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ABSTRACT

Large Language Models (LLMs) can encode complex relationships in their latent
spaces, yet harnessing them for optimization under uncertainty remains challeng-
ing. We address this gap with a novel architecture that reframes LLM finetuning
as Gaussian process (GP) marginal likelihood optimization via deep kernel meth-
ods. We introduce LLM-based deep kernels, jointly optimized with GPs to pre-
serve the benefits of both – LLMs to provide a rich and flexible input space for
Bayesian optimization and – GPs to model this space with predictive uncertainty
for more efficient sampling. Applied to Buchwald-Hartwig reaction optimization,
our method nearly doubles the discovery rate of high-performing reactions com-
pared to static LLM embeddings (from 24% to 43% coverage of the top 5% reac-
tions in just 50 optimization iterations). We also observe a 14% improvement over
domain-specific representations without requiring specialized features. Extensive
empirical evaluation across 19 benchmarks – ranging from general chemistry to
reaction and molecular property optimization – demonstrates our method’s robust-
ness, generality, and consistent improvements across: (1) tasks, (2) LLM archi-
tectures (encoder, decoder, encoder-decoder), (3) pretraining domains (chemistry-
related or general-purpose) and (4) hyperparameter settings (tuned once on a sin-
gle dataset). Finally, we explain these improvements: joint LLM-GP optimiza-
tion through marginal likelihood implicitly performs contrastive learning, aligning
representations to produce (1) better-structured embedding spaces, (2) improved
uncertainty calibration, and (3) more efficient sampling – without requiring any
external loss. This work provides both practical advances in sample-efficient op-
timization and insights into what makes effective Bayesian optimization.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities in natural language un-
derstanding and generation (Vaswani et al., 2017; Devlin et al., 2018; Radford et al., 2018; Wei et al.,
2022). Their success stems from an ability to learn rich representations of text that capture subtle
patterns, relationships, and domain-specific knowledge (Petroni et al., 2019; Brown et al., 2020).
This representational power has naturally led to growing interest in adapting LLMs beyond general
language tasks to specialized domains – from scientific discovery to reasoning tasks (White, 2023;
Boiko et al., 2023; M. Bran et al., 2024; Hayes et al., 2025; Guo et al., 2025). However, despite their
expressive capabilities, LLMs exhibit fundamental limitations in reliability. Even in their primary
domain of text generation, they can produce overconfident yet factually incorrect outputs through
hallucination (Maynez et al., 2020; Peng et al., 2023; Huang et al., 2025). In high-stakes fields
like drug discovery, materials design, or automated reasoning, such failures carry critical real-world
risks, making principled uncertainty quantification essential (Schweidtmann et al., 2018; Tavazza
et al., 2021; Mervin et al., 2021; Pomberger et al., 2022; Müller et al., 2022; Torres et al., 2022;
Hickman et al., 2022).

In this context, Bayesian optimization (BO) (Kushner, 1962; 1964; Garnett, 2023) has emerged as
a powerful strategy for optimizing expensive-to-evaluate functions by efficiently balancing explo-
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ration and exploitation (Eyke et al., 2020; Shields et al., 2021; Felton et al., 2021; Häse et al., 2021a;
Guo et al., 2023). BO typically employs Gaussian Processes (Williams & Rasmussen, 2006) (GPs)
due to their principled uncertainty estimates, interpretable confidence bounds and well-calibrated
predictions even in low-data regimes. This property of GPs is particularly valuable in domains that
demand sample-efficient optimization of complex (e.g., analytically intractable) objectives – as is
often the case in chemistry. Recent works have begun exploring LLMs for Bayesian optimization,
either as feature extractors for surrogate models (Ranković & Schwaller, 2023) or through sequential
LLM finetuning with post-hoc uncertainty quantification (Kristiadi et al., 2024). While promising,
these methods either underutilize LLMs’ adaptation capabilities or decouple predictive performance
from uncertainty estimation, limiting their optimization effectiveness.

We introduce GOLLuM (Gaussian Process Optimized LLMs), a framework that seamlessly inte-
grates LLMs into the GP architecture through Deep Kernel Learning (DKL) (Wilson & Nickisch,
2015; Wilson et al., 2016). Rather than using LLMs as sophisticated encoding tools (via embed-
dings) or lookup-tables (via prompting), our approach directly employs the GP marginal likelihood
as LLM finetuning objective. The resulting method provides a bidirectional feedback loop: the GP
guides updates to LLM weights to produce more effective embeddings, which in turn enhance the
GP’s probabilistic modeling. Through GP marginal likelihood optimization, the LLM embeddings
adapt to follow a key principle: points with similar function values should be close in the embed-
ding space, aligning with the similarity structure imposed by the GP kernel. This strategy inherently
induces a contrastive learning effect (Kaya & Bilge, 2019) enabling the model to naturally organize
the design space points into distinct regions – the good (high objective function values), the bad (low
objectives), and the ugly 1. The clear separation in the latent space improves the optimization perfor-
mance by enabling more effective exploration while the joint training helps maintain well-calibrated
uncertainty estimates, despite potential kernel misspecifications.

Our framework is agnostic to the specific LLM architecture or its pretraining, effectively adapting
any general-purpose LLM into a powerful optimization tool with rigorous uncertainty quantification.
We evaluate our approach within the chemistry domain, where expensive evaluations and vast design
spaces pose crucial bottlenecks to progress in drug discovery and materials science (Guo et al., 2023;
Taylor et al., 2023). In this context, our method’s ability to efficiently navigate complex optimization
spaces with principled uncertainty guidance has the potential to accelerate scientific discovery.

Our key contributions include:

1. GOLLuM: The first jointly trained LLM-based deep kernel GP architecture. We
introduce the first end-to-end framework that integrates LLM capabilities with Gaussian
processes via marginal likelihood, enabling principled Bayesian optimization. We demon-
strate and formalize how GP marginal likelihood optimization induces contrastive structure
in the embedding space – separating regions by performance – without any explicit con-
trastive loss. This unified approach provides an alternative to domain-specialized models
or representations while producing interpretable latent space structures.

2. Empirical insights into representation factors that enable successful high-dimensional
BO. Through systematic analysis of 14 fixed LLM and chemistry-specific representations,
we quantify how representation structure influences BO success. We find that optimization
success strongly correlates (r = 0.92) with a normalized smoothness metric capturing the
alignment between the GP’s inductive bias and the structure of the representation space.
Representations that support smooth yet calibrated surrogate fits enable more principled
exploration and lead to better BO outcomes.

3. Robust generalization across diverse chemical tasks. Our approach demonstrates consis-
tently strong performance across 19 diverse chemistry benchmarks, using hyperparameters
tuned on a single dataset. Compared to chemistry-specific representations, fixed LLM em-
beddings, and disjoint finetuning approaches, our method achieves superior exploration of
chemical spaces, better sample efficiency, and generalization. This conclusion is supported
by more than 8,000 experiments.

1Reference to the 1966 film The Good, the Bad and the Ugly, directed by Sergio Leone.
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2 METHODS

2.1 BAYESIAN OPTIMIZATION OVERVIEW

Bayesian optimization is a sample-efficient method for optimizing black-box functions, potentially
expensive to evaluate – a setting common in chemistry, where each experiment incurs substantial
costs. BO works by training a probabilistic surrogate model (typically a GP) on previously observed
data and using it to select new, informative queries via an acquisition function. We provide a detailed
technical overview in Appendix B. The effectiveness of BO depends on the choice of representations
and the quality of the surrogate model – both of which we improve in this work.

2.2 DATA REPRESENTATION

BO performance in chemistry is highly sensitive to the choice of data representation, especially given
the heterogeneous data types (e.g., categorical reagents, numeric conditions, molecular structures),
combinatorial design spaces, and variable numbers of parameters involved – making representation
a critical challenge (Ranković et al., 2024). Natural language offers a flexible medium for express-
ing such optimization problems as textual descriptions, while LLMs can transform these inputs –
regardless of type – into unified continuous embeddings. We construct these embeddings through a
two-step process:

1. Template Construction: We define each task t as a standardized template: t =
template({parameters, values}) where values define the actual conditions of the problem (e.g.,
reagents used in a chemical synthesis). For single-variable tasks (e.g., molecular optimization),
the template reduces to a single textual identifier such as a molecular SMILES string (Anderson
et al., 1987; Weininger, 1988). This approach provides a consistent format applicable across a wide
range of optimization problems.

2. LLM Embedding: We process the templated description through LLMs to obtain a fixed-
dimensional embedding: x = LLM(t) ∈ Rd. This embedding unifies heterogeneous parameter
types and enables compatibility with standard continuous kernels (e.g., Matérn), while preserving
inter-parameter relationships and scaling to variable-length inputs.

The resulting embedding vector x captures both the individual parameter values and their interac-
tions, providing a unified representation for subsequent GP modeling. This approach circumvents
the need for designing specialized kernels, as the LLM embedding space naturally encodes meaning-
ful distances – enabling optimization over mixed categorical and numerical inputs within a contin-
uous space. Moreover, it generalizes to tasks with arbitrary combinations of categorical, numerical
or structural parameters – making it broadly applicable beyond chemistry to domains where design
spaces can be expressed through text.

2.3 GAUSSIAN PROCESS WITH FIXED LLM EMBEDDINGS

LLM embeddings can be directly used as input vectors to GPs, which model the output based on
observed data. In this setup, the embeddings remain fixed throughout the optimization process – fol-
lowing the approach outlined in BoChemian (Ranković & Schwaller, 2023) – and the model’s adapt-
ability comes solely from learning the GP hyperparameters θ. We use a GP prior with a Matérn-5/2
kernel with trainable hyperparameters θ = {ℓ, σ2, σ2

n, c} representing the lengthscale, signal vari-
ance, observation noise variance, and constant mean. This approach relies entirely on the pretrained
LLM’s embedding space to define input structure – specifically, the relative positioning of points
based on their underlying features. The GPs with stationary kernels (such as Matérn-5/2) assume
this structure reflects meaningful relationships: points close together in the embedding space are
expected to have similar outcomes. However, general pretrained LLMs may not reflect chemical
similarities and their representations may not encode the right inductive biases for the task. As a
result, the GP can struggle to model the objective effectively in the fixed-feature setting, unless the
embedding space already captures relevant patterns. This limitation can be addressed through deep
kernel methods, which we describe next.

3



Published as a conference paper at ICLR 2025

2.4 DEEP KERNEL GAUSSIAN PROCESS

Deep kernel Gaussian processes combine the flexibility of deep neural networks with the principled
uncertainty quantification of Gaussian processes. In this approach, the kernel function is composed
with a learned feature transformation:

kθ, ϕ(x,x
′) = kθ(gϕ(x), gϕ(x

′)),

where gϕ is a parameterized feature extractor with parameters ϕ. This composition allows the model
to learn task-specific feature representations while maintaining the probabilistic properties of the
GP framework. The learned transformation and the GP parameters are jointly optimized through the
marginal likelihood where Kθ,ϕ is the kernel matrix computed using the transformed features.

2.5 LLM-BASED DEEP KERNEL

In our framework, we explore different approaches to constructing the feature transformation gϕ(·).

1. Projection Layer: A learned transformation consisting of a linear projection P ∈ Rm×d followed
by a non-linear activation function (ELU), applied to fixed LLM embeddings: gϕ(x) = PLLM(t)
where m is the projection dimension. This setup closely follows standard deep kernel learning with
a trainable transformation applied on top of fixed features before kernel evaluation. It is particularly
useful in settings where LLM weights cannot be accessed, as in the case of closed-source models
from OpenAI. The projection layer learns to emphasize or suppress different aspects of fixed LLM
embeddings, effectively creating a task-specific representation.

2. PEFT-Adapted LLM: Low-rank adaptation of LLM parameters: gϕ(x) = LLMϕ(t) where ϕ
represents the trainable adapter parameters. Parameter efficient finetuning (PEFT) (Houlsby et al.,
2019; Hu et al., 2022; Li et al., 2023a) addresses the challenge of adapting large language models
by updating a smaller (often several orders of magnitude fewer) number of parameters, typically
inserted into or alongside the LLM architecture. We employ Low-Rank Adaptation (LoRA) (Hu
et al., 2022) to preserve potential chemical knowledge captured during pretraining and learn task-
specific adaptations, while avoiding catastrophic forgetting or compromising general capabilities.

3. Combined Approach: Sequential application of LoRA and projection: gϕ(x) = PLLMϕ(t),
thus combining the benefits of both worlds. The LoRA adapters allow the LLM to adapt its internal
representations to the optimization task, while the projection layer provides an additional degree of
freedom to reshape the embedding space.

With any of these methods, we optimize the parameters ϕ (projection matrix and/or LoRA param-
eters) jointly with the GP hyperparameters through the marginal likelihood. In other words, we are
finetuning the LLM through the GP loss which allows the model to learn transformations that both
preserve relevant chemical information, organize the latent space to better reflect the structure of the
optimization objective, and provide well-calibrated uncertainty measures.

2.6 LLM FINETUNING AS GP MARGINAL LIKELIHOOD OPTIMIZATION

Let L(θ, ϕ) denote the GP marginal likelihood of observing targets y given inputs X, LLM param-
eters ϕ, and GP hyperparameters θ:

L(θ, ϕ) = log p(y|X, θ, ϕ) = −1

2
(y⊤K−1

θ,ϕy + log |Kθ,ϕ|+ n log 2π) (1)

To optimize the embedding parameters ϕ jointly with the GP hyperparameters θ, we maximize the
marginal likelihood using gradient-based optimization:

θ∗, ϕ∗ = argmax
θ,ϕ

L(θ, ϕ). (2)

We compute the gradients of the marginal likelihood with respect to the parameters via standard
backpropagation:

∇θ,ϕL(θ, ϕ) =
1

2
y⊤K−1

θ,ϕ (∇θ,ϕKθ,ϕ)K
−1
θ,ϕy − 1

2
Tr
(
K−1

θ,ϕ∇θ,ϕKθ,ϕ

)
. (3)
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We perform the joint optimization with separate learning rates for embedding parameters (ϕ) and
GP hyperparameters (θ) to encourage stable convergence and avoid overfitting of either component.

2.7 IMPLICIT METRIC LEARNING

The explicit feature of GPs to evaluate the similarities in the output based on the distances in the
input space creates a contrastive learning effect for LLM embeddings. This beneficial consequence
arises from the two-fold utilization of the GP marginal likelihood. The kernel function kθ, ϕ(x,x

′) =
kθ(gϕ(x), gϕ(x

′)) measures similarity between points, and optimizing the marginal likelihood (Eq.
1) encourages embedding distances to decrease between points with similar outputs and increase
between points with dissimilar outputs. The contrastive learning effect comes directly from the GP
marginal likelihood optimization. For a kernel based on distances (like Matérn) we can rewrite the
term y⊤K−1

θ,ϕy as a weighted sum of pairwise interactions (with weights wij defined by the inverse
kernel matrix) inducing implicit contrastive learning objective Limplicit:

Limplicit(θ, ϕ) ∝
∑
i,j

wij · ∥gϕ(xi)− gϕ(xj)∥2,
{
∥gϕ(xi)− gϕ(xj)∥2 ↓ if ∥yi − yj∥ is small
∥gϕ(xi)− gϕ(xj)∥2 ↑ if ∥yi − yj∥ is large

(4)

In other words, the joint GP optimization induces high kernel values (small distances) between
points with similar outputs and low kernel values (large distances) between points with different
outputs, therefore separating the embedding space into distinct categories. This reorganization in the
latent space happens automatically through the optimization of the deep kernel parameters, adapting
the feature space to better align with outcomes without requiring explicit contrastive loss terms.

3 RESULTS & DISCUSSION

3.1 BAYESIAN OPTIMIZATION WITH FIXED LLM FEATURES

Figure 1: BO performance with fixed
LLM features as input to GP. Av-
erage discovery of high-impact regions
of the design space. We show per-
centage of the top 5% reactions found
during the optimization, across all five
Buchwald-Hartwig reactions. Domain-
specific representations include T5Chem-
SMILES(Christofidellis et al., 2023), a
pretrained chemistry-related LLM with
SMILES input, and DFRP(Probst et al.,
2022), a reaction fingerprint.

Building on top of BoChemian (Ranković & Schwaller,
2023), we first evaluate the effectiveness of LLM em-
beddings as fixed feature extractors for Bayesian op-
timization of Buchwald-Hartwig (BH) reactions. Our
objective is to optimize the yield of this chemical re-
action. The parameters include reaction compounds
– 15 reactants, 22 additives, 3 bases, and 4 ligands
– totaling a design space of 3955 evaluated reac-
tions, split across five distinct products. We use a
variety of publicly available LLMs selected through
their base architecture: Encoder-based — Modern-
BERT (Warner et al., 2024), UAE (Li & Li, 2023),
MXBAI (Lee et al., 2024); Encoder–Decoder — In-
structor (Su et al., 2022), T5 (Raffel et al., 2020)
and its chemistry-related variant T5Chem (Christofi-
dellis et al., 2023); Decoder–only — Llama series
(Grattafiori et al., 2024; BehnamGhader et al., 2024),
Mistral series (BehnamGhader et al., 2024), Qwen se-
ries (Bai et al., 2023; Li et al., 2023b), and OpenAI em-
beddings (OpenAI, 2024).

In Figure 1 we show the performance of all LLM-based
representations alongside chemistry-specific baselines:
DRFP(Probst et al., 2022) – a reaction fingerprint,
and T5Chem-SMILES(Christofidellis et al., 2023) – a
domain-specialized LLM leveraging reaction SMILES
inputs, aligned with its pretraining. All other represen-
tations, including T5Chem, employ templated textual
procedures, as described previously.
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We use the top 5% coverage metric following 50 BO iterations to evaluate the success of BO in
uncovering entire regions of high-valued reactions rather than a single optimum. The motivation is
two-fold: (1) identifying a single top-performing reaction is of limited practical value, as the yield
difference between the absolute best and other high-performing reactions may be negligible; (2)
discovering entire regions of successful reaction conditions enables chemists to select reactions that
satisfy additional practical constraints such as cost (Schoepfer et al., 2024), environmental impact
(Anastas & Eghbali, 2010) or availability of reagents (Griffiths & Hernández-Lobato, 2020). While
the chemistry-specialized baselines excel at discovering high-yield reactions, they require SMILES
notation as input, limiting their ability to represent diverse reaction conditions beyond molecular
structures.

3.2 WHAT MAKES A GOOD REPRESENTATION FOR BAYESIAN OPTIMIZATION?

Figure 2: Data representations and
their success rates in BO. BO perfor-
mance correlates with GP smoothness,
measured as the ratio of learned length-
scale to average pairwise embedding dis-
tance.

We observe substantial variation in BO performance
across LLM embeddings, prompting analysis of the
underlying factors. T5Chem only performs well
with inputs resembling its pretraining data (e.g., re-
action SMILES), highlighting the limited generality
of domain-specialized LLMs (Kristiadi et al., 2024)
and the critical role of representation choice (Ranković
et al., 2024). This observation suggests that input repre-
sentation influences LLM-based BO through two mech-
anisms: (1) contextual alignment with pretraining helps
models better leverage their learned weights, and (2) the
resulting embedding structure affects how well the GP
can model the objective under a fixed kernel.

To investigate the second effect, we examine how the
embedding space structure interacts with the GP’s in-
ductive bias. Specifically, we compute the ratio be-
tween the GP’s learned lengthscale and the average
pairwise distance between points in the embedding
space. This normalized smoothness ratio reflects how
far the GP is willing to generalize relative to the scale
of the data distribution. As shown in Figure 2 this met-
ric correlates strongly with BO performance (r = 0.92). A higher ratio indicates that the GP can
model the objective with a smoother fit (see Figure 10 in the Appendix), as the embedding space pro-
vides a coherent structure that aligns with the kernel’s assumptions. This alignment allows the GP
to generalize across broader regions while still resolving performance differences, leading to more
effective acquisition decisions. Our analysis complements Papenmeier et al. (2025), who argue that
longer lengthscales only help when the objective varies slowly enough to be captured by a smooth
surrogate. We extend this insight to the representation level, showing that representations inducing
such smoothness naturally – without priors or initialization tricks – enable more effective optimiza-
tion. One might alternatively expect that better GP fit, particularly in high-performing regions, is
the primary driver of BO success. However, as shown in Appendix E.3, standard and weighted R2

correlate less strongly with performance. While predictive accuracy helps, modeling the objective
function and efficiently discovering its optimum are distinct challenges. Our results show that align-
ment between the representation space and the GP’s inductive bias more directly enables principled
optimization.

3.3 BAYESIAN OPTIMIZATION WITH LLM-BASED DEEP KERNELS

These findings motivate moving beyond fixed embeddings toward joint optimization of both the
representation and surrogate model. To address the misalignment between embedding spaces and
GP inductive biases, we explore three variants of our LLM-based deep kernel architecture:

1. PLLM: A projection layer applied to fixed LLM embeddings, allowing task-specific transforma-
tions with frozen LLM weights.
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2. LLMϕ: Direct adaptation of the LLM through parameter-efficient fine-tuning (LoRA), modifying
the internal representation without an additional projection.

3. PLLMϕ: A combined approach that leverages both LoRA adaptation and a projection layer,
providing maximum flexibility in representation learning.

In each variant, the deep kernel LLM-GP optimization through shared marginal likelihood enables
the representation space to dynamically align with the GP’s assumptions. We now present results
supporting this alignment.

Figure 3: Comparative analysis of GP-
based LLM finetuning. The finetuned
models are arranged by the overall perfor-
mance and relative improvements to their
base (fixed embeddings) LLM-GP vari-
ants. Chemistry baselines (previous best)
included for comparison.

GP optimized LLMs as part of the deep kernel
GP architecture lead to substantial improvements in
performance, increasing the discovery rate of high-
performing reactions. Our method consistently outper-
forms static embeddings across all LLM architectures
(Figure 3). PLLMϕ adaptation of base T5 model now
achieves the highest coverage at 42.6%, representing
a 74% relative improvement over the fixed-LLM fea-
tures using the same model (24.45%). Moreover, we
observe a 14% increase over the previous best represen-
tation (DRFP 37.75%) while not requiring constrained
input to reaction SMILES or any domain-specific
parametrization. General-purpose LLMs with GP-
guided finetuning also surpass chemistry-specialized
pretrained LLMs such as T5Chem-SMILES, while us-
ing general input through procedural texts. In con-
trast to previous work (Kristiadi et al., 2024), these re-
sults show that promising BO results can be achieved
without requiring domain-specialized models or in-
puts aligned to their pretraining data. Our model can
adapt the input embeddings on-the-fly allowing for in-
creased flexibility. The improvements of GP-finetuned
LLMs are also consistent across encoder-only (Mod-
ernBERT), encoder-decoder (T5), and decoder-only (Qwen2-7B) architectures. These results vali-
date our earlier analysis on the importance of the alignment between GP’s inductive bias and em-
bedding space structure. In the following section, we analyze how we achieve such alignment.

3.4 IMPLICIT CONTRASTIVE LEARNING AND CHEMICAL INTERPRETABILITY IN THE
LATENT SPACE

The evolution of the embedding space (Figure 4 A and B) illustrates how the GP’s marginal log-
likelihood objective adapts the LLM’s representations during finetuning. Initially, high and low-
performing points are mixed in the embedding space. These unstructured representations would
typically induce a non-smooth GP fit, as the objective function varies quickly even across nearby
points. As optimization progresses, however, the space gradually reorganizes into clearer perfor-
mance regions (Figure 4 B), achieving a contrastive learning effect through distance-sensitive GP
marginal likelihood. The pairwise distance distributions reflect this process – initially overlapping
across high-high, high-low, and low-low regions, they gradually separate. This separation is both
mathematical and semantical, reflecting the model’s ability to learn chemical relationships that im-
prove optimization (Figure 4 D).

The joint adaptation – with updated LLM embeddings and smoother GP fit, offers greater flexibility
than using frozen features. As the structure forms, high-yield reactions become clustered, enabling
the GP to guide the acquisition function toward promising regions. Variance estimates remain well-
calibrated across the space (visualized with point sizes in Figure 4B), supporting reliable exploration.

Moreover, the learned structure supports interpretability. For instance, in Figure 4D, high-yield
iodide-based reactions are consistently separated from lower-yield chloride-based ones. This sepa-
ration reveals meaningful chemical patterns learned by the model, and highlights how the embedding
space captures domain-relevant knowledge that can aid downstream decision-making.
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Figure 4: Implicit contrastive learning effects with LLM-based deep kernel GPs. A) We ob-
serve the progression of the embeddings through pairwise distance histograms of points in separate
output classified regions (high yield reactions, low yield reactions, in between). B) Additionally we
visualize the new latent space during the optimization procedure in the first, 25th, and last iterations.
C) General approach to implicit contrastive learning with GP+LLM architecture. D) Chemical in-
terpretability of the learned latent space. The first three panels show the distribution of reaction
outcomes for different reactants (I, Br, Cl aryl halides) across the whole design space (including
base-ligand and additive conditions) with colors indicating reaction performance (yield). Follow-
ing is the projection of the latent space, where we observe reactions clustering based on their aryl
halide identity, suggesting that the model captures meaningful chemical relationships. The rightmost
section represents the chemical design space of Buchwald-Hartwig reactions used in experiments.

3.5 ADDITIONAL BENCHMARKS AND UNCERTAINTY CALIBRATION

Finally, we evaluate our model on a variety of optimization tasks in chemistry, from reaction and
molecular optimization to the optimization of chemical processes. We provide additional details on
the datasets in the Appendix D. All experiments in this and previous sections were run with 10 initial
points (randomly selected from the lower median) and 50 BO iterations of batch size 1 (Appendix
F).

We compare our results to several related benchmarks: (1) Standard GP with domain-specific rep-
resentations (DRFP for reactions, molecular fingerprints for property optimization, and vectorized
parameters where neither of these are available, as in the case of general chemistry processes opti-
mization tasks). (2) BoChemian (Ranković & Schwaller, 2023) which uses fixed LLM embeddings
as input to a standard GP. (3) LAPEFT (Kristiadi et al., 2024) which updates the LLM through
supervised finetuning with MSE loss and employs Laplace approximation (LA) for probabilistic
modeling. A comprehensive visualization of the different methods is available in Figure 5 A. Hav-
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Figure 5: Benchmarking on various chemistry-related optimization tasks with comparisons to
related approaches. A) Visualization of our proposed architectures alongside available previous
works (BoChemian (Ranković & Schwaller, 2023), LAPEFT (Kristiadi et al., 2024)) and standard
GP baseline. B) Optimization results on 19 chemistry-related optimization tasks – 2) reaction op-
timization (5 Buchwald Hartwig reactions, 4 additive screening reactions, Suzuki Miyaura cross-
coupling); 4) general chemistry benchmarks (high-performance liquid chromatography – HPLC
setup, oxygen evolution reaction catalysts – OER, vapor diffusion crystallization – Vapdiff, C2 yield
optimization (Ramos et al., 2023)) and 4) molecular property optimization. To ensure a fair com-
parison to LAPEFT we add their best base model (T5Chem with SMILES input) and fix the textual
representation to SMILES where possible (BH1-BH5, Additives 1-4, Suzuki-Miyaura, Molecular
optimization). However, we note our model’s robustness to a variety of textual input and compare
different textual representation of BH reactions (reaction SMILES or textual procedure in B1). For
datasets where reaction SMILES are not available (C2 yield, HPLC setup, OER, Vapdiff) we show
an example of applied template. C) Predictive (R2) and uncertainty estimates (negative log predic-
tive density – NLPD) on BH reactions (60 training points, 20 repeats) together with average (across
all tasks) optimization performance (top 5% coverage) against benchmarked models.
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ing previously shown PLLMϕ outperforming other variants (PLLM, LLMϕ) we select this approach
for all subsequent benchmarking. To ensure a fair comparison to LAPEFT, which states T5Chem
with SMILES as the best-performing model, we additionally include this model next to its base
variant T5.

Motivated by the insights outlined in (Kristiadi et al., 2024) we first analyze how the different tex-
tual representations influence our model’s performance. For this analysis we compare the results on
inputs represented through reaction SMILES or template procedure on BH1-BH5 reactions. We do
observe a slight preference of general T5 model to general procedure text and a similar improvement
of T5Chem with the structured reaction SMILES compared to a more general input (simplified pro-
cedure – Figure 5 B1). However, these differences are still negligible compared to the improvement
over fixed features (BoChemian) demonstrating the robustness of our approach to different textual
representations (SMILES vs procedure) and LLM pretraining (T5 vs T5Chem). Our method aligns
the input through the joint LLM-GP optimization resulting in both adaptive LLM weights – remov-
ing the need for domain-pretrained models, and adaptive representations – removing the dependency
on the pretraining data format.

Averaged across all benchmark datasets, our approach yields superior performance compared to
all baseline models: (1) standard GP optimization in parameter space with domain-specific repre-
sentations, (2) fixed LLM features (BoChemian (Ranković & Schwaller, 2023)) and (3) Bayesian
neural network (BNN) surrogates with decoupled supervised finetuning (LAPEFT(Kristiadi et al.,
2024)). These improvements are particularly evident in reaction optimization tasks, where our
method consistently outperforms across all reaction types (Buchwald-Hartwig, Suzuki-Miyaura, and
additive screening). These tasks typically involve complex combinatorial spaces, which highlights
our method’s ability to effectively model structured chemical domains. Moreover, by represent-
ing the data through text, we eliminate the need for specialized featurization techniques, reducing
reliance on expert-designed features that may be costly to compute. Unlike standard approaches
that require careful handling of mixed parameter spaces – deciding between categorical, continuous
or domain-engineered features – our method integrates all information in a unified, flexible rep-
resentation. Compared to the previous approach with fixed LLM features we observe an overall
23% increase in covering the high-output regions demonstrating that joint GP-LLM optimization
results in a better strategy. We are also able to select more than double high-performing design set
points (114% more) compared to LAPEFT (Kristiadi et al., 2024). This substantial improvement
suggests that the approach of supervised finetuning combined with post-hoc BNNs is actually detri-
mental to performance, as we observe fixed features with T5 outperforming LAPEFT-T5 in 85% of
benchmarks. On the other hand, LAPEFT tends to leverage domain-specialized models (pretrained
T5Chem) showing better performance between the two in almost all benchmarks. Our model, how-
ever, outperforms both the LAPEFT-T5 and LAPEFT-T5Chem in all optimization tasks while not
requiring pretrained domain-specific models. This result demonstrates the power of LLM finetuning
through GP marginal likelihood, as we are able to transform any general LLM to a domain-specific
optimizer without task-related pretraining. We support this claim with a comparable performance
between PLLMϕ method on both T5Chem and its base T5 version in almost all benchmarks while
only using domain-specific textual representation (SMILES). Moreover, our method performs well
across all tasks (reaction, molecular, and process optimization) ranking first in 50% of benchmarks
or second in the remaining 50%. In optimization problems where we rank second, the gap can
often be attributed to a strong alignment between the task and domain-specific features. For ex-
ample, molecular fingerprints perform well for solvation energy prediction, where structure-based
encodings may better suit the objective, while fixed embeddings from pretrained chemistry models
(T5Chem) outperform on HPLC and C2 yield – likely due to prior knowledge already embedded in
the model. Nonetheless, our method remains consistently competitive across all problems, demon-
strating its versatility with (1) different LLM models, (2) textual input formats, and (3) a wide range
of optimization tasks – all under a single, robust set of hyperparameters.

4 CONCLUSION

This work presents a novel method that reframes LLM finetuning through Bayesian optimization,
demonstrating how joint training with Gaussian processes can substantially improve the utility of
LLM embeddings for optimization tasks. By leveraging the GP marginal likelihood optimization
alongside the representational power of LLMs, we achieve four key benefits: implicit metric learning
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in the embedding space, principled uncertainty quantification, more effective sampling of promising
regions, and seamless adaptability across diverse domains and tasks using readily available LLMs.

Our approach directly addresses two fundamental challenges in BO: (1) designing meaningful rep-
resentations, which we solve through adaptive LLM embeddings that evolve during optimization,
and (2) selecting appropriate kernels, which we handle via deep kernel learning that jointly adapts
both the representation space and kernel parameters to the specific task.

By merging LLMs as an integrated part of GPs through deep kernel learning, we enable a structured
organization in the embedding space, creating representations that better support sample-efficient
optimization. This process occurs without explicit contrastive learning objectives, emerging instead
from the GP’s need to model the objective function under uncertainty with trainable LLM input.
The consistent improvement across different LLM architectures suggests we have identified a fun-
damental principle for adapting general pretrained models to specific optimization tasks.

With GP optimized LLMs we offer a principled alternative to prompt-based methods that currently
dominate LLM applications. Rather than relying on closed-source model behavior and instruction
heuristics that often lack reproducibility, we align the internal representations of LLMs with the
requirements of uncertainty-aware decision-making – a critical need in real-world scientific and
engineering applications.

Our results across 19 diverse chemical optimization problems demonstrate practical benefits over
(1) GP optimization with domain-specialized features (2) static LLM embeddings and (3) decoupled
supervised finetuning approaches. These improvements, combined with maintained uncertainty cal-
ibration, suggest promising applications beyond chemistry in domains where sample efficiency is
crucial and data collection is expensive.

ACKNOWLEDGMENTS

We would like to acknowledge Ryan-Rhys Griffiths and Joshua Sin for their invaluable insights,
feedback, and constructive discussions throughout this study.

This publication was created as part of NCCR Catalysis (grant number 225147), a National Centre
of Competence in Research funded by the Swiss National Science Foundation.

CODE AND DATA AVAILABILITY

Code and data available at https://github.com/schwallergroup/gollum.

REFERENCES

Dhruv Agarwal, Manoj Ghuhan Arivazhagan, Rajarshi Das, Sandesh Swamy, Sopan Khosla, and
Rashmi Gangadharaiah. Searching for optimal solutions with llms via bayesian optimization. In
The Thirteenth International Conference on Learning Representations.

Garvit Agarwal, Hieu A. Doan, Lily A. Robertson, Lu Zhang, and Rajeev S. Assary. Discovery
of energy storage molecular materials using quantum chemistry-guided multiobjective bayesian
optimization. Chemistry of Materials, 33(20):8133–8144, October 2021. ISSN 1520-5002. doi:
10.1021/acs.chemmater.1c02040.
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Jeff Guo, Bojana Ranković, and Philippe Schwaller. Bayesian optimization for chemical reactions.
Chimia, 77(1/2):31–38, 2023.
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Riley Hickman, Jurgis Ruža, Loı̈c Roch, Hermann Tribukait, and Alberto Garcı́a-Durán. Equipping
data-driven experiment planning for self-driving laboratories with semantic memory: case studies
of transfer learning in chemical reaction optimization. ChemRxiv, 2022.

13

https://openreview.net/forum?id=vzrA6uqOis
https://openreview.net/forum?id=vzrA6uqOis


Published as a conference paper at ICLR 2025

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
models: Principles, taxonomy, challenges, and open questions. ACM Transactions on Information
Systems, 43(2):1–55, 2025.

John PA Ioannidis. Why most published research findings are false. PLoS medicine, 2(8):e124,
2005.

Kevin Maik Jablonka, Philippe Schwaller, Andres Ortega-Guerrero, and Berend Smit. Leverag-
ing large language models for predictive chemistry. Nature Machine Intelligence, 6(2):161–169,
2024.

Donald R Jones. A taxonomy of global optimization methods based on response surfaces. Journal
of global optimization, 21:345–383, 2001.

Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of expensive
black-box functions. Journal of Global optimization, 13:455–492, 1998.
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A RELATED WORK

Adapting LLMs to specialized tasks through finetuning typically optimizes for predictive accuracy
(Jablonka et al., 2024; Xie et al., 2023). Such domain adaptation neglects the dimension of epistemic
uncertainty to indicate when model outputs should not be trusted. In this context, the challenge of
extracting reliable uncertainties from LLMs for efficient BO has introduced diverse approaches that
fall into four categories.

(1) Prompt-based methods like BOLIFT (Ramos et al., 2023), estimate uncertainty by aggregat-
ing multiple LLM responses, while LLAMBO (Nguyen et al., 2024) queries LLMs as optimizers.
(2) Embedding-based methods, such as BoChemian (Ranković & Schwaller, 2023), model GPs on
static LLM representations. (3) Surrogate conversion models either predict uncertainty through pre-
trained in-context regressor (Nguyen et al., 2024) or transform LLMs into Bayesian neural networks
through PEFT and Laplace approximation (LAPEFT (Daxberger et al., 2021) following Bayesian
LoRA approach (Yang et al., 2023)). (4) Hybrid approaches like BOPRO (Agarwal et al.) combine
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fixed LLM embeddings for GP-based acquisition optimization with prompt-conditioned LLM gen-
eration, using in-context examples to explore the solution space. While promising, these methods
face limitations from heavy prompt engineering to post-hoc uncertainty fixes. Our approach offers a
solution by integrating uncertainty modeling during training within both the LLM and the surrogate
model (GP) through LLM-based deep kernel strategy.

Previous works on integrating LLMs and GPs (Ranković et al., 2024; Ramos et al., 2023; Ranković
& Schwaller, 2023; Kristiadi et al., 2024) for chemical optimization primarily use LLMs as fixed
feature extractors. Despite LLM’s flexibility in converting diverse parameters into fixed-dimensional
representations, these approaches essentially reduce their power to sophisticated encoding tools.
The static embeddings struggle to match, let alone surpass, carefully engineered domain-specific
features, creating an artificial barrier between LLM expressiveness and GP rigor.

The closest related approach to ours is the one by Kristiadi et al. (2024). It incorporates supervised
LLM finetuning during optimization (for better prediction), followed by post-hoc Laplace approxi-
mation of learned weights (for uncertainty estimates). The sequential approach however, decouples
uncertainty quantification from the learning process and optimizes for prediction accuracy (lower
MSE loss) rather than optimization itself. Our method fundamentally differs by integrating LLMs
directly into the GP framework as a deep kernel, making uncertainty quantification an integral part
of the optimization objective through the GP marginal likelihood.

Existing deep kernel methods (Singh & Hernández-Lobato, 2024; Chen et al., 2022) in chemistry
constrain to using graph neural network kernels and domain specific representations. Advancing
this concept, we demonstrate that LLM-based kernels provide richer embedding space and easier
adaptation to various domains. In the latent space optimization, our approach relates to BO with
variational autoencoders (VAEs). For example, (Griffiths & Hernández-Lobato, 2020) use VAE-BO
for constrained optimization of molecules while (Grosnit et al., 2021) introduce explicit deep metric
learning to structure the latent space. We elevate this approach by replacing pretrained VAEs with
general purpose LLMs. Moreover, our joint optimization induces implicit metric learning, directly
structuring the latent space without the need for explicit contrastive objectives. Importantly, deep
kernel learning in low-data regime has long been considered challenging due to issues like overfit-
ting and training instability (Ober et al., 2021), with some approaches opting for coordinate ascent
or bi-level optimization strategies to mitigate these issues (Stanton et al., 2022; Chen et al., 2022).
In contrast, we build a robust and stable training pipeline using standard backpropagation with sep-
arate learning rates for the LLM and GP components, avoiding the need for complex optimization
schedules or custom regularization.

Operating in high-dimensional BO (HDBO) spaces (768 features with BERT-based models, 4096
with larger decoder types), our work demonstrates successful optimization that challenges conven-
tional assumptions about HDBO limitations (Frazier, 2018). Through our empirical analysis, we
identify key principles for effective HDBO: embeddings should structure following the GP’s in-
ductive bias. This organization of the embedding space plays a crucial role in overcoming dimen-
sionality challenges that have traditionally constrained BO approaches. Recent work on HDBO has
identified vanishing gradients in GP training and acquisition optimization as a key challenge, and
proposed solutions based on informed lengthscale priors and local search heuristics (Papenmeier
et al., 2025). Our approach complements this line of work by focusing on the structure of the rep-
resentation space itself, showing that smoothness and generalization can emerge naturally when the
embedding is well-aligned with the GP kernel. Our observations contribute to emerging approaches
in understanding and improving HDBO performance (Papenmeier et al., 2025; Xu et al., 2025).

Within chemistry, high-dimensional features are the default (one-hot encodings (Chuang & Keiser,
2018), fingerprints (Rogers & Hahn, 2010; Schneider et al., 2015; Capecchi et al., 2020; Probst et al.,
2022; Schwaller et al., 2021) quantum mechanical descriptors (Ahneman et al., 2018; Shields et al.,
2021)) but their selection remains challenging (Ranković et al., 2024). We overcome this problem
through unified representation learning as an implicit objective of the optimization strategy itself. As
a result, we achieve adaptive features for any optimization at hand, without requiring traditionally
used expert-based descriptors.
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B TECHNICAL BACKGROUND

B.1 BAYESIAN OPTIMIZATION

Bayesian optimization (BO) is a suitable method for optimizing expensive-to-evaluate functions
with unknown analytic form or gradients. Such problems are common in chemistry where exper-
imental evaluations are often costly, time-consuming, and only available through real-world lab
experiments. The primary objective of BO is to find:

x∗ = argmax
x∈X

f(x) (5)

where f : X → R is the objective function over domain X . In practical chemistry applications,
we often work in a constrained domain Xpool with limited set of possible experimental conditions or
molecular structures (e.g., feasible reaction conditions, available reagents or compound libraries).
The optimization objective may involve maximizing reaction yield or selectivity, or minimizing
properties such as reaction time, cost or toxicity.

B.2 SEQUENTIAL DECISION PROCESS

Bayesian optimization operates as a sequential decision-making process that balances exploration
and exploitation. Key components include (1) a probabilistic surrogate model of the underlying
objective function f and (2) an acquisition function α. The acquisition function guides the opti-
mization process by proposing subsequent evaluation points. Common choices include expected
improvement (EI (Jones et al., 1998)), probability of improvement (PI (Jones, 2001)), upper confi-
dence bound (UCB (Auer, 2002), (Srinivas et al., 2009)), and Thompson sampling (TS (Thompson,
1933)). Acquisition function selection over the points in the design space relies on the surrogate
model and its predictive and uncertainty estimates. For example EI selects points that, in expecta-
tion, improve upon the current best observed value f(xbest):

αEI(x|Dt) = Ep(f |Dt)[max(f(x)− f(xbest), 0)] (6)

In that sense, the choice of a surrogate model is critical to the success of BO. Gaussian Processes
(GPs) are the most common choice due to their flexibility and ability to quantify uncertainty, making
them particularly suitable for guiding the exploration of vast chemical spaces while operating in low-
data regimes.

B.3 GAUSSIAN PROCESSES AND MARGINAL LIKELIHOOD OPTIMIZATION

GPs provide a flexible non-parametric method for modeling unknown functions. A GP places a prior
distribution

f(x) ∼ GP(c, k(x,x′)), (7)

defined by a mean function c (typically 0 or constant) and a kernel function k encoding pairwise sim-
ilarity between inputs and prior assumptions about function smoothness and variability. A common
choice is the Matérn-5/2 kernel

kMatérn-5/2(x,x
′) = σ2

(
1 +

√
5d

ℓ
+

5d2

3ℓ2

)
exp

(
−
√
5d

ℓ

)
, (8)

where d = ∥x− x′∥2, ℓ is the lengthscale, and σ2 is the signal variance.

Given training data D = {(xi, yi)}ni=1, the GP posterior allows closed-form prediction of the
function at new points, along with uncertainty estimates. Crucially, the GP hyperparameters
θ = {c, ℓ, σ2, σ2

n} are learned by maximizing the marginal likelihood of the data:

L(θ) = log p(y|X, θ) = −1

2
(y⊤K−1

θ y + log |Kθ|+ n log 2π) (9)
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where Kθ is the kernel matrix incorporating observation noise σ2
n, evaluated on the training inputs

using kernel parameters (ℓ, σ2). If a constant mean function c is used, the targets y are centered
as y − c1 during marginal likelihood computation. In the standard fixed-feature setting, input x is
mapped to a feature vector via a static transformation (e.g., molecular fingerprints or frozen LLM
embeddings), and the GP operates solely on these representations. The optimization updates θ,
adapting the GP’s inductive bias to the fixed feature space.

B.4 DEEP KERNEL GAUSSIAN PROCESSES

Deep Kernel Gaussian Processes (DKGPs) introduce an additional parameter set ϕ to the optimiza-
tion objective by integrating neural network-based feature transformations into the GP kernel. For-
mally, the kernel function becomes:

kθ,ϕ(x,x
′) = kθ(gϕ(x), gϕ(x

′)),

where gϕ(·) is a learned data representation parameterized by ϕ. This formulation enables the model
to adapt the input space to the task at hand while preserving the uncertainty modeling properties of
the GP.

The transformation gϕ can take the form of any neural architecture suitable for the data modality.
The original paper applied the DKGP architecture on regression tasks with images using convolu-
tional neural networks (Wilson et al., 2016), while subsequent works have extended it to structured
chemical domains using graph neural networks (Singh & Hernández-Lobato, 2024). As detailed
in the main section, we apply this framework to textual chemical representations by using large
language models (LLMs) as the deep kernel feature extractor. This allows us to incorporate both
pretrained domain knowledge and task-specific adaptation within the BO loop.

B.5 LARGE LANGUAGE MODELS

LLMs process textual inputs by converting them into dense vector representations through a se-
quence of tokenization (), embedding () and attention-based () transformations. Tokenization in-
volves the process of splitting the input text into subword units (tokens) using a model-specific
vocabulary (e.g., SentencePiece (Kudo & Richardson, 2018), Byte-Pair Encoding (Radford et al.,
2019)). The tokens are mapped to continuous vectors via learned embedding layers and passed
through multiple self-attention layers that capture contextual relationships between tokens.

LLMs can follow different architectural designs: encoder-only (e.g., BERT (Devlin et al., 2018)),
decoder-only (e.g., Qwen (Bai et al., 2023)), and encoder-decoder (e.g., T5 (Raffel et al., 2020)).
Encoder-based models process the full input bidirectionally and are suited for classification and
regression (). Decoder-only models generate text autoregressively with causal masking (). Encoder-
decoder models combine both components and are often used for sequence-to-sequence tasks ().
The architecture choices impact the structure and pooling strategies used to extract unified represen-
tations from the variable-length token sequences.

Pooling refers to the process of aggregating a sequence of token-level representations produced by
a language model into a single fixed-dimensional embedding. Encoder-based models often use the
hidden state corresponding to the special [CLS] token or apply mean-pooling across token embed-
dings. Decoder-only models typically use the final hidden state of the last non-padding token. For
encoder-decoder models, pooling is applied over the encoder-side hidden states.

B.6 PARAMETER-EFFICIENT LLM FINETUNING

Although pretrained LLM embeddings encode rich semantic information, they are not tailored to
specific downstream tasks. In that sense, adapting LLMs through finetuning allows for better task-
specific capabilities. However, updating LLM weights can be computationally prohibitive due to
their large size (often billions of parameters in modern LLMs). Parameter-efficient finetuning
(PEFT), however, provides a recipe for LLM task alignment by adapting a smaller subset of pa-
rameters while leaving the majority of the model unchanged.

One such approach is Low-Rank Adaptation (LoRA) (Hu et al., 2022), which injects trainable low-
rank matrices into existing weight layers. Instead of updating a weight matrix W ∈ Rd×k, LoRA
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learns a low-rank update of the form:

∆W = AB, where A ∈ Rd×r, B ∈ Rr×k, r ≪ min(d, k)

The adapted weight becomes W ′ = W + ∆W , allowing task-specific learning with a parameter
count that scales with r, the rank of the decomposition. This method allows efficient finetuning and
mitigates the risk of catastrophic forgetting by preserving the pretrained weights.

B.7 PSEUDOCODES

Algorithm 1 Constrained Bayesian Optimization
Require: Initial dataset D0 = {(xi, yi)}n0

i=1, candidate pool Xpool, budget T , objective function f
1: Initialize surrogate model (e.g., GP) using D0

2: for t = 1 to T do
3: Fit surrogate model to current data Dt−1

4: for all x ∈ Xpool do
5: Compute acquisition value α(x | Dt−1)
6: end for
7: Select next point: xt = argmaxx∈Xpool α(x | Dt−1)
8: Evaluate objective function: yt = f(xt)
9: Update dataset: Dt = Dt−1 ∪ {(xt, yt)}

10: Remove xt from Xpool
11: end for
12: return Best observed point: x∗ = argmax(x,y)∈DT

y

Algorithm 2 Bayesian Optimization with LLM-based Deep Kernel GP
Require: Initial dataset D0 = {(xi, yi)}n0

i=1, candidate pool Xpool, budget T
1: for t = 1 to T do
2: Initialize parameters ϕ (LLM) and θ (GP)
3: Train LLM-GP model:
4: repeat
5: Compute embeddings: zi = gϕ(xi) for all (xi, yi) ∈ Dt−1

6: Evaluate GP marginal log-likelihood log p(y | z, θ)
7: Update ϕ, θ
8: until convergence
9: Compute acquisition on candidate pool:

10: for all xj ∈ Xpool do
11: zj = gϕ(xj)
12: Compute α(zj ; θ)
13: end for
14: Select next input: xt = argmaxxj α(zj)
15: Observe outcome: yt = f(xt)
16: Update dataset: Dt = Dt−1 ∪ {(xt, yt)}
17: Remove xt from Xpool
18: end for
19: return Best input: argmax(x,y)∈DT

y

C LLM AND DOMAIN-SPECIFIC REPRESENTATIONS

C.1 MOLECULAR REPRESENTATIONS

Molecular representations have been extensively studied in chemistry, leading to (1) fingerprints
(Rogers & Hahn, 2010; Cereto-Massagué et al., 2015; Capecchi et al., 2020), (2) Simplified Molec-
ular Input Line Entry System (SMILES) strings (Anderson et al., 1987; Weininger, 1988), (3) molec-
ular graph-based features (Kearnes et al., 2016) or (4) more physics-informed descriptors derived
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from electronic structure calculations (Bannwarth et al., 2019). Each of these representations en-
codes different aspects of molecular structure and properties making their utility task-dependent.

For example, molecular fingerprints can be effective for tasks involving structural similarity or
substructure-driven properties, while quantum-derived features may be better suited for tasks involv-
ing electronic properties. For applications in BO, these representations typically require specialized
kernel functions to capture relevant similarity (Griffiths et al., 2023).

To compare domain-specific representation to general LLM-based ones, we set molecular finger-
prints as input to a GP in all molecular property optimization benchmarks.

C.2 REACTION REPRESENTATIONS

Chemical reactions, on the other hand, attach an additional layer of complexity beyond molecular
representation including reaction conditions and procedural descriptions. In that sense, they present
a unique challenge for machine learning due to an increased complexity and heterogeneous nature.
Reaction conditions typically comprise multiple parameter types: numerical values (temperature,
concentration, time), categorical variables (catalyst type, solvent choice), and detailed procedural
descriptions, making their featurization challenging. Reaction representations used in ML range
from simple one-hot encodings (Chuang & Keiser, 2018) to more elaborate reaction fingerprints
(Rogers & Hahn, 2010; Schneider et al., 2015; Capecchi et al., 2020; Probst et al., 2022), quantum
mechanical descriptors (Ahneman et al., 2018; Shields et al., 2021) and learned representations
(Schwaller et al., 2021).

We make extensive use of Differential Reaction Fingerprints (DRFPs) (Probst et al., 2022), previ-
ously shown to achieve state-of-the-art results on reaction optimization tasks compared to a variety
of molecular and reaction descriptors (Ranković et al., 2024). Generated by first computing circular
fingerprints for each reactant and product and then taking their symmetric difference, DRFPs high-
light the structural changes during the reaction while remaining computationally cheap. We input
DRFPs to GP in reaction optimization tasks with available reaction SMILES. For other chemical
optimization tasks we generate features through one-hot encoding of categorical variables, concate-
nated with numerical parameter values.

C.3 LLM REPRESENTATIONS

C.3.1 TEMPLATE CONSTRUCTION

We define each task t through a standardized template: t = template({parameters, values}) where
the template converts various parameter types into a structured text format:

The reaction was prepared with:
temperature: {numerical_value}°C
solvent: {solvent_smile}
ligand: {ligand_smile}

C.3.2 ENCODER-BASED MODELS

Encoder-based

Encoder-based language models, originally developed for natural language understanding tasks,
have long been used to generate fixed-dimensional vector representations of text. These models,
typically based on the transformer encoder architecture, process input sequences bidirectionally.
In that sense, they have been widely adopted in various downstream tasks such as classification,
clustering, and semantic similarity.

With the recent evolution toward larger-scale pretraining, encoder-only models have also followed
the trajectory of large language models, yielding high-capacity embedding models suitable for di-
verse domains beyond natural language. These modern embedding models are trained on massive
corpora with contrastive or retrieval-oriented objectives, making them particularly effective for ex-
tracting general-purpose sentence and document embeddings.
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In this work, we evaluate three encoder-based embedding models on tasks of representing chemical
procedures and reaction descriptions for BO.

ModernBERT (Warner et al., 2024): A compact and efficient embedding model trained with a
retrieval objective, designed for high-speed and high-quality sentence representations.

UAE-Large (Li & Li, 2023): The Universal Alignment Embedding model, trained for multilingual
and multimodal generalization with a strong emphasis on alignment across domains.

MXBAI-Embed (Lee et al., 2024): A large-scale embedding model from Mixedbread-AI, trained
to preserve semantic similarity across a broad range of tasks, including code, math, and text.

C.3.3 ENCODER-DECODER MODELS

Encoder-decoder architectures, such as the T5 family (Raffel et al., 2020), consist of two trans-
former modules: an encoder that processes the input sequence and a decoder that generates output
sequences, typically in an autoregressive fashion. For embedding tasks, representations are typically
extracted from the encoder side, which embeds the input text into a fixed-length latent representa-
tion. Compared to encoder-only models, encoder-decoder architectures are often pretrained with
sequence-to-sequence objectives such as masked span prediction or denoising, making them well-
suited for tasks involving paraphrasing, summarization, or input–output alignment.

We evaluate the encoder outputs from three encoder-decoder models:

T5 (base variant) (Raffel et al., 2020): A widely-used general-purpose model pretrained on a
multi-task mixture of unsupervised and supervised NLP tasks. We use the encoder outputs as text
embeddings.

T5Chem (Christofidellis et al., 2023) : A domain-adapted variant of T5, finetuned on chemical
tasks using the GT4SD framework. It is trained on a multitask mixture involving molecular property
prediction, retrosynthesis, and chemical text modeling, making it more specialized for chemistry-
related input sequences.

Instructor (Su et al., 2022): An instruction-tuned encoder-decoder model trained on natural lan-
guage–task pairs. It learns to produce embeddings guided by a task description (e.g., ”Represent the
reaction for similarity search”), making it suitable for alignment-sensitive downstream applications.

C.3.4 DECODER-ONLY MODELS

Decoder-only architectures, exemplified by models in the GPT (Radford et al., 2018) family, gen-
erate outputs autoregressively by predicting each token conditioned on all previous ones. While
traditionally used for generation tasks, these models can also produce dense representations of input
text by extracting hidden states from specific tokens (e.g., the final token or special marker tokens).
Decoder-only models are typically pretrained with causal language modeling objectives and op-
erate unidirectionally, which distinguishes their contextual encoding behavior from encoder-based
models.

In this work, we evaluate several decoder-style models for embedding chemical procedures and
reaction descriptions:

OpenAI Embeddings (OpenAI, 2024) A widely-used commercial API that provides text embed-
dings via proprietary transformer models. While the architectural details are not public, we assign
them to decoder-style GPT family.

Qwen2-7B-Instruct (Bai et al., 2023) A large-scale instruction-tuned language model from Al-
ibaba, based on a decoder-only architecture. We use this model in embedding mode by extracting
the hidden state of the last non-padding token.

GTE-Qwen2-7B-Instruct (Li et al., 2023b) A retrieval-optimized variant of Qwen2, finetuned to
produce sentence-level embeddings with improved performance on similarity and ranking tasks.

LLaMA 3–8B (Grattafiori et al., 2024) Meta’s open LLaMA 3 model in its original instruction-
tuned form, without additional adaptation for embeddings.
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LLM2Vec Models (BehnamGhader et al., 2024) We also evaluate decoder-only LLMs adapted
for embedding tasks using the LLM2Vec framework (?). These models, such as LLM2Vec–Meta-
Llama-3 and LLM2Vec–Mistral-7B, are trained with masked next token prediction (MNTP) to en-
able bidirectional context modeling and use supervised mean pooling over selected internal layers.
This adaptation allows decoder-only transformers to behave similarly to encoder models in embed-
ding quality, while preserving their original architecture.

C.4 REPRESENTATIONS OVERVIEW

We build LLM representations with models from HuggingFace (HF) selected through their base ar-
chitecture and the results on MTEB in summarization task. In Table 1 we give an overview of all
representations used in this paper alongside specifics on the dimensionality, pooling, architecture,
pretraining, and connections to chemistry. We also include HF sources for LLM-based representa-
tions and links to chemistry-related molecular fingerprints and DRFP featurization methods.

Model Arch. Pretraining Objective Pooling Chem. Dim. Source
Molecular
Fingerprints / / / Yes 2048 Morgan
Reaction
DRFP / / / Yes 2048 DRFP
Encoder
ModernBERT Encoder Retrieval contrastive CLS No 768 HF
MXBAI-Embed Encoder General-purpose CLS No 1024 HF
UAE-Large Encoder Alignment / Multimodal CLS No 1024 HF

Enc-Dec
T5-Base Enc-Dec Masked span prediction Mean No 768 HF
T5Chem Enc-Dec Chem multitask Mean Yes 768 HF
Instructor Enc-Dec Instruction alignment Weighted

Mean
Part.† 768 HF

Decoder
OpenAI Embedding Decoder∗ Proprietary Unk. Unk. 3072 OpenAI
Qwen2-7B-Instruct Decoder Instruction tuning Last No 3584 HF
GTE-Qwen2 Decoder Contrastive retrieval Last No 3584 HF
LLM2Vec–LLaMA3 Decoder Supervised pooling Last No 4096 HF
LLM2Vec–Mistral Decoder Supervised pooling Last No 4096 HF
LLaMA 3–8B Decoder Instruction tuning Last No 4096 HF

Table 1: Overview of data representations used in our experiments, including architecture, pretrain-
ing objective, pooling strategy, chemistry adaptation, and embedding dimensionality and direct link
to the source.

D BENCHMARKING DATASETS

D.1 BUCHWALD-HARTWIG REACTIONS

We performed all initial investigations on a set of Buchwald-Hartwig (BH) reactions with the task
of optimizing yield (0-100%). This dataset consists of 3955 reactions spanning across five distinct
products (BH1-BH5). The data originates from a high-throughput experimentation (HTE) study
published by Ahneman et al. (Ahneman et al., 2018). For each product, reactions were evaluated
based on their percentage yield as determined by HPLC analysis. The design space is combinatorial
across 15 reactants (aryl halides), 22 additives, 4 ligands, and 3 bases in DMSO solvent.

1∗ While OpenAI Embedding model architecture is not publicly disclosed, we assign a decoder-style struc-
ture based on the GPT family.

2† Partially chemistry-aligned through prompting instructions like ”Represent the chemical reaction.”
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In all initial BO experiments (unless explicitly stated as in T5Chem-SMILES), we represented
reactions through procedural text template describing the reaction conditions in natural language.
Moving forward to benchmarking against other models, we featurized reactions based on reaction
SMILES, to ensure fair comparison to models that report best performance when using this represen-
tation (LAPEFT). Moreover, this dual representation allowed us to evaluate and establish robustness
to the impact of different input formats on model performance.

D.2 ADDITIVE SCREENING

This dataset originates from a study on organic additives’ influence on the reactivity of complex
Ni-catalysed reactions in a high-throughput experimentation (HTE) setup (Prieto Kullmer et al.,
2022). It covers a wide range of screened additives (720) across four different reactions (Additives
1-4) and measures their effect on UV210 product area absorption. The challenge with traditional
featurization methods in this dataset lies in the sole variability of the additive in the design space,
while the other reaction parameters remain fixed. In such a setup, traditional one-hot encoding
techniques would yield results similar to random search. Previous approaches report success with
DRFP representation, comparing its performance to a set of molecular descriptors (Ranković et al.,
2024). Compared to this method, we achieve better results while representing the reaction SMILES
through LLM embeddings and optimizing with our GP-guided finetuning approach.

D.3 SUZUKI-MIYAURA REACTIONS

Suzuki-Miyaura dataset is a reaction optimization benchmark that includes high-throughput evalu-
ated Suzuki-Miyaura cross-coupling reactions, originally introduced by Perera et al. (Perera et al.,
2018). The dataset was generated using an automated nanomole-scale synthesis platform designed
to explore large combinatorial reaction spaces efficiently. It contains 5760 reactions across varied
combinations of 7 unique electrophile, 4 nucleophile, 11 ligands (plus one blank), 7 bases (plus
one blank), 4 solvents and Pd(OAc)2 as precatalyst, while the optimization objective is maximizing
yield.

D.4 CATALYST OPTIMIZATION – C2 YIELD

We evaluate our method on optimizing methane oxidative coupling (OCM) using a subset of 1180
reactions from (Ramos et al., 2023). Each reaction involves synthesizing a supported catalyst (e.g.,
Mn – Na2WO4/BN ) by impregnating a solid support (typically BN) with a solution of up to three
metal precursors in defined molar ratios. Additional parameters include reaction temperatures (typ-
ically ˜900 ◦C), with controlled gas flows (CH4, O2, Ar) and contact times. The objective is to
maximize C2 yield, a measure of desirable product formation. The original study already provides
a textual template of reactions in this dataset, which we used for testing our method on diverse
input formatting. For the standard GP baseline we featurize the data by concatenating numerical
parameters and one-hot encoded categorical values.

D.5 MOLECULAR OPTIMIZATION

We selected the benchmark datasets from Kristiadi et al. (Kristiadi et al., 2024) to both test our model
on molecular property optimization and compare directly to their approach (LAPEFT). Moreover,
we use molecular SMILES as the textual representation of the data following their best practice and
offering a fair comparison between the methods. The five datasets we present in this work span
diverse scientific applications and optimization objectives:

• Redox (1,407 samples): minimize redox potential for flow battery materials (Agarwal et al.,
2021),

• Solvation (1,407): minimize solvation energy (Agarwal et al., 2021),

• Kinase (10,449): minimize docking score in kinase inhibitors (Graff et al., 2021),

• Photoswitch (392): maximize the π − π∗ transition wavelength* in organic photoswitches
(Griffiths et al., 2022),
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• PCE (10,000): maximize power conversion efficiency of photovoltaic materials (Lopez
et al., 2016).

All objectives are continuous and we use molecular fingerprints as a chemistry-related featurization
for the baseline GP comparison.

D.6 GENERAL CHEMISTRY BENCHMARKS

To move beyond reaction and molecular optimization we include three datasets from Olympus (Häse
et al., 2021b), spanning catalysis, crystallization, and process optimization, all of which involve
continuous or mixed-variable optimization objectives. These datasets are commonly used in au-
tonomous discovery and closed-loop optimization studies.

OER (Oxygen Evolution Reaction Catalysts). This dataset comprises 2,121 samples describing
compositions of high-throughput screened catalysts for the oxygen evolution reaction. Each data
point represents a combination of elemental loadings (Ni, Fe, Co, Mn, Ce, La) constrained to sum
to 1. The optimization goal is to minimize the overpotential, a key descriptor of catalytic efficiency.

• Target: Overpotential (continuous)
• Features: 6 discrete fractional loadings

Vapdiff Crystallization (Crystal Score). This dataset reports the outcomes of vapor diffusion
crystallization experiments across 918 combinations of organic, solvent, and inorganic conditions.
The target is an ordinal score representing crystallization quality, with categorical and continuous
inputs describing the experiment setup.

• Target: Crystal score (ordinal)
• Features: 10 variables (categorical, continuous, discrete)

Similarly to C2 yield optimization, we featurize the categorical variables through one-hot encoding
and concatenate these vectors to the remaining numerical parameters for the input to the standard
GP baseline.

HPLC (High-Performance Liquid Chromatography). This dataset includes 1,386 data points
measuring peak response from an automated HPLC system as a function of six continuous process
parameters such as flow rate, sample volume, and wait time. The objective is to maximize the peak
signal (measured by photo degradation response).

• Target: Photo degradation (continuous)
• Features: 6 continuous parameters
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E EXTENDED RESULTS

E.1 TOKENIZATION PER LLM TYPE

Figure 6: Tokenization pool strategy per
LLM type. We compare the pooling strate-
gies across LLM types. Encoder-based mod-
els benefit from utilizing the CLS token, un-
like decoder architectures where this token
collapses all inputs to duplicated represen-
tation (hence not appearing in the results).
For decoder-based architectures, last token
pooling improves results over token averag-
ing. For encoder-decoder models, the differ-
ence between average and last token pool is
less pronounced, however with a lower vari-
ability for mean pooling. The bars represent
the standard error and we compare results on
BH1 reaction with 25 BO iterations repeat-
ing the experiments over 10 seeds.

We investigate the impact of different pooling strate-
gies on the quality of LLM embeddings for Bayesian
optimization. Since LLMs produce variable-length
token sequences, pooling plays a critical role in con-
verting these sequences into fixed-size representa-
tions used by the GP surrogate. Our ablation re-
veals a clear interaction between model architecture
and pooling choice. For encoder-only models, CLS
token pooling outperforms alternatives – last token
pooling dilutes the informative signal captured in the
CLS token – specifically trained to represent global
context. In contrast, decoder-only models tend to
collapse all inputs to similar representations when
the starting token is pooled, leading to duplicates and
unsuccessful optimization. Here, last-token pooling
aligns with the autoregressive structure and yields
substantially better results. For encoder-decoder
models, we observe lower differences in perfor-
mance across pooling strategies, though mean pool-
ing shows a slight edge in consistency.

Based on these findings, we adopt CLS pool-
ing for encoder models, last-token pooling for
decoder models, and mean pooling for encoder-
decoder models throughout the main experiments.
Figure 6 summarizes the performance differences
across model types and pooling methods. The
pooling choices ensure meaningful input represen-
tations across LLM types, and deviations from opti-
mal setup can lead to noticeable performance drops
within the fixed-feature setting (e.g., up to 40% in
top-5 discovery rate between CLS and last-token
pool for encoder models).
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E.2 WHICH LLM LAYERS CARRY THE MOST INFORMATION?

Figure 7: Performance comparison of PEFT strategies across LLM architectures. We vary the
proportion (10%, 25%, 50%) and location (top vs. bottom) of targeted linear layers using LoRA. Re-
sults show that top-layer finetuning consistently outperforms bottom-layer updates for encoder-only
and decoder-only∗ models. For encoder-decoder models, performance is more consistent across
layer locations. Based on these findings, we fix the default to targeting the top 25% of linear layers.

B) BO results per LoRA layers ratio

A) BO results per LoRA layer location

Figure 8: Breakdown of results from Fig-
ure 7, highlighting the effect of LoRA
layer location (top vs. bottom) and pro-
portion (10%, 25%, 50%) on BO per-
formance. Targeting bottom layers in
decoder-only models (e.g., Qwen2-7B)
resulted in numerical instabilities dur-
ing optimization while higher proportion
(50%) resulted in out-of-memory issues.

We further examine which subset of LLM layers is
most effective to target during PEFT. Since full model
finetuning within the GP kernel is infeasible for large
LLMs, we use LoRA to adapt only a fraction of the
model weights. The choice of which layers to modify
has a strong effect on optimization performance. In-
spired by the intuition that higher (deeper) transformer
layers encode more task-relevant semantics, we evalu-
ate LoRA targeting strategies by varying both the loca-
tion (top vs. bottom layers) and proportion (10%, 25%,
50%) of modified linear layers.

Figures 7 and 8 show the results across four (we now
separate the encoder-decoder models into chemistry-
related–T5Chem and base T5) LLM architectures. For
encoder-only, targeting the top layers consistently out-
performs bottom-layer finetuning. This aligns with the
well-established view that deeper layers in such mod-
els encode more abstract and domain-specific represen-
tations. Importantly, we omit bottom-layer results for
decoder-only models (e.g., Qwen2-7B) due to instabil-
ity and numerical issues encountered during training,
likely caused by incompatible LoRA insertions in early
layers, and only show results of the different ratio of
LoRA adapted top layers (10% and 25%).

Interestingly, encoder-decoder models (both T5 and
chemistry-specialized T5Chem) show competitive per-
formance even when targeting bottom layers, though
the top 25% for T5 still yields slightly better or equally
stable results. This suggests that meaningful infor-
mation may be distributed across layers in encoder-
decoder setups, potentially due to the dual role of en-
coding and decoding steps. For T5Chem, targeting
the bottom 50% of linear layers with LoRA yield the
best results in the ablation (Figure 7). This observation
could potentially justify targeting all layers with LoRA in chemistry-related architectures which
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could contribute to even better results. Nevertheless, to ensure a consistent and generalizable com-
parison across LLM sizes and types, we adopt a default strategy of targeting the top 25% of linear
layers for all models. This decision achieves a balance between performance and computational
efficiency, while also avoiding the overhead of architecture-specific tuning.

E.3 STRUCTURE VS FIT AND BO PERFORMANCE

Selecting suitable priors is one of the core challenges in BO, especially when limited information
is available about the underlying objective function. The first modeling choice in BO is how to
represent the input design space. In chemistry, this space can be expressed in various ways, such as
SMILES strings, reaction templates, or molecular fingerprints. Often, this representation is predeter-
mined by the constraints of the problem setting, such as one-hot encodings in combinatorial screens.
However, the choice of representation imposes downstream consequences on other components of
the BO pipeline.

Surrogate models, which map the input x to the output y in a probabilistic manner, come with their
own inductive biases. GPs rely on a kernel function to define similarity between points. The choice
of kernel encodes assumptions about smoothness, differentiability, and the geometry of the function
to be modeled. For example, the Tanimoto kernel (Griffiths et al., 2023) might be better suited
for binary fingerprint inputs, while Matérn kernels are broadly applicable to continuous Euclidean
representations. In our study, we fix the surrogate kernel to Matérn 5/2 due to its balance between
smoothness and flexibility, and its prevalence in chemical BO applications. All related analysis in
this section is, therefore, built on the basis of this kernel. Future work may explore kernel-specific
behaviors in structure/fit alignment. With the selected design space representation and the surrogate
kernel, we are left with a set of assumptions about the structure of the objective function itself. If
these assumptions are misspecified – e.g., if the representation induces a geometry not aligned with
the kernel – then BO performance can degrade.

We now analyze how the choice of data representation impacts BO performance under a fixed surro-
gate model and acquisition function. To do so, we introduce a single normalized smoothness metric:
the ratio between the GP’s learned lengthscale and the average pairwise distance in the embedding
space. This metric reflects how far the GP generalizes relative to the data distribution, serving as a
proxy for the compatibility between the representation space and the kernel’s inductive bias.

We observe a strong correlation (r = 0.92) between this normalized lengthscale and BO perfor-
mance (Figure 2), suggesting that representations that allow the GP to maintain broader, smoother
fits tend to support more successful optimization. A higher ratio indicates that the GP can general-
ize over broader regions while still resolving performance differences, ultimately leading to better
acquisition decisions. This trend is consistent with the intuition that smoother fits – enabled by
coherent, well-structured representation spaces – support more principled exploration and reduce
overfitting to local noise.

We further show that while standard and weighted R2 measures correlate with BO performance, their
predictive power is consistently lower than the normalized smoothness metric. This supports the
view that while accurate fit helps, smooth fits – enabled by representations that align well with the GP
kernel – are even more important for effective acquisition. This finding motivates our proposed deep
kernel learning approach. By jointly training the LLM and GP via marginal likelihood, we allow the
representation to adapt to the GP’s inductive assumptions, resulting in smoother surrogate fits and
more structured latent spaces – as shown in Figure 10. This ultimately enables better optimization.

We also observe that the best-performing fixed-feature baseline (DRFP) already exhibits rela-
tively structured embedding space, reflected in clear pairwise L2 and kernel similarity histograms.
In contrast, the fixed T5 model produces less organized latent structure. With our adaptive
method (PLLMϕ+T5), however, the latent space becomes substantially more structured, resulting in
smoother GP fits and better-aligned similarity distributions. This confirms the key role of aligning
learned representations with the GP kernel’s inductive bias.

1∗ Targeting bottom layers in decoder-only models (Qwen2-7B) led to numerical instabilities in optimiza-
tion.
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Figure 9: We compare (left) R2 over the entire design space, (right) weighted R2 that upweights
points in the top 5% (using a 3:1 weighting scheme). While fit alone is informative (r = 0.78
unweighted, r = 0.82 weighted), the smoothness metric based on normalized lengthscale achieves
a stronger correlation with BO success (r = 0.92, main text Figure 2), highlighting the importance
of representation-structure alignment.

A) GP+DRFP Ground truth GP posterior means (color) and variance (size) Kernel similarity L2 distance

C) PLLMϕ+T5 (adaptive embeddings)

B) Bochemian+T5 (fixed embeddings) 

A) GP+DRFP Ground truth
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t-
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E 
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GP posterior means (color) and variance (size) Kernel similarity L2 distance

C) PLLMϕ+T5 (adaptive embeddings)

B) Bochemian+T5 (fixed embeddings) 

Figure 10: Visual analysis of latent space structure, GP behavior, and similarity metrics across
different representations. We compare three models: (A) GP+DRFP, the best-performing fixed-
feature baseline; (B) BoChemian+T5, using frozen LLM embeddings from natural language tem-
plates; and (C) PLLMϕ+T5, our best adaptive embedding model. The left two columns visualize
the latent space with ground truth (left) and GP posterior mean/variance (middle) colored by yield.
We mark the suggested and initial points. The right two columns show pairwise kernel similarities
and L2 distances for high–high, high–low, and low–low yielding regions. DRFP exhibits mild struc-
tural organization even in its fixed feature space, contributing to strong performance. T5 without
finetuning lacks this structure, while PLLMϕ+T5 learns a highly structured latent space, enabling
smoother fits and more effective acquisition decisions.
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E.4 BO RESULTS PER REPRESENTATION TYPE

With the BO traces in Figure 11 we show aggregated results per LLM or chemistry-related repre-
sentation types. Additionally, we provide an overview of the BO performance for each individual
representation (LLM or chemistry related) during the 50 optimization steps in Figure 12. We observe
that performance varies in different BH reactions, with no representation consistently outperforming
others across all tasks – including chemistry-specialized ones. All LLM types, however, show simi-
lar distributions of suggested point evaluations. In comparison to other LLM architectures, encoder-
based models tend to achieve higher R2 values during optimization. However, the improved function
approximation does not necessarily translate to better BO performance, as modeling the function and
identifying its optimal points are two fundamentally distinct, though complementary, objectives.

A) BO log regret B) BO suggested values distribution

C) R  over design space 2

Figure 11: BO metrics per LLM type. A) We show optimization paths for all BH reactions
(BH1-5 Averaged) across different LLM types (Encoder only, Encoder-Decoder, Decoder only) and
chemistry-related representations (DRFP, T5Chem-SMILES) together with optimization results on
individual reactions (BH1-BH5). B) Distribution of evaluated suggestions generated throughout the
entire optimization process (50 iterations) for 20 seed runs and all BH reactions. C) R2 scores per
LLM type over the evolving design space, averaged across all BH reactions.
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A) Encoder-based LLM models vs chemistry-related representations

B) Encoder—Decoder based LLM models vs chemistry-related representations

C) Decoder-based LLM models vs chemistry-related representations

Figure 12: Individual LLM BO tracelines in Buchwald-Hartwig optimization.
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Figure 13: Top 5% coverage per iteration for all benchmarks.
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F REPRODUCIBILITY

F.1 BO INITIALIZATION

Dataset

10 initial points
from the 

lower median

X y

ymin

ymax

Figure 14: Illustrative example of ini-
tial data selection. For all benchmark
datasets, we constrain the selection of ini-
tial points for BO to the lower median
points based on the objective values. This
initialization strategy better reflects real-
world scenarios where optimization starts
from suboptimal conditions.

Bayesian optimization is in practice initialized with a
small number of pre-existing datapoints, either from
prior experimentation or simulation. In reaction op-
timization, for example, these initial points often cor-
respond to unsuccessful or low-yielding reactions. In
scientific discovery settings, this setup is not only real-
istic but expected – optimization typically begins from
sparse and suboptimal conditions, with the goal of effi-
ciently identifying high-performing regions.

This starting point contrasts with scenarios where good
conditions are already known, in which case optimiza-
tion reduces to local exploitation rather than global
search. Reaching high-yielding conditions from poor
initial data is substantially more challenging and better
reflects real-world discovery pipelines. Compounding
this difficulty is the negative bias in the scientific lit-
erature: failed or low-yield experiments are rarely re-
ported, making published datasets inherently skewed
toward successful outcomes (Ioannidis, 2005).

To simulate this setting, we initialize the BO algorithm (Algorithm 1) with 10 points sampled from
the lower median range of the objective value distribution. Figure 14 illustrates this strategy. For
each benchmark dataset, the candidate pool is first sorted by objective value, and initial points are
randomly selected from those with values below the median. This initialization requires the model
to reason under uncertainty and efficiently navigate toward high-performing regions with minimal
prior knowledge.

F.2 BO SETUP

Following the initialization, we run the BO loop for 50 iterations with batch size 1. We repeat each
experiment configuration for 20 times with different seed values (1-20) to obtain robust performance
metrics. Our choice for the GP kernel is Matérn-5/2, based on its demonstrated effectiveness on
both continuous and discrete design spaces (Ranković et al., 2024). For balancing the exploration
and exploitation we employ the expected improvement acquisition function.

F.3 IMPLEMENTATION DETAILS

Surrogate Models. We implement both fixed-feature and finetuned surrogate models as subclasses
of SingleTaskGP from botorch (Balandat et al., 2020). For fixed-feature GPs, the inputs
are LLM embeddings, chemistry-related representations (fingerprints, DRFP) or default parameters
(one-hot encoded categorical variables, numerical values), while we learn the GP kernel hyperpa-
rameters θ = {ℓ, σ2, σ2

n, c} by maximizing the marginal likelihood using the L-BFGS-B optimizer
provided by BoTorch’s fit gpytorch mll routine. We employ the Matérn-5/2 kernel (Gardner
et al., 2018) with initialization: ℓ = 1.0, σ2 = 1.0, and σ2

n = 1.0 × 10−4. The optimizer runs with
multiple restarts, as part of BoTorch’s default behavior.

For deep kernel GPs, we extend the surrogate to jointly optimize both GP and LLM parameters. We
build a custom DeepGP class that incorporates a finetuning model (PEFT adapter and/or projection
head) jointly trained via AdamW (Loshchilov & Hutter, 2017). We optimize GP and LLM parame-
ters using separate learning rates (2× 10−1 for GP, 2× 10−3 for LLM) with a shared weight decay
of 1× 10−3. We apply gradient clipping with a max norm of 1.0 and decay the learning rates using
a StepLR scheduler with a decay factor of 0.95.

PEFT Configuration. We insert LoRA adapters into the top 25% of linear layers, using the fol-
lowing configuration: rank r = 4, α = 16, no bias updates and dropout of 0.2.
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Projection Layer. We define the projection layer as:

z = ELU(Dropout(Wx+ b)), (10)

where W ∈ Rd×64 and input d is model-dependent. We initialize the parameters of this model via
Xavier uniform initialization.

Featurization. We extract LLM embeddings from Hugging Face models using their default to-
kenizers and truncating the input to maximum of 512 tokens. Pooling strategies depend on the
model architecture: CLS token for encoder-based models, last-token for decoder-only models, and
mean-pooling for encoder-decoder models.

Training Setup. Fixed-feature models can be run on CPU or a single GPU (e.g., RTX 3090
with 24GB VRAM). Finetuned experiments involving large LLMs (e.g., PLLMϕ+Qwen2-7B)
are run on NVIDIA H100 GPU and 96GB RAM. Lightweight models (e.g., PLLMϕ+T5,
PLLMϕ+ModernBERT) are trainable on local hardware, with under 300k trainable parameters in
total (e.g., 230k out of 149M for ModernBERT, 165k out of 109M for T5; less than 0.2% of model
weights updated).

Tracking and Seeding. All experiments are seeded using seed everything from
pytorch lighting (Falcon & The PyTorch Lightning team, 2019) with values 1-20. Acqui-
sition optimization is deterministic over the candidate pool. We do not augment the data or use any
stochastic featurization. We use wandb (Biewald, 2020) for tracking experiments, managing seeds,
logging losses, metrics, learning rates, images, and running configuration sweeps.

G SUPPORTING TABLES

Representation Top 5% Coverage [%]
DRFP 37.750 ± 13.983
T5Chem-SMILES 32.750 ± 13.728
OpenAI 25.650 ± 12.287
ModernBERT 25.475 ± 10.061
Qwen2-7B 25.150 ± 13.934
T5 24.450 ± 13.005
GTE-Qwen2-7B 23.500 ± 15.288
T5Chem 22.950 ± 11.571
UAE 22.800 ± 13.144
MXBAI 21.800 ± 14.733
Mistral-Adapted-7B 20.350 ± 13.046
Instructor 19.300 ± 10.935
LLama3-8B 18.056 ± 12.745
LLama3-Adapted-8B 14.625 ± 10.803
Random Search 6.176 ± 3.751

Table 2: BO with fixed LLM features.

Representation Top 5% Coverage [%]
PLLMϕ+T5 42.602 ± 13.111
LLMϕ+T5 42.577 ± 13.817
PLLM+T5 41.075 ± 10.844
PLLMϕ+Qwen2-7B 40.250 ± 11.189
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Representation Top 5% Coverage [%]
PLLM+Qwen2-7B 39.375 ± 9.850
LLMϕ+Qwen2-7B 38.725 ± 12.780
PLLMϕ+ModernBERT 36.250 ± 14.100
LLMϕ+ModernBERT 35.775 ± 13.618
PLLM+ModernBERT 34.600 ± 10.805
PLLM+OpenAI 33.525 ± 11.791
OpenAI 25.650 ± 12.287
ModernBERT 25.475 ± 10.061
Qwen2-7B 25.150 ± 13.934
T5 24.450 ± 13.005

Table 3: BO results with LLM-based deep kernels.

Benchmark Method R2 ↑ NLPD ↓

ADDITIVES-1

PLLMϕ+T5 (ours) -0.00 ± 0.10 21.19 ± 2.77
PLLMϕ+T5Chem (ours) 0.07 ± 0.09 27.02 ± 3.93
GP+DRFP 0.09 ± 0.06 11.34 ± 0.11
Bochem.+T5 0.14 ± 0.05 11.66 ± 0.92
Bochem.+T5Chem 0.17 ± 0.09 11.87 ± 1.25
LAPEFT+T5 -0.15 ± 0.14 723.23 ± 1625.77
LAPEFT+T5Chem -0.04 ± 0.13 329.75 ± 566.60

ADDITIVES-2

PLLMϕ+T5 (ours) -0.22 ± 0.13 25.72 ± 8.98
PLLMϕ+T5Chem (ours) -0.11 ± 0.09 36.73 ± 8.29
GP+DRFP 0.01 ± 0.02 10.00 ± 0.24
Bochem.+T5 0.02 ± 0.03 10.58 ± 1.56
Bochem.+T5Chem 0.05 ± 0.03 10.21 ± 0.67
LAPEFT+T5 -0.15 ± 0.11 392.67 ± 516.44
LAPEFT+T5Chem -0.12 ± 0.10 292.60 ± 346.04

ADDITIVES-3

PLLMϕ+T5 (ours) -0.30 ± 0.31 33.75 ± 15.29
PLLMϕ+T5Chem (ours) -0.19 ± 0.21 52.34 ± 28.62
GP+DRFP -0.01 ± 0.02 10.36 ± 0.60
Bochem.+T5 -0.01 ± 0.02 10.50 ± 0.80
Bochem.+T5Chem -0.00 ± 0.02 10.48 ± 0.92
LAPEFT+T5 -0.21 ± 0.16 641.89 ± 1356.60
LAPEFT+T5Chem -0.12 ± 0.12 386.27 ± 431.61

ADDITIVES-4

PLLMϕ+T5 (ours) -0.34 ± 0.23 22.36 ± 4.87
PLLMϕ+T5Chem (ours) -0.21 ± 0.14 28.60 ± 9.03
GP+DRFP 0.01 ± 0.03 10.27 ± 0.13
Bochem.+T5 0.01 ± 0.05 11.12 ± 2.58
Bochem.+T5Chem 0.00 ± 0.05 10.83 ± 1.41
LAPEFT+T5 -0.22 ± 0.15 186.94 ± 177.56
LAPEFT+T5Chem -0.14 ± 0.15 389.52 ± 715.90

BH-1

PLLMϕ+T5 (ours) 0.68 ± 0.05 5.57 ± 0.63
PLLMϕ+T5Chem (ours) 0.69 ± 0.07 7.11 ± 0.90
GP+DRFP 0.31 ± 0.34 6.14 ± 7.20
Bochem.+T5 0.14 ± 0.23 19.96 ± 30.81
Bochem.+T5Chem 0.52 ± 0.14 32.23 ± 25.51
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Benchmark Method R2 ↑ NLPD ↓
LAPEFT+T5 0.51 ± 0.11 65.15 ± 83.74
LAPEFT+T5Chem 0.60 ± 0.04 216.41 ± 276.61

BH-2

PLLMϕ+T5 (ours) 0.65 ± 0.08 5.96 ± 1.00
PLLMϕ+T5Chem (ours) 0.65 ± 0.09 7.23 ± 1.17
GP+DRFP 0.50 ± 0.27 4.06 ± 0.77
Bochem.+T5 0.22 ± 0.22 60.34 ± 102.47
Bochem.+T5Chem 0.50 ± 0.08 64.15 ± 58.29
LAPEFT+T5 0.32 ± 0.18 235.69 ± 415.15
LAPEFT+T5Chem 0.53 ± 0.06 249.48 ± 192.73

BH-3

PLLMϕ+T5 (ours) 0.47 ± 0.13 6.69 ± 1.28
PLLMϕ+T5Chem (ours) 0.50 ± 0.10 8.34 ± 1.58
GP+DRFP 0.38 ± 0.30 5.72 ± 8.59
Bochem.+T5 0.16 ± 0.14 22.18 ± 47.62
Bochem.+T5Chem 0.41 ± 0.13 50.64 ± 99.46
LAPEFT+T5 0.27 ± 0.10 71.06 ± 53.91
LAPEFT+T5Chem 0.40 ± 0.07 350.63 ± 528.16

BH-4

PLLMϕ+T5 (ours) 0.57 ± 0.08 7.86 ± 1.15
PLLMϕ+T5Chem (ours) 0.59 ± 0.12 8.72 ± 1.47
GP+DRFP 0.48 ± 0.29 4.13 ± 0.57
Bochem.+T5 0.46 ± 0.15 39.56 ± 43.63
Bochem.+T5Chem 0.46 ± 0.13 41.01 ± 54.16
LAPEFT+T5 0.32 ± 0.09 80.44 ± 89.41
LAPEFT+T5Chem 0.40 ± 0.08 581.34 ± 2146.82

BH-5

PLLMϕ+T5 (ours) 0.50 ± 0.10 8.48 ± 1.42
PLLMϕ+T5Chem (ours) 0.53 ± 0.08 9.08 ± 1.48
GP+DRFP 0.42 ± 0.28 4.31 ± 0.59
Bochem.+T5 0.33 ± 0.17 49.31 ± 62.92
Bochem.+T5Chem 0.43 ± 0.10 57.96 ± 51.71
LAPEFT+T5 0.37 ± 0.11 63.98 ± 44.88
LAPEFT+T5Chem 0.42 ± 0.10 391.56 ± 543.81

C2-YIELD

PLLMϕ+T5 (ours) 0.44 ± 0.09 4.83 ± 2.30
PLLMϕ+T5Chem (ours) 0.42 ± 0.12 4.56 ± 1.73
GP+Num.Params 0.16 ± 0.09 154792.41 ± 578478.07
Bochem.+T5 0.41 ± 0.11 0.99 ± 0.94
Bochem.+T5Chem 0.42 ± 0.14 5.57 ± 18.91
LAPEFT+T5 0.29 ± 0.09 180.61 ± 220.08
LAPEFT+T5Chem 0.24 ± 0.09 1196.45 ± 1636.29

HPLC

PLLMϕ+T5 (ours) -0.13 ± 0.07 20.13 ± 5.14
PLLMϕ+T5Chem (ours) -0.21 ± 0.07 20.18 ± 5.66
GP+Num.Params -0.04 ± 0.05 1444.58 ± 6420.47
Bochem.+T5 -0.03 ± 0.03 18.57 ± 14.46
Bochem.+T5Chem -0.02 ± 0.03 49.10 ± 66.46
LAPEFT+T5 -0.22 ± 0.14 229.99 ± 255.04
LAPEFT+T5Chem -0.18 ± 0.09 2427.96 ± 8532.05

KINASE

PLLMϕ+T5 (ours) 0.35 ± 0.06 14.55 ± 2.16
PLLMϕ+T5Chem (ours) 0.41 ± 0.05 12.82 ± 2.09
GP+FP -0.02 ± 0.03 1.41 ± 0.11
Bochem.+T5 0.02 ± 0.11 3.44 ± 6.44
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Benchmark Method R2 ↑ NLPD ↓
Bochem.+T5Chem -0.02 ± 0.02 1.67 ± 0.11
LAPEFT+T5 0.33 ± 0.07 12.42 ± 3.44
LAPEFT+T5Chem 0.45 ± 0.04 21.59 ± 5.58

OER

PLLMϕ+T5 (ours) 0.43 ± 0.15 1.95 ± 1.61
PLLMϕ+T5Chem (ours) 0.42 ± 0.15 0.88 ± 1.31
GP+Num.Params 0.59 ± 0.04 189.97 ± 218.23
Bochem.+T5 0.44 ± 0.09 17.26 ± 23.03
Bochem.+T5Chem 0.44 ± 0.11 154.70 ± 206.00
LAPEFT+T5 0.47 ± 0.08 27.27 ± 34.99
LAPEFT+T5Chem 0.47 ± 0.07 174.81 ± 286.01

PCE

PLLMϕ+T5 (ours) 0.25 ± 0.12 16.12 ± 4.78
PLLMϕ+T5Chem (ours) 0.27 ± 0.11 15.43 ± 4.42
GP+FP -0.02 ± 0.02 2.52 ± 0.08
Bochem.+T5 0.10 ± 0.15 4.51 ± 6.22
Bochem.+T5Chem -0.02 ± 0.03 2.57 ± 0.15
LAPEFT+T5 0.16 ± 0.15 29.69 ± 46.25
LAPEFT+T5Chem 0.26 ± 0.13 41.33 ± 21.10

PHOTOSWITCH

PLLMϕ+T5 (ours) 0.59 ± 0.12 11.53 ± 2.13
PLLMϕ+T5Chem (ours) 0.65 ± 0.10 9.86 ± 1.62
GP+FP 0.57 ± 0.26 5.13 ± 0.58
Bochem.+T5 0.58 ± 0.07 41238535.40 ± 32024292.47
Bochem.+T5Chem 0.46 ± 0.28 151181279.47 ± 202238451.62
LAPEFT+T5 0.52 ± 0.08 7.78 ± 1.20
LAPEFT+T5Chem 0.64 ± 0.07 18.50 ± 11.90

REDOX-MER

PLLMϕ+T5 (ours) 0.86 ± 0.02 0.48 ± 0.47
PLLMϕ+T5Chem (ours) 0.89 ± 0.02 -0.02 ± 0.35
GP+FP 0.73 ± 0.25 -0.51 ± 0.44
Bochem.+T5 0.85 ± 0.02 19.72 ± 16.26
Bochem.+T5Chem 0.85 ± 0.20 47.01 ± 40.57
LAPEFT+T5 0.73 ± 0.06 6.45 ± 2.53
LAPEFT+T5Chem 0.86 ± 0.03 16.55 ± 6.20

SOLVATION

PLLMϕ+T5 (ours) 0.74 ± 0.03 2.84 ± 0.98
PLLMϕ+T5Chem (ours) 0.73 ± 0.04 2.86 ± 0.97
GP+FP 0.77 ± 0.03 -0.36 ± 0.47
Bochem.+T5 0.79 ± 0.03 77.92 ± 58.50
Bochem.+T5Chem 0.69 ± 0.30 174.24 ± 192.44
LAPEFT+T5 0.71 ± 0.05 14.28 ± 20.01
LAPEFT+T5Chem 0.79 ± 0.02 73.66 ± 38.83

SUZUKI-MIYAURA

PLLMϕ+T5 (ours) 0.10 ± 0.13 8.16 ± 1.45
PLLMϕ+T5Chem (ours) 0.12 ± 0.13 9.65 ± 2.37
GP+DRFP 0.29 ± 0.15 1.20 ± 2.57
Bochem.+T5 0.07 ± 0.08 8.76 ± 28.10
Bochem.+T5Chem 0.12 ± 0.10 1.11 ± 3.25
LAPEFT+T5 -0.10 ± 0.18 107.12 ± 105.69
LAPEFT+T5Chem 0.18 ± 0.09 231.35 ± 181.75

VAPDIFF

PLLMϕ+T5 (ours) -0.01 ± 0.06 12.40 ± 2.73
PLLMϕ+T5Chem (ours) -0.05 ± 0.09 14.25 ± 3.41
GP+Num.Params 0.12 ± 0.06 608876.27 ± 906151.79
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Benchmark Method R2 ↑ NLPD ↓
Bochem.+T5 0.07 ± 0.06 1.69 ± 0.28
Bochem.+T5Chem 0.08 ± 0.07 1.72 ± 0.46
LAPEFT+T5 -0.17 ± 0.11 288.12 ± 284.60
LAPEFT+T5Chem -0.04 ± 0.08 164.06 ± 142.57

Table 4: Predictive and uncertainty estimates for all benchmark datasets
and methods. Each model is trained on 60 points and evaluated on
the remaining data, emulating a 10+50 BO iteration setup. This fixed
train/validation split ensures fair comparison by avoiding divergence in
design sets during BO due to different selection of candidate points dur-
ing optimization, even when starting with the same initial points. We run
20 repeats and report mean and standar deviation values.

Arch. Pool Model Quant. 95 [cnt]

Enc

CLS
MXBAI 2.70 ± 2.15
ModernBERT 2.40 ± 2.09
UAE 2.40 ± 2.11

Avg
MXBAI 2.30 ± 2.00
ModernBERT 2.30 ± 1.72
UAE 2.25 ± 1.86

Last
MXBAI 1.80 ± 1.82
ModernBERT 0.25 ± 0.55
UAE 2.50 ± 2.35

Dec
Avg

LLama3-8B 0.75 ± 1.48
Qwen2-7B 1.05 ± 2.28

Last
LLama3-8B 1.55 ± 1.64
Qwen2-7B 1.65 ± 2.54

Enc-Dec
Avg

T5 1.10 ± 1.41
T5Chem 1.90 ± 2.05

Last
T5 1.65 ± 2.48
T5Chem 1.55 ± 2.91

Table 5: Tokenization influence to sampling from the 5th percentile.
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Architecture Target layers Target ratio Deep Kernel + Model Quantile 95 [cnt]

Chem-related

Top
0.1

PLLMϕ+T5Chem-SMILES

6.60 ± 1.90
0.25 6.30 ± 3.47
0.5 8.20 ± 2.94

Bottom
0.1 7.50 ± 2.51
0.25 7.40 ± 2.32
0.5 6.60 ± 3.13

Encoder

Top
0.1

PLLMϕ+ModernBERT

5.50 ± 2.17
0.25 5.60 ± 2.37
0.5 5.70 ± 2.83

Bottom
0.1 4.20 ± 2.44
0.25 4.50 ± 3.21
0.5 4.30 ± 2.11

Enc-Dec

Top
0.1

PLLMϕ+T5

4.10 ± 1.91
0.25 5.40 ± 2.99
0.5 3.90 ± 3.25

Bottom

0.1 4.90 ± 2.08
0.25 5.40 ± 2.55
0.5 4.90 ± 2.18

Decoder Top
0.1

PLLMϕ+Qwen2-7B
4.10 ± 2.28

0.25 4.90 ± 2.88

Table 6: GP-LLM finetuning per LLM types and LoRA layers
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