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ABSTRACT

Retrieval-Augmented Generation (RAG) has emerged as a powerful approach to
mitigate large language model (LLM) hallucinations by incorporating external
knowledge retrieval. However, existing RAG frameworks often apply retrieval
indiscriminately, leading to inefficiencies—over-retrieving when unnecessary or
failing to retrieve iteratively when required for complex reasoning. Although re-
cent retrieval strategies can adaptively navigate among alternative retrieval strate-
gies, they make their selection based solely on query complexity and incorporate
no mechanism for prioritizing speed over accuracy or vice versa. This lack of
user-defined control makes their use infeasible for diverse user application needs.
In this paper, we introduce a novel user-controllable RAG framework that enables
dynamic adjustment of the accuracy-cost trade-off. Our approach leverages two
classifiers: one trained to prioritize accuracy and another to prioritize retrieval
efficiency. Via an interpretable control parameter α, users can seamlessly nav-
igate between minimal-cost retrieval and high-accuracy retrieval depending on
their specific requirements. We empirically demonstrate that our approach ef-
fectively balances accuracy, retrieval cost, and user controllability 1, making it a
practical and adaptable solution for real-world applications.

1 INTRODUCTION

Retrieval-Augmented Generation (RAG) (Lewis et al., 2020; Khandelwal et al., 2019; Izacard et al.,
2023) has emerged as a promising approach to address large language models’ (LLM) hallucina-
tions, outputs that appear accurate but are actually factually incorrect. Hallucinations occur more
often when the facts necessary to answer a query are outside the scope of the model’s training ei-
ther because the facts are too recent, too obscure or answered by proprietary data (Trivedi et al.,
2022a; Yao et al., 2022). By integrating retrieval modules, RAG enables LLMs to access and incor-
porate relevant external information, helping them stay updated with evolving world knowledge and
reducing hallucination.

Early work on retrieval-augmented LLMs focused primarily on single-hop queries (Lazaridou et al.,
2022; Ram et al., 2023), where a single retrieval step retrieves relevant information based solely
on the query. However, many complex queries require multi-step reasoning to arrive at the correct
answer. For instance, a question such as, ”When did the people who captured Malakoff come to the
region where Philipsburg is located?”, cannot be answered with a single retrieval step. Instead, such
queries require an iterative retrieval process, in which the model retrieves partial knowledge, reasons
over it, and conducts additional retrievals based on intermediate conclusions (Trivedi et al., 2022a;
Press et al., 2022; Jeong et al., 2024). While multi-step retrieval enables deeper reasoning, it also in-
curs significant computational overhead. Conversely, for simple queries, LLMs may already encode
sufficient knowledge to generate an accurate response without any retrieval whatsoever. However,
many existing RAG frameworks apply retrieval indiscriminately, either over-relying on external
knowledge when parametric memory suffices or failing to retrieve iteratively when deeper reason-
ing is required. This lack of adaptability results in inefficiencies: unnecessary retrieval increases

1Code is available at anonymous github https://anonymous.4open.science/r/
Flare-RAG-Anonymous-D6A2/.
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latency and computational cost, while insufficient retrieval leads to incomplete or incorrect answers.
Given these challenges, there is a growing need for adaptive RAG systems that dynamically adjust
retrieval strategies based on query complexity (Mallen et al., 2023).

The Adaptive-RAG (Jeong et al., 2024) approach attempted to balance accuracy and retrieval cost by
inferring question complexity via a classifier that categorizes a query according to its most suitable
retrieval strategy (e.g., no retrieval, single-step retrieval, or multi-step retrieval). But the method
remains impractical due to its inability to dynamically adjust the accuracy-cost trade-off. Specifi-
cally, it lacks user-driven flexibility, preventing fine-grained control over retrieval strategies in order
to support diverse application needs. In real-world scenarios, retrieval preferences vary depending
on the task domain, computational constraints, and user priorities: some applications may prioritize
(low) cost, while others require higher accuracy despite increased retrieval overhead.

To overcome these limitations, we propose Flare-Aug (FLexible, Adaptive REtrieval-Augmented
Generation), a user-controllable RAG framework that enables fine-grained adjustment of the cost-
accuracy trade-off. Flare-Agu introduces two classifiers: one trained to prioritize accuracy and
another trained to prioritize cost. To seamlessly balance these two objectives, Flare-Aug incorpo-
rates an interpretable and easy-to-tune parameter α, which controls the weighting between the two
classifiers. This simple yet effective approach allows users to control their own accuracy and cost
trade-off to best align with their specific requirements and user applications.

2 RELATED WORK

Recent research on adaptive retrieval has explored various strategies to determine when and how re-
trieval should be performed, often leveraging internal model states or external classifiers to optimize
retrieval decisions.

Several works focus on leveraging LLM internal states to adapt retrieval dynamically. Baek et al.
(2024) utilize hidden state representations from intermediate layers of language models to determine
whether additional retrieval is necessary for a given query. Similarly, Yao et al. (2024) extract self-
aware uncertainty from LLMs’ internal states to decide when retrieval should be performed. And
Jiang et al. (2023) propose an iterative retrieval approach, where the model predicts the upcoming
sentence and uses it as a retrieval query if the sentence contains low-confidence tokens. However,
these methods require access to the LLM’s internal states, making them impractical for many real-
world applications, especially given the increasing reliance on proprietary, closed-source LLMs.

Another line of work trains external classifiers to predict retrieval necessity. Wang et al. (2023)
train a classifier for LLM self-knowledge, allowing models to switch adaptively between retrieval
and direct response generation. Jeong et al. (2024) introduce an adaptive retrieval framework that
dynamically selects among no retrieval, single-step retrieval, or multi-step retrieval based on query
complexity. Tang et al. (2024) propose a multi-arm bandit-based approach, where the model ex-
plores different retrieval strategies and optimizes retrieval choices based on feedback. Wang et al.
(2024b) develop an adaptive retrieval framework for conversational settings, determining whether
retrieval is necessary based on dialogue context. Mallen et al. (2023) take an entity-centric approach,
retrieving only when the entity popularity in a query falls below a certain threshold.

Despite these advancements, none of these approaches enables direct user control over retrieval
strategies.

3 PROBLEM SETTING: DIVERSE USER QUERY COMPLEXITIES AND
RETRIEVAL STRATEGIES

We begin by introducing the varying complexity of user queries and their corresponding retrieval
strategies. As illustrated in Figure 1, different levels of query complexity necessitate distinct re-
trieval approaches. Specifically, we consider three primary retrieval strategies: no retrieval, single-
step retrieval, and multi-step retrieval, which correspond to zero, one, and multiple retrieval steps,
respectively. These strategies align with the availability of relevant knowledge within the model’s
parameters and the extent to which retrieval and reasoning must interact to generate an answer.
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Figure 1: Illustrations of diverse user queries, their corresponding query complexity and most suit-
able retrieval strategy.

Parametric Knowledge Queries & No Retrieval Some user queries are considered simple by
LLMs because they can be directly answered using their parametric knowledge—information stored
within the model’s parameters (Izacard et al., 2023). Since LLMs memorize widely known factual
knowledge during pretraining, they can respond to such queries without relying on external retrieval.
Scaling further enhances this memorization capability, improving the accuracy of responses to pop-
ular factual questions (Mallen et al., 2023). For example, queries such as ”Who wrote Romeo and
Juliet?” or ”What is the capital of France?” can be answered accurately using only the model’s
internal representations. For these retrieval-free queries, retrieval augmentation is unnecessary be-
cause the model already encodes the relevant knowledge. Introducing retrieval in such cases may
be redundant or even counterproductive—it can increase latency, add computational cost, or intro-
duce noise from irrelevant retrieved documents (Su et al., 2024). Consequently, for these parametric
knowledge queries that are answerable by memorized knowledge, such as well-known facts or fre-
quently encountered knowledge, it is more efficient to use a no-retrieval strategy, allowing the model
to generate responses and answer directly.

Knowledge-Deficient Queries & Single-Step Retrieval Some queries fall outside an LLM’s para-
metric knowledge, such as less popular, long-tail factual knowledge that was not sufficiently repre-
sented in pretraining data (Mallen et al., 2023); time-sensitive information such as recent events and
evolving regulations, or highly specialized domain knowledge that is uncommon in general corpora.
For instance, a query like ”Who won the Nobel Prize in Physics in 2023?” necessitates retrieval
for models with a training cut-off date of 2022, as the event occurred afterward and is unlikely to
be encoded in the model’s parameters. Similarly, domain-specific questions such as ”What are the
latest FDA guidelines for AI-based medical devices?” may not be well covered in publicly available
pretraining datasets, requiring retrieval from authoritative sources to provide an accurate and up-to-
date response. We refer to these queries as Knowledge Deficient Queries, where retrieval is essential
to supplement missing knowledge, but complex reasoning is not required. In these cases, retrieval
serves as a direct knowledge lookup, providing factual information that the model can integrate
into its response without needing complex reasoning or inference. Once the relevant information is
retrieved, the model can directly generate an accurate answer.

Intertwined Retrieval-Reasoning Queries & Multi-Step Retrieval Some complex queries require
both retrieval and reasoning in an interdependent manner, where the model must retrieve information
iteratively while reasoning at each step to determine the next retrieval. Unlike Knowledge Deficient
queries, where passively consuming content from the single retrieval step is sufficient to reach the
correct answer, Intertwined Retrieval-Reasoning Queries demand both factual knowledge and the
model’s ability to reason, plan, infer, and integrate retrieved facts to iteratively refine its understand-
ing and construct the final correct answer. For example, in response to the query ”Who was the
US president when the inventor of the telephone was born?”, the model must first recognize that
additional information is needed about the inventor of the telephone. This reasoning step directs
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the retrieval process, leading the model to retrieve the name Alexander Graham Bell and his birth
year. Once retrieved, this new information updates the model’s understanding, allowing it to reason
further and determine that it must now retrieve the name of the U.S. president during the retrieved
year. This retrieval feeds reasoning, and reasoning directs retrieval, forming a continuous cycle that
progresses until the final answer is constructed. A single retrieval step is likely to fail in such cases
because the initially retrieved information alone is insufficient to answer the query. The sequential
nature of retrieval in these queries requires the model to dynamically decides what to retrieve at each
step, ensuring that each retrieval builds upon prior reasoning to progressively arrive at the correct
answer. However, compared to no retrieval and single step retrieval, this multi-step retrieval process
incurs higher computational cost, as each additional retrieval step increases latency and resource
consumption.

3.1 ADAPTIVE RETRIEVAL

The Need for Adaptive Retrieval in Real-World Applications In real-world applications, user
queries vary significantly. A fixed retrieval strategy can lead to unnecessary computational costs,
increased latency, or suboptimal accuracy, depending on the characteristics of the query and no par-
ticular retrieval strategy is optimal for all the query types. For example, forcing retrieval for simple
queries that can be answered directly from an LLM’s parametric knowledge (e.g., ”Who wrote Pride
and Prejudice?”) wastes computational resources and increases latency without improving accuracy.
Conversely, for time-sensitive queries (e.g. ”what is the current inflation rate in the U.S.?”), relying
solely on parametric knowledge leads to outdated or hallucinated responses, while employing multi-
step retrieval unnecessarily increases cost and latency. Similarly, for complex queries that require
multi-step reasoning, some level of latency is unavoidable. For these queries, using no retrieval or
only a single-step retrieval would often result in incomplete or incorrect responses, reducing the
utility and overall effectiveness of the system. Thus, it is crucial to develop an adaptive retrieval
system that can dynamically balances accuracy, efficiency, cost.

Limitations of Prior Adaptive Retrieval Approaches While previous work, such as Adaptive-
RAG (Jeong et al., 2024), has attempted to balance efficiency and cost by training classifiers using
data collected from model predictions and the inductive biases in the datasets themselves, they are
adaptive only to static query complexities but not to user preferences, making them insufficient for
handling the diverse needs of real-world applications. A truly adaptive retrieval system should incor-
porate both query complexity and user-level controllability. In addition to diverse query complexi-
ties, different users and application settings may prioritize accuracy over cost or vice versa, depend-
ing on their specific requirements. For example, a medical researcher using an LLM to summarize
clinical trial results may prefer higher accuracy and completeness, even at the cost of increased
retrieval latency and computational expenses. In contrast, a customer service chatbot handling fre-
quent, simple user queries (e.g., ”What is the return policy?”) might prioritize fast, cost-effective
responses, as occasional inaccuracies pose only negligible risk. Similarly, a stock market analyst
requiring precise, up-to-date financial information might opt for a retrieval-intensive approach, de-
spite longer response times, whereas a real-time virtual assistant answering everyday factual queries
should minimize retrieval overhead, emphasizing speed over exhaustive accuracy. Given these di-
verse application domains and varying user demands, a one-size-fits-all adaptive retrieval approach
is still suboptimal. Instead, a truly adaptive RAG system should be both efficient and customizable,
enabling dynamically optimized trade-offs between accuracy and cost while allowing flexible user
control.

4 FLARE-AUG: FLEXIBLE ADAPTIVE RETRIEVAL AUGMENTED
GENERATION

In this section, we present the main components of our framework, a Cost-Optimized Classifier,
which is dynamic and LLM-dependent, and a Reliability-Optimized Classifier, which is static and
dataset-dependent. An overview of the Flare-Aug framework is illustrated in Figure 2 and described
in the sections below.
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Figure 2: An overview of Flexible Adaptive Retrieval Augmented Generation (Flare-Aug) frame-
work.

4.1 COST-OPTIMIZED CLASSIFIER

The goal of the Cost-Optimized Classifier is to select for a given query the cheapest retrieval strategy
that still ensures a correct answer. This classifier is LLM-dependent, since the training data is
collected specifically from the LLM used for retrieval, and the prediction is sensitive and tailored to
the LLM. The <query, retrieval strategy> pairs that comprise the training data are created by using
the LLM to answer with all the three strategies–no retrieval, single-step retrieval and multi-step
retrieval: the gold label for each query is the minimal cost strategy that produces a correct answer.
Thus, the labeling process itself is biased towards maximally eliminating unnecessary retrieval. The
trained classifier, as a result, minimizes retrieval cost, latency, and computational complexity while
maintaining an acceptable level of accuracy. (See the experiments in later section when α = 0).
However, a key concern for this classifier is that the LLM may arrive at the correct answer by
chance or by exploiting shortcuts in reasoning, leading to unverifiable answers. While this classifier
is highly beneficial for cost-sensitive and efficiency-driven applications, it is unsuitable for high-risk
domains where retrieval must be systematic and reliably grounded in external knowledge.

Training Data for Cost-Optimized Classifier The labeling process for the cost-optimized classifier
is straightforward: we aim to select the cheapest retrieval strategy that still ensures a correct answer.
Formally, let S = {sno, ssg, smulti} denote the set of available retrieval strategies: no retrieval (sno),
single-step retrieval (ssg) and multi-step retrieval (smulti). For each query q in the training data, we
evaluate whether the LLM answers it correctly under each retrieval strategy. Denote LLM(q, s) as
the correctness function, where:

LLM(q, s) =

{
1, if the LLM answers q correctly with retrieval strategy s,

0, otherwise.

Let Sq ⊆ S be the subset of retrieval strategies that lead to correct answers for q: Sq = {s ∈
S|LLM(q, s) = 1}. Since the retrieval strategies incur different costs, where c(sno) < c(ssg) <
c(smulti), we assign the lowest-cost correct strategy as the label for q:

s∗(q) = arg min
s∈Sq

c(s)

For example, if Sq = {sno, ssg}, we choose sno as the label for q since it has a lower cost than
ssg . Thus, for each query, we first determine Sq , the set of all retrieval strategies that yield a correct
answer. We then assign s∗(q) as the strategy with the lowest retrieval cost. If Sq = ∅ (i.e., the LLM
fails to answer the query correctly under any strategy), we exclude the query from the dataset.
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4.2 RELIABILITY-OPTIMIZED CLASSIFIER

The goal for the Reliability-Optimized Classifier is to assign a retrieval strategy to a query based on
intrinsic difficulty of the query itself, ensuring consistency, stability and reliability across different
LLMs. This classifier is trained on <query, retrieval strategy> pairs with binary labels: single-step
retrieval and multi-step retrieval, using data from a single-hop QA dataset and multi-hop QA dataset,
respectively. Here we rely on the assumption that the single hop QA dataset is in fact intrinsically
biased towards questions that require single-step retrieval, and the multi-hop QA dataset towards
questions that require multi-step retrieval. Since there are only two labels, this classifier guarantees
least one retrieval, and may induce unnecessary computational overhead when using more powerful
LLMs or handling straightforward queries that do not require retrieval. Despite this, since it is
not LLM specific, it is more stable and reliable, encouraging higher accuracy and more reliable
response. (See experiments in later section when α = 1). This classifier is effective in applications
where accuracy is paramount, albeit at a higher cost.

Training Data for Reliability-Optimized Classifier The Reliability-Optimized Classifier is trained
using binary labels—single-step retrieval and multi-step retrieval—derived from existing question-
answering datasets. Unlike the Cost-Optimized Classifier, which tailors the retrieval strategy to a
specific LLM, this classifier relies on dataset-level biases to infer retrieval needs, making it more
stable across different LLMs. For each query q, we assign a label s∗(q) based on the dataset it
belongs to:

s∗(q) =

{
ssg, if q originates from a single-hop QA dataset
smulti, if q originates from a multi-hop QA dataset.

This labeling approach assumes that queries from single-hop QA datasets are best handled with
single-step retrieval, while multi-hop QA datasets require multi-step retrieval. Since the classifier
does not verify correctness based on a specific LLM, it ensures LLM-agnostic stability though it
does not minimize unnecessary retrieval.

4.3 USER-CONTROLLABLE ADAPTIVE CLASSIFIER

To fully realize user-controllability, we introduce a simple and interpretable parameter α that al-
lows users to define their preferred trade-offs, providing flexibility across diverse use cases while
dynamically optimizing the retrieval strategy. Specifically, after training the Cost-Optimized Clas-
sifier (denoted by Wcoc) and the Reliability-Optimized Classifier (denoted as Wroc), we construct a
User-Controllable Adaptive Classifier by interpolating between their parameters based on the user-
defined control parameter α. The resulting classifier is defined as: Wα = (1 − α)Wcoc + αWroc,
where α ∈ [0, 1] controls the trade-off between cost and accuracy. Setting α = 0 results in a purely
cost-optimized classifier, while α = 1 yields a fully reliability-optimized classifier. This formula-
tion provides a continuous and customizable retrieval strategy, allowing users to flexibly adjust the
balance between efficiency and accuracy based on their specific needs.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We describe the datasets, baselines, evaluation metrics, and experimental details in our study.

Dataset To simulate a realistic retrieval scenario, where queries naturally vary in complexity and
diversity, we evaluate on a mixed dataset with queries from three single-hop question answer
datasets—SQuAD (Rajpurkar, 2016), Natural Questions (Kwiatkowski et al., 2019), and TriviaQA
(Joshi et al., 2017)—and three multi-hop QA datasets—MuSiQue (Trivedi et al., 2022b), HotpotQA
(Yang et al., 2018), and 2WikiMultiHopQA (Ho et al., 2020). This combination reflects the hetero-
geneous nature of real-world queries, encompassing both fact-based retrieval tasks and multi-hop
reasoning tasks that require linking information across multiple sources. For training, we randomly
sample 500 queries from each dataset, resulting in a total of 3,000 training examples. Similarly, for
evaluation, we construct a test set by randomly sampling 500 queries from each dataset, yielding
a total of 3,000 test queries. Baselines To assess the effectiveness of our approach in balancing
accuracy, cost, and user control flexibility, we compare it against both adaptive and static retrieval
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strategies. Specifically, we evaluate our method against the adaptive retrieval approach Adaptive-
RAG (Jeong et al., 2024), as well as three static retrieval strategies: always use No Retrieval; always
use Single-Step Retrieval and always use Multi-Step Retrieval (Trivedi et al., 2022a).

Evaluation Metrics We evaluate the trade-off between accuracy and retrieval cost using two met-
rics. Accuracy measures whether the predicted answer contains the ground-truth answer. Retrieval
cost is quantified as the number of retrieval steps required to generate an answer, where No Retrieval
has a cost of 0, Single-Step Retrieval has a cost of 1, and Multi-Step Retrieval incurs a variable cost
depending on the number of retrieval steps per query. By jointly considering these two metrics, we
assess how different retrieval strategies balance the trade-off between response quality and compu-
tational efficiency. Note that we use retrieval-side cost as a proxy for cost due to its Interpretability
and simplicity: Retrieval step count is a transparent and easily measurable proxy that correlates with
latency, token consumption, and compute in RAG systems. Unlike in math reasoning tasks—where
reasoning token length is often used as a proxy for cost—the context length in RAG is not a reliable
cost metric. This is because context size in RAG is largely dictated by the retrieval configuration
(e.g., top-k) rather than the intrinsic complexity of the query. For example, retrieving 10 passages
versus 2 directly affects context length without reflecting deeper reasoning complexity. In Appendix
A.1, we further justified the choice of these two evaluation metrics.

Implementation Details Following Jeong et al. (2024) and Trivedi et al. (2022a), we use BM25, a
term-based sparse retrieval model, as the retriever2. For queries from multi-step datasets, we utilize
the pre-processed corpus from Trivedi et al. (2022a) as the external document corpus, while for
queries from single-hop datasets, we use Wikipedia, preprocessed by Karpukhin et al. (2020), as the
external document corpus. For answer generation 3, we employ two sizes of Flan-T5 models (Chung
et al., 2024) (Flan-T5 XL and Flan-T5 XXL) and two sizes of GPT-4o models (Hurst et al., 2024)
(GPT-4o and GPT-4o-mini). For the classifier, we train a T5-Large model (Raffel et al., 2020) using
500 samples from each dataset, resulting in a total of 3,000 queries for the labeling process. The
classifier is trained with a learning rate of 3e-5 and a batch size of 64 on a single 80GB A100 GPU.
We train the model for 20 epochs, as the loss has converged stably without indications of overfitting
4. We demonstrate the robustness of the classifier in Appendix B, with experiments on different
training epochs and different sizes of classifiers.

5.2 MAIN RESULTS

Figure 3 and Figure 4 illustrate the accuracy and retrieval cost across different values of α. We
observe that both accuracy and cost monotonically increase with the user-controllable parameter
α, allowing users to easily adjust the retrieval strategy based on their preferred trade-offs between
accuracy and efficiency. Due to space limitations, the exact quantitative results can be found in Table
3 in Appendix C.

Accuracy Trends Across Different α As shown in Figure 3, the No Retrieval strategy yields the
lowest accuracy, with values below 0.2 for the Flan-T5 models, while achieving relatively higher
performance GPT4o series models (approximately 0.43 for GPT-4o Mini and 0.53 for GPT-4o).
Applying Single-Step Retrieval significantly improves accuracy, particularly for Flan-T5 models,
increasing their accuracy to around 0.39. However, the performance gains for GPT-4o models are
relatively smaller, as these models already exhibit strong parametric knowledge storage and ad-
vanced reasoning abilities. In contrast, Flan-T5 models benefit more from retrieval, as they are
less capable of answering queries without external information. The accuracy of Adaptive-RAG
falls between Single-Step Retrieval and Multi-Step Retrieval. Meanwhile, our user-controllable

2While BM25 is a sparse retriever, it remains a strong and widely-used baseline in the adaptive RAG ap-
proaches such as Jeong et al. (2024); Tang et al. (2024); Jiang et al. (2023); Su et al. (b); Wang et al. (2024a;
2023); Trivedi et al. (2022a); Mallen et al. (2023). Studies (e.g., Ram et al. (2023)) show that BM25 continues
to outperform many dense retrievers.

3We used the same prompting format as in prior work Trivedi et al. (2022a); Jeong et al. (2024), the exact
prompts we used are publicly available in the codebase associated with Trivedi et al. (2022a), which can be
accessed at: https://github.com/StonyBrookNLP/ircot/tree/main

4Both classifiers are lightweight and fast to train. For instance, training the Cost-Optimized Classifier on
GPT-4o-mini–specific data (1,377 samples, 450 steps) takes only 223 seconds with a batch size of 64. The
Reliability-Optimized Classifier (trained on 2,400 samples, 750 steps) takes 417 seconds. In total, training
both classifiers requires approximately 640 seconds. We refer readers to discussions in Appendix A.2.
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approach achieves accuracy levels ranging between those of Single-Step Retrieval and Multi-Step
Retrieval, allowing users to tailor the retrieval strategy to different application needs. Notably, our
approach can even outperform Multi-Step Retrieval for Flan-T5-XL, Flan-T5-XXL, and GPT-4o
Mini, demonstrating its effectiveness in optimizing retrieval decisions based on query complexity.

Figure 3: Average accuracy of different approaches on validation set.

Cost Trends Across Different α Figure 4 illustrates the retrieval cost, measured in retrieval steps,
across different values of the user-controllable parameter α. Similar to the accuracy trends observed
in Figure 3, retrieval cost monotonically increases with α, enabling users to adjust retrieval expendi-
ture according to their cost constraints. For Flan-T5 models, the minimum retrieval cost (i.e., setting
α = 0) is close to Single-Step Retrieval, indicating that these models require certain amount of
retrieval to answer queries correctly. In contrast, for GPT-4o models, the minimum cost is closer
to No Retrieval, as these models possess stronger parametric knowledge and reasoning abilities,
allowing them to correctly answer a larger proportion of queries without retrieval. This behavior
highlights the adaptability of the Cost-Optimized Classifier, which is LLM-specific and automati-
cally adjusts to the retrieval needs of different models—retrieving more for Flan-T5 models while
retrieving less for GPT-4o models.Furthermore, while Figure 3 shows that our approach achieves
accuracy comparable to or exceeding Multi-Step Retrieval as α increases, Figure 4 demonstrates
that its retrieval cost remains consistently lower than that of Multi-Step Retrieval. Thus, compared
to Multi-Step Retrieval, our approach incurs significantly lower retrieval overhead while without
sacrificing accuracy. Accuracy-Cost trade-off In Figure 5, accuracy-cost trade-off of our approach

Figure 4: Total number of steps (cost) of different approaches on validation set.
across different values of α. For Flan-T5 XL, Flan-T5 XXL, and GPT-4o Mini, Adaptive-RAG
is positioned on the lower right side of our trade-off curves, indicating that our approach consis-
tently outperforms Adaptive-RAG in both accuracy and cost efficiency. Another way to interpret the
accuracy-cost plot is by fixing either accuracy or cost and comparing the other metric. For example,
when fixing accuracy to the level achieved by Multi-Step Retrieval, our approach requires signif-
icantly fewer retrieval steps, demonstrating its ability to achieve comparable or superior accuracy
with lower retrieval overhead.

5.3 PRACTICALITY OF SETTING α

To further demonstrate the practicality of our approach, we provide two simple and intuitive strate-
gies that can be used for setting α:

8
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Figure 5: Accuracy-Cost plot of different approaches on validation set.

• Incremental Adjustment: Since α increases monotonically with both cost and accuracy,
users can start with an initial α and refine it based on observed retrieval cost and response
quality. If the retrieval cost exceeds their budget, they can lower α; if the response quality
is unsatisfactory, they can increase α.

• Validation-Based Estimation: Users can estimate a suitable α directly by examining the
accuracy-cost trade-off on the validation set, allowing them to select a value that aligns with
their desired balance between retrieval cost and accuracy. In Appendix C.2, we conduct
additional experiments on the test set to illustrate that α can be easily estimated based on
results on validation set.

6 CONCLUSION

In this work, we present Flare-Aug, a flexible and adaptive retrieval-augmented generation frame-
work that incorporate user controllability into RAG framework besides accuracy and cost trade-offs.
Unlike existing adaptive RAG methods that provide only static adaptation to query complexity,
Flare-Aug enables fine-grained and dynamic control over retrieval behavior, allowing users to bal-
ance accuracy and cost based on their specific needs. By enabling truly adaptive retrieval tailored
to user preferences, Flare-Aug represents a step toward more efficient, customizable, and scalable
retrieval-augmented generation, paving the way for future advancements in personalized RAG sys-
tem.

7 LIMITATIONS AND FUTURE WORK

Future research could extend our approach to more advanced adaptive retrieval-augmented gener-
ation systems that dynamically adjust not only retrieval strategies but also LLM selection based
on task complexity and resource constraints. Additionally, while our classifier is computationally
lightweight compared to retrieval costs, an important direction for future work is to develop a more
unified retrieval adaptation framework, enabling LLMs to self-regulate retrieval decisions without
relying on an external classifier. Though in our work, we only have three class. In real-world de-
ployments, where queries may be unanswerable, it would be preferable to include an additional
unanswerable class.

Adapting Flare-Aug to multi-turn or dynamic user contexts is an important and promising direction
for future work. While our current formulation assumes single-turn queries, we envision several
ways in which Flare-Aug could be extended to multi-turn dialogue systems: (1) Context-aware clas-
sification: The retrieval strategy classifier could be conditioned not only on the current query, but
also on dialogue history (e.g., previous user intents, prior retrieved content), enabling it to better es-
timate query complexity in conversational flow. (2) Dynamic α adaptation: Instead of a fixed α, the
system could adjust α over the course of a dialogue, depending on user behavior (e.g., impatience
vs. information-seeking), query difficulty, or accumulated system confidence. (3) User profile in-
tegration: In persistent user-facing systems, α could be personalized based on explicit preferences
(e.g., set by the user) or learned from historical interaction patterns. These extensions would allow
Flare-Aug to support more nuanced retrieval strategies in conversational assistants, tutoring systems,
or customer support scenarios, where both query complexity and user tolerance for cost may evolve
over time.

9
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A ADDITIONAL DISCUSSIONS

A.1 JUSTIFICATION OF EVALUATION METRICS

In this work, we mainly focus on retrieval-side cost and abstract away generation-related costs (such
as the size of the LLM) by fixing the LLM backbone. This design choice allows us to isolate the
retrieval component for targeted optimization, rather than overlapping with existing work on LLM
routing and resource-aware decoding (e.g., Ong et al. (2024); Wang et al. (2025); Chuang et al.;
Stripelis et al. (2024)), which primarily focus on switching between LLMs or managing generation
behaviors. Our approach is complementary to those methods and can be integrated into broader
adaptive systems that jointly optimize both retrieval and generation paths. We model retrieval cost
via the number of retrieval steps, which directly impacts latency, bandwidth, and context window
usage, while remaining easy to quantify and interpret. This abstraction enables a clear and actionable
trade-off between accuracy and efficiency—central to our user-controllable framework. Different
from math reasoning, where the cost is easily associated with the context length, in the RAG setting,
the context length depends on the passages retrieved (the parameter for RAG), which might not
reflect the actual cost. While our current focus is on retrieval cost, Flare-Aug is compatible with and
can be extended to systems that also adapt LLM usage.

A.2 COMPUTATIONAL OVERHEAD OF THE CLASSIFIER

Our approach introduces minimal computational overhead. Both classifiers are lightweight and
fast to train. For example, training the Cost-Optimized Classifier on model-specific data (3,000
samples, 20 epochs, batch size 64) takes approximately 478.75 seconds on average across four
different LLMs. The Reliability-Optimized Classifier, which is LLM-agnostic and trained once,
requires only 417 seconds. In total, training both classifiers takes an average of 895.75 seconds
(Table 1). Despite using an additional classifier compared to Adaptive-RAG, our method does not
incur extra training cost, as Adaptive-RAG also trains a classifier, combining both dataset-level and
LLM-specific signals. Thus, the total volume of training data is the same, and the end-to-end training
time is comparable. Moreover, Adaptive-RAG must retrain its classifier whenever the LLM changes,
while our Reliability-Optimized Classifier can be reused across models. This makes our approach
more efficient in practice, especially in multi-model deployment settings. Furthermore, since all
classifiers operate on short query inputs only, the overall training and inference cost remains low.
The training time can be further reduced by increasing the batch size or subsampling the training
data, making our method suitable for real-world, resource-constrained scenarios.

Reliability-Optimized Classifier Cost-Optimized Classifier Average Totalflan-t5-xl flan-t5-xxl gpt4o gpt4o-mini
417 479 479 479 478 895.75

Table 1: Classifier training time using batch size (in seconds) using 3000 training data with a batch
size 64 for 20 epochs on t5-large model. The average total is the total training time for 2 classifiers,
where the time for cost-optimized classifier is averaged over LLM-specific data. The training time
can be further reduced by increasing the batch size or reducing the number of training data.

A.3 IS HAVING THE PARAMETER α A DRAWBACK?

Tuning the parameter α is straightforward and does not require ”careful calibration.” The param-
eter induces a monotonic trade-off between retrieval cost and accuracy (as shown in Figures 3, 4,
5), making it easy to tune with minimal validation. Moreover, unlike Adaptive-RAG, Flare-Aug
empowers users with explicit control over the cost-accuracy trade-off—a valuable feature in real-
world applications with varying preferences and constraints. Thus, this controllability via α is an
advantage, not a drawback.

A.4 POTENTIAL NOISE AND BIAS INDUCED BY DATASET LEVEL LABELS

The dataset-level labels might introduce some degree of noise, as not all single-hop or multi-hop
queries strictly conform to single-step or multi-step retrieval needs. However, we find that this la-
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beling approach is effective in practice. As shown in Figures 3, 4, 5, our method achieves strong
performance despite this potential noise, indicating that the Reliability-Optimized Classifier is robust
to label imperfections. Moreover, we intentionally leverage the inductive bias of existing datasets:
single-hop datasets are typically biased toward queries solvable with a single retrieval step, while
multi-hop datasets are biased toward multi-step reasoning. This bias serves as a useful supervisory
signal, enabling us to train a reliable classifier without requiring costly manual annotation. While
we acknowledge that a more fine-grained labeling scheme may further improve precision, it would
require substantial relabeling efforts and undermine the lightweight and scalable nature of our frame-
work. After weighing this trade-off, we believe our current strategy—using dataset-level labels—is
a practical and effective choice, offering strong performance with minimal overhead.

A.5 MAIN ADVANTAGE COMPARING WITH ADAPTIVE RAG

While our work shares the high-level motivation of balancing accuracy and cost with Adaptive-
RAG, our contribution goes beyond incremental performance improvement. Note that adaptive
rag is not truly adaptive since it doesn’t adapt to different users without retraining the classifier.
The core novelty of Flare-Aug lies in introducing explicit user controllability into the retrieval pro-
cess—something Adaptive-RAG lacks.Adaptive-RAG makes a fixed trade-off between accuracy and
cost on behalf of the user. However, different users and applications may have different priorities:
some may tolerate higher latency for better accuracy (e.g., clinical summarization), while others may
prefer faster, lower-cost answers even at the expense of slight performance degradation (e.g., cus-
tomer service bots). Our method allows users to dynamically adjust the trade-off according to their
specific goals or constraints. In this sense, Flare-Aug is designed for cost-aware personalization,
rather than optimizing for a one-size-fits-all adaptive retrieval.

A.6 ADDING AN ADDITIONAL ”UNANSWERABLE” CLASS

For the purposes of comparison with Adaptive-RAG, we followed the same convention used in that
work and trained the classifier only on answerable queries. This ensures a clean and fair comparison,
as Adaptive-RAG does not handle the ”unanswerable” case either. That said, our framework is easily
extensible to support this scenario. Incorporating a fourth class would require only minimal changes
to the data labeling and classifier training process. In Table 2, we show the result fo Flare-RAG with
an additional ”unanswerable” class, where we introduced an additional ”unanswerable” class when
training the Cost-Optimized Classifier, resulting in a 4-class classification setting. Specifically, a
query is labeled as unanswerable if none of the available strategies (across cost levels) lead to a
correct answer—i.e., all fail. For such cases, unanswerable queries should be handled by having the
system either express uncertainty (e.g., by saying “I don’t know” (Deng et al., 2024; Zhang et al.,
2024)) or defer to human experts (Su et al., a). However, as our work does not operate in a set-
ting that supports answer refusal or human-in-the-loop escalation, these options are not actionable.
From a cost-optimization perspective, we treat the unanswerable class as a signal that high-cost
reasoning is unlikely to help. In such cases, the system should default to the cheapest strategy, as
both cheap and expensive strategies are similarly ineffective. However, in Table 2, we observed
that the performance deteriorates in this setup. Specifically, the newly added “unanswerable” class
constitutes a large portion of the training data, which shifts the classifier’s focus. As a result, the
Cost-Optimized Classifier—originally effective at distinguishing between retrieval strategies (e.g.,
no retrieval, single-step, and multi-step)—becomes less discriminative among them. Instead, it be-
comes primarily focused on learning to differentiate between answerable and unanswerable queries,
which undermines its utility for fine-grained cost-aware strategy selection.

A.7 JUSTIFICATION OF THE IMPORTANCE OF HAVING BOTH CLASSIFIERS

The existence of the two classifiers provides users with the ability to choose or interpolate between
them based on their application needs.The preferred classifier depends on both query type and user
preference: In high-stakes domains such as medical or legal contexts, users may prioritize accuracy
and reliability, even at the cost of latency. In these settings, the Reliability-Optimized Classifier
(which favors more cautious retrieval) is more appropriate. In low-risk or latency-sensitive appli-
cations (e.g., casual assistants, customer support), users may be willing to tolerate minor drops in
accuracy for a faster and cheaper response. In these cases, the Cost-Optimized Classifier is prefer-
able. Note that both classifiers alone are already good enough in balancing accuracy and latency,
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Models
flan-t5-xl flan-t5-xxl gpt4o-mini gpt4o

Acc Steps Acc Steps Acc Steps Acc Steps
α = 0.0 0.184 0.054 0.216 0.065 0.408 0.0 0.527 0.0
α = 0.2 0.345 0.728 0.37 0.704 0.427 0.329 0.531 0.058
α = 0.4 0.424 1.705 0.452 1.259 0.515 2.465 0.569 1.94
α = 0.6 0.435 2.273 0.461 1.429 0.524 2.982 0.58 2.46
α = 0.8 0.438 2.666 0.462 1.545 0.532 3.259 0.585 2.696
α = 1.0 0.439 2.916 0.461 1.621 0.533 3.425 0.587 2.817

Table 2: Result of extending Flare-RAG with an additional ”unanswerable” class.

however, we still want to give users more control over where they want to land on these already
good enough parameter spaces.

The existence of two classifiers also reflects a multi-objective learning perspective. Specifically,
our system decomposes the overall decision problem into two distinct sub-goals: (1) minimizing
cost (latency, token usage), and (2) maximizing reliability (robust correctness). These sub-goals are
inherently different and are best addressed by specialized experts: The Cost-Optimized Classifier is
trained in an LLM-specific manner because its role is tightly coupled with the inference behavior of
a particular model. LLM-dependent training ensures that it can make fine-grained distinctions based
on model characteristics and capability. The Reliability-Optimized Classifier is trained on LLM-
agnostic data to ensure generalization across different model behaviors, aligning with conservative
decision-making goals regardless of the deployed model.

B ABLATION ON CLASSIFIER

Different sizes of classifiers Figure 6 shows accuracy and total steps predicted by different sizes
of classifier and α on validation set, and Figure 7 shows a more clear comparison on the trade-offs
of accuracy and cost by different sizes of classifiers. Though the performance of different classifiers
varies, we find that there is no dominating advantage in using larger classifiers.

Different training epochs Figure 8 shows accuracy and total steps predicted by t5-3b and t5-base
training for 20 and 40 epochs on validation set, and Figure 9 shows a more clear comparison on the
trade-offs of accuracy and cost by t5-3b and t5-base training for 20 and 40 epochs on validation set.

Training Loss In Figure 10, we show average training loss v.s. training epochs for cost optimized
classifier for different models and reliability optimized classifier.

C MORE EXPERIMENTAL RESULTS

C.1 QUANTITATIVE RESULTS ON VALIDATION SET

In Table 3, we detail the step and accuracy of different retrieval strategies on validation dataset.

C.2 FEASIBILITY OF ESTIMATING α BASED ON VALIDATION SET.

In Figure 11, Figure 12 and Figure 13, we show the accuracy and cost with various α, as well as the
accuracy-cost plot on test set. (The quantitative result in Table 4). Combines with the experimental
results for validation dataset, we empirically verify that users can estimate the accuracy-cost trade-
off from validation results. As shown in Figure 11, Figure 12 and Figure 13, the test set follows
the same trend as the validation set. For example, based on Figure 3, setting α = 0.4 or larger
for flan-t5-xl achieves an accuracy level comparable to Multi-Step Retrieval, and using the same α
value on test set, as shown in Figure 11, yields a similar accuracy-cost balance. Moreover, if the
goal is to achieve an accuracy higher than Adaptive-RAG, the validation results suggest setting α =
0.2, 0.2, 0.4, 0.6 for flan-t5-xl, flan-t5-xxl, gpt-4o-mini and gpt-4o respectively, which is consistent
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(a) Accuracy using different parameter α and different sizes of classifiers.

(b) Total retrieval steps (cost) using different parameter α and different sizes of classifiers.

Figure 6: Accuracy and total steps predicted by different sizes of classifier and α on validation set.

Figure 7: Accuracy-Cost trade-off plot of different sizes of classifiers.

with that on test set (except for gpt4o model, where on test set, setting α = 0.4 is enough to achieve
a comparable accuracy to Adaptive-RAG). Thus, users can rely on validation-based tuning of α for
effective deployment.

C.3 MORE COMPARISONS TO POTENTIAL BASELINES

As our work focus on user controllability, while none of the related works (such as Wang et al.
(2023); Tang et al. (2024)) provides this property, we compare them in the appendix for complete-
ness. Moreover, we also compare with a additional baseline, where instead of training a classifier,
we directly prompt the LLM to decide the complexity of the retrieval, which we coin as ”direct
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(a) Accuracy of using t5-3b and t5-base as a classifier and different training epochs.

(b) Total retrieval steps (cost) of using t5-3b and t5-base as a classifier and different
training epochs.

Figure 8: Accuracy and total steps of t5-3b and t5-base as a classifier and different training epochs.

Figure 9: Accuracy-Cost trade-off plot of using t5-3b and t5-base as a classifier with different train-
ing epochs.

prompting” baseline. In Table 5, we report the performance of MBA-RAG Tang et al. (2024) and
self-RAG Wang et al. (2023). However, note that none of these baselines provide user controllability
in their trade-off of accuracy and speed. We notice that direct prompting achieves good performance.
However, as the main contributions of this paper is user controllability, which the direct prompting
approach doesn’t provide, we didn’t compare it in the main paper. Nevertheless, we think it would
be a good approach to explore more and a potential replacement for adaptive retrieval. (Still, it

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 10: Average training loss v.s. training epochs for cost optimized classifier for different models
and reliability optimized classifier.

Models
flan-t5-xl flan-t5-xxl gpt4o-mini gpt4o

Acc Steps Acc Steps Acc Steps Acc Steps
Static Retrieval

No Retrieval 0.160 0.0 0.193 0.0 0.408 0.0 0.527 0.0
Single-step Retrieval 0.389 1.0 0.419 1.0 0.477 1.0 0.539 1.0
Multi-step Retrieval 0.437 4.7 0.452 2.1 0.533 5.6 0.595 4.2

Adaptive-RAG
AdaptiveRAG 0.427 2.3 0.439 1.3 0.510 2.6 0.585 2.0

Flare-Aug(Ours)
α = 0.0 0.388 1.3 0.385 0.9 0.445 0.5 0.533 0.2
α = 0.2 0.421 1.6 0.444 1.2 0.490 1.7 0.557 0.7
α = 0.4 0.439 2.2 0.461 1.4 0.524 2.8 0.575 2.2
α = 0.6 0.441 2.6 0.465 1.5 0.532 3.2 0.584 2.6
α = 0.8 0.439 2.8 0.463 1.6 0.533 3.4 0.589 2.8
α = 1.0 0.441 3.0 0.463 1.6 0.534 3.5 0.592 2.9

Table 3: Accuracy and average steps of different retrieval strategies on validation dataset.

doesn’t provide user controllability). It might be an important future direction to use prompting to
decide retrieval strategy while adding user controllability.
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Models
flan-t5-xl flan-t5-xxl gpt4o-mini gpt4o

Acc Steps Acc Steps Acc Steps Acc Steps
Static Retrieval

No Retrieval 0.154 0.0 0.184 0.0 0.402 0.0 0.512 0.0
Single-step Retrieval 0.386 1.0 0.418 1.0 0.491 1.0 0.553 1.0
Multi-step Retrieval 0.423 4.6 0.443 2.1 0.543 5.6 0.599 4.1

Adaptive-RAG
AdaptiveRAG 0.414 2.3 0.437 1.3 0.528 2.6 0.591 2.0

Flare-Aug (Ours)
α = 0.0 0.381 1.3 0.388 0.8 0.445 0.5 0.520 0.2
α = 0.2 0.408 1.7 0.443 1.2 0.498 1.6 0.549 0.6
α = 0.4 0.425 2.2 0.455 1.4 0.541 2.8 0.593 2.2
α = 0.6 0.427 2.6 0.452 1.5 0.547 3.2 0.598 2.5
α = 0.8 0.428 2.8 0.451 1.6 0.550 3.4 0.600 2.7
α = 1.0 0.430 2.9 0.450 1.6 0.550 3.5 0.601 2.8

Table 4: Accuracy and average steps of different retrieval strategies on test dataset.

Figure 11: Retrieval accuracy of different approaches on test set.

Figure 12: Total number of steps (cost) of different approaches on test set.
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Figure 13: Accuracy-Cost plot of different approaches on test set.

Models Acc Steps
Static Retrieval
No Retrieval 0.160 0.0
Single-step Retrieval 0.389 1.0
Multi-step Retrieval 0.437 4.7
Adaptive-RAG
AdaptiveRAG 0.427 2.3
Added Baselines
MBA-RAG (DistilBert) 0.435 1.80
MBA-RAG (T5-Large) 0.434 1.89
Self-RAG (LLaMA2) 0.316 0.72
Direct prompting 0.381 0.19
Flare-Aug (Ours)
α = 0.0 0.388 1.3
α = 0.2 0.421 1.6
α = 0.4 0.439 2.2
α = 0.6 0.441 2.6
α = 0.8 0.439 2.8
α = 1.0 0.441 3.0

Table 5: Results for additional Baselines. The results for MBA-RAG and Self-RAG are from the
original paper, using DistillBert, T5-Large, LLaMA2 as a backbone, respectively, while the rest of
the results uses t5-large as a LLM backbone.
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