeddings scaled with the composition. MSE for both
the approaches are compared in Table 2] for IC dataset where finetuning achieves MSE 0.155 and
transfer learning combined by NN regressor achieved MSE 0.025. Thus, transfer learning approach
was used to train all datasets.

Results are summarized in Table [3| for SMI-TED embeddings and Table ] for M F. As tabulated
in the respective tables, SMI-TED based predictors outperform M F' in 7 out of 10 datasets. For
molecular properties, SMI-TED is marginally better than M F'. Several prior studies have backed that
2048 bits of M F' are more predictive than domain-intuitive features for molecular properties (24).
Meanwhile, SMI-TED demonstrates notable computational efficiency by achieving lower MAE to
that of M F', despite using significantly smaller feature vector size (768). This efficacy of SMI-TED
embeddings testifies that learnt representations encode more comprehensive set of structural features
that are meaningful and comprehensive.

In the context of more complex systems, such as formulations, we observed a systematic divergence in
model performance. SMI-TED demonstrated a clear and consistent advantage over M F' in low data
regimes (100 to 200 data points), achieving superior predictive accuracy and robustness across these
challenging multiscale problems. Proposed approach reports lower prediction errors for Lil capacity
and CE datasets, outperforming previously published models (6; 3)) using the same datasets or their
subsets. These results highlight applicability of foundation models to multivariate material design
problems. Possible interpretation is that macroscale outcomes, such as electrolyte performance,
are dictated by hierarchical interactions between chemical moieties. Ion aggregates and solvation
substructures are examples of chemical moiety interactions responsible for charge-discharge kinetics
in battery electrolytes. SMI-TED successfully predicts these macroscale outcomes due to having rich
chemical vocabulary comprising of 2988 unique chemical tokens or moieties. Hence, model latent
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space is enriched with basic understanding of the chemical space formed by the combinations of
chemical moieties in molecules (9). The fine-tuning step utilizing aggregated formulation embeddings
vs performance label is useful to correlate chemical moieties and compositions to the label, enabling
multi-scale learning (see Figure[2). This knowledge transfer is particularly useful in low data regimes.

On datasets characterized by a large volume of data, such as solubility (3300 data) and IC (18,000
data), M F outperform SMI-TED embeddings in the present evaluation. This outcome is consistent
with the design of conventional ML methods that are optimized for large-scale data problems. M F”s
enhanced performance on these datasets also suggests that the fundamental properties like IC and
solubility are more contingent on specific functional groups in the system that are captured precisely
by M F. This finding presents a critical consideration for the future development of foundation
models. Nevertheless, SMI-TED approach still outperforms the array of ML approaches evaluated
in literature for IC prediction as reported in ref (13). Another instance where M F' outperforms
SMI-TED despite low data regime is Li-IC1 Capacity (M F' MAE 32.24 mAh/g vs SMI-TED MAE
47.94 mAhg), highlighting present approach is not suitable for datasets lacking chemical variability.
Ultimately, the choice of representation is a critical and must be determined by the nature of output
label, quantity and the variability in the dataset, and the desired interpretability of the model.
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Figure 2: Multi-step training capturing complex chemical interactions at multiple scale.

4.2 Quantifying model uncertainty for out of distribution data

ML models frequently show poor transferability across chemical spaces and fall short in predicting
properties for materials outside their training scope (25)). Task-specific models trained on labeled data
lack robustness when faced with new material classes. Improvements via transfer learning, domain
adaptation, and embedding physics constraints are underway, but broad generalization remains
elusive (6)). Generalizable base models like foundation models have seen increased adoption in the
community for these reasons (25)). Latest works show discovery of new electrolyte formulations
achieving high ionic conductivity (above 10 m.S/cm) by screening a large generated formulation
design space with a fine-tuned SMI-TED model(13). These results exhibit that 44% (7 in 16) of the
electrolytes recommended by the model met the performance target during experimental validation.
We observe there is further potential to ascertain the reliability of these models when extrapolating
to unexplored regions of the materials design space. There are factors intrinsic to material design
including scale and end-use application that inject additional complexity, fundamentally constraining
the generalizability and reliability of OOD predictions in these contexts. This insight highlights the
need for more nuanced evaluation strategies and tailored model development when extending Al
methods to new regimes of materials science.

By incorporating uncertainty quantification into the model, we can systematically pinpoint regions
where model lacks confidence. This capability is critical, as it allows for the intelligent allocation
of resources toward targeted experimental validation and data enrichment, which is essential for
improving the model’s reliability and performance. We compared semantic similarity between the
input embeddings of train-test distributions across several datasets in Figure[3] A similarity score
(indicated in red) is employed as an approximation for how close test data is to training data, and is
estimated by calculating maximum of average cosine similarity (normalized) of each test datapoint
with all training samples. This metric is compared with prediction MAE for the respective train-test
subset (in blue). These subsets were not random splits, but were instead carefully curated to represent
a different testing scenario than the ones used in the previous section. Our evaluations confirm there
is an inverse relationship between prediction MAE and semantic proximity of test data to the training
samples.
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These trends yield a linear relationship M AE = m.Similarity + c that estimates the approximate
M AE of model predictions on new data points by quantifying their Similarity to the model’s
training data. The slope (m) and intercept (c) for analyzed datasets are presented in Table[5] This
approach enables systematic assessment of prediction uncertainty and confidence for new data,
thereby supporting efficient screening in materials design and discovery.

(a) HOMO (b) ITonic Conductivity

ness to Training Data

Test Subsets Test Subsets

©) Contact Angle @

Specific Capacity

aining Data

to Tra

Test Subsets Test Subsets

Figure 3: Relationship between prediction MAE (in blue) and chemical similarity (in red) between
train and test datasets.

4.3 Foundation model interpretability

A widely embraced strategy in materials discovery involves interpreting chemical data into useful
knowledge and chemical insights, uncovering conclusive design rules and trends for decision making
(26} 27). The efficacy of this approach is maximized when it leverages accurate empirical data
or highly reliable model-generated outputs spanning the intended design landscape. However,
interpretability is frequently hindered by the intrinsic opacity of Al models, which predominantly
operate as “black boxes” with internal mechanisms that remain inaccessible to researchers. This
challenge is further exacerbated as training pipeline grow in complexity, for instance, input features
are derived from transformer model and post processed before the training (17). Quantifying model
uncertainty in new material regions can facilitate users in identifying scope of the model. However,
application of these models to uncover material design rules for interpretability remains a persistent
challenge.

To evaluate interpretability of proposed foundation model derived predictors, we investigate cor-
relation of performance outcomes with chemical moieties in the datasets and compare trends in
train and test subsets. First, a list of several potential chemical substructures and their SMARTS
(SMILES Arbitrary Target Specification) string is devised (28). Over 550 chemical substructures are
defined including general and specific moieties. For instance, amine is a general functional group
of material containing Nitrogen atom with lone pair of electrons, and specific derivatives for the
same include aromatic amine, heterocyclic amine, tertiary amine etc. Chemical moieties in molecules
are identified by matching SMARTS and presence of every moiety is indicated by a bit in a fixed
length vector. This vector is taken as molecular fingerprints and aggregated for constituents in each
formulation by composition scaling and addition to represent concentration of each chemical moiety
in a formulation. We adopt Spearman’s correlation coefficient (SCC) (29) to determine strength
and direction of monotonic relationship between chemical moieties in the dataset and the outcome
performance. The analysis provides meaningful insights towards the positive or negative influence of
a chemical moeity in the formulation towards the outcome. Analysis is performed for data used in
training and test set to correlate moieties to actual outcomes. Simultaneously, the analysis is also
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extended to the outcomes predicted by the trained model for the very same test set. Figure ] illustrates
these correlations in three formulation datasets CE, Lil capacity and IC.

Comparison of correlation analysis for model prediction outcomes and actual performance within
test sets is meant to demonstrate the capability of model in deriving sound chemical insights across
unseen datapoints. Particularly in Figured examples highlighted in green illustrate cases where the
correlations in the training and test datasets were opposite, and the model correctly predicted the
opposing trends. Instances highlighted in yellow represent scenarios where the model accurately
identified chemical trends for the outcome, despite these trends being absent from the training data.
Cases highlighted in pink show perfect alignment among all three correlations. The remaining
instances in white indicate correlations that the foundation model misinterpreted. This analysis
reveals the chemical insights misunderstood by the model and allows users to selectively apply these
models for design interpretation and discovery within a chemical space where confidence is justified.
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Figure 4: Correlation of chemical functional groups in formulations with performance in train
(orange) - test (blue) dataset, compared with correlation to the predicted outcomes (green) in test
data.

5 Conclusion

In this study, we evaluated the scope of foundation models in addressing material design challenges
across multiple length scale in batteries: molecules, formulations and device. Open source SMI-TED
model is used to encode molecular representations, then combined with other variables such as
compositions, temperature, electrode and separator variations. The results showcase models like
SMI-TED can be used to extrapolate learning from moiety-level interactions to macroscopic outcomes
such as specific capacity, surface characteristics, and battery performance using both simulation
and scarce empirical datasets. Results highlight that foundation model outperform alternatives
methods especially in low data regimes. The study also presents methods to analyze model’s ability
to generalize out of distribution (OOD) and quantify model prediction errors across new material
designs that are dissimilar to the training datasets. Lastly, we evaluate interpretability of these models
and suggest users to selectively apply these models for design interpretation and discovery within a
chemical space where confidence is justified.
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A Supplementary Material

A.1 Solubility Data Collection

Single salt- single solvent solubility assessment: A dataset of binary system containing single salt and
a single organic solvent was collected experimentally in the laboratory. The dataset spans five most popular
electrolyte salts, LINO3, LiFSI, LiBOB, LiFOB, and LiPF6, and up to fifty organic solvents. The experiments
were conducted in an inert glovebox (Argon, < 0.1 ppm H20 and O2) and all salts were dried on a hotplate at
150 °C, except for LiFSI and LiPF6 , which were used as received due to their lower thermal stability. Solvents
were dried over 3A molecular sieves for at least 24 hours prior to use. An upper salt concentration limit of 2M
was set during the data collection. Salts were weighed to make 2M solution and the respective organic solvent
was then added to decrease the concentration by a 0.25M interval until the solutions were visually clear without
any precipitation or undissolved materials. The salt-solvent combination was considered insoluble if the solution
was not clear at 0.25M concentration.

Single salt- Multi solvent solubility assessment: The dataset has measurement of highest molar
concentration of single salt dissolved in mixture of organic solvents. The four salts, LiCl, LINO3, LiTFSI and
LiBOB, are individually dissolved in solvent formulations containing different compositions of EC, G4, DMI
and DOL. The solubility measurements were made as per the method described above.

Multi salt-multi solvent solubility assessment: Conventionally, functioning and high-performing
electrolytes are published in literature (3;17;16) along with a few "failed" non miscible electrolytes (17;113). We
curated 300 electrolyte formulations from these studies. Simplification of solubility metric to (0) or (1) enabled
inclusion and test across widespread electrolyte dataset. The combined dataset contained rich diversity of salts,
solvents and electrolyte mixtures.

The solubility of single salt- single solvent pairs and single salt- multi solvent formulations were measured in
terms of highest soluble molarity of the salt. To further add context to the solute molarity noted as metric in
empirical dataset, data augmentation was done to interpolate solubility of target salt in each respective solvent
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system to include soluble (1) datapoints below highest soluble molarity, and insoluble (0) datapoints above
recorded metric until the tested molarity. Next, the constituent moles in each formulation system were converted
to molar percentage (mole%). Post processings, there are 3300 electrolyte formulation vs solubility data that is
used in the study.

A.2 Contact Angle Experiments

Electrolyte formulations are prepared inside an Ar-filled glove box (<1 ppm 02, <1 ppm H20). Prior to mixing,
solvents that are liquid at room temperature are dried using molecular sieves (Millipore Sigma, 3 ) and salts are
dried on a hot plate at 100 °C. Electrolytes are mixed for 24 hrs prior to contact angle measurement. Contact
angle measurements were conducted using an OCA video-based contact angle goniometer (FDS Future Digital
Scientific Corporation) employing the sessile drop technique. Prior to measurement, the separator was carefully
placed on a flat silicon wafer substrate to ensure a uniform surface. A 2L droplet of electrolyte was then
dispensed onto the separator surface and allowed to equilibrate for 800ms. Image analysis was performed on
a selected video frame by manually defining the baseline and applying an ellipse-fitting algorithm to achieve
optimal conformity to the droplet profile. The reported static contact angles represent the average of 3-5
independent measurements. All procedures were carried out with minimal air exposure to preserve the integrity
of the electrolyte and ensure reproducibility. A dataset of 119 experiments is constructed using the electrolyte
constituents, their respective concentrations, the experimentally measured contact angle, and a separator label.
There are four different Celgard separators in the dataset.

A.3 Model Training

Neural network (NN) architectures were individually optimized and trained using SMI-TED—derived molecular
embeddings or formulation descriptor. NN with 2 or 3 hidden layers, with nodes 500-250-100 or 500-250, and
activation function relu was found optimum. Model was trained with learning rate 0.0001, factoring 0.5 every
200 epochs of no reduction in loss function. The model was trained for maximum of 2500 epochs or until 200
iterations of no improvement in validation loss. Batch size was varied based on data size. For datasets < 200,
batch size was kept 1, batch size was 12 for <5000, and for >5000 batch size of 32 was used. Regression loss
was measured using mean squared error (MSE) and mean absolute error (MAE) was the used metric. For binary
classification of electrolyte solubility, binary cross entropy was the loss function and accuracy was the metric.

Table 1: Tuning neural network hyperparameters for SMI-TED predictors
Dataset Hidden layers Activation Function = MAE

LCE 500-250-100 relu 0.17
LCE 500-250 relu 0.16
LCE 500-250 sigmoid 0.32
LCE 500-250-100 sigmoid 0.32
LCE 500-250-250 relu 0.16
LCE 500-500 relu 0.17
LCE 250-100 relu 0.16
IC 500-250-100 relu 0.08
IC 500-250-100 sigmoid 0.22
IC 500-250 relu 0.09
IC 500-500 relu 0.10
IC 250-250-250 relu 0.08
IC 700-700 relu 0.11
IC 500-250-100-50 relu 0.08
HOMO 500-250-100 relu 0.43
HOMO 500-250-100 sigmoid 0.44
HOMO 500-250 relu 0.44
HOMO 250-100 relu 0.44
HOMO 500-500-500 relu 0.44
HOMO 250-250-250 relu 0.44

A.4 Foundation model performance for downstream tasks

For each dataset, NNs were trained using five independent 80%-20% train—test splits, and prediction errors were
quantified using the mean absolute error (MAE) metric.
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Table 2: Mean squared error (MSE) for property prediction using SMI-TED

Dataset

Reduction Potential
Oxidation Potential

Tonic Conductivity

MSE
Fine-tuning  Transfer learning
0.65 0.68
0.13 0.14
0.155 0.025

Table 3: Mean absolute error (MAE) and prediction accuracy (%) across multiple train-test splits for
the battery datasets using SMI-TED embeddings

Split Oxidation = Reduction = HOMO LUMO Solubility 1C Contact Angle  Lil Capacity CE Li-ICI Capacity
MAE Units eV eV eV eV Accuracy % Log Degrees mAh/g Log mAh/g
1 0.2519 0.5870 0.4421 0.3673 93.80 0.0986 16.556 22.078 0.170 50.66
2 0.2547 0.5881 0.4374 0.3661 94.11 0.0871 15.610 29.904 0.185 55.19
3 0.2560 0.5842 0.4460 0.3688 92.29 0.1001 17.053 19.501 0.204 43.87
4 0.2609 0.5795 0.4404 0.3645 93.35 0.0867 9.937 15.348 0.192 50.46
5 0.2564 0.5741 0.4367 0.3651 91.99 0.0812 22.063 25.417 0.175 39.60
Average 0.2559 0.5825 0.4405 0.3663 93.11 0.0910 16.243 22.449 0.185 47.93

Table 4: Mean absolute error (MAE) and prediction accuracy (%) across multiple train-test splits for
the battery datasets using Morgan Fingerprints

Split Oxidation  Reduction = HOMO LUMO Solubility IC Contact Angle  Lil Capacity CE Li-ICI Capacity
MAE Units eV eV eV eV Accuracy % Log Degrees mAh/g Log mAh/g
1 0.2563 0.5895 0.4617 0.3781 93.80 0.0648 16.876 29.940 0.199 9.77
2 0.2598 0.5922 0.4552 0.3762 94.86 0.0673 18.521 34.550 0.228 49.87
3 0.2608 0.5885 0.4572 0.3734 93.05 0.0633 17.355 27.848 0.244 17.16
4 0.2638 0.5773 0.4576 0.3720 93.95 0.0598 12.889 15.513 0.199 46.42
5 0.2580 0.5798 0.4587 0.3737 93.20 0.0597 23.438 37.101 0.244 37.97
Average 0.2594 0.5854 0.4580 0.3746 93.77 0.0629 17.815 28.990 0.223 32.24

Table 5: Parameters to estimate mean absolute error (MAE) in model prediction based on similarity

between test-train data

Datasets Slope(m) Intercept(c)
HOMO -0.1602 0.5699

Tonic Conductivity | -0.5724 0.6377
Contact Angle -19.6820 0.7601
Specific Capacity -24.9776 33.2050
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