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Abstract

Robustness research in machine vision faces a challenge. Many variants of1

ImageNet-scale robustness benchmarks have been proposed, only to reveal that2

current vision systems fail under distributional shifts. Although aiming for higher3

robustness accuracy on these benchmarks is important, we also observe that simply4

using larger models and larger training datasets may not lead to true robustness,5

demanding further innovation. To tackle the problem from a new perspective, we6

encourage closer collaboration between the robustness and 3D vision communities.7

This proposal is inspired by human vision, which is surprisingly robust to envi-8

ronmental variation, including both naturally occurring disturbances and artificial9

corruptions. We hypothesize that such robustness, at least in part, arises from10

our ability to infer 3D geometry from 2D retinal projections. In this work, we11

take a first step toward testing this hypothesis by viewing 3D reconstruction as a12

pretraining method for building more robust vision systems. We introduce a novel13

dataset called Geon3D, which is derived from objects that emphasize variation14

across shape features that the human visual system is thought to be particularly15

sensitive. This dataset enables, for the first time, a controlled setting where we can16

isolate the effect of “3D shape bias” in robustifying neural networks, and informs17

new approaches for increasing robustness by exploiting 3D vision tasks. Using18

Geon3D, we find that CNNs pretrained on 3D reconstruction are more resilient to19

viewpoint change, rotation, and shift than regular CNNs. Further, when combined20

with adversarial training, 3D reconstruction pretrained models improve adversarial21

and common corruption robustness over vanilla adversarially-trained models. We22

hope that our findings and dataset will encourage exploitation of synergies between23

the robustness researchers, 3D computer vision community, and computational24

perception researchers in cognitive science, paving a way for achieving human-like25

robustness under complex, real-world stimuli conditions.26

1 Introduction27

Building robust vision systems is a major open problem. Tremendous efforts have been made since28

adversarial examples were first reported [36], and yet adversarial robustness remains perhaps the most29

important challenge in safe, real-world deployment of modern computer vision systems. Ensuring30

robustness against more common distributional shifts such as blur and snow also remains a significant31

challenge [18]. As clean ImageNet accuracy saturates, the research community has developed various32

ImageNet-scale benchmarks to evaluate the performance of vision models under distributional shifts33

such as broader viewpoint variability [3], style and texture change [15], geographic shifts [19].34

These benchmarks, as well as the recent algorithms that are evaluated using smaller-scale datasets35

such as MNIST and CIFAR10 [38, 39], reveal that current vision systems have plenty of room for36

improvement in terms of robustness.37
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Figure 1: Examples of 10 Geon categories from Geon3D-10. The full list of 40 Geons we construct
(Geon3D-40) is provided in the Appendix.

So far, robustness research in machine vision focuses on classification. Models trained for image38

classification might learn to associate class labels with a limited range of surface-related cues such39

as image contours, but they do not fully or explicitly reflect the relationship between 3D objects40

and how they are projected to images. On the contrary, the human visual system recovers rich41

three-dimensional (3D) geometry, including objects, shapes and surfaces, from two-dimensional42

(2D) retinal inputs. This ability to make inferences about the underlying scene structure from43

input images—also known as analysis-by-synthesis—is thought to be critical for the robustness of44

biological vision to occlusions, distortions, and lighting variations [41, 26].45

While aiming for higher accuracy on ImageNet-scale benchmarks is important, the current landscape46

of robustness research shows that we face a clear challenge [37]. In fact, the consensus seems to be that47

large models and large training data work well for some distribution shifts, but nothing consistently48

help in all variants of ImageNet robustness benchmarks, awaiting methodological innovation to49

achieve human-level robustness [19]. To unblock the situation, we advocate closer collaboration50

between the robustness and 3D vision communities, in the hope of fostering new types of robustness51

research. This paper serves as a first step towards this effort, where we focus on learning features52

to facilitate inferences about 3D object shape. Our goal is to test the hypothesis that shape bias—53

learning representations that enable accurate inferences of 3D from 2D, which we refer to as “3D54

shape bias”—will induce robustness to naturally occurring challenging viewing conditions (e.g., fog,55

snow, brightness) and artificial image corruptions (e.g., due to adversarial attacks).56

To achieve this, we introduce Geon3D—a novel dataset comprised of simple yet realistic shape57

variations, derived from the human object recognition hypothesis called Geon Theory [5]. This58

dataset enables us to study, in a controlled setting, 3D shape bias of 3D reconstruction models59

that learn to represent shapes solely from 2D supervision [28]. We find that CNNs trained for 3D60

reconstruction are more robust to unseen viewpoints, rotation and translation than regular CNNs.61

Moreover, when combined with adversarial training, 3D reconstruction pretraining improves common62

corruption and adversarial robustness over CNNs that only use adversarial training. These results63

suggest that the Geon3D dataset provides a controlled and effective measure of robustness, and unlike64

existing, commonly used datasets in this area such as CIFAR10 and ImageNet-C, Geon3D guides65

novel approaches by facilitating an interface between robust machine learning and 3D reconstruction.66

(Please see the Related Work section for a discussion of Geon3D in the context of existing 3D shape67

datasets.)68

Biological vision is not only about object classification or localization, but also about making rich69

inference about the underlying causes of scenes such as 3D shapes and surfaces [29, 41, 26]. We hope70

our findings and dataset will encourage the community to tackle robustness problems through the71

lens of 3D inference and the perspective of perception as analysis-by-synthesis, toward the combined72

goals of building machine vision systems with human-like richness and reliability.73
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2 Approach74

We first describe the Geon Theory, which our dataset construction relies on. Next, we explain the75

data generation process used in the creation of Geon3D (§2.1), and how we train a 3D reconstruction76

model (§2.2).77

2.1 Geon3D Benchmark78

The concept of Geons—or Geometric ions—was originally introduced by Biederman as the building79

block for his Recognition-by-Components (RBC) Theory [5]. The RBC theory argues that human80

shape perception segments an object at regions of sharp concavity, modeling an object as a com-81

position of Geons—a subset of generalized cylinders [6]. Similar to generalized cylinders, each82

Geon is defined by its axis function, cross-section shape, and sweep function. In order to reduce83

the possible set of generalized cylinders, Biederman considered the properties of the human visual84

system. He noted that the human visual system is better at distinguishing between straight and curved85

lines than at estimating curvature; detecting parallelism than estimating the angle between lines; and86

distinguishing between vertex types such as an arrow, Y, and L-junction [21].87

Table 1: Latent features of Geons. S: Straight, C:
Curved, Co: Constant, M: Monotonic, EC: Ex-
pand and Contract, CE: Contract and Expand, T:
Truncated, P: End in a point, CS: End as a curved
surface

Feature Values

Axis S, C
Cross-section S, C
Sweep function Co, M, EC, CE
Termination T, P, CS

Table 2: Similar Geon categories, where only
a single feature differs out of four shape fea-
tures. “T.” stands for “Truncated”. “E.” stands
for “Expanded”.

Geon Category Difference

Cone vs. Horn Axis
Handle vs. Arch Cross-section
Cuboid vs. Cyllinder Cross-section
T. Pyramid vs. T. Cone Cross-section
Cuboid vs. Pyramid Sweep function
Barrel vs. T. Cone Sweep function
Horn vs. E. Handle Termination

Our focus in this paper is not the RBC theory or whether it is the right way to think about how we see88

shapes. Instead, we wish to build upon the way Biederman characterized these Geons. Biederman89

proposed using two to four values to characterize each feature of Geons. Namely, the axis can be90

straight or curved; the shape of cross section can be straight-edged or curved-edged; the sweep91

function can be constant, monotonically increasing / decreasing, monotonically increasing and then92

decreasing (i.e. expand and contract), or monotonically decreasing and then increasing (i.e. contract93

and expand); the termination can be truncated, end in a point, or end as a curved surface. A summary94

of these dimensions is given in Table 1.95

Representative Geon classes are shown in Figure 1. For example, the “Arch” class is uniquely96

characterized by its curved axis, straight-edged cross section, constant sweep function, and truncated97

termination. These values of Geon features are nonaccidental—we can determine whether the axis is98

straight or curved from almost any viewpoint, except for a few accidental cases. For instance, an99

arch-like curve in the 3D space is perceived as a straight line only when the viewpoint is aligned in a100

way that the curvature vanishes. These properties make Geons an ideal dataset to analyze 3D shape101

bias and part-level robustness of vision models. For details of data preparation, see Appendix.102

2.2 3D reconstruction as pretraining103

To explore advantages of direct approaches to induce shape bias in vision models, we turn our104

attention to a class of 3D reconstruction models. The main hypothesis of our study is that the task of105

3D reconstruction pressures the model to obtain robust representations.106

Recently, there has been significant progress in learning-based approaches to 3D reconstruction,107

where the data representation can be classified into voxels [10, 32], point clouds [14, 1], mesh [22, 17],108

and neural implicit representations [25, 9, 31, 35]. We focus on neural implicit representations, where109

models learn to implicitly represent 3D geometry in neural network parameters after training. We110

avoid models that require 3D supervision such as ground truth 3D shapes. This is because we are111
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interested in models that only require 2D supervision for training and how inductive bias of 2D-to-3D112

inference achieves robustness.113

Specifically, we use Differentiable Volumetric Rendering (DVR) [28], which consists of a CNN-based114

image encoder and a differentiable neural rendering module. We train DVR to reconstruct 3D shapes115

of Geon3D-10. For more details of DVR and 3D reconstruction, we refer the readers to the original116

paper [28].117

3 Experimental Results118

In this section, we demonstrate how 3D shape bias improves model robustness on the Geon3D-10119

classification under various image perturbations. Our 3D-shape-biased classifier is based on the image120

encoder of the 3D reconstruction model (DVR) that is pretrained to reconstruct Geon3D-10. We add121

a linear classification layer on top of the image encoder, and then finetune, either just that linear layer122

(DVR-Last) or the entire encoder (DVR), for Geon3D-10 classification. Our baseline is a vanilla123

neural network (Regular) that is trained normally for Geon3D-10 classification. To see the difference124

between 3D shape bias and 2D shape bias in the sense of [15], we also evaluate the following models,125

which are hypothesized to rely their prediction more on shape than texture. Stylized is a model126

trained on Stylized images of Geons. Adversarially trained network (AT) is a network that uses127

adversarial examples during training [24]. InfoDrop [34] is a recently proposed model that induces128

2D shape bias by decorrelating each layer’s output with texture. To control for variation in network129

architectures, we use ImageNet-pretrained ResNet18 for all models we tested. The image encoder of130

DVR is also initialized using ImageNet-pretrained training for 3D reconstruction of Geons.131

Background variations To quantify the effect of textured background, we prepare three versions132

of Geon3D-10: black background, random textured background (Geon3D-10-RandTextured), and133

correlated background (Geon3D-10-CorrTextured). For Geon3D-10-RandTextured, we replace134

each black background with a random texture image out of 10 texture categories chosen from the135

Describable Textures Dataset (DTD) [11]. For Geon3D-10-CorrTextured, we choose 10 texture136

categories from DTD and introduce spurious correlations between Geon category and texture class137

(i.e., each Geon category is paired with one texture class). Examples of Geon3D with textured138

background are shown in Figure 4 (Right). These three versions of our dataset allow us to analyze139

more realistic image conditions as well as to test robustness despite variation and distributional shifts140

in textures.141

Accuracy under rotation and translation (shifting pixels) CNNs are known to be vulnerable to142

rotation and shifting of the image pixels [2]. As shown in Table 3, our model (DVR) pretrained with143

3D reconstruction performs better than all other models under rotation and shift even though it is not144

explicitly trained to defend against those attacks. We observe that DVR-Last performs second best,145

indicating that this “for free” robustness to rotation and shift is largely in place even when finetuning146

on the classification task is restricted to only linear decoding of the categories.147

Table 3: Accuracy of shape-biased classifiers against rotation and shifting of pixels on Geon3D under
unseen viewpoints. We randomly add rotations of at most 30◦ and translations of at most 10% of the
image size in each x, y direction. We report the mean accuracy and standard deviation over 5 runs of
this stochastic procedure over the entire evaluation set.

REGULAR INFODROP STYLIZED AT-L2 AT-L∞ DVR-LAST DVR

ROTATION 82.18(1.06) 80.76(0.69) 78.47(0.57) 87.00(0.57) 89.58(0.48) 90.44(0.30) 93.46(0.44)

SHIFT 72.28(0.43) 71.86(0.63) 61.44(0.29) 53.84(0.71) 61.50(1.11) 73.24(0.73) 76.52(0.89)

3.1 Robustness against Common Corruptions148

In this section, we show that, when combined with adversarial training, 3D pretrained models149

(denoted as DVR+AT-L2 and DVR+AT-L∞) improve robustness against common image corruptions,150

above and beyond what can be accomplished just using adversarial training. For these models, we151

use adversarial training during the finetuning of the 3D reconstruction model for the Geon3D-10152

classification task. Here we evaluate the effect of 3D shape bias not only in the somewhat sterile153
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scenario of the clean, black background images, but also using the background-textured versions154

of our dataset. To do this, we train all models using Geon3D-10-RandTextured, where we replace155

the black background with textures randomly sampled from DTD (see Figure 4, right panel, for156

examples). During evaluation, we use unseen viewpoints.157

The results are shown in Table 4. We see that starting adversarial training from DVR-pretrained158

weights improves robustness across all corruption types, over what can be achieved by only either159

AT-L2 or AT-L∞. DVR-AT and AT models fail on “Contrast” and “Fog”. This has been a known160

issue for AT [16], which requires future work to explore. While Stylized performs best under certain161

corruption types, we can see that DVR-AT-L2 leads to broader robustness across the corruptions we162

considered.163

Table 4: Accuracy of classifiers against common corruptions under unseen viewpoints. All models
are trained and evaluated on Geon3D-10 with random textured background. Pretraining on 3D shape
reconstruction using DVR leads to broader robustness relative to other models.

REGULAR INFODROP STYLIZED AT-L2 AT-L∞ DVR+AT-L2 DVR+AT-L∞

INTACT 0.741 0.596 0.701 0.691 0.464 0.758 0.513
PIXELATE 0.608 0.458 0.653 0.623 0.415 0.719 0.470
DEFOCUS BLUR 0.154 0.152 0.402 0.490 0.298 0.605 0.349
GAUSSIAN NOISE 0.222 0.465 0.601 0.555 0.412 0.701 0.470
IMPULSE NOISE 0.187 0.270 0.497 0.322 0.136 0.594 0.148
FROST 0.144 0.269 0.638 0.142 0.209 0.148 0.240
FOG 0.338 0.281 0.659 0.187 0.120 0.264 0.130
ELASTIC 0.427 0.314 0.428 0.416 0.266 0.499 0.307
JPEG 0.414 0.422 0.634 0.629 0.434 0.731 0.484
CONTRAST 0.408 0.286 0.673 0.141 0.120 0.179 0.135
BRIGHTNESS 0.525 0.518 0.702 0.500 0.388 0.549 0.429
ZOOM BLUR 0.334 0.238 0.560 0.518 0.327 0.639 0.378

3.2 3D Pretraining Improves Adversarial Robustness164
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Figure 2: Robustness comparison between AT-L∞ and DVR+AT-L∞ with increasing perturbation
budget ε on three variations of Geon3D-10. We use L∞-PGD with 100 iterations and ε/10 to be the
stepsize. See Appendix for AT-L2 results, where we also find that 3D pretraining improves vanilla
AT models.
In this section, we show that 3D pretrained AT models improve adversarial robustness over vanilla AT165

models. We attack our models using L∞-PGD [24], with 100 iterations and ε/10 to be the stepsize,166

where ε is the perturbation budget. We compare AT-L∞ and DVR+AT-L∞ for black, randomly167

textured, and correlated textured backgrounds. The results are shown in Figure 2. In the black168

background set, while 3D pretrained AT slightly performs worse than vanilla AT for smaller epsilon169

values, it significantly robustifies AT-trained models for large epsilons. A small but appreciable gain170

in robustness can be seen for the other two backgrounds types. These pattern of results are consistent171

across attack types, with DVR providing significant robustness over vanilla AT under the L2 regime172

(see Appendix).173
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A Additional experiments312

A.1 3D shape bias improves generalization to unseen views and reduces similar category313

confusion314

One of the crucial but often overlooked examples of 3D shape bias that human vision has is “visual315

completion” [30], which refers to our ability to infer portions of surface that we cannot actually see.316

For instance, when we look at the top-left image in Figure 4, we automatically recognize it as a whole317

cube, even though we cannot see its rear side. We view the task of 3D reconstruction as a way to318

build such an ability into neural networks. In this section, we investigate how such 3D shape bias of319

DVR improves classification of similar Geon categories under unseen viewpoints, testing both DVR320

(where we finetune all layers of the image encoder) and DVR-Last (where we finetune only the top321

classification layer of the image encoder).322
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DVR-Last (Accuracy 0.915) DVR (Accuracy 0.943)AT- (Accuracy 0.910)

Regular (Accuracy 0.866) InfoDrop (Accuracy 0.833) Stylized (Accuracy 0.822)
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Figure 3: Accuracy per Geon category under unseen viewpoints. Even though all models perform
reasonably well, there is still a range of overall accuracy values. In addition, we see that when
networks make a mistake, it is often between similar Geon categories (see Table 2 for a list of similar
Geon categories). Regular: a baseline model; InfoDrop: a shape-biased model; AT: adversarially
trained; Stylized: a network trained on “stylized” version of Geon3D; DVR: We use pretrained
weights of the image encoder of Differentiable Volumetric Rendering (3D reconstruction model),
a 3D reconstruction model, and finetune all of its layers on the Geon3D-10 classification task.
DVR-Last refers to the version where we finetune only the last classification layer.

The results of per-category classification are shown in Figure 3. We say two Geons are similar when323

there is only a single shape feature difference, as summarized in Table 2. We see that networks often324

misclassify similar Geon categories. The vanilla neural network (Regular) often misclassifies “Cone”325

vs. “Horn”, “Handle” vs. “Arch”, “Cuboid” vs. “Truncated pyramid”, as well as “Truncated cone” vs.326

“Truncated pyramid”.The Geon pairs the InfoDrop model misclassifies include: “Arch” vs. “Handle”,327

“Cyllinder” vs. “Barrel”, “Cuboid” vs. ”Cyllinder” and “Truncated pyramid” vs. “Truncated cone”,328

which are all pairs with single shape feature difference.329

Notably, the Stylized model, which is hypothesized to increase bias towards shape-related features,330

makes a number of mistakes for similar Geon classes (i.e. “Horn” vs. “Cone”, “Cone” vs. “Truncated331

pyramid”, and “Truncated cone” vs. “Truncated pyramid”), similar to the Regular model. This result332

is consistent with the finding that the Stylized approach [15] does not necessarily induce proper shape333

bias [27].334

AT-L∞ and DVR-Last perform better than the models listed above, yet still struggle to distinguish335

“Truncated Pyramid” from “Truncated Cone”, where the difference is whether the cross-section336

is curved or straight (see Table 2). On the other hand, DVR successfully distinguishes these two337

categories. This shows that 3D pretraining before finetuning for the task of classification facilitates338

recognition of even highly similar shapes. The hardest pair for DVR is “Truncated cone” vs. “Barrel”,339

but the errors the model make appear sensible (Figure 4, middle panel): For example, when the camera340

points at the smaller side of the “Truncated Cone”, then there is uncertainty whether the surface341

extends beyond self-occlusion by contracting (which would be consistent with the “Barrel” category)342

or the surface ends at the point of self-occlusion (which would be consistent with the category343

“Truncated Cone”). Indeed, when we inspected the samples of “Truncated Cone” misclassified as344

“Barrel” by DVR, we found that for half of those images, the larger side of “Truncated Cone” was345

self-occluded. Future psychophysical work should quantitatively compare errors made by these346

models to human behavior.347
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Truncated Cone Barrel

Figure 4: (Left) We humans recognize the top image as a whole cube, automatically filling in the
surfaces of its rear, invisible side, although, in principle, there are infinitely many scenes consistent
with the sense data , one of which is shown in the bottom image [30]. This illustrates that certain
shapes are more readily perceived by the human visual system than others. (Middle) Examples of
“Truncated Cone” that are misclassified as “Barrel” by DVR, next to “Barrel“ exemplars shown at
similar viewpoints.(Right) Example images from Geon3D-10 with textured backgrounds.

A.2 Robustness to Distributional Shift in Backgrounds348

In this section, we evaluate network’s robustness to distributional shift in backgrounds. To do349

this, we train all the models on Geon3D-10-CorrTextured, where we introduce spurious correlation350

between textured background and Geon category. Therefore, during training, a model can pick up351

classification signal from both the shape of Geon as well as background texture. To evaluate trained352

models for background shift, we prepare a test set that breaks the correlation between Geon category353

and background texture class by cyclically shifting the texture class from i to i+ 1 for i = 0, ..., 9,354

where the class 10 is mapped to the class 0. This is inspired by [15], where they create shape-texture355

conflicts to measure 2D shape bias in networks trained for ImageNet classification. However, in our356

case, distributional shift from training to test set is designed to isolate and better measure shape bias357

by fully disentangling the contributions of texture and shape.358

The results are shown in Table 5. We see that 2D shape biased models all perform worse than the359

3D shape-biased model (DVR+AT-L∞). Combining AT with 3D pretraining improves classification360

accuracy more than 10 % with respect to the best performing variant of AT.361

Interestingly, comparing randomized vs. correlated background experiments reveals a stark difference362

between the two commonly used perturbations in adversarial training (L2 vs. L∞). Unlike our363

analysis with uncorrelated, randomized backgrounds, we find that adversarial training using L2 norm364

completely biases the model towards texture (no apparent shape bias) when such spurious correlation365

between texture and shape category exists.366

Table 5: Accuracy of shape-biased classifiers against distributional shift in backgrounds. Here, all
models are trained on Geon3D-10-CorrTextured (with background textures correlated with shape
categories) and evaluated on a test set where we break this correlation. See Appendix for results
using other common corruptions, where we find DVR+AT-L∞ provides broadest robustness across
the corruptions we tested.

REGULAR INFODROP STYLIZED AT-L2 AT-L∞ DVR+AT-L2 DVR+AT-L∞

0.045 0.121 0.268 0.015 0.311 0.219 0.439

B How important is 3D inference?367

In this section, we investigate the importance of causal 3D inference to obtain good representations.368

That is, we explore the impact of having an actual rendering function constrain the representations369

learned by a model. Our goal in this section is not to further evaluate the robustness of these features,370
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but to measure the efficiency of representations learned under the constraint of a rendering function371

for the basic task of classification.372

To isolate this effect, we compare DVR to Generative Query Networks (GQN) [13]—a scene373

representation model that can generate scenes from unobserved viewpoints—on novel exemplars374

from the Geon3D-10 dataset, but using views seen during training. The crucial difference between375

DVR and GQN is that GQN does not model the geometry of the object explicitly with respect to an376

actual rendering function. Therefore, the decoder of GQN, which is another neural network based377

on ConvLSTM, is expected to learn rendering-like operations solely from an objective that aims378

to maximize the log-likelihood of each observation given other observations of the same scene as379

context. To control for the difference of network architecture, we train DVR using the same image380

encoder architecture as GQN, since when we used ResNet18 as an image encoder, GQN did not381

converge.382

Examples of generated images of Geons from GQN are shown in Figure 5 (Left). As we can see,383

GQN successfully captures the object from novel viewpoints.384

To assess the power of representations learned by GQN in the same way as DVR, we take the385

representation network and add a linear layer on top. We then finetune the linear layer on 10-Geon386

classification, while freezing the rest of the weights. We compare this model to the architecture-387

controlled version of the DVR-Last model.388

Since GQN can take more than one view of images, we prepare 6 models that are finetuned based on389

either of {1, 2, 4, 8, 16, 32}-views. The resulting test accuracy of finetuned GQN encoders against390

the number of views is shown in Figure 5 (Right). Despite the strong viewpoint generalization of391

GQN, we see that finetuned GQN requires more than 2 views (i.e., 3 or 4 views) to reach the DVR392

level accuracy, and only outperforms DVR after we feed more than 8 views. This suggests that the393

inductive bias from 3D inference is more efficient to obtain good representations.394
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Figure 5: Left: Example Geon images rendered from GQN based on 3 views. Right: GQN Test
Accuracy v.s. the number of views. As a reference, we also plot the 1-view DVR accuracy. Here, we
used the same architecture for the image encoders of DVR and GQN.

B.1 Adversarial Robustness395

In Figure 6, we provide additional results for adversarial robustness, where we attack AT-L2 using396

L∞-PGD. Similar to the case of AT-L∞, we see that 3D pretraining improves robustness over the397

vanilla AT models for all background settings.398

B.2 Robustness to Common Corruptions399

In this section, we provide additional results for common corruptions. In Table 6, we provide the re-400

sults for the black background setting. Here again we see that 3D pretraining further improves vanilla401

AT models. In Table 7, we provide more detailed results of distributional shift in the backgrounds.402

Even after adding image corruptions, we still see that DVR+AT performs best, confirming that 3D403

shape bias from 3D pretraining complements the performance of AT to increase model robustness.404

11



0.01 0.02 0.03 0.04 0.05
Perturbation budget 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

L -PGD (Black Background)

DVR+AT-L2
AT-L2

0.01 0.02 0.03 0.04 0.05
Perturbation budget 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

L -PGD (Random Textured Background)

DVR+AT-L2
AT-L2

0.002 0.004 0.006 0.008 0.01
Perturbation budget 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

L -PGD (Correlated Textured Background)

DVR+AT-L2
AT-L2

Figure 6: Robustness comparison between AT-L2 and DVR+AT-L2 with increasing perturbation
budget ε on three variations of Geon3D-10. We attack our models using L∞-PGD with 100 iterations
and ε/10 to be the stepsize.
Table 6: Accuracy of shape-biased classifiers against common corruptions under unseen views on
Geon3D-10 (black backgrounds).

REGULAR INFODROP STYLIZED AT-L2 ATL∞ DVR+AT-L2 DVR+AT-L∞

INTACT 0.866 0.845 0.822 0.908 0.910 0.912 0.92
PIXELATE 0.685 0.773 0.781 0.905 0.910 0.911 0.919
DEFOCUS BLUR 0.303 0.247 0.755 0.900 0.909 0.897 0.909
GAUSSIAN NOISE 0.548 0.291 0.803 0.620 0.885 0.914 0.919
IMPULSE NOISE 0.140 0.190 0.750 0.542 0.100 0.916 0.918
FROST 0.151 0.323 0.783 0.140 0.100 0.22 0.3
FOG 0.138 0.163 0.764 0.100 0.100 0.119 0.149
ELASTIC 0.612 0.635 0.617 0.628 0.664 0.645 0.655
JPEG 0.799 0.821 0.810 0.905 0.911 0.912 0.92
CONTRAST 0.510 0.180 0.772 0.163 0.258 0.213 0.335
BRIGHTNESS 0.552 0.832 0.818 0.160 0.137 0.385 0.931
ZOOM BLUR 0.475 0.462 0.748 0.891 0.917 0.902 0.92

C Related Work and Discussions405

3D datasets. Geon3D is smaller in scale and less complex in shape variation relative to some of the406

existing 3D model datasets, including ShapeNet [8] and ModelNet [43]. These datasets have been407

instrumental for recent advances in 3D computer vision models (e.g. Niemeyer et al. [28], Sitzmann408

et al. [35]). However, at a practical level, these 3D model datasets are not yet suitable for our goal409

(which is to establish whether introducing 3D shape bias into vision models induce robustness):410

Even though existing learning-based 3D reconstruction models can perform well when trained on411

a single or a very small number of categories from these datasets, these models do not scale well412

with increasing number of object categories. For example, on ShapeNet, when these models are413

required to learn a non-trivial number of object categories (e.g., 10 or more) at the same time, the414

resulting 3D shape reconstructions degrade significantly, unable to capture many salient aspects of415

shape variation across and within categories. For us, such failure confounds inferences we can make416

about the role of shape bias in robustness, which is our central question: Would a negative result be417

because the model does not perform well on the reconstruction task to begin with or is it that shape418

bias has no benefit for robustness? We deliberately designed Geon3D to allow us to take advantage419

of the state-of-the-art in learning-based 3D reconstruction models (in this work, the DVR model): It420

provides a non-trivial number of distinct shape categories, with considerable shape variation within421

and across categories, yet remain tractable to learn by these existing models. As we demonstrate422

in this work, despite its simplicity relative to these larger datasets, Geon3D reveals that the current423

vision models struggle with image corruptions and that 3D shape bias induces robustness. Our results424

based on Geon3D provide compelling evidence that to achieve robustness against distributional shifts425

and adversarial examples, a promising and effective approach is to build models with 3D shape bias.426

In future work, we are excited to explore this hypothesis in the context of more complex shapes and427

real-world objects and scenes.428

Analysis-by-synthesis. Our proposal of using 3D inference to achieve robust vision shares the429

same goal as analysis-by-synthesis [23, 41, 40]. In DVR, we can see its encoder as a recognition430
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Table 7: Accuracy of shape-biased classifiers against common corruptions under unseen views on
Geon3D-10 with textured background swap.

REGULAR INFODROP STYLIZED AT-L2 AT-L∞ DVR+AT-L2 DVR+AT-L∞

INTACT 0.045 0.121 0.268 0.015 0.311 0.219 0.439
PIXELATE 0.044 0.096 0.275 0.017 0.306 0.201 0.415
DEFOCUS BLUR 0.044 0.093 0.268 0.024 0.242 0.206 0.338
GAUSSIAN NOISE 0.046 0.160 0.269 0.015 0.320 0.209 0.408
IMPULSE NOISE 0.058 0.096 0.228 0.015 0.078 0.207 0.147
FROST 0.020 0.138 0.255 0.070 0.149 0.144 0.227
FOG 0.032 0.114 0.273 0.077 0.099 0.149 0.124
ELASTIC 0.044 0.109 0.260 0.100 0.196 0.176 0.264
JPEG 0.041 0.089 0.264 0.016 0.306 0.206 0.419
CONTRAST 0.055 0.107 0.274 0.066 0.090 0.148 0.126
BRIGHTNESS 0.036 0.127 0.268 0.026 0.270 0.189 0.379
ZOOM BLUR 0.081 0.082 0.290 0.032 0.269 0.249 0.375

network [12], mapping 2D images to their underlying shape, appearance, and pose parameters under431

a structured generative model based on a neural rendering function. Even though previous work432

considered adversarial robustness of variational autoencoders [33], our study is first to evaluate433

robustness arising from analysis-by-synthesis type computations under 3D scenes.434

D Datasheet435

A line of work in psychophysics of human visual cognition have argued that the visual system exploits436

certain types of shape features in inferring 3D structure and geometry. In Geon3D, by treating these437

shape features as the dimensions of variation, we model 40 classes of 3D objects, and render them438

from random viewpoints, resulting in an image set and their corresponding camera matrices.439

Data Preparation We construct each Geon using Blender —an open-source 3D computer graphics440

software [7].441

An advantage of Geons over other geometric primitives such as superquadrics [4] is that the shape442

categorization of Geons is qualitative rather than quantitative. Thus, each Geon category affords a443

high degree of in-class shape deformation, as long as the four defining features of each shape class444

remains the same. Such flexibility allows us to construct a number of different 3D model instances445

for each Geon class by expanding or shrinking the object along the x, y, or z-axis. For each axis, we446

evenly sample the 11 scaling parameters from the interval [0.5, ..., 1.5] with a step size 0.1, resulting447

in 1331 3D model instances for each Geon category.448

Rendering and data splits We randomly sample 50 camera positions from a sphere with the object449

at the origin. For each model instance, 50 images are rendered using these camera positions with450

resolution of 224x224. We then split the data into train/validation/test with ratio 8:1:1 using model451

instance ids, where each instance id corresponds to the scaling parameters described above. We also452

make sure that all Geon categories are uniformly sampled in each of train/validation/test sets.453

Dataset distribution The full Geon3D-40 (black background) will be available for download after454

publication. Geon3D is distributed under the CC BY-SA 4.0 license.1 We plan to maintain different455

versions of Geon3D as we extend the dataset to include more complicated objects by combining456

Geon3D as parts. The authors bear all responsibility in case of violation of rights and confirmation457

of the data license. Upon publication, the dataset website will become available, where we will add458

structured metadata to a dataset’s meta-data page, a persistent dereferenceable identifier, and any459

future updates.460

How to use Geon3D Our dataset contains 40 Geon categories, where each folder contains 1331461

subfolders. The name of the subfolder represents the scaling factors for the x, y, and z direction. For462

1https://creativecommons.org/licenses/by-sa/4.0/legalcode
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example, 0.5_1.0_1.3 means the Geon model is scaled by 0.5, 1.1, and 1.3 for x, y, and z axis,463

respectively. Each subfolder contains the ’rgb’ folder, ’mask’ folder, and ’pose’ folder. The ’rgb’464

folder contains 50 images taken from 50 random viewpoints. The ’mask’ and ’pose’ folders are used465

for 3D reconstruction tasks. An example code will be provided to demonstrate how to load these466

’mask’ and ’pose’ information to do 3D reconstruction task.467

Benchmarking metric Our metric for benchmarking model robustness is accuracy under different468

noise types (e.g. Section 3.1, 3.2, 3.3, 3.4). Unless we achieve near-perfect accuracy on each noise469

type, we don’t think robustness issues are solved on this dataset. We would like to avoid using a470

single metric such as the mean robust accuracy, since such a metric inevitably obscures the intricate471

differences that arise from different noise types.472

List of 40 Geons In Figure 7, we provide a list of 40 Geons we have constructed. The label for each473

Geon class represents the four defining shape features, in the order of “axis”, “cross section”, “sweep474

function”, “termination”, as described in the main paper. We put “na” for the termination when the475

sweep function is constant. We also distinguish the two termination types “c-inc” and “c-dec” when476

the sweep function is monotonic. For instance, “c-inc” means that the curved surface is at the end477

of the increasing sweep function, whereas “c-dec” means that the curved surface is at the end of478

the decreasing sweep function. As a reference, here is the mapping between the name and the code479

of 10 Geons we used in 10-Geon classification: “Arch”: c_s_c_na, “Barrel”: s_c_ec_t, “Cone”:480

s_c_m_p, “Cuboid”: s_s_c_na, “Cylinder”: s_c_c_na, “Truncated cone”: s_c_m_t, “Handle”:481

c_c_c_na, “Expanded Handle”: c_c_m_t, “Horn”: c_c_m_p, “Truncated pyramid”: s_s_m_t.482

c_c_c_na c_c_ce_c c_c_ce_t c_c_ec_c c_c_ec_p c_c_ec_t c_c_m_c-dec c_c_m_c-inc c_c_m_p c_c_m_t

c_s_c_na c_s_ce_c c_s_ce_t c_s_ec_c c_s_ec_p c_s_ec_t c_s_m_c-dec c_s_m_c-inc c_s_m_p c_s_m_t

s_c_c_na s_c_ce_c s_c_ce_t s_c_ec_c s_c_ec_p s_c_ec_t s_c_m_c-dec s_c_m_c-inc s_c_m_p s_c_m_t

s_s_c_na s_s_ce_c s_s_ce_t s_s_ec_c s_s_ec_p s_s_ec_t s_s_m_c-dec s_s_m_c-inc s_s_m_p s_s_m_t

Figure 7: The list of 40 Geons we constructed.

E Reproducibility: Training details483

We used GeForce RTX 2080Ti GPUs for all of our experiments. GQN training takes about a week484

until convergence on a single GPU. DVR 3D reconstruction training takes roughly about 1.5 days on485

a single GPU. The hyperparameters for 10-Geon classification, described in the main paper, were486

chosen by monitoring the model convergence on the validation set. The inputs to all models during487

classification are only RGB images. (Camera matrices are only used for the rendering module during488

pretraining for 3D reconstruction.)489

DVR We used the code 2 open-sourced by Niemeyer et al. [28]. We followed the default hyperpa-490

rameters recommended by Niemeyer et al. [28] for 3D reconstruction training, with the exception of491

batch size, which we set 32 to fit into a single GPU memory.492

Adversarial Training Through extensive experiments, Zhang & Zhu [42] demonstrate that AT493

models develop 2D shape bias, which is considered to explain, in part, the strong adversarial494

2https://github.com/autonomousvision/differentiable_volumetric_rendering
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robustness of AT models. In our experiments, we use L∞ and L2 based adversarial training. We used495

the python package 3 to perform adversarial training. For AT(L2), we use attack steps 7, epsilon 3.0,496

attack lr 0.5. For AT(L∞), we use attack steps 7, epsilon 0.05, attack lr 0.01. use best (final) PGD497

step as example. Both models trained for 70 epochs with batch size 100, which was sufficient for498

model convergence.499

GQN We used the open-source code 4 to implement our GQN. Due to the training instability, we500

rescale the image size from 224 x 224 to 64 x 64.501

InfoDrop We used the original author’s implementation 5. The method exploits the fact that texture502

often repeats itself, and hence is highly correlated with and can be predicted by the texture information503

in the neighboring regions, whereas shape-related features such as edges and contours are less coupled504

at the locality of neighboring regions.505

Stylized We follow the same protocol as [15] by replacing the texture of each image of Geon3D-10506

by a randomly selected texture from paintings through the AdaIn style-transfer algorithm [20]. To507

stylize Geon3D, we used the code 6 introduced by the original author of Stylized-ImageNet [15].508

Dataset For training Geon3D image classifiers, we center and re-scale the color values of Geon3D509

with µ = [0.485, 0.456, 0.406] and σ = [0.229, 0.224, 0.225], which is estimated from ImageNet.510

We construct the 40 3D model instances as well as the whole training data in Blender. We then511

normalize the object bounding box to a unit cube, which is represented as 1.0_1.0_1.0 in the512

dataset folder.513

Background textures We used the following label-to-texture class mapping: {0: ’zigzagged’, 1:514

’banded’, 2: ’wrinkled’, 3: ’striped’, 4: ’grid’, 5: ’polka-dotted’, 6: ’chequered’, 7: ’blotchy’, 8:515

’lacelike’, 9: ’crystalline’ }. For the distributional shift experiment we used the following mapping: {516

0: ’crystalline’, 1: ’zigzagged’, 2: ’banded’, 3: ’wrinkled’, 4: ’striped’, 5: ’grid’, 6: ’polka-dotted’, 7:517

’chequered’, 8: ’blotchy’, 9: ’lacelike’, }. The DTD data is licensed under the Creative Commons518

Attribution 4.0 License. 7519

Evaluation set For all the evaluation sets in the experiment section, we used the same subset of the520

test split, where we randomly pick 1000 model instance ids, and randomly sample 1 view out of 50521

views for every model instance.522

Gaussian Noise Defocus BlurImpulse Noise Zoom Blur Frost Fog

Elastic Transform JPEG Compression Pixelate Brightness Contrast

Figure 8: Examples of image corruptions.

We use the original author’s code 8 to generate common corruptions shown in Figure 8.523

3https://github.com/MadryLab/robustness
4https://github.com/iShohei220/torch-gqn
5https://github.com/bfshi/InfoDrop
6https://github.com/bethgelab/stylize-datasets
7https://creativecommons.org/licenses/by/4.0/, https://www.tensorflow.org/datasets/catalog/dtd
8https://github.com/hendrycks/robustness
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