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Abstract

Accurate ranking of important features is a fundamental challenge in interpretable machine
learning with critical applications in scientific discovery and decision-making. Unlike feature
selection and feature importance, the specific problem of ranking important features has
received considerably less attention. We introduce RAMPART (Ranked Attributions with
MiniPatches And Recursive Trimming), a framework that utilizes any existing feature
importance measure in a novel algorithm specifically tailored for ranking the top-k features.
Our approach combines an adaptive sequential halving strategy that progressively focuses
computational resources on promising features with an efficient ensembling technique using
both observation and feature subsampling. Unlike existing methods that convert importance
scores to ranks as post-processing, our framework explicitly optimizes for ranking accuracy.
We provide theoretical guarantees showing that RAMPART achieves the correct top-k
ranking with high probability under mild conditions, and demonstrate through extensive
simulation studies that RAMPART consistently outperforms popular feature importance
methods, concluding with two high-dimensional genomics case studies. Our code is available
at https://github.com/DataSlingers/TopK.

1 Introduction

A key challenge in interpretable machine learning is determining not just which features influence model
predictions but their relative importance ranking. In particular, accurately ranking the top-k most important
features would fundamentally change the decision-making and scientific discovery process in numerous
high-stakes applications (Bhatt et al., 2020; Jaxa-Rozen and Trutnevyte, 2021). For example, in many social
science surveys, there are far more questions that could, in principle, be asked than respondents can answer
without incurring fatigue or disengagement. Researchers therefore often conduct small pilot studies with a
larger question bank to identify the most important questions to retain in the final survey instrument (Jeong
et al., 2023; DeVellis, 2017). In genomics, genome-wide association studies (GWAS) (Visscher et al., 2017) are
by far the most common approach to identify important genes or genetic variants that are associated with
disease risk. These data-driven studies often identify hundreds of important genetic variants. However, to
translate these findings into tangible therapeutic targets and clinical practice, wet-lab validation is necessary,
but typically limited to a few dozen genetic variants, if not fewer due to its high cost (Fu et al., 2020; Wang
et al., 2025; Pashaei et al., 2025). More generally, given resource constraints, the need to rank or prioritize a
small number of top-ranked candidates for costly downstream decision-making is a common theme among
many clinical and scientific pipelines.

Although feature importances have been extensively studied in machine learning, methods specifically designed
for ranking the top-k most important features remain underdeveloped. Current approaches for top-k feature
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ranking typically rely on the heuristic of first estimating feature importance values for all features, sorting
them, and then subsetting to the top-k features with the largest importance (Lundberg and Lee, 2017; Neuhof
and Benjamini, 2024; Goldwasser and Hooker, 2025). However, the first step of this paradigm is particularly
limiting as valuable data and computational resources are being used to estimate the importances of all
features, including those that are irrelevant or far outside of the top-k that are of primary interest. This
issue is further exacerbated in realistic settings with correlated and high-dimensional data (e.g., in genomics),
where existing feature importance estimates are known to be highly unstable and unreliable (Nicodemus and
Malley, 2009; Nicodemus, 2011; Hooker et al., 2021). These challenges highlight the need for a paradigm that
directly targets the top-k ranking task, which focuses computational and statistical resources on the most
important features and can effectively handle correlated, high-dimensional data.

1.1 Our Contributions

Motivated by these challenges, we focus on the problem of directly ranking the top-k features with the
highest global importance and develop a model-agnostic framework tailored to this task. To effectively
handle correlated features, we first introduce RAMP (Ranked Attributions with MiniPatches), an ensembling
strategy that aggregates feature importances from models trained on random subsamples (or “minipatches”)
of both observations and features. This minipatch-based approach breaks harmful correlation patterns
among features while maintaining statistical power (Gan et al., 2022). Building on RAMP, we then develop
RAMPART (RAMP And Recursive Trimming), which leverages an adaptive strategy to progressively focus
computational resources on promising features while eliminating suboptimal ones. Unlike existing approaches
that allocate equal resources to all features, this adaptive strategy enables RAMPART to grow increasingly
precise in distinguishing between similarly-ranked top features as the candidate pool shrinks. Importantly,
both RAMP and RAMPART are model-agnostic frameworks for top-k feature importance ranking that can
serve as wrappers around any existing feature attribution method. Finally, we provide theoretical guarantees
on recovering the correct top-k feature importance ranking under mild assumptions, establishing explicit
sample complexity bounds that may be of independent interest.

1.2 Related Works

Feature Importance Although not directly designed for feature importance ranking, numerous model-
specific and model-agnostic feature importance measures have been developed to quantify the contribution of
each predictor feature on the model’s predictions and performance (Molnar, 2025). Popular model-specific
approaches include regression coefficients for linear models, Mean Decrease in Impurity for tree-based methods
(Breiman, 2001), and neural network attributions like DeepLift and Integrated Gradients (Shrikumar et al.,
2019; Sundararajan et al., 2017). Model-agnostic methods include occlusion-based (Lei and Wasserman, 2014),
permutation-based (Breiman, 2001), and Shapley-based techniques (Lundberg and Lee, 2017; Lundberg et al.,
2020). In Section 4, we will demonstrate the shortcomings of simply ranking these feature importances to
obtain the top-k.

Ranking from Pairwise Comparisons On the other hand, viewing this problem from the lens of the
ranking literature, many previous works have directly estimated rankings from pairwise comparisons. This
literature includes tournament methods (Mohajer et al., 2017), spectral techniques (Negahban et al., 2017;
Chen and Suh, 2015; Chen et al., 2019), adaptive selection paradigms (Heckel et al., 2016; 2018), and
weighting strategies (Shah and Wainwright, 2018; Wauthier et al., 2013; Ammar and Shah, 2012). Despite
their theoretical appeal, these methods struggle to capture multivariate feature dependencies and face
computational barriers in high dimensions, limiting their applicability to top-k feature importance ranking.

Feature Importance Ranking More recently, several works have focused on feature importance ranking
specifically. Kariyappa et al. (2023) developed sampling algorithms to identify top-k features by Shapley
values without addressing their ordering. Teneggi and Sulam (2024) employed statistical independence testing
with betting principles, primarily for semantic concept validation in vision rather than tabular data. Neuhof
and Benjamini (2024) introduced a framework for quantifying uncertainty of feature importance rankings
through simultaneous confidence intervals. Their approach focuses primarily on post-hoc interpretation of
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pre-computed importance scores rather than providing an efficient algorithmic framework for large-scale
feature ranking. Model-free, dependence-based ordering offers an orthogonal approach to ranking variables
via a nonparametric coefficient of conditional dependence and yields a tuning-free ranking without fitting
predictive models (Azadkia and Chatterjee, 2021). A closely related approach by Azadkia and Roudaki (2025)
leverages an integrated R2 dependence measure and a greedy forward-selection procedure.

Most relevant to our work, Goldwasser and Hooker (2025) developed a sequential pairwise hypothesis testing
framework for assessing the statistical significance of the top-k most important features using resampled
attribution scores. This approach, however, requires normality and independence assumptions that are rarely
satisfied in practice and violated by correlated estimators. Computational overhead from repeated pairwise
testing also limits scalability to high dimensions. Their subsequent rank verification method (Goldwasser
et al., 2025) similarly assumes Gaussian distributions, constraining applicability to real-world data with
non-Gaussian distributions and complex dependencies.

Best Arm Identification To avoid the current limitations of existing feature importance ranking ap-
proaches, we introduce a recursive trimming strategy, which draws inspiration from multi-armed bandits
research on best arm identification, including UCB approaches (Audibert et al., 2010; Chen et al., 2017),
Thompson Sampling (Russo, 2020), and halving algorithms (Zhao et al., 2023). Particularly relevant is research
on best-k-arm identification (Chen et al., 2008; Gao and Chen, 2015; You et al., 2023), with Liu and Ročková
(2023) successfully applying Thompson Sampling to variable selection. However, direct application of bandit
algorithms to feature ranking faces key challenges: (1) assumed arm independence—violated by correlated
features and (2) unknown distributions of importance measures. Our work addresses these limitations with a
novel approach that efficiently produces statistically robust feature rankings while accounting for feature
interdependencies.

2 Adaptive Feature Importance Ranking

2.1 Problem Setup

Suppose we observe a dataset D = {(x1, y1) . . . , (xN , yN )} where xi ∈ RM and yi ∈ R denote the features
and response respectively. We assume observations are independent and identically distributed draws from an
unknown joint distribution. We also assume that each feature j ∈ [M ] := {1, . . . , M} possesses an inherent
global feature importance ϕj . There are many existing metrics that can be used to quantify ϕj : see Lundberg
and Lee (2017); Molnar (2025); Fisher et al. (2019) for instance. We note that the feature importance ϕj

depends on the specific predictive model and importance metric used, with each method potentially defining
a distinct ground truth. We define the rank of the j-th feature as rj :=

∑M
i=1 1 {|ϕj | < |ϕi|} and the j-th

best feature as τj . Additionally, for some pre-specified k ≪ M , we assume that the top-k features do not
contain any ties: rτj ̸= rτj′ for any j, j′ ∈ [k] where j ≠ j′. Our goal is to correctly estimate these top k ranks
such that r̂τj = rτj for j ∈ [k].

2.2 Motivation

As mentioned previously, one naive approach to feature importance ranking is to first estimate importance
scores {ϕ̂j}M

j=1 and then sort the features accordingly. For instance, in a high-dimensional regression model,
one may often rank the features according to the magnitude of their standardized coefficients. However, in
realistic, high-dimensional settings, this approach faces several fundamental challenges, which motivate our
proposed framework.

First, obtaining accurate feature importance estimates in high dimensions is problematic. These estimates
often suffer from bias due to inherent correlations in high-dimensional data, with well-known metrics
performing poorly in correlated settings (Chamma et al., 2023a). The estimates also exhibit high variance
and unreliability, as even classical methods such as ordinary least squares coefficients are known to become
unstable when the number of features approaches or exceeds the sample size (Hastie et al., 2009). The
computational burden compounds these issues: computing importances for a large number of features can
be expensive, forcing popular approaches to resort to approximations. For instance, methods like Shapley
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values are computationally infeasible without substantial approximations that compromise their theoretical
guarantees (Mitchell et al., 2022; Ghorbani and Zou, 2019).

Second, this approach fundamentally misaligns computational and statistical resources with our objective.
Our focus is not on ranking all features but only the top-k, a crucial distinction that should guide algorithm
design. Analogous to sparse modeling in high-dimensional statistics, we expect many features to be noise and
are uninterested in learning their ranks (Hastie et al., 2015). However, estimating and sorting importance
metrics expends valuable statistical resources (e.g., data samples) and computational effort on all features,
including noise features. This misallocation is particularly problematic when distinguishing between features
of similar importance levels, where more precise estimation is needed.

For example, consider predicting credit risk using various financial and demographic features, which are
often highly correlated. Lenders using machine learning models to model credit risk are required by law
to disclose the principal reasons when denying an application or taking other adverse action (Consumer
Financial Protection Bureau, 2011). While standard feature importance methods may struggle to distinguish
between similarly important features due to correlations, our framework is designed to specifically address
these challenges by focusing resources on the most relevant features and improving feature ranking accuracy
in high-dimensional, correlated settings.

Motivated by these considerations, we develop a two-stage approach that combines efficient feature importance
estimation with adaptive refinement. We first introduce RAMP (Ranked Attributions with MiniPatches),
which leverages ensemble learning principles through random subsampling of both features and observa-
tions. We then extend this to RAMPART (RAMP And Recursive Trimming), which progressively focuses
computational resources on the most promising features.

2.3 Ranked Attributions with MiniPatches (RAMP)

We begin by assuming access to a feature importance ranking procedureM. This procedureM : Rn×m×Rn 7→
{0, . . . , m− 1} takes as input a subset of the data (i.e., a “minipatch”) (XI,F , YI) where I ⊆ [N ], |I| = n is a
subsample of observations and F ⊆ [M ], |F | = m is a subsample of features, and returns rank estimates r̃j

for features j ∈ [F ]. In practice, this ranking procedure M typically involves: (i) fitting a predictive model
to the minipatch, (ii) computing feature importance scores using a specific attribution method, and (iii)
sorting these scores by magnitude to output ranks. For example, a simple ranking procedure M could entail
fitting a linear regression model and ranking features by the magnitude of their standardized coefficients, or
alternatively, fitting a decision tree and ranking features by their mean decrease in impurity (MDI).

Given M, we formalize RAMP in Algorithm 1. The procedure operates by generating numerous minipatches,
with each consisting of a different random subsample of both observations and features. For each minipatch,
RAMP applies M (e.g., linear regression coefficients or decision tree with MDI) to obtain feature importance
rank estimates r̃b

j , which are then averaged across all minipatches where each feature appears. This minipatch
ensembling approach reduces variance while breaking harmful correlation patterns between features (Gan
et al., 2022). The final step sorts the averaged ranks r̄j using order statistics r̄(1), . . . , r̄(M) to obtain the final
rankings.

Importantly, RAMP serves as a meta-algorithm that improves the accuracy of feature rankings regardless
of the specific attribution method employed. More specifically, each ranking procedure M produces its
own importance measure ϕj and hence ranks rj , but ordinary estimates of these quantities typically suffer
from instability in high-dimensions due to feature correlations and sampling variability (Chamma et al.,
2023b; Kelodjou et al., 2024). Given the choice of ranking procedure M, RAMP improves the estimation
of the corresponding ranks rj by ensembling across diverse minipatches, effectively reducing variance while
maintaining the statistical properties of the underlying importance measures (Gan et al., 2022; Yao and
Allen, 2020). This approach provides more stable and accurate approximations of the true feature importance
ranking, while maintaining the flexibility to accommodate any feature importance procedure. Since decisions
are made based on ranks instead of raw attribution magnitudes, RAMP can ensemble heterogeneous per-
minipatch ranking procedures (e.g., MDI, SHAP, Integrated Gradients) without modification, echoing the
model-class view that genuinely important variables should remain important across a broad family of
predictive models (Fisher et al., 2019).
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Algorithm 1 Ranked Attributions with MiniPatches (RAMP)

Input: Ranking procedureM, dataset D = {(xi, yi)}N
i=1 ≡ (X, Y), number of minipatches B, data subsample

size n < N , feature subsample size m < M
Output: Estimated feature ranks r̂1, . . . , r̂M

1: for b ∈ [B] do
2: Ib ← randomly subsample n observations ⊂ [N ]
3: Fb ← randomly subsample m features ⊂ [M ]
4: r̃b

j ←M(XIb,Fb
, YIb

)j for j ∈ Fb

5: end for

6: For all j ∈ [M ], set r̄j ←
∑

b∈[B]:j∈Fb
r̃b

j∑
b∈[B] 1 {j ∈ Fb}

7: return r̂j = (i : r̄(i) = r̄j)− 1

2.4 RAMP And Recursive Trimming (RAMPART)

Though RAMP provides an improved foundation for feature ranking, the uniform treatment of all features
within RAMP is not ideal when our primary interest is in the top-k ranked features. To address these
limitations, we develop RAMPART (Ranked Attributions with MiniPatches And Recursive Trimming), an
adaptive framework that builds upon the minipatch sampling from RAMP while incorporating ideas from
the sequential halving literature. Our approach is inspired by the pioneering work of Karnin et al. (2013)
on successive halving algorithms, as well as recent advances in batched sequential halving (Jun et al., 2016;
Koyamada et al., 2024) for the fixed batch setting. While these methods were originally developed for
best-arm identification in multi-armed bandits, we adapt their core insight of progressive resource allocation
to the feature ranking context.

RAMPART operates by iteratively applying RAMP to an increasingly focused set of features. In each round,
it identifies and retains the more promising half of the features while eliminating those less likely to be in the
top-k set. This adaptive strategy, formalized in Algorithm 2, recursively trims the feature pool size, enabling
more accurate rank estimation in later rounds where fine-grained distinctions become crucial. The number of
iterations is carefully chosen to ensure the final feature pool size aligns with our target k. By concentrating
computational resources on the most relevant features, RAMPART more efficiently spends its resources,
distinguishing between similarly-ranked important features. This adaptive resource allocation is a critical
advantage over traditional approaches that uniformly evaluate all features since features that survive to later
rounds in RAMPART are evaluated more frequently, enabling increasingly precise rank estimates where they
matter most.

Algorithm 2 Ranked Attributions with MiniPatches And Recursive Trimming (RAMPART)

Input: Ranking procedure M, dataset D = {(xi, yi)}N
i=1, number of minipatches B, data subsample size

n < N , feature subsample size m < M , top features k
Output: Estimated feature ranks r̂1, . . . , r̂M

1: T ← ⌊log2 M⌋ − ⌈log2 k⌉+ 1
2: C1 ← [M ]
3: for t ∈ {1, . . . , T} do
4: r̂t

1, . . . , r̂t
|Ct| ← RAMPB,n,m(Ct)

5: Ct+1 ← {τ̂ t
1, . . . , τ̂ t

|Ct|/2}
6: end for
7: return r̂j = r̂T

j if j ∈ CT otherwise r̂j = k
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3 Theoretical Analysis

In this section, we show theoretical guarantees for RAMP and RAMPART. We also prove that RAMPART
achieves performance superior to that of RAMP under mild assumptions on the properties of the ranking
procedure M.
Assumption 1. Unique Top-k Ranks. For any two features j, j′ ∈ [M ] where at least one feature has
true rank smaller than k, either rj > rj′ or rj′ > rj .

While this assumption might appear restrictive at first glance, it only requires distinct ranks among the top-k
features of interest. Ties are permitted among features outside this set. This reflects real-world settings
where we need to distinguish among the most important features but can tolerate ambiguity in the ordering
of less relevant or null features.
Assumption 2. Rank Consistency. For any two features j, j′ ∈ S ⊆ [M ], |S| ≥ m with rj < rj′ that are
sampled in the same minipatch,

P
(
r̃j < r̃j′

∣∣j, j′ ∈ F
)
≥ p >

1
2

where the probability is taken over all minipatches F of size m in S such that j and j′ are sampled together.

This consistency assumption requires that our ranking procedure M performs better than random guessing
when comparing features within the same minipatch on average. If a model cannot reliably order features
when evaluated together, it cannot be expected to produce meaningful relative rankings. In particular, we
only require probabilistic consistency, allowing for errors in individual comparisons.
Assumption 3. Unbiased Ordering. For any two features j, j′ ∈ S ⊆ [M ], |S| ≥ m with rj < r′

j ,

E
[
r̃j

∣∣j ∈ F, j′ /∈ F
]

< E
[
r̃j′
∣∣j′ ∈ F, j /∈ F

]
where expectations are taken over minipatches in S that sample one feature but not the other.

This assumption says that rank comparisons should remain informative across different minipatches. It
requires that features of higher importance tend to receive better ranks relative to less important features,
even when they appear in separate samples rather than being directly compared. This property is especially
relevant for our minipatch approach, since we aggregate rank estimates across many different subsamples
where not all pairs of features appear together.
Assumption 4. Bounded Deviation. There exists a universal constant C > 0 such that for any two
features j, j′ ∈ S ⊆ [M ], |S| ≥ m with rj < rj′ that are sampled in the same minipatch,

E[r̃j′ − r̃j |r̃j′ > r̃j ]−E[r̃j − r̃j′ |r̃j > r̃j′ ] > C

where expectations are taken over all minipatches F of size m in S such that j and j′ are sampled together.

This final assumption ensures that correctly ordered features are separated by a larger margin than incorrectly
ordered ones. Specifically, when a more important feature is ranked above a less important one, their
expected rank difference exceeds the expected difference when incorrectly ordered by at least some small
positive constant C. This property provides stability in our estimates where ranking errors have less impact
than correct orderings, allowing us to recover true feature ordering through ensembling. Together, these
assumptions enable theoretical guarantees for our algorithms.
Theorem 5. Under Assumptions 1-4, if the number of minipatches satisfies

BRAMP = O
(

M3

m
ln
(

kM

δ

))
,

then with probability at least 1− δ, RAMP will correctly rank all top-k features: r̂τj = rτj for j ∈ {1, . . . , k}.

We defer the proof to Appendix A.2. Building on these results, we now show that RAMPART achieves
stronger performance guarantees while requiring the same order of computational complexity.
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Theorem 6. Suppose T ≥ 3. Then under assumptions 1-4, there exist choices of {Bt}T
t=1 such that

RAMPART correctly identifies the top-k features with probability at least 1− δ/2− δ/T using the same order
of total minipatches as RAMP:

∑T
t=1 Bt ∼ BRAMP.

We defer the proof to Appendix A.3. While both algorithms require the same order of total minipatches,
RAMPART achieves the correct ranking with higher probability. Furthermore, our assumptions are sub-
stantially weaker compared to existing work. Traditional multi-armed bandit approaches require rewards
to be independent (Russo, 2020), while recent works on variable selection have imposed much stronger
identifiability assumptions demanding each arm’s optimal reward distribution be uniformly separated from all
other possibilities (Liu and Ročková, 2023). In contrast, our analysis does not assume independence among
features nor parametric measurement noise: we only require probabilistic consistency and better-than-chance
pairwise ordering, allowing for substantial noise and correlation between features.

4 Empirical Studies

In this section, we demonstrate the empirical performance of RAMP and RAMPART through a series of
carefully designed experiments and two real-data case studies.

4.1 Comparative Simulation Studies

We design a comprehensive simulation framework to evaluate feature ranking methods across numerous
settings. We first generate data from multivariate normal distributions xi ∈ RM under two covariance
structures: identity (Σ = I) or autoregressive (Σi,j = ρ|i−j| with ρ = 0.5). For both covariance structures,
we assign non-zero coefficients βi = γ(10− i + 1) to the first ten features (i = 1, . . . , 10), with all others set
to zero. The parameter γ ∈ {0.03, 0.05, 0.10, 0.20, 0.50}, referred to as signal-to-noise ratio (SNR) in our
subsequent analyses, controls the separation between coefficient values, with smaller values creating more
challenging ranking problems.

We construct four distinct settings: linear regression, nonlinear additive regression, linear classification,
and nonlinear additive classification. For regression settings, we generate responses as yi = f(xi) + ϵi with
ϵi ∼ N (0, 1); for classification, yi ∼ Ber(1/(1 + e−f(xi))). The function f distinguishes linear settings, where
f(xi) = xT

i β, from nonlinear additive settings, where f(xi) =
∑M

j=1 βjgj(xi,j), with gj(x) = cosj+1(x) for
j ∈ {1, ..., 5} and gj(x) = sinj−4(x) for j ∈ {6, ..., 10}. All features Xj in the linear settings and gj(Xj) in
the nonlinear settings are standardized to zero mean and unit variance, ensuring that coefficient magnitudes
|βm| directly reflect the contribution of the features and function as the ground truth importance measures.

In each scenario, we employ task-appropriate prediction models: OLS and logistic regression for the linear
regression and classification settings, respectively, and random forests (100 trees) for the nonlinear regression
and classification tasks. Additionally, we employ neural networks across all settings, configured as regressors
for regression tasks and classifiers (with final sigmoidal activation) for classification tasks. All neural networks
have a consistent two-layer architecture with M hidden units and ReLU activation trained to convergence.

As comparison methods, we first include a baseline (model-specific) feature importance (FI) method for
each prediction model: absolute coefficients for OLS and logistic regression, Mean Decrease in Impurity
(MDI) for random forests, and Integrated Gradients for neural networks (Sundararajan et al., 2017). We also
evaluate two popular model-agnostic approaches. First, we apply SHAP with architecture-specific variants
(LinearSHAP, TreeSHAP, or GradientSHAP) (Lundberg and Lee, 2017; Lundberg et al., 2020), computing
global scores by averaging local attribution scores across observations. Second, we assess permutation
importance by measuring the average change in prediction error over 100 random permutations on a held-out
set of size N/2. For all methods, we obtain feature rankings by sorting importance scores by magnitude.

To ensure a fair and direct comparison, we implement RAMP and RAMPART using the same baseline (model-
specific) feature importance method, described previously, for each prediction model: absolute coefficients
for OLS and logistic regression, MDI for decision trees, and Integrated Gradients for small neural networks
(two-layer neural network with 5m hidden units and ReLU activation trained for 5 epochs on each minipatch).
This implementation ensures direct comparability, as performance differences stem solely from our algorithmic
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framework rather than from variations in feature importance attributions. Both RAMP and RAMPART use
minipatches with n = 125 observations and m = 10 features. For our experiments with M = 500 dimensions
and k = 10 target features, RAMPART requires 6 halving iterations with 2000 minipatches per iteration,
while RAMP uses 10000 total minipatches, maintaining comparable computational budgets. Note we omit
Goldwasser and Hooker (2025) as their approach requires repeatedly resampling Shapley estimates for top
features when statistical tests fail, making it prohibitively expensive in high dimensions.

We evaluate ranking performance using Rank-Biased Overlap (RBO) with ρ = 0.7 (Webber et al., 2010),
which naturally prioritizes accuracy at higher ranks through geometrically decreasing weights, making it
appropriate for our top-k ranking task:

RBOρ := (1− ρ) ·
k∑

s=1
ρs−1 |{τ̂i}s

i=1 ∩ {τi}s
i=1|

s

For each experimental setting, we conduct 100 simulations with random seeds fixed across all methods,
averaging the resulting RBO scores and reporting standard error bars in our plots. Figure 1 demonstrates that
RAMPART consistently yields the most accurate feature rankings across both regression and classification
tasks, highlighting the benefits of adaptive resource allocation. RAMPART’s advantage becomes particularly
pronounced at higher signal-to-noise ratios (SNR ≥ 0.1) and under autoregressive covariance, showcasing
robust performance even with correlated features. While performance naturally decreases in nonlinear
additive settings for all methods, RAMPART maintains its relative advantage. These results demonstrate
that RAMPART’s adaptive allocation strategy provides substantial practical benefits across diverse modeling
settings. Additional results for higher dimensions (M = 1000 and M = 2000) with fixed sample size
(n = 250) are provided in Appendix B, further showcasing RAMPART’s robustness in increasingly challenging
high-dimensional settings.

To further demonstrate how accurate feature rankings translate to improved predictive performance, we
also conducted ablation studies using the same simulation setup as in our identity covariance classification
experiments from Figure 1. Here, using the same predictive models and configurations as before, we selected
two representative signal-to-noise ratios (SNR = 0.06 and SNR = 0.5), split the data into a 70/30 train-test
split, and assessed the model’s test prediction performance as the top-ranked features are progressively added
in the model in order of their estimated importance rankings. In Figure 2, we illustrate how classification error
decreases as the top-ranked features are progressively added as predictors in the model. This comparison reveals
the practical impact of feature importance ranking accuracy on prediction performance, with RAMPART’s
superior rankings consistently yielding the lowest classification errors from models trained using only the
top-ranked features. Additional simulation results for ablation studies with higher dimensions can be found
in Appendix B, which further verify RAMPART’s robustness in increasingly challenging high-dimensional
settings.

4.2 Cancer Genomics Case Studies

We finally demonstrate RAMPART’s effectiveness through two high-dimensional cancer genomics case studies:
(i) a regression problem to predict the efficacy or response of a cancer drug on different cancer cell lines, and
(ii) a classification problem to predict breast cancer subtypes based upon gene expression profiles. Across
both settings, our goal is not only to build accurate predictive models, but to rank the genes that most
strongly drive these outcomes, thereby providing interpretable insight into underlying biology and suggesting
hypotheses for future therapeutic development.

4.2.1 Case Study I: Drug Response Prediction

For our first case study, we predict response to PD-0325901 (an MEK inhibitor) across N = 259 human
cancer cell lines using their RNASeq gene expression profiles (M = 1104 genes) from the Cancer Cell Line
Encyclopedia (CCLE) (Barretina et al., 2012) (see Appendix C.1 for details). As before, we compare multiple
feature ranking methods to identify the top 10 response-driving genes. Our baseline approach uses a random
forest regressor (200 trees) with Mean Decrease in Impurity (MDI). We also compute TreeSHAP values on
the same random forest model and evaluate permutation importance by measuring prediction error changes
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Figure 1: Feature importance ranking accuracy for classification (top) and regression (bottom) (M = 500)
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Figure 2: Classification error vs. number of top-ranked features used as predictors in ablation simulation
with identity covariance (M = 500)

over 100 random permutations on a 50/50 train-test split. For RAMP and RAMPART, we use MDI with
regression trees as the minipatch ranking procedure M, with minipatch parameters m = 10 and n = 100.
RAMPART uses 4000 minipatches per iteration, while RAMP used 20000 total minipatches. Table 4 presents
the resulting gene rankings from all methods.

Since real-world genomic studies lack ground-truth feature importance rankings, we validate our top-10
gene findings using established biological knowledge. This biological validation approach follows established
precedent in the feature importance literature (e.g., see Lundberg et al., 2020; Covert et al., 2020) where
feature importance on genomic data are validated through connections to prior medical research. Along these
lines, there are several key biological findings from this case study. First, all 10 genes identified by RAMPART
have been previously implicated in biological pathways involving PD-0325901 and related cancers (Table 1).
In particular, the top-ranked gene from RAMPART, TOR4A, is a known oncogene for glioma (Wang et al.,
2022), a cancer for which PD-0325901 is currently being tested in clinical trials (Vinitsky et al., 2022).
Second, the main pathway affected by PD-0325901 is the MEK/ERK signaling pathway, which regulates cell
proliferation, differentiation, and survival. Several of the genes identified by RAMPART, including ETV4,
SPRY2, and WNT5A, are key factors in the MEK/ERK pathway (Oh et al., 2012; Milillo et al., 2015; Hasan
et al., 2021).

Finally, we perform a gene ontology (GO) enrichment analysis (Ashburner et al., 2000; Aleksander et al.,
2023), a standard bioinformatics approach for identifying the biological processes that are enriched (or
over-represented) in a set of genes, to further validate the biological relevance of the top-10 genes identified by
RAMPART. According to the GO enrichment analysis, the biological processes, “regulation of transmembrane
receptor protein serine/threonine kinase signaling pathway” and “regulation of cellular response to growth
factor stimulus,” are significantly enriched (FDR p < 0.05) in the top-10 genes from RAMPART. Notably,
the serine/threonine kinase signaling pathway plays an essential role in the activation of MEK (Zheng and
Guan, 1994). In contrast, no GO biological processes are significantly enriched in the top-10 genes from
any of the other competing methods. Additionally, of the four genes (i.e., SPRY2, FERMT1, WNT5A, and
NRROS) linked to the identified GO biological processes, two are uniquely identified by RAMPART and
have not been ranked in the top 10 by any other method. This GO enrichment analysis not only supports
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Rank Gene Connection to PD-0325901

1 TOR4A Torsin family gene and oncogene for glioma and other cancers (Wang et al., 2022)
2 ETV4 Well-known ETS transcription factor regulated by MEK/ERK pathway (Oh et al., 2012)
3 SPRY2 Key inhibitor of the MEK/ERK pathway (Zheng and Guan, 1994; Milillo et al., 2015)
4 GJB1 Gap junction gene associated with increased tumor progression for various cancers (Aasen

et al., 2016)
5 PYCARD Encodes key adaptor protein in inflammatory and apoptotic signaling pathways, playing

dual roles in multiple cancers (Protti and De Monte, 2020)
6 WNT5A Wnt signaling pathway gene which can enhance MEK/ERK pathway (Zheng and Guan,

1994; Hasan et al., 2021)
7 FERMT1 Regulates Ser/Thr kinase signaling pathway, activating MEK (Zheng and Guan, 1994)
8 NRROS Regulates Ser/Thr kinase signaling pathway, activating MEK (Zheng and Guan, 1994)
9 LYZ Encodes lysozyme; shown to exhibit aberrant expression in tumor cells (Gu et al., 2023)
10 NPAS2 Regulator of circadian rhythms and tumor suppressor involved in DNA damage response

(Hoffman et al., 2008)

Table 1: Top-10 genes from RAMPART for drug response prediction and their connections to PD-0325901.
Genes highlighted in blue were identified by the GO enrichment analysis to be involved in the “regulation of
transmembrane receptor protein serine/threonine (Ser/Thr) kinase signaling pathway” and “regulation of
cellular response to growth factor stimulus.”

the biological relevance of RAMPART’s identified genes, but also highlights the advantage of RAMPART
over existing methods for feature importance ranking and high-impact scientific discovery.

4.2.2 Case Study II: Breast Cancer Subtype Classification

We next consider a high-dimensional multi-class classification problem based on The Cancer Genome Atlas
(TCGA) Breast Cancer (BRCA) cohort. Using RNA-seq data from the TCGA–BRCA study (The Cancer
Genome Atlas Network, 2012) and PAM50 subtype labels (Parker et al., 2009), we obtain a gene-expression
matrix with N = 758 primary tumors and M = 5000 genes after preprocessing (see Appendix C.2 for
details). Each sample is assigned one of five intrinsic subtype labels (Luminal A, Luminal B, HER2-enriched,
Basal-like, Normal-like), yielding a five-class classification outcome. As in Section 4.2.1, we compare multiple
feature-ranking methods and focus on the top 10 genes from each method as subtype-discriminative markers.
All hyperparameters are identical to Case Study 4.2.1, except that we replace decision-tree/random-forest
regressors with their classification counterparts. Table 5 presents the resulting gene rankings from all methods.

Notably, the 10 RAMPART-selected genes in Table 2 have each been implicated and extensively studied in
the previous breast cancer literature. Genes including ESR1, FOXA1, GATA3, and MLPH mark luminal,
estrogen receptor–driven disease and are tightly linked to endocrine response and prognosis (Brett et al., 2021;
Toy et al., 2013; Fu et al., 2016; Hurtado et al., 2011; Takaku et al., 2015; Kouros-Mehr et al., 2006; Thakkar
et al., 2015). FOXC1 captures the basal-like transcriptional programme and loss of luminal identity (Han
et al., 2017; Yu-Rice et al., 2016). On the other hand, TPX2, ASPM, CDK1, FOXM1, and UBE2C function
as core regulators of mitotic entry, spindle assembly, and chromosome segregation whose overexpression
marks highly proliferative, poor-prognosis tumors (Marugán et al., 2024; Tang et al., 2019; Enserink and
Chymkowitch, 2022; Bergamaschi et al., 2014; Hu et al., 2025).

We also performed GO Biological Process enrichment on the top-10 genes from each method and visualized
the processes significantly enriched at FDR p ≤ 0.05 (Table 6). RAMPART’s genes are enriched for 16
such biological processes, including transcriptional regulation, reproductive and gland-related development,
and cell-cycle and proliferation-associated programs, which are well-known components in cancer biology
(Hanahan and Weinberg, 2011). In contrast, RAMP, SHAP, and permutation importance identify a more
limited set of 5, 10, and 6 enriched GO terms, respectively.
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Rank Gene Role in Breast Cancer Biology

1 ESR1 Encodes estrogen receptor-α; ESR1 mutations and dysregulation drive endocrine
resistance in ER+ disease (Brett et al., 2021; Toy et al., 2013)

2 FOXC1 Basal-like transcription factor opposing GATA3/ERα; linked to ERα loss, en-
docrine resistance, and aggressive basal-like tumors (Yu-Rice et al., 2016)

3 TPX2 Mitotic spindle assembly factor overexpressed in CIN-high tumors; activates YAP
signaling and sensitizes cells to the SRC inhibitor dasatinib (Marugán et al., 2024)

4 FOXA1 Pioneer transcription factor opening chromatin for ER–DNA binding; reprograms
ER-driven transcription and promotes endocrine resistance (Fu et al., 2016)

5 ASPM Spindle pole and centrosome protein; overexpression drives proliferation and marks
high-grade, poor-prognosis breast cancer (Tang et al., 2019)

6 MLPH Component of an estrogen-responsive luminal signature; high MLPH marks ER+

tumors with good prognosis (Thakkar et al., 2015)
7 CDK1 Core cyclin-dependent kinase controlling G2/M transition and mitotic entry;

hyperactivation marks highly proliferative tumors (Enserink and Chymkowitch,
2022)

8 FOXM1 Oncogenic transcription factor driving G2/M cell-cycle genes; promotes prolifera-
tion, invasion, and endocrine resistance in ER+ disease (Bergamaschi et al., 2014)

9 GATA3 Master regulator of mammary luminal differentiation; recurrently mutated in
luminal tumors and essential for luminal identity (Kouros-Mehr et al., 2006;
Takaku et al., 2015)

10 UBE2C Ubiquitin-conjugating enzyme activating the APC/C complex; overexpressed in
highly proliferative tumors and associated with poor prognosis (Hu et al., 2025)

Table 2: Top-10 genes from RAMPART for breast cancer subtype prediction and their functional roles.

Method Case Study I Case Study II
RAMPART 21.83 36.97
RAMP 14.15 20.65
Baseline 12.48 3.62
TreeSHAP 13.79 58.46
Permutation 489.86 3637.54

Table 3: Wall-clock time (seconds) for computing feature rankings in Case Study I (drug response, N = 259,
M = 1104 genes) and Case Study II (breast cancer subtypes, N = 758, M = 5000 genes). All methods
use the same tree-ensemble hyperparameters across both datasets; times exclude data loading and basic
preprocessing. Experiments were run on a 16-inch MacBook Pro (Apple M3 Max, 48 GB RAM, macOS 14.3).

4.3 Runtime and Scalability

Practical runtime. Table 3 shows that RAMPART is computationally lightweight in the regimes we
consider. In the smaller CCLE drug-response case study (M = 1104), all non-permutation methods finish
within 25 seconds: RAMPART takes 21.8 seconds, compared with 12–14 seconds for Baseline RF and
TreeSHAP. Thus, on this moderate-dimensional problem, the extra stability we gain from recursive trimming
comes at only a modest constant-factor overhead. When we move to the higher-dimensional TCGA breast
cancer subtype task (M = 5000) keeping all hyperparameters fixed, RAMP and RAMPART remain well
under a minute (20.7 and 37.0 seconds), and now RAMPART is actually faster than TreeSHAP (58.5 seconds)
while providing a more robust top-k ranking. In both case studies, permutation feature importance is one
to two orders of magnitude slower (from ∼ 8 minutes up to more than an hour), reflecting the need to
re-evaluate the trained forest on many permuted versions of each feature and thereby perform work that
scales essentially linearly with the feature dimension and the number of permutations.
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Scaling with dimensionality. The scalability of RAMPART follows from how we allocate compute across
trimming rounds. Each round fits the same number of minipatch forests on patches of fixed size and on a
fixed subsample of observations, so its cost is approximately a constant multiple of the cost of fitting a single
random forest on a small feature subset. The only quantity that grows is the number of rounds L needed to
shrink from M candidates down to k finalists: with a halving schedule, L ≈ ⌈log2(M/k)⌉. In contrast, RAMP
runs only a single such round (with more minipatches), so RAMPART incurs an additional logarithmic
factor in runtime relative to RAMP while sharing the same per-round cost. Thus, the dominant term in
the runtime of RAMPART is a constant times log(M/k). In our experiments, increasing M by a factor of
≈ 4.5 (from 1104 to 5000) increases RAMPART’s runtime by only a factor of ≈ 1.7, whereas TreeSHAP slows
down by more than 4× and permutation by more than 7×. Taken together, these results illustrate the core
advantage of our design: RAMPART attains a statistically stronger and more interpretable top-k ranking at
the cost of only a small, logarithmically growing multiple of fitting a single forest, while remaining scalable to
increasingly higher-dimensional settings.

5 Discussion

In this paper, we introduced RAMPART, a novel framework that achieves accurate feature ranking in
high-dimensional settings by combining minipatch ensembles with recursive trimming. Instead of developing
a new feature importance method, we adopt a complementary, model-agnostic view that can leverage any
existing feature importance procedure as a black-box primitive. RAMPART wraps these existing feature
importance procedures in a ranking algorithm that uses inexpensive subsampled fits to screen many features
and concentrate computation on the candidates that plausibly belong in the top-k. As demonstrated through
our genomics case studies, precise feature ranking can drive scientific discovery by identifying key drivers
in complex biological processes and guiding future research. However, while our empirical and theoretical
results are encouraging, they also highlight several challenges and opportunities. Given that RAMPART is a
wrapper method, it may inherit modeling assumptions and potential biases from the underlying attribution
procedure, and our current guarantees are derived under stylized separation and consistency conditions that
may be difficult to verify in practice. These considerations motivate several directions for future work.

First, adapting minipatch sizes and sampling schemes as the candidate feature pool shrinks could enable
more precise comparisons while maintaining computational efficiency, and our minipatch ensemble framework
offers a flexible foundation for exploring alternative adaptive sampling methods to further enhance top-k
ranking performance. Second, extending the ideas developed here beyond tabular settings to other data
modalities, such as graphs, images, and time series, via domain-appropriate base explainers would broaden
the impact of this paradigm. Finally, refining our assumptions and sharpening theoretical bounds in regimes
that mirror high-stakes applications would further strengthen the reliability of RAMPART for scientific and
decision-making use.
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A Proofs

A.1 Auxiliary Lemmas

Lemma 7. Let µj = E[r̃j ] be the expected rank of feature j under the ranking procedure M, where the
expectation is taken over minipatches that sample feature j. Next, define

∆ := min
j,j′∈[M ],rj<rj′

µj′ − µj

to be the smallest difference between the expected rank estimates across all features in [M ]. Then under
assumptions 2, 3 and 4, we have

∆ > (2p− 1) ·
(

m− 1
M − 1

)
.

Proof. First, observe that given the above assumptions, we necessarily have µj < µj′ whenever rj < rj′ as
we have

µj = E[r̃j |j ∈ F ]
= E[r̃j |j ∈ F, j′ /∈ F ] ·P(j′ /∈ F | j ∈ F ) + E[r̃j |j, j′ ∈ F ] ·P(j′ ∈ F | j ∈ F )
< E[r̃j′ |j′ ∈ F, j /∈ F ] ·P(j /∈ F | j′ ∈ F ) + E[r̃j′ |j, j′ ∈ F ] ·P(j ∈ F | j′ ∈ F )
= E[r̃j′ |j′ ∈ F ]
= µj′

where the inequality follows from knowing that E[r̃j′ |j′ ∈ F, j /∈ F ] > E[r̃j |j ∈ F, j′ /∈ F ] by assumption 3,
that P(j′ /∈ F | j ∈ F ) = P(j /∈ F | j′ ∈ F ), and that E[r̃j′ |j, j′ ∈ F ] > E[r̃j |j, j′ ∈ F ] by assumptions 2 and
4 since

P(r̃j′ > r̃j |j, j′ ∈ F ) ·
(
E[r̃j′ |r̃j′ > r̃j ]−E[r̃j |r̃j′ > r̃j ]

)
>P(r̃j > r̃j′ |j, j′ ∈ F ) ·

(
C + E[r̃j |r̃j > r̃j′ ]−E[r̃j′ |r̃j > r̃j′ ]

)
and rearranging gives the desired result. It follows that for any j, j′ ∈ [M ] with rj < rj′

µj′ − µj = E[r̃j′ |j, j′ ∈ F ] ·P(j ∈ F | j′ ∈ F ) + E[r̃j′ |j′ ∈ F, j /∈ F ] ·P(j /∈ F | j′ ∈ F )
−E[r̃j |j, j′ ∈ F ] ·P(j′ ∈ F | j ∈ F )−E[r̃j |j ∈ F, j′ /∈ F ) ·P(j′ /∈ F | j ∈ F )
> E[r̃j′ − r̃j |j, j′ ∈ F ] ·P(j ∈ F | j′ ∈ F )
=
(
E[r̃j′ − r̃j |r̃j′ > r̃j ] ·P(r̃j′ > r̃j) + E[r̃j′ − r̃j |r̃j > r̃j′ ] ·P(r̃j > r̃j′)

)
·P(j ∈ F | j′ ∈ F )

>
(
E[r̃j′ − r̃j |r̃j′ > r̃j ] · p + (C −E[r̃j′ − r̃j |r̃j′ > r̃j ]) · (1− p)

)
·P(j ∈ F | j′ ∈ F )

= (E[r̃j′ − r̃j |r̃j′ > r̃j ] · (2p− 1) + C(1− p)) ·P(j ∈ F | j′ ∈ F )
> (2p− 1) ·P(j ∈ F | j′ ∈ F )

> (2p− 1) · (m− 1)
(M − 1)

where the first equality holds by the law of total conditional expectation, the first inequality holds by
assumption 3, the second inequality holds by assumption 4, and the second-to-last inequality holds since the
difference between estimated ranks is at least 1 and that C > 0.

Lemma 8. For iteration t of algorithm 2, define the minimum separation gap

∆t := min
j,j′∈Ct,rj<rj′

µt
j − µt

j′

where µt
j is the expected rank estimate of feature j with respect to the feature pool Ct. Under Assumptions 2-4,

we have
∆t > 2t−1 · (2p− 1) ·

(
m− 1
M − 1

)
for any iteration t.
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Intuitively, Lemma 8 shows that trimming increases the expected gap between adjacent ranks geometrically
across rounds, enabling finer discrimination among near-tied features with the same overall sampling budget.

Proof. At any iteration t, we know from lemma 7 that

∆t+1 > (2p− 1) · m− 1
|Ct+1| − 1 = (2p− 1) · m− 1

M/2t − 1 ≥ 2t · (2p− 1) · m− 1
M − 1 .

A.2 Proof of Theorem 5

Proof. Let T = {τ1, . . . , τk} denote the set of top-k features. In addition, for any feature j ∈ [M ] let Sj denote
the set of minipatches where feature j is included. Next, for any given feature j we order the minipatches in
Sj arbitrarily as κ1, . . . , κnj where nj = |Sj | and define the martingale difference sequence indexed by

Xs = r̃κs
j −E[r̃κs

j |Fs−1]

where Fs−1 = σ(κ1, . . . , κs−1). We see that Xs is Fs-measurable and

E[Xs|Fs−1] = E[r̃κs
j −E[r̃κs

j |Fs−1]|Fs−1] = 0.

We also trivially see that |Xs| ≤ m− 1. Then, by Azuma-Hoeffding’s inequality we can write

P(r̄j − µj ≥ ϵ) = P(Mnj ≥ njϵ) ≤ exp
(
−

n2
jϵ2

2nj(m− 1)2

)
= exp

(
− njϵ2

2(m− 1)2

)
where the first equality holds by observing that

Mnj :=
nj∑

s=1
Xs =

nj∑
s=1

r̃κs
j −E[r̃κs

j |Fs−1] = nj(r̄j − µj).

Next, since nj ∼ Binomial(B, q) where q = m/M , we have by the Chernoff bound that

P(nj ≤
Bq

2 ) ≤ exp(−Bq

8 ).

Then, by the law of total probability we can write

P(r̄j − µj ≥ ϵ) = P
(

r̄j − µj ≥ ϵ, nj ≤
Bq

2

)
+ P

(
r̄j − µj ≥ ϵ, nj ≥

Bq

2

)
≤ exp

(
−Bq

8

)
+ P

(
r̄i − µi ≥ ϵ, ni ≥

Bq

2

)
≤ exp

(
−Bq

8

)
+ exp

(
− Bqϵ2

4(m− 1)2

)
.

As before, we define
∆ := min

j,j′∈[M ],rj<rj′
µj′ − µj

and set ϵ = ∆/2. By assumption 1 this quantity is non-zero and well-defined. Then we can write for some
top-k feature j and other feature j′ where rj < rj′ that

P(r̄j ≥ r̄j′) ≤ P(r̄j ≥ µj + ϵ) + P(r̄j′ ≤ µj′ − ϵ).

We see that the probability of any true top-k feature not being ranked correctly is upper bounded by

Perr ≤ P

⋃
j∈T

⋃
j′:rj′ >rj

{r̄j ≥ r̄j′}

 .
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By the union bound, we see we want to find B such that

Perr ≤
∑
j∈T

∑
j′:rj′ >rj

P(r̄j ≥ r̄j′) ≤ 2kM ·
[
exp

(
−Bq

8

)
+ exp

(
− Bqϵ2

4(m− 1)2

)]
≤ δ.

One way to choose B is such that each of the two exponentials ≤ δ/4kM . Solving for these two conditions
separately gives

B ≥ max
{

8
q

ln
(

4kM

δ

)
,

4(m− 1)2

qϵ2 ln
(

4kM

δ

)}
= 4(m− 1)2

qϵ2 ln
(

4kM

δ

)
= 16M(M − 1)2

(2p− 1)2m
ln
(

4kM

δ

)

where ϵ = ∆/2 and ∆ ≥ (2p− 1)
(

m− 1
M − 1

)
by lemma 7. Choosing C = 16

(2p− 1)2 yields the result.

A.3 Proof of Theorem 6

Proof. Let Nt = M/2t−1 denote the feature pool size at iteration t, qt = m/Nt, ϵt = δt/2, and Dt be the
features ranked in the bottom half at iteration t to be discarded. We trivially see that rj′ > rj for any j′ ∈ Dt

and j ∈ T . Furthermore, any top-k feature j at iteration t ≤ T − 1 will survive onto the next round by being
ranked in the upper-half of the feature pool. Then defining Ej,t as the event that feature j is incorrectly
eliminated at iteration t, we can write for any t ≤ T − 1 that

P(Ej,t) ≤ P

 ⋃
j′∈Dt

{r̄t
j ≥ r̄t

j′}


≤
∑

j′∈Dt

P(r̄t
j ≥ r̄t

j′)

≤ Nt

2
(
P(r̄t

j ≥ µt
j + ϵt) + P(r̄t

j′ ≤ µt
j′ − ϵt)

)
= Nt

[
exp

(
−Btqt

8

)
+ exp

(
− Btqtϵ

2
t

4(m− 1)2

)]
where the second inequality holds by the subadditivity of measure, and the last two (in)equalities hold by a
similar argument found in appendix A.2. For each iteration t ≤ T − 1, we see that the probability of error is
upper bounded by

Pt
err ≤

∑
j∈T

P(Ej,t).

Whereas for the last iteration T , we need to correctly rank all top-k features. Similarly following appendix
A.2, we have

PT
err ≤

∑
j∈T

P(Ej,T ) ≤
∑
j∈T

∑
j′:rj′ >rj

P(r̄j ≥ r̄j′).

Next, we want to control each term Pt
err ≤ δ/2T and PT

err ≤ δ/T such that the total probability of error is
bounded within Perr ≤ δ/2 + δ/T . To achieve this, and again following a similar argument as outlined in
appendix A.2, we can choose

Bt ≥
4(m− 1)2

qtϵ2
t

ln
(

4kTNt

δ

)
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for t ≤ T − 1 and

BT ≥
4(m− 1)2

qtϵ2
t

ln
(

4kTNT

δ

)
.

Set ∆1 = (2p− 1) m−1
M−1 Then following lemma 8, we can write BRAMPART as
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)]
where in the second-to-last inequality follows from knowing that T ≥ 3.

B Additional Simulation Results

In this section, we further validate RAMPART’s effectiveness and our theoretical analysis by examining how
the probability of exactly recovering the true top-k features scales with the total number of minipatches. We
then assess robustness in higher dimensions (M = 1000, 2000) and analyze the impact of minipatch size on
ranking accuracy.

B.1 Theory Validation

We first verify our theoretical results stated in Theorem 6 by examining how the number of minipatches affects
ranking performance of RAMP and RAMPART. We generate synthetic data with N = 1000 observations and
M = 160 features drawn independently from a standard normal distribution X ∼ N (0, I) with Y = 0.22·Xβ+ϵ,
where ϵ is unit Gaussian noise. The coefficient vector β is constructed to have four non-zero features with
coefficients 4, 3, 2, 1. Since features are on the same scale, the magnitude of these coefficients directly
determines the feature importance ordering, providing a clear ground truth for evaluating ranking performance.
We compare RAMP and RAMPART with minipatch parameters n = 80 and m = 20 (the trimming process
also terminates when there are 20 features remaining). To ensure a fair comparison, we allocate a total
budget of B minipatches across the five halving iterations for RAMPART, while using 5B minipatches for
RAMP to match the total computation. We evaluate the empirical success probability averaged over 500
random trials, where success is defined as exactly recovering the ranks of the top four features.

Figure 3 shows the empirical success probability as a function of the total number of minipatches. In general,
both methods demonstrate increasing accuracy with more minipatches, with RAMPART consistently achieves
superior ranking accuracy compared to RAMP, validating the consistency guarantees of Theorems 5 and 6.

While our theory shows RAMPART and RAMP require the same order of total minipatches, empirically
RAMPART achieves better performance, particularly in the regime of 100-1000 minipatches where its
adaptive resource allocation proves beneficial. This suggests that RAMPART’s strategy of progressively
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Figure 3: Number of Minipatches vs Ranking Success Probability

focusing computation on promising features provides practical advantages beyond what our theoretical
analysis captures. Bridging this gap to obtain sharper theoretical guarantees that better align with empirical
performance remains an exciting direction for future work.

B.2 Higher Dimensions

For M = 1000 and 2000, we extend the setup described in Section 4 by adding more nonzero features while
preserving the same coefficient structure. We make two implementation adjustments to accommodate higher
dimensionality: (1) For baseline FI, SHAP, and feature permutation with random forests, we scale the number
of trees (200 trees for M = 1000 and 400 trees for M = 2000) to ensure adequate feature space coverage; (2)
For RAMPART and RAMP, we set B = 4000 and B = 20000 minipatches respectively, while keeping all
other parameters unchanged.

The results for M = 1000 (Figures 4 & 5) demonstrate RAMPART’s robust performance across both
covariance structures, with its advantage becoming particularly pronounced under autoregressive covariance.
RAMPART’s sequential halving strategy proves especially effective in these higher-dimensional settings,
showing remarkable stability compared to M = 500 while other methods exhibit noticeable degradation.
At extreme dimensionality (M = 2000, Figures 6 & 7), RAMPART continues to excel, maintaining strong
performance even at high signal-to-noise ratios under autoregressive covariance, while competing methods
show significant accuracy drops. These results highlight RAMPART’s unique ability to handle both high
dimensionality and complex feature interactions through its adaptive resource allocation strategy.

We also extend our ablation studies to higher dimensions using the same methodology as Section 4.1, focusing
on the identity covariance setting and examining columns 2 and 5 (SNR = 0.06 and SNR = 0.5) across both
classification and regression tasks. As before, we maintain consistent experimental conditions by using the
same predictive models, data generation processes, and hyperparameter configurations across all settings.
For regression tasks, we measure the mean squared error (MSE) rather than classification error. Figures
8-12 demonstrate that RAMPART maintains its performance advantage across all dimensions, affirming
that RAMPART’s adaptive resource allocation strategy remains valuable even in higher-dimensional settings
where feature ranking becomes more challenging.
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B.3 Impact of Minipatch Size

We also investigate the effect of varying feature subsample size m within the RAMP framework, returning
to the M = 500 setting with experimental conditions from Section 4. Figures 13 and 14 demonstrate that
while performance remains stable across minipatch sizes for linear models under identity covariance, smaller
minipatches (m = 10) consistently outperform larger ones (m = 50) in nonlinear additive and correlated
settings. These results suggest that smaller minipatch sizes may better capture local feature interactions
while avoiding noise from irrelevant features. While we fix m = 10 for RAMPART in this work, exploring
adaptive minipatch sizes that scale with feature pool size across halving iterations remains an interesting
direction for future research.

C Additional Case Study Discussions

C.1 Drug Response Prediction

Response Variable. To quantify the PD-0325901 drug response in our case study, we use the area under
the dose-response curve (AUC) as the primary outcome of interest. The AUC is a widely-used measure of
overall drug sensitivity, defined as the area between the dose-response curve and 0 (Barretina et al., 2012). A
higher value indicates that the drug was more effective at killing the cancer cells. We refer to Barretina et al.
(2012) for details on how this dose-response data was collected and processed.

Data Preprocessing of Gene Expression Data. The raw CCLE data used in this case study can be
downloaded from the DepMap Portal (https://depmap.org/portal/download/) (version 18Q3). Due to
the heavy right-skewed distribution of the RNASeq gene expression values, we log-transformed (log(x+1)) the
raw gene expression data. We also restricted our analysis to the 1200 genes with the highest empirical variance
across the cell lines and sequentially removed genes which had > 0.95 Pearson correlation with another gene
in the dataset, resulting in 1104 genes. The processed gene expression data was finally standardized to have
zero mean and unit variance.

Gene RAMPART RAMP Baseline SHAP Permutation

TOR4A 1 - 4 2 1
ETV4 2 2 5 1 9
SPRY2 3 1 7 5 2
GJB1 4 5 1 3 7

PYCARD 5 - - - -
WNT5A 6 - - - -
FERMT1 7 - - - 5
NRROS 8 - - - -

LYZ 9 4 2 8 10
NPAS2 10 3 6 7 6

RP11-290L1.3 - 6 9 10 -
ITGA6 - 7 10 6 3

ID3 - 8 3 4 -
DUSP6 - 9 8 9 -

TNFRSF14 - 10 - - -
TMEM184A - - - - 4

RP11-284F21.10 - - - - 8

Table 4: Top-10 ranked genes according to each feature importance ranking method for predicting the
PD-0325901 drug response.
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C.2 Breast Cancer Subtype Classification

Response Variable. We used the PAM50 intrinsic subtype label as a five-class outcome, which are
annotated as Luminal A, Luminal B, HER2-enriched, Basal-like, or Normal-like (Parker et al., 2009).

Data Preprocessing of Gene Expression Data. We obtained the data from the TCGAbiolinks R
package. Starting from the original gene expression data with 19, 947 genes, we log-transformed the expression
values (log(x + 1)) to reduce the impact of highly skewed counts. For each gene, we computed its empirical
variance across all tumors and retained the M = 5000 most variable genes as candidate features. The selected
genes were then standardized to have zero mean and unit variance.

Gene RAMPART RAMP Baseline SHAP Permutation

ESR1 1 3 5 2 2
FOXC1 2 1 - 10 -
TPX2 3 - 8 7 -

FOXA1 4 6 1 1 -
ASPM 5 - - - -
MLPH 6 2 - - -
CDK1 7 - - - -

FOXM1 8 - - - 5
GATA3 9 7 6 3 -
UBE2C 10 - - - 7
TFF3 - 4 - - -

TBC1D9 - 5 2 5 -
XBP1 - 8 - - -
KIF2C - 9 - - -
PRR15 - 10 - - -
SPDEF - - 3 8 -
MYBL2 - - 4 4 -
AGR3 - - 7 6 4
DEGS2 - - 9 - -
SIDT1 - - 10 - -
ANLN - - - 9 -
PLK1 - - - - 1

CCNB1 - - - - 3
TTYH1 - - - - 6
KPNA2 - - - - 8

SLC25A3 - - - - 9
MCM2 - - - - 10

Table 5: Top-10 ranked genes according to each feature importance ranking method for breast cancer subtype
classification.
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GO Biological Process RAMPART RAMP SHAP Permutation

Positive regulation of transcription regulatory region DNA
binding

100.0 100.0 100.0 –

Prostate glandular acinus development 100.0 100.0 100.0 –
Prostate gland epithelium morphogenesis 100.0 – 100.0 –
Uterus development 100.0 – 100.0 –
Lung epithelial cell differentiation – – 100.0 –
Regulation of miRNA transcription 82.32 82.32 82.32 –
Regulation of epithelial to mesenchymal transition 59.37 59.37 59.37 –
Positive regulation of mitotic cell cycle 49.79 – – –
Mitotic cell cycle phase transition 42.00 – – –
Male gonad development 41.44 – – –
Stem cell differentiation 31.82 – – –
Developmental growth 17.55 – – –
Cell division 15.62 – – –
Tube morphogenesis – 14.70 – –
Cell population proliferation 13.63 – – –
Negative regulation of transcription by RNA polymerase II 10.20 – 10.20 –
Positive regulation of transcription by RNA polymerase II – – 9.78 –
Regulation of cell cycle – – 9.59 –
Positive regulation of nucleobase-containing compound
metabolic process

6.16 – – –

Positive regulation of macromolecule metabolic process 5.25 – – –

Double-strand break repair via break-induced replication – – – 100.0
Regulation of DNA-templated DNA replication initiation – – – 100.0
Positive regulation of mitotic metaphase/anaphase transition – – – 100.0
DNA replication initiation – – – 100.0
G2/M transition of mitotic cell cycle – – – 100.0
Mitotic nuclear division – – – 33.21

Table 6: GO biological processes significantly enriched (FDR ≤ 0.05) and fold change (capped at 100) in
top-ranked genes across feature selection methods. The baseline top-10 genes had no processes significantly
enriched at this level.
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Figure 4: Ranking accuracy (RBO with ρ = 0.7) for classification tasks (M = 1000)

Figure 5: Ranking accuracy (RBO with ρ = 0.7) for regression tasks (M = 1000)
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Figure 6: Ranking accuracy (RBO with ρ = 0.7) for classification tasks (M = 2000)

Figure 7: Ranking accuracy (RBO with ρ = 0.7) for regression tasks (M = 2000)
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Figure 8: Mean-Squared error vs. number of top-ranked features used as predictors in ablation simulation
with identity covariance (M = 500)

Figure 9: Classification error vs. number of top-ranked features used as predictors in ablation simulation
with identity covariance (M = 1000)
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Figure 10: Mean-Squared error vs. number of top-ranked features used as predictors in ablation simulation
with identity covariance(M = 1000)

Figure 11: Classification error vs. number of top-ranked features used as predictors in ablation simulation
with identity covariance (M = 2000)
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Figure 12: Mean-Squared error vs. number of top-ranked features used as predictors in ablation simulation
with identity covariance (M = 2000)

Figure 13: Effect (RBO with ρ = 0.7) of minipatch size for classification (M = 500)
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Figure 14: Effect (RBO with ρ = 0.7) of minipatch size for regression (M = 500)
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