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ABSTRACT

We present a new class of Langevin based algorithms, which overcomes many of
the known shortcomings of popular adaptive optimizers that are currently used for
the fine tuning of deep learning models. Its underpinning theory relies on recent
advances of Euler’s polygonal approximations for stochastic differential equations
(SDEs) with monotone coefficients. As a result, it inherits the stability properties
of tamed algorithms, while it addresses other known issues, e.g. vanishing gradi-
ents in neural networks. In particular, we provide a nonasymptotic analysis and
full theoretical guarantees for the convergence properties of an algorithm of this
novel class, which we named THεO POULA (or, simply, TheoPouLa). Finally,
several experiments are presented with different types of deep learning models,
which show the superior performance of TheoPouLa over many popular adaptive
optimization algorithms.

1 INTRODUCTION

Modern machine learning models including deep neural networks are successfully trained when
they are finely tuned via the optimization of their associated loss functions. Two aspects of such
optimization tasks pose significant challenges, namely the non-convex nature of loss functions and
the highly nonlinear features of many types of neural networks. Moreover, the analysis in Lovas
et al. (2020) shows that the gradients of such non-convex loss functions typically grow faster than
linearly and are only locally Lipschitz continuous. Naturally, stability issues are observed, which
are known as the ‘exploding gradient’ phenomenon (Bengio et al., 1994; Pascanu et al., 2013),
when vanilla stochastic gradient descent (SGDs) or certain types of adaptive algorithms are used
for fine tuning. The sparsity of gradients of neural networks is another challenging issue, which
is extensively studied in the literature. For example, momentum methods and adaptive learning
rate methods such as AdaGrad (Duchi et al. (2011)), RMSProp (Tieleman & Hinton (2012)), Adam
(Kingma & Ba (2015)) have been developed to tackle this problem and improve training speed by
diagonally scaling the gradient by some function of the past gradients.

A family of Langevin based algorithms has been another important stream of literature on the
stochastic optimization. They are built on the theoretical fact that the Langevin stochastic differ-
ential equation, (6), converges to its unique invariant measure, which concentrates on the global
minimizers of the objective function as β →∞, see Hwang (1980). Since the convergence property
remains true for nonconvex optimization problems, the global convergence of the stochastic gradi-
ent Langevin dynamics (SGLD) and its variants has been extensively studied in a nonconvex setting
(Raginsky et al., 2017; Xu et al., 2018; Erdogdu et al., 2018; Brosse et al., 2018; Lovas et al., 2020).
Moreover, it is worth noting that Langevin based algorithms have been a key element in statistics and
Bayesian learning (Roberts & Tweedie, 1996; Durmus & Moulines, 2017; Dalalyan, 2017; Brosse
et al., 2019; Welling & Teh, 2011; Deng et al., 2020a;b).

Motivated by the aforementioned developments in the field, we propose a new class of Langevin
algorithms which is based on recent advances of Euler’s polygonal approximations for Langevin
SDEs. The idea of this new form of Euler’s polygonal approximations for SDEs with monotone
coefficients originates from the articles Krylov (1985) and Krylov (1990). We name this new class
as polygonal unadjusted Langevin algorithms. Moreover, it is versatile enough to incorporate further
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features to address other known shortcomings of adaptive optimizers. Mathematically, it is described
as follows: Given an i.i.d. sequence of random variables {Xn}n≥0 of interest, which typically
represent available data, the algorithm follows

θλ0 := θ0, θλn+1 := θλn − λGλ(θλn, Xn+1) +
√

2λβ−1ξn+1, n ∈ N, (1)

where θ0 is an Rd-valued random variable, λ > 0 denotes the step size of the algorithm, β > 0 is
the so-called inverse temperature, (ξn)n∈N is an Rd-valued Gaussian process with i.i.d. components
and Gλ : Rd × Rm → Rd satisfies the following three properties:

1. For every λ > 0, There exist constants Kλ > 0 and ρ1 ≥ 0 such that |Gλ(θ, x)| ≤
Kλ(1 + |x|)ρ1(1 + |θ|) for every θ ∈ Rd and x ∈ Rm.

2. There exist constants γ ≥ 1/2, K2 > 0 and ρ2, ρ3 ≥ 0 such that for all λ > 0,

|Gλ(θ, x)−G(θ, x)| ≤ λγK2(1 + |x|)ρ2(1 + |θ|)ρ3

for every θ ∈ Rd and x ∈ Rm, whereG is the (unbiased) stochastic gradient of the objective
function of the optimization problem under study.

3. There exist constants λmax and δ ∈ {1, 2} such that for any λ ≤ λmax,

lim inf
|θ|→∞

E
[
〈 θ
|θ|δ

, Gλ(θ,X0)〉 − 2λ

|θ|δ
|Gλ(θ,X0)|2

]
> 0.

One obtains our new algorithm THεO POULA by considering the case where Gλ(θ, x) is the vector
with entries H(i)

λ,c(θ, x) as given by (8), for i ∈ {1, . . . , d}. Its name is formed from its description,
namely Tamed Hybrid ε-Order POlygonal Unadjusted Langevin Algorithm and its full detailed anal-
ysis (including its convergence properties) are given in Section 3. We note that THεO POULA and
TUSLA (Lovas et al. (2020)) satisfy the above three properties with δ = 2 and γ = 1/2, whereas
TULA (Brosse et al. (2019)) satisfies them with δ = γ = 1 as it assumes only deterministic gradients
(and thus the i.i.d. data sequence reduces to a constant).

1.1 RELATED WORK: LANGEVIN BASED ALGORITHMS AND ADAPTIVE LEARNING RATE
METHODS

Most research on Langevin based algorithms in the literature has been focused on theoretical aspects.
Raginsky et al. (2017) demonstrated the links between Langevin based algorithms and stochastic op-
timization in neural networks, stimulating further the development and analysis of such algorithms.
Xu et al. (2018) analyzed the global convergence of GLD, SGLD and SVRG-LD. The incorporation
of dependent data streams in the analysis of SGLD algorithms has been achieved in Barkhagen et al.
(2021) and in Chau et al. (2019), and local conditions have been studied in Zhang et al. (2019). Re-
cently, TUSLA of Lovas et al. (2020) has been proposed based on a new generation of tamed Euler
approximations for stochastic differential equations (SDEs) with monotone coefficients in noncon-
vex optimization problems. See Hutzenthaler et al. (2012) and Sabanis (2013) for the rationale of
taming techniques. Despite their elegant theoretical results, the use of Langevin based algorithms
for training deep learning models has been limited in practice as their empirical performance lacked
behind in comparison to other popular adaptive gradient methods. We refer to Appendix F.3 for the
reader who is interested in recent progress on sampling and Bayesian neural networks.

Adaptive learning rate methods such as AdaGrad (Duchi et al. (2011)), RMSProp (Tieleman &
Hinton (2012)) and Adam (Kingma & Ba (2015)) have been successfully applied to neural net-
work models due to their fast training speed. Since the appearance of Adam, a large number of
variants of Adam-type optimizers have been proposed to address the theoretical and practical chal-
lenges of Adam. For example, Reddi et al. (2018) provided a simple example that demonstrates
the non-convergence issue of Adam and proposed a simple modification, called AMSGrad, to solve
this problem. Chen et al. (2019) discussed the convergence of Adam-type optimizers in a noncon-
vex setting. RAdam to rectify the variance of adaptive learning rate has been proposed in Liu et al.
(2020). Wilson et al. (2017) revealed that the generalization ability of adaptive learning rate methods
is worse than a global learning method like SGD. AdaBound of Luo et al. (2019) attempts to over-
come the drawback by employing dynamic bounds on learning rates. Recently, AdaBelief (Zhuang
et al. (2020)) and AdamP (Heo et al. (2021)) demonstrated their fast convergence and good gen-
eralization via extensive experiments. Nevertheless, the convergence analysis of these (and other)
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adaptive learning rate methods is still restrictive since it is only guaranteed to converge to a station-
ary point (which can be a local minimum or a saddle point) under strong assumptions. Namely, the
stochastic gradient is globally Lipschitz continuous and bounded. Note though that none of these
two assumptions hold true in a typical optimization problem involving neural networks. This is
particularly evident in complex neural network architectures.

1.2 OUR CONTRIBUTIONS

The proposed algorithm, THεO POULA, tries to combines both advantages: namely, global conver-
gence in Langevin based algorithms and powerful empirical performance in adaptive learning rate
methods. To the best of the authors’ knowledge, our algorithm is the first Langevin based algorithm
to outperform popular stochastic optimization methods such as SGD, Adam, AMSGrad, RMSProp,
AdaBound and AdaBelief for deep learning tasks. The major strengths of our work over related
algorithms are summarized as follows:

• (Global convergence) We provide a global convergence analysis of THεO POULA for
nonconvex optimization where the stochastic gradient of the objective is locally Lipscthiz
continuous. Moreover, non-asymptotic estimates for the expected excess risk are derived.

• (Stable and fast training) THεO POULA achieves a stable and fast training process us-
ing the (element-wise) taming technique, (element-wise) boosting function and averaging,
which are theoretically well-designed. Furthermore, we validate the effectiveness of the
taming and boosting functions through several empirical experiments.

• (Good generalization) While THεO POULA behaves like adaptive learning rate methods
in the early training phase, it takes an almost global learning rate near an optimal point.
That is, THεO POULA is quickly switched from adaptive methods to SGD. As a result,
it inherits the good generalization ability of SGD. Our experiments support this fact by
showing that THεO POULA outperforms the other optimization methods in generalization
measured by test accuracy for various deep learning tasks.

2 MOTIVATING EXAMPLE

The local Lipschitz continuity of gradients and its effect on the performance of optimization methods
are relatively under-studied. Most relevant studies assume that the stochastic gradient is global
Lipscthiz continuous and bounded (Kingma & Ba, 2015; Xu et al., 2018; Brosse et al., 2018; Duchi
et al., 2011; Tieleman & Hinton, 2012; Reddi et al., 2018; Chen et al., 2019; Liu et al., 2020; Luo
et al., 2019; Zhuang et al., 2020) although it is not true for neural network problems. This section
provides a simple, one-dimensional optimization problem that illustrates the convergence issue of
popular stochastic gradient methods when the stochastic gradient is locally Lipschitz continuous,
i.e., the gradient can be super-linearly growing 1.

Consider the following optimization problem:

min
θ
u(θ) = min

θ
E[U(θ,X)], (2)

where U : R× R→ R is defined as

U(θ, x) =

{
θ2 (1 + 1x≤1) + θ30, |θ| ≤ 1,
(2|θ| − 1) (1 + 1x≤1) + θ30, |θ| > 1,

and X is uniformly distributed over (−2, 2), that is, fX(x) = 1
41|x|≤2. Furthermore, the stochastic

gradient G : R× R→ R is given by

G(θ, x) =

{
2θ (1 + 1x≤1) + 30θ29, |θ| ≤ 1,
2(1 + 1x≤1)sgn(θ) + 30θ29, |θ| > 1,

where sgn(·) is the sign function. Note that the stochastic gradientG is locally Lipschitz continuous,
which satisfies

|G(θ, x)−G(θ′, x)| ≤ 34(1 + |θ|+ |θ′|)28|θ − θ′|
1Lovas et al. (2020) used a similar example to show the stability of TUSLA with a different taming function.
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(a) default settings (b) different step sizes

Figure 1: Performance of SGD, Adam, AMSGrad, RMSProp and THεO POULA on an artificial
example with the initial value θ0 = 5.0

for all x ∈ R and θ, θ′ ∈ R. Also, the optimal value is attained at θ = 0. See Appendix A for more
details. Following Reddi et al. (2018), adaptive stochastic gradient methods can be generally written
as follows, for n ∈ N,

mn = φn(G1, · · · , Gn),

Vn = ψn(G1, · · · , Gn),

θn+1 = θn − λn
mn

ε+
√
V n

(3)

where Gi := G(θi, Xi) is the stochastic gradient evaluated at the i-th iteration, λn is the step size
and all operations are applied element-wise. Table 1 provides the details for some of the most
popular stochastic optimization methods with corresponding averaging functions φn and ψn.

Table 1: Summary of stochastic optimization methods within the general framework. Note that
v̂n = max{v̂n−1, vn} is defined as vn = (1− β2)vn−1 + β2G

2
n.

SGD RMSPROP ADAM AMSGRAD

φn := Gn Gn (1− β1)
∑n
i=1 β

n−i
1 Gi (1− β1)

∑n
i=1 β

n−i
1 Gi

ψn := In (1− β2)diag(
∑n
i=1 β

n−i
2 G2

i ) (1− β2)diag(
∑n
i=1 β

n−i
2 G2

i ) diag(v̂n)

We use SGD, Adam, AMSGrad and RMSprop to solve the optimization problem with initial value
θ0 = 5. For hyperparameters of optimization algorithms, we use their default settings provided in
PyTorch. Figure 1(a) shows the trajectories of approximate solutions generated by each optimizer.
While SGD, Adam, AMSGrad and RMSProp fail to converge to the optimal solution 0, the proposed
algorithm, THεO POULA, finds the optimal solution with a reasonable step size, say, 0.01.

Intuitively, the undesirable phenomenon occurs because, in the iterating rule (3), the denominator√
V n excessively dominates the numerator mn, causing the vanishing gradient problem in the pres-

ence of the superlinear gradient. On the contrary, SGD suffers from the exploding gradient problem.
Moreover, Figure 1(b) highlights that the problematic behavior cannot be simply resolved by ad-
justing the learning rate within the Adam-type framework, while THεO POULA perform extremely
well even in the presence of such violent non-linearities.

3 NEW ALGORITHM: THεO POULA

We propose a new stochastic optimization algorithm by combining ideas from taming methods
specifically designed to approximate Langevin SDEs with a hybrid approach based on recent ad-
vances of polygonal Euler approximations. The latter is achieved by identifying a suitable boosting
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function (of order ε � 1) to efficiently deal with the sparsity of (stochastic) gradients of neural
networks. In other words, the novelty of our algorithm is to utilize a taming function and a boosting
function, rather than designing a new Vn as in Adam-type optimizers.

We proceed with the necessary preliminary information, main assumptions and formal introduction
of the new algorithm.

3.1 PRELIMINARIES AND ASSUMPTIONS

Let (Ω,F , P ) be a probability space. We denote by E[X] the expectation of a random variable
X . Fix an integer k ≥ 1. For an Rk-valued random variable X , its law on B(Rk), i.e. the Borel
sigma-algebra of Rk, is denoted by L(X). Scalar product is denoted by 〈·, ·〉, with | · | standing for
the corresponding norm (where the dimension of the space may vary depending on the context). For
any integer q ≥ 1, let P(Rq) denote the set of probability measures on B(Rq). For µ, ν ∈ P(Rk),
let C(µ, ν) denote the set of probability measures ζ on B(R2k) such that its respective marginals are
µ, ν. For two probability measures µ and ν, the Wasserstein distance of order p ≥ 1 is defined as

Wp(µ, ν) := inf
ζ∈C(µ,ν)

(∫
Rk

∫
Rk
|θ − θ′|pζ(dθdθ′)

)1/p

, µ, ν ∈ P(Rk). (4)

Let (Xn)n∈N be a sequence of i.i.d. Rm-valued random variables generating the filtration (Gn)n∈N
and (ξn)n∈N be an Rd-valued Gaussian process with independent components.

Let F : Rd×Rm → Rd be continuously differentiable function such that E[F (θ,X0)] <∞ for any
θ ∈ Rd. We consider the following optimization problem

min
θ
u(θ) = min

θ

(
E[F (θ,X0)] +

η

2(r + 1)
|θ|2(r+1)

)
(5)

where θ ∈ Rd, η ∈ (0, 1) is the regularization parameter and r ≥ q
2 +1. In the context of fine tuning

of neural networks, F represents the loss function for the task at hand and θ denotes the vector of the
neural network’s parameters. Note that the regularization term, η

2(r+1) |θ|
2(r+1), is added in order to

guarantee that the dissipativity property holds, since it is essential for the convergence analysis.

Remark 3.1. For the reader who prefers to consider the optimization problem without the regular-
ization term, i.e. with η = 0, the dissipative condition (B.1) has to be additionally assumed as in the
literature (Raginsky et al., 2017; Xu et al., 2018; Erdogdu et al., 2018). Then, the same analysis can
be applied to obtain our main results without any additional effort. However, it is yet to be proven
theoretically that such an assumption holds in general for neural networks and thus it becomes a
case-by-case investigation. In other words, we present here the formal theoretical statement with
the appropriate regularization term which covers all of these cases.

In particular, r depends on the neural network’s structure, whereas q is described in Assumption 3.1.
Consequently, the stochastic gradient with the regularization term is given by

H(θ, x) := G(θ, x) + ηθ|θ|2r

where G(θ, x) := ∇θF (θ, x) for all x ∈ Rm, θ ∈ Rd and η = 0 if dissipativity holds for G.

We introduce our main assumptions. The first requirement is that G is locally Lipschitz continuous.

Assumption 3.1. There exists positive constant L1, ρ and q ≥ 1 such that

|G(θ, x)−G(θ′, x)| ≤ L1(1 + |x|)ρ(1 + |θ|+ |θ′|)q−1|θ − θ′|.

for all x ∈ Rm and θ, θ′ ∈ Rd. Moreover, h(θ) := E[H(θ,X0)] for every θ ∈ Rd.

Further, conditions on the initial value θ0 and data process (Xn)n∈N are imposed as it is common to
use weight initialization using the uniform or normal distribution, Assumption 3.2 is mild.

Assumption 3.2. The process (Xn)n∈N is a sequence of i.i.d. random variables with
E[|X0|16ρ(2r+1)] < ∞ where ρ is given in Assumption 3.1. In addition, the initial condition is
such that E[|θ0|16(2r+1)] <∞.
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We refer to Appendix B for further remarks and key observations regarding the consequences of
Assumptions 3.1 and 3.2. We conduct the convergence analysis of THεO POULA by employing
elements of the theory of Langevin SDEs. It is shown that, under mild conditions (satisfied by
Assumptions 3.1 and 3.2), the so-called (overdamped) Langevin SDE, which is given by

dZt = −h(Zt)dt+
√

2β−1dBt, t > 0, (6)

where h = ∇u with a (possibly random) initial condition θ0 and with (Bt)t≥0 denoting a d-
dimensional Brownian motion, admits a unique invariant measure πβ(dz) ∝ exp(−βu(z)). Thus,
for a sufficiently large β, πβ concentrates around the minimizers of (5).

3.2 MECHANISM OF THεO POULA

We introduce the mechanism of THεO POULA, which iterately updates as follows:

θλ0 := θ0, θλn+1 := θλn − λHλ,c(θ
λ
n, Xn+1) +

√
2λβ−1ξn+1, n ∈ N, (7)

where Hλ,c := (H
(1)
λ,c(θ, x), · · · , H(d)

λ,c(θ, x))T is given by

H
(i)
λ,c(θ, x) =

G(i)(θ, x)

1 +
√
λ|G(i)(θ, x)|︸ ︷︷ ︸

taming function

(
1 +

√
λ

ε+ |G(i)(θ, x)|︸ ︷︷ ︸
boosting function

)
+ η

θ(i)|θ|2r

1 +
√
λ|θ|2r︸ ︷︷ ︸

regularization term

, (8)

and {ξn}n≥1 is a sequence of independent standard d-dimensional Gaussian random variables. Note
that the taming and boosting functions are defined in (8).

THεO POULA has several distinct features over the existing optimization methods in the litera-
ture. We give an intuitive explanation as to how these features are complementarily harmonized
to improve the performance of the algorithm, and to handle the exploding and vanishing gradient
problems of neural networks. For simplicity, we omit the regularization term, that is, η = 0, and the
noise term,

√
2λβ−1ξn+1, throughout the exposition. Also, we refer to λ as the learning rate and

|∆θλn| :=
|G(i)(θλn,Xn+1)|

1+
√
λ|G(i)(θλn,Xn+1)|

(
1 +

√
λ

ε+|G(i)(θλn,Xn+1)|

)
as the stepsize by the convention in Kingma

& Ba (2015).

Firstly, the new algorithm utilizes the taming function to control the super-linearly growing gradient.
In a region where the loss function is steep and narrow (the gradient is huge), it is ideal for the
optimizer to take a small stepsize. This is effectively achieved since the growth of the taming
function is proportional to G, but the boosting is close to one when the gradient is huge. The
effectiveness of the taming function is confirmed in the motivating example in Section 2. Note
that the taming function is applied element-wise to scale the effective element-wise learning rate
in contrast to TUSLA of Lovas et al. (2020). This significantly improves the performance of our
new algorithm in solving high-dimensional optimization problems such as the fine tuning of neural
network models.

Secondly, we have designed the boosting function to accelerate training speed and prevent the van-
ishing gradient problem2. When the current parameter is located in a region where the loss function
is flat (the gradient is small), it is desirable for the optimizer to take a large stepsize. As the gradient
gets smaller, the boosting function increases the stepsize of THεO POULA by up to

√
λ/ε, whereas

the taming function’s contribution decreases. As a result, THεO POULA takes a larger stepsize. In
other words, THεO POULA takes a desirable stepsize depending on the magnitude of the gradient.
Most importantly, the taming and boosting functions do not interfere with each other in any adverse
way. On the contrary, they complement each other in a harmonious way that is evident from our
simulation results.

Thirdly, THεO POULA is quickly converted from adaptive learning rate methods to SGD. In the
early training phase, THεO POULA certainly behaves like adaptive learning rate methods. Then,

2We provide the effectiveness of the boosting function in Appendix E.3 by comparing the performance of
THεO POULA with/without the boosting function. The experiment shows that the addition of the boosting
function brings a significant improvement in test accuracy across different models and data sets.
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when the current position is approaching an optimal solution where |G(i)|s are close to zero, the
movement of THεO POULA is similar to SGD with a learning rate (1 +

√
λ/ε). Consequently,

THεO POULA simultaneously attains two favorable features of fast training in adaptive learning
rate methods and good generalization in SGD. The switching from adaptive learning rates to SGD
has been also investigated by different strategies in Luo et al. (2019) and Keskar & Socher (2017).

Lastly, a scaled Gaussian noise,
√

2λβ−1ξn+1, is added as a consequence of the discretization of the
Langevin SDE. The term is essential to prove the convergence property of THεO POULA. Adding
properly scaled Gaussian noise allows the new algorithm to escape local minima in a similar manner
to the standard SGLD method, see Raginsky et al. (2017).

3.3 CONVERGENCE ANALYSIS

We present in this section the main convergence results of THεO POULA to πβ in Wasserstein-1
and Wasserstein-2 distances as defined in (4). The convergence is guaranteed when the learning rate
is less than λmax, which is given by

λmax = min

{
1

4η2
,

1

214η2(8lC4l)2

}
. (9)

where nCk is the binomial coefficient ‘n choose k’ and l = 2r + 1. Note that the learning rate
restriction causes no issues a η is typically very small (η � 1). Moreover, let T := 1/λ.

Theorem 3.1 and Corollary 3.1 state the non-asymptotic (upper) bounds between L
(
θλn
)

and πβ .
An overview of the proofs of our main results can be found in Appendix C.
Theorem 3.1. Let Assumptions 3.1 and 3.2 hold. Then, for every 0 < λ ≤ λmax and n ∈ N, we
have

W1

(
L
(
θλn
)
, πβ
)
≤M1

√
λ+M2e

−ċλn,

where ċ, M1 and M2 are constants independent of n and λ. The explicit form of ċ, M1 and M2 are
given in Table 7.
Corollary 3.1. Let Assumptions 3.1 and 3.2 hold. Then, for every 0 < λ ≤ λmax and n ∈ N, we
have

W2

(
L
(
θλn
)
, πβ
)
≤M3

√
λ+ z2λ

1
4 +M4e

−ċλn,

where ċ, z2, M3 and M4 are constants independent of n and λ. The explicit form of ċ, z2, M3 and
M4 are given in Table 7.

We are now concerned with the expected excess risk of THεO POULA generated by (7), so called
the optimization error of θλn, defined as

E[u(θλn)]− u(θ∗) (10)

where θ∗ := arg minθ∈Rd u(θ). To derive the bound of the expected excess risk, it is again decom-
posed into two parts; E[u(θλn)] − E[u(θ∞)] and E[u(θ∞)] − u(θ∗). Here, θ∞ follows the invariant
distribution πβ . The following theorem describes the bound of the expected excess risk of THεO
POULA.
Theorem 3.2. Let Assumptions 3.1 and 3.2 hold. For any n ∈ N, the expected excess risk of the
n-th iterate of THεO POULA (7) is upper bounded by

E[u(θλn)]− u(θ∗) ≤M5W2(L(θλn, πβ)) +
1

β

[
d

2
log

(
Ke

A

(
B

d
β + 1

))
+ log 2

]
where W2(L(θλn), πβ) is given in Corollary 3.1 and A, B are given in Remark B.2. and M5, K are
given in Table 7. All the constatns are independent of n and λ.

3.4 AVERAGED THεO POULA

One notes that Theorem 3.1 implies that THεO POULA converges, under suitable decreasing step
size regime, to the invariant measure πβ and thus its performance can be further improved by aver-
aging. It is achieved by averaging of trajectories of the parameters after a user-specified trigger Q,
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1
n−Q+1

∑n
i=Q θ

λ
i , instead of the last updated parameter θλn (Polyak & Juditsky, 1992). In particular,

we use a trigger strategy which starts the averaging when no improvement in the validation metric
is seen for a patience number of epochs. For our experiments, we set the patience number to 5.

Our experiments show that averaged THεO POULA performs better than the other stochastic op-
timization methods for language modeling tasks. Moreover, while a learning rate decay, which
requires additional tuning effort, has to be applied for the other optimizers to obtain their best per-
formance, averaged THεO POULA uses a constant learning rate, which is another practical benefit
of our newly proposed algorithm.

4 EMPIRICAL PERFORMANCE ON REAL DATA SETS

This section examines the performance of THεO POULA on real data sets by comparing it with
those of other stochastic optimization algorithms including Adam (Kingma & Ba (2015)), AdaBelief
(Zhuang et al. (2020)), AdamP (Heo et al. (2021)), AdaBound (Luo et al. (2019)), AMSGrad (Reddi
et al. (2018)), RMSProp (Tieleman & Hinton (2012)), SWATS (Keskar & Socher (2017)), SGD
(with momentum) and ASGD (Merity et al. (2018)). We conduct the following deep learning exper-
iments: image classficiation on CIFAR-10 (Krizhevsky et al.) and CIFAR-100 (Krizhevsk (2009))
and language modeling on Penn Treebank (Marcus et al. (1999)). Each experiment is run three times
to compute the mean and standard deviation of the best accuracy on the test dataset. We provide de-
tails of the experiments including learning curves and hyperparameter settings in Appendix E.

For our experiments, we consider η = 0 in (5). This is justified by the fact that some form of
dissipativity may exist for specific problems such as the one considered here, although this has not
been verified theoretical so far. In Appendix F.2, we perform additional experiments with η 6= 0,
which show a very similar performance by THεO POULA as in Table 2 without any noticeable loss
of accuracy. This demonstrates that there is no gap between theory and practice of our work.

Image classification We replicate the experiments of VGG11 (Simonya & Zisserman (2015)),
ResNet34 (Ioffe & Szegedy (2016)) and DenseNet121 (Huang et al. (2017)) on CIFAR-10 and
CIFAR-100 in the official implementation of Zhuang et al. (2020). They provide a reliable baseline
of the experiments by comparing the performance of various stochastic optimizers with extensive
hyperparameter search. We search the optimal hyperparameters for THεO POULA among λ =
{1, 0.5, 0.1, 0.05, 0.01} and ε = {1, 0.1, 0.01}. β is chosen among {108, 1010, 1012} across all the
experiments.

Table 2 shows the test accuracy for VGG11, ResNet34 and DenseNet121 on CIFAR-10 and CIFAR-
100. As reported in Table 2, our algorithm achieves the highest accuracy and significantly outper-
forms the other optimizers across all the experiments. In particular, even THεO POULA with the
second best hyperparameter is comparable to AdaBelief and outperforms the other methods, val-
idating that the solutions found by THεO POULA yield good generalization performance. Also,
the improvement of our algorithm is increasingly prominent as the models and datasets are more
complicated and large-scale.

Language modeling We perform language modeling over the Penn Treebank (PTB) with AWD-
LSTMs of Merity et al. (2018). It is reported that Non-monotonically Triggered ASGD (NT-ASGD)
achieves state-of-the-art performance for the language modeling task with AWD-LSTMs. Motivated
by this observation, we consider averaged THεO POULA for the experiment. Due to a limited
computation budget, we only test ASGD and AdaBelief rather than investigating all the optimizers
in this experiment 3.

For a fair comparison, the averaging scheme has also been applied to AdaBelief, but we have found
that it does not improve the performance of AdaBelief. Instead, AdaBelief uses a development-
based learning rate decay, which decreases the learning rate by a constant factor if the model does
not attain a new best value for multiple epochs. For ASGD and THεO POULA, a constant learning

3Since AdaBelief significantly outperforms the other optimizers including vanilla SGD, AdaBound, Yogi
(Zaheer et al. (2018)), Adam, MSVAG (Balles & Hennig (2018)), RAdam, Fromage and AdamW (Loshchilov
& Hutter (2019)) in the same experiment, we believe that we do not need to explore all the optimizers.

8
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Table 2: Mean and standard deviation of the best accuracy for VGG11, ResNet34 and DenseNet121
on CIFAR10. THεOPOULA† and THεOPOULA∗ represent the performances of THεO POULA
with the best and second best hyperparameters, respectively.

dataset CIFAR-10 CIFAR-100
model VGG ResNet DenseNet VGG ResNet DenseNet

THεO POULA†
92.31 95.43 95.66 70.31 77.60 79.90

(0.055) (0.095) (0.066) (0.117) (0.144) (0.133)

THεO POULA∗ 91.92 94.92 95.59 70.24 76.88 78.76
(0.119) (0.076) (0.067) (0.227) (0.536) (0.269)

AdaBelief 92.17 95.29 95.58 69.50 77.33 79.12
(baseline) (0.035) (0.196) (0.095) (0.111) (0.172) (0.382)

Adam 90.79 93.11 93.21 67.30 73.02 74.03
(0.075) (0.184) (0.240) (0.137) (0.231) (0.334)

AdamP 91.68 95.18 95.17 69.41 76.14 77.58
(0.162) (0.116) (0.079) (0.297) (0.347) (0.091)

AdaBound 91.81 94.83 95.05 68.61 76.27 77.56
(0.272) (0.131) (0.176) (0.312) (0.256) (0.120)

AMSGrad 91.24 93.76 93.74 67.71 73.51 74.50
(0.115) (0.108) (0.236) (0.291) (0.692) (0.416)

RMSProp 90.82 93.06 92.89 65.45 71.79 71.75
(0.201) (0.120) (0.310) (0.394) (0.287) (0.632)

SGD 90.73 94.61 94.46 67.78 77.16 78.95
(0.090) (0.280) (0.159) (0.320) (0.214) (0.312)

SWATS 87.29 94.76 95.04 N/A 73.86 78.81
(4.210) (0.565) (0.339) (3.928) (1.812)

rate is used without a learning rate decay. In order to compare with the baseline, we apply gradient
clipping of 0.25 to all optimizers. See Appendix E for more information.

Table 3: Test perplexity for language mod-
eling tasks on PTB. Lower is better.

# of layers 1-layer 2-layer 3-layer

THεO POULA 82.75 67.15 61.07
(0.209) (0.126) (0.161)

ASGD 82.85 67.53 61.60
(baseline) (0.308) (0.171) (0.094)

AdaBelief 84.46 67.34 61.52
(0.272) (0.496) (0.302)

Table 3 shows that THεO POULA attains the lower
test perplexity against the baselines for AWD-LSTM
with one, two and three layers. AdaBelief shows a
comparable performance with ASGD for 2-layer and
3-layer models.

Our experimental results show that THεO POULA
achieves higher accuracy than AdaBelief (known as
the state-of-the-art algorithm for many deep learning
tasks) on image classification and language modeling
tasks for various deep learning models. Furthermore,
it is easier to tune parameters of THεO POULA since
the number of hyperparmeters for THεO POULA is
less than that of Adam-type optimizers.

5 CONCLUSION AND DISCUSSION

This paper begins with an example which illustrates that local Lipschitz continuous gradients can
cause serious convergence issues for popular adaptive optimization methods. Such issues manifest
themselves as vanishing/exploding gradient phenomena. It proceeds by proposing a novel optimiza-
tion framework, which is suitable for the fine tuning of neural network models by combining ele-
ments of the theory of Langevin SDEs, tamed algorithms and carefully designed boosting functions
that handle sparse and super-linearly growing gradients. Further, a detailed convergence analysis of
the newly proposed algorithm THεO POULA is provided along with full theoretical guarantees for
obtaining the best known convergence rates. Our experiments confirm that THεO POULA outper-
forms other popular stochastic optimization methods.

We believe that there is much room for improvement of our novel framework. For example, the
improved performance can be further achieved by identifying more efficient taming and boosting
functions, which demonstrates the potential of our framework.

9
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Appendix

A DETAILS OF THE EXPERIMENT IN SECTION 2

This section provides the necessary theoretical details of the experiment in Section 2. We continue
to consider the optimization problem (2). One calculates that

u(θ) =

{
θ30 + 7

4θ
2, |θ| ≤ 1,

θ30 + 7
4 (2|θ| − 1), |θ| > 1

and

u′(θ) =

{
30θ29 + 7

2θ, |θ| ≤ 1,
30θ29 + 7

2sgn(θ), |θ| > 1.

Note that u(θ) and u′(θ) are continuous since u(1) = limθ↓1 u(θ) = 11
4 , u(−1) = limθ↑−1 = 11

4 ,
u′(1) = limθ↓−1 u

′(1) = 67
2 and u′(−1) = limθ↑1 u

′(−1) = − 67
2 . Therefore, the minimum value

is attained at θ = 0.

To show that G is locally Lipschitz continuous, we check that for |θ|, |θ′| > 1 and x ∈ Rd,

|G(θ, x)−G(θ′, x)| ≤ (2 + 21x≤1)|sgn(θ)− sgn(θ′)|+ 30|θ29 − θ′29|
≤ 34(1 + |θ|+ |θ′|)28|θ − θ′|.

For |θ|, |θ| ≤ 1, we have

|G(θ, x)−G(θ′, x)| ≤ (2 + 21x≤1)|θ − θ′|+ 30|θ29 − θ′29|
≤ 34(1 + |θ|+ |θ′|)28|θ − θ′|.

For |θ| ≤ 1, |θ| > 1, we obtain

|G(θ, x)−G(θ′, x)| ≤ (2 + 21x≤1)|θ − sgn(θ′)|+ 30|θ29 − θ′29|
≤ (2 + 21x≤1)|θ − θ′|+ 30|θ29 − θ′29|
≤ 34(1 + |θ|+ |θ′|)28|θ − θ′|

where the second inequality follows from the following relations

θ − θ′ ≤ θ − 1 ≤ 0, for θ′ > 1,

0 ≤ θ + 1 ≤ θ − θ′, for θ′ < −1.

B KEY OBSERVATIONS FROM ASSUMPTION 3.1 AND 3.2

This section introduces some useful general results, that can be obtained from Assumption 3.1 and
3.2. Note that some of the below observations can be also found in Zhang et al. (2019) and Lo-
vas et al. (2020). However, to make our paper self-contained, we record all the results which are
necessary for the convergence analysis.
Remark B.1. From Assumption 3.1, one observes that for all θ ∈ Rd and x ∈ Rm

|G(θ, x)| ≤ K(x)(1 + |θ|q),
where K(x) = 2q(L1(1 + |x|)ρ + |G(0, x)|).
Remark B.2. From Assumptions 3.1 and 3.2, one obtains that

〈θ, h(θ)〉 = 〈θ, EG(θ,X0)〉+ 〈θ, ηθ|θ|2r〉 ≥ η|θ|2r+2 − E[K(X0)]|θ|(1 + |θ|q).
Furthermore, for A = E[K(X0)] and B = (3E[K(X0)])q+2η−q−1, it holds that

〈θ, h(θ)〉 ≥ A|θ|2 −B. (B.1)

Proposition B.1. (Lovas et al. (2020)) Let Assumptions 3.1 and 3.2 hold. Then, for every θ,
θ′ ∈ Rd,

〈θ − θ′, h(θ)− h(θ′)〉 ≥ −a|θ − θ′|2,
where a = L1E[(1 + |X0|)ρ](1 + 2|R|)q−1 and R is given by

R = max

{(
23(q−1)+1L1E[(1 + |X0|)ρ]

η

) 1
2r−1

,

(
2qL1E[(1 + |X0|)ρ]

η

) 1
2r
}
.
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Proposition B.2. (Lovas et al. (2020)) Let Assumptions 3.1 and 3.2 hold. Then, one obtains that

|H(θ, x)−H(θ′, x)| ≤ L(1 + |x|)ρ(1 + |θ|+ |θ′|)l|θ − θ′|, for all θ ∈ Rd and x ∈ Rm,
where L = L1 + 8rη and l = 2r + 1.
Remark B.3. From Assumption 3.1 and the definition of H and Hλ,c, one obtains that for θ ∈ Rd,
x ∈ Rm and i = 1, 2, · · · , d,

|H(i)(θ, x)−H(i)
λ,c(θ, x)| ≤

∣∣∣∣G(i)(θ, x)− G(i)(θ, x)

1 +
√
λ|G(i)(θ, x)|

(
1 +

√
λ

ε+ |G(i)(θ, x)|

)∣∣∣∣
+

∣∣∣∣ηθ(i)|θ|2r − η θ(i)|θ|2r

1 +
√
λ|θ|2r

∣∣∣∣
≤ |G(i)(θ, x)|

√
λ|G(i)(θ, x)|

1 +
√
λ|G(i)(θ, x)|

+

√
λ|G(i)(θ, x)|

(1 +
√
λ|G(i)(θ, x)|)(ε+ |G(i)(θ, x)|)

+ η|θ(i)||θ|2r
∣∣∣∣
√
λ|θ|2r

1 +
√
λ|θ|2r

∣∣∣∣
≤
√
λ|G(i)(θ, x)|2 +

√
λ+
√
λη|θ(i)||θ|4r

which implies that

|H(θ, x)−Hλ,c(θ, x)|2 =

d∑
i=1

[√
λ|G(i)(θ, x)|2 +

√
λ+
√
λη|θ(i)||θ|4r

]2

≤ 3λ

d∑
i=1

[
|G(i)(θ, x)|4 + 1 + η2|θ(i)|2|θ|8r

]

≤ 3λ

[( d∑
i=1

|G(i)(θ, x)|2
)2

+ d+ η2|θ|8r+2

]
≤ 3λ

[
|G(θ, x)|4 + d+ η2|θ|8r+2

]
≤ 3λ

[
8|K(x)|4(1 + |θ|4q) + d+ η2|θ|8r+2

]
.

Remark B.4. From Assumption 3.1 and the definition of H and Hλ,c, one calculates that for all
θ ∈ Rd and x ∈ Rm,

|H(θ, x)|2 = |G(θ, x) + ηθ|θ|2r|2 ≤ 2|G(θ, x)|2 + 2η2|θ|4r+2

≤ 4|K(x)|2(1 + |θ|2q) + 2η2|θ|4r+2

and

|Hλ,c(θ, x)|2 =

d∑
i=1

[
G(i)(θ, x)

1 +
√
λ|G(i)(θ, x)|

(
1 +

√
λ

ε+ |G(i)(θ, x)|

)
+ η

θ(i)|θ|2r

1 +
√
λ|θ|2r

]2

≤
d∑
i=1

[
|G(i)(θ, x)|

1 +
√
λ|G(i)(θ, x)|

+

√
λ|G(i)(θ, x)|

(1 +
√
λ|G(i)(θ, x)|)(ε+ |G(i)(θ, x)|)

+ η
|θ(i)||θ|2r

1 +
√
λ|θ|2r

]2

≤
d∑
i=1

(
|G(i)(θ, x)|+

√
λ+ η|θ(i)||θ|2r

)2

≤ 3

d∑
i=1

(
|G(i)(θ, x)|2 + λ+ η2|θ(i)|2|θ|4r

)
≤ 3|G(θ, x)|2 + 3λd+ 3η2|θ|4r+2

≤ 6|K(x)|2(1 + |θ|2q) + 3λd+ 3η2|θ|4r+2.
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C OVERVIEW OF THE PROOFS

This section provides an overview of the proofs of our main results. We begin by introducing suitable
Lyapunov functions and auxiliary processes to analyze the convergence of our newly introduced
algorithm. For each m ≥ 1, define the Lyapunov function Vm by

Vm(θ) := (1 + |θ|2)
m
2 , θ ∈ Rd (C.1)

and similarly vm(x) = (1+x2)
m
2 for any real x ≥ 0. Both functions are continuously differentiable

and lim|θ|→∞∇Vm(θ)/Vm(θ) = 0. Also, define Zλt = Zλt, which is the time-changed Lagevin
dynamics governed by

dZλt = −λh(Zλt )dt+
√

2β−1λdB̃λt (C.2)

where B̃λt = Bλt/
√
λ is a Brownian motion.

We next define the continuous-time interpolation of the new algorithm, see (7), as

dθ̄λt = −λHλ

(
θ̄λbtc, Xdte

)
dt+

√
2λβ−1dB̃λt (C.3)

with initial condition θ̄λ0 = θλ0 . Henceforth, bxc denotes the integer part of a positive real x and
dxe = bxc+ 1.
Remark C.1. Due to the homogeneous nature of the coefficients of the continuous-time interpola-
tion of THεO POULA (C.3) and when one selects a version of the driving Brownian motion such that
it coincides with ξn at grid points, it follows that the interpolated process (C.3) equals the process
of THεO POULA (7) almost surely at grid points, i.e. θ̄λn = θλn (a.s), ∀n ∈ N.

Furthermore consider the continuous-time process ζs,v,λt , t ≥ s which is the solution to the SDE

dζs,v,λt = −λh
(
ζs,v,λt

)
dt+

√
2λβ−1dB̃λt (C.4)

with initial condition ζs,v,λs := v, v ∈ Rd. Let us also define T := 1
λ , which allows us to create suit-

able subintervals on the positive real line in order to compare the behaviour of the aforementioned
processes at each such interval.

Definition C.1. Fix k ∈ N and define ζ̄λ,kt := ζ
kT,θ̄λkT ,λ
t where ζkT,θ̄

λ
kT ,λ

t is defined in (C.4).

To derive non-asymptotic (upper) bounds for W1

(
L
(
θλt
)
, πβ
)

and W2

(
L
(
θλt
)
, πβ
)
, the following

decomposition is used in terms of the auxiliary processes θ̄λt , ζ̄λ,nt and Zλt as follows:

Wj

(
L
(
θλt
)
, πβ
)
≤Wj

(
L
(
θ̄λt
)
,L
(
ζ̄λ,nt

))
+Wj

(
L
(
ζ̄λ,nt

)
,L
(
Zλt
))

+Wj

(
L
(
Zλt
)
, πβ
)

for j = 1, 2.

C.1 PRIMARY ESTIMATES

We collect first the necessary estimates in order to obtain (upper) bounds for W1

(
L
(
θλt
)
, πβ
)

and
W2

(
L
(
θλt
)
, πβ
)
. All proofs of the lemmas in this section can be found in Appendix D. The fol-

lowing two lemmas provide, uniform in n, moment estimates of the process (θλn)n≥1.
Lemma C.1. Let Assumptions 3.1 and 3.2 hold. Then, there exist M0 > 0 and λmax, which is
defined in (9), such that for any λ ∈ (0, λmax) and any n ∈ N,

E|θλn+1|2 ≤
(

1− η

2

√
λ

)n
E|θ0|2 +

[
5M2

0 +
4
√
λmaxd

η

(
β−1 + 2 + 2λ2

max

)
+

4(1 + λmax)
√
dM0

η
+ 4ηM2

0

√
λmax

]
and, moreover,

sup
n

E|θλn+1|2 ≤E|θ0|2 +

[
5M2

0 +
4
√
λmaxd

η

(
β−1 + 2 + 2λ2

max

)
+

4(1 + λmax)
√
dM0

η
+ 4ηM2

0

√
λmax

]
.

3



Under review as a conference paper at ICLR 2022

Lemma C.2. Let Assumptions 3.1 and 3.2 hold. Then, there exist M0 > 0 and λmax, which is
defined in (9), such that for any λ ∈ (0, λmax), n ∈ N, and p ∈ [1, 8(2r + 1)],

E|θλn+1|2p ≤ (1− η2λ)nE|θλ0 |2p +
Ap
η2

and
sup
n

E|θλn+1|2p ≤ E|θλ0 |2p +
Ap
η2

where Ap is given in Table 7.
Lemma C.3. Let Assumptions 3.1 and 3.2 hold. Then, there exist M0 > 0 and λmax, which is
defined in (9), such that for any λ ∈ (0, λmax) and n ∈ N,

E[V4(θ̄λnT )] ≤ 2E|θ0|4 + 2 + 2
A2

η2

where A2, i.e. Ap for p = 2, is given in Table 7.

Proof. From the definition of the Lyapunov function and Remark C.1, we have
E[V4(θ̄λnT )] = E[(1 + |θ̄λnT |2)2]

≤ 2 + 2E|θ̄λnT |4

≤ 2 + 2E|θ0|4 + 2
A2

η2
.

Moreover, the necassary moment bounds hold also for the auxiliary process {ζ̄λ,nt }t≥nT .
Lemma C.4. (Lemma 3.5. of Chau et al. (2019)) Let Assumptions 3.1 and 3.2 hold. Then,

E[V2(ζ̄λ,nt )] ≤ E[V2(θ0)] +
c̃(2)

c̄(2)
+ 2(CXη

−1 + 2M2
0 (2 + η) + 2d(ηβ)−1

√
λmax) + 1,

E[V4(ζ̄λ,nt )] ≤ 2E|θ0|4 + 2 + 2
A2

η2
+
c̃(4)

c̄(4)
,

where c̄(p), c̃(p) are given in Table 7.

Let PV2 denote the subset of P(Rd) such that every µ ∈ PV2 satisfies
∫
Rd V2(θ)µ(dθ) < ∞.

Moreover, let the following functional be considered

w1,2(µ, ν) := inf
ζ∈C(µ,ν)

∫
Rd

∫
Rd

[1 ∧ |θ − θ|′] [(1 + V2(θ) + V2 (θ′)) ζ (dθdθ′) (C.5)

where C(µ, ν) is defined in (4). The following lemma states the contraction property of the Langevin
SDE (C.2) in w1,2, which yields the desired result for W1(L(Zλn), πβ).
Lemma C.5. (Proposition 3.14 of Chau et al. (2019)) LetZ ′t, t ∈ R+ be the solution of the Langevin
SDE (6) with initial condition Z ′0 = θ′0 which is independent of G∞ and |θ′0| ∈ L2. Then,

w1,2

(
L
(
Zλt
)
,L (Z ′t)

)
≤ ĉe−ċtw1,2 (L (θ0) ,L (θ′0))

where w1,2 is defined in (C.5).

The following two Lemmas combined establish the required W1(L(θ̄λt ),L(Zλt )) estimate. One
recalls first that for any t > 0, there exists a unique integer m such that t ∈ [mT, (m+ 1)T ).
Lemma C.6. Let Assumptions 3.1 and 3.2 hold. Then, for 0 < λ < λmax, one obtains

W2

(
L
(
θ̄λt
)
,L
(
ζ̄λ,mt

))
≤
√
λ
√
e3a(C1 + C2 + C3)

where C1, C2, C3 are given explicitly in Table 7.
Lemma C.7. Let Assumptions 3.1 and 3.2 hold. Then, for 0 < λ < λmax, one obtains

W1

(
L
(
ζ̄λ,mt

)
,L
(
Zλt
))
≤
√
λz1

where z1 is given explicitly in Table 7.
Lemma C.8. Let Assumptions 3.1 and 3.2 hold. Then, for 0 < λ < λmax, one obtains

W2

(
L
(
ζ̄λ,mt

)
,L
(
Zλt
))
≤ λ 1

4 z2

where z2 is given explicitly in Table 7.
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C.2 PROOFS OF MAIN RESULTS

It is assumed throughout the paper that the random variable θ0, G∞ := σ (∪n∈NGn) and (ξn)n∈N
are independent.

Proof of Theorem 3.1. Observe that W1

(
L
(
θλn
)
,L
(
Zλt
))

is decomposed as follows:

W1

(
L
(
θλn
)
, πβ
)
≤W1

(
L
(
θ̄λn
)
,L
(
Zλn
))

+W1

(
L
(
Zλn
)
, πβ
)
.

Note that there exists a unique integer m such that n ∈ [mT, (m + 1)T ). Thus, from the results of
Lemma C.6 and C.7, the first term in the right-hand side is estimated

W1

(
L
(
θ̄λn
)
,L
(
Zλn
))
≤ W1

(
L
(
θ̄λn
)
,L
(
ζ̄λ,mn

))
+W1

(
L
(
ζ̄λ,mn

)
,L
(
Zλn
))

≤ W2

(
L
(
θ̄λn
)
,L
(
ζ̄λ,mn

))
+W1

(
L
(
ζ̄λ,mn

)
,L
(
Zλn
))

≤
√
λ(
√
e3a(C1 + C2 + C3) + z1).

Consequently, we derive

W1

(
L
(
θλn
)
, πβ
)
≤
√
λ(
√
e3a(C1 + C2 + C3) + z1) + w1,2

(
L
(
Zλn
)
, πβ
)

≤
√
λ(
√
e3a(C1 + C2 + C3) + z1) + ĉe−ċλnw1,2(θ0, πβ)

≤
√
λ(
√
e3a(C1 + C2 + C3) + z1) + ĉe−mċ

[
1 + E[V2(θ0)] +

∫
Rd
V2(θ)πβ(dθ)

]
where Remark C.5 is used for the first inequality.

Proof of Corollary 3.1. Let n ∈ [mT, (m+1)T ). Then, Lemma C.6 and C.8 and Remark C.5 yield
that

W2

(
L
(
θλn
)
, πβ
)
≤ W2

(
L
(
θ̄λn
)
,L
(
Zλn
))

+W2

(
L
(
Zλn
)
, πβ
)

≤ W2

(
L
(
θ̄λn
)
,L
(
ζ̄λ,mn

))
+W2

(
L
(
ζ̄λ,mn

)
,L
(
Zλn
))

+W2

(
L
(
Zλn
)
, πβ
)

≤
√
e3a(C1 + C2 + C3)

√
λ+ z2λ

1
4 +

√
2w1,2(L(Zλt ), πβ)

≤
√
e3a(C1 + C2 + C3)

√
λ+ z2λ

1
4 +
√
ĉe−ċλn/2

√
2w1,2(θ0, πβ)

≤
√
e3a(C1 + C2 + C3)

√
λ+ z2λ

1
4 +

√
2ĉe−ċm/2

(
1 + E [V2 (θ0)] +

∫
Rd
V2(θ)πβ(dθ)

)
.

Proof of Theorem 3.2. We begin by decomposing expected excess risk (10) as follows:

E[u(θλn)]− u(θ∗) ≤ E[u(θλn)]− E[u(θ∞)] + E[u(θ∞)]− u(θ∗).

Let us focus on estimating the first part, E[u(θλn)]− E[u(θ∞)]. Observe that for θ ∈ Rd

|∇u(θ)| = |h(θ)| ≤ r1|θ|2r+1 + 2E[K(X0)]

by separating the cases |θ| ≤ 1 and |θ| > 1 where r1 = E[K(X0)] + η due to Remark B.1. Then,
we have

u(w)− u(v) =

∫ 1

0

〈∇u((1− t)v + tw), w − v〉dt

≤
∫ 1

0

|∇u((1− t)v + tw)||w − v|dt

≤
∫ 1

0

(
a1(1− t)l|v|l + a1t

l|w|l + 2E[K(X0)]

)
|w − v|dt

=

(
a1

l + 1
|v|l +

a1

l + 1
|w|l + 2E[K(X0)]

)
|w − v| (C.6)
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where l = 2r+ 1 and a1 = 2lr1 = 2l(E|K(X0)|+ η). Let P denote the coupling between µ and ν
that achieves W2(µ, ν) with µ = L(θλn) and ν = L(θ∞). Then, from (C.6), we obtain

Eu(θλn)− Eu(θ∞) = EP [u(θλn)− u(θ∞)]

≤ EP
[(

a1

l + 1
|θλn|l +

a1

l + 1
|θ∞|l + 2EP [K(X0)]

)
|θλn − θ∞|

]

≤

√
EP
[(

a1

l + 1
|θλn|l +

a1

l + 1
|θ∞|l + 2E[K(X0)]

)2]√
EP |θλn − θ∞|2

≤
(

a1

l + 1

√
E|θλn|2l +

a1

l + 1

√
E|θ∞|2l + 2E[K(X0)]

)
W2

(
L(θλn), πβ

)
≤

(
a1

l + 1

√
E|θ0|2l +

Al
η2

+
a1

l + 1

√
E|θ∞|2l + 2E[K(X0)]

)
×W2

(
L(θλn), πβ

)
(C.7)

where we have used Lemma C.2 for the last inequality.

We take a similar approach in Raginsky et al. (2017) to estimate the second term. From Equation
(3.18), (3.20) in Raginsky et al. (2017), we obtain

Eu(θ∞)− u(θ∗) ≤ 1

β

(
−
∫
Rd

e−βu(θ)

Λ
log

e−βu(θ)

Λ
dθ − log Λ

)
− u∗

≤ d

2β
log

(
2πe(B + d/β)

Ad

)
− log Λ

β
− u∗ (C.8)

where Λ =
∫
Rd e

−βu(θ)dθ is the normalizing constant.

Using (B.1), we obtain
〈θ∗, h(θ∗)〉 ≥ A|θ∗|2 −B

which yields

|θ∗|2 ≤
√
B

A
.

Moreover, for w ∈ Rd, we have

u(θ∗)− u(w) =

∫ 1

0

〈∇u(w + t(θ∗ − w)), θ∗ − w〉dt

=

∫ 1

0

〈∇u(w + t(θ∗ − w))−∇u(θ∗), θ∗ − w〉dt

=

∫ 1

0

1

t− 1
〈∇u(w + t(θ∗ − w))−∇u(θ∗), w − θ∗ + t(θ∗ − w)〉dt.

From Proposition B.2, we further obtain

−β(u(θ∗)− u(w)) = β|u(θ∗)− u(w)|

≤ β

∫ 1

0

1

t− 1
|〈h(w + t(θ∗ − w))− h(θ∗), w − θ∗ + t(θ∗ − w)〉|dt

≤ βLE(1 + |X0|)ρ
∫ 1

0

(1 + |w + t(θ∗ − w)|+ |θ∗|)l(1− t)|w − θ∗|2dt

≤ βLE(1 + |X0|)ρ
∫ 1

0

(1 + |w|+ |θ∗ − w|+ |θ∗|)l(1− t)|w − θ∗|2dt

= βLE(1 + |X0|)ρ(1 + 2|θ∗|+ 2|θ∗ − w|)l |w − θ
∗|2

2

where we have used the elementary inequality 0 ≤ |w| − |θ∗| ≤ |θ∗ − w| for the last inequality.

6
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Define R0 := max{
√
B/A,

√
2d/(βLE(1 + |X0|)ρ)} and Br(p) = {x ∈ Rd||x− p| > r}. Then,

from the above inequality, one further calculates

log Λ

β
= −u(θ∗) +

1

β
log

∫
Rd
eβ(u(θ∗)−u(w))dw

≥ −u(θ∗) +
1

β
log

∫
Rd
e−βLE(1+|X0|)ρ(1+2|θ∗|+2|θ∗−w|)l |w−θ

∗|2
2 dw

≥ −u(θ∗) +
1

β
log

∫
BR0

(θ∗)

e−βLE(1+|X0|)ρ(1+4R0)l
|w−θ∗|2

2 dw

= −u(θ∗) +
1

β
log

[(
2π

βK

)d/2 ∫
BR0

(θ∗)

fX(w)dw

]

≥ −u(θ∗) +
1

β
log

(
1

2

(
2π

Kβ

)d/2)
(C.9)

where K = LE(1 + |X0|)ρ(1 + 4R0)l and fX is the density function of a multivariate normal
variable X with mean θ∗ and covariance 1

Kβ Id. Here, the last inequality is obtained from the
following inequality:

∫
BR0

(θ∗)

fX(w)dw = P (|X − θ∗| > R0)

= P

(
|X − θ∗| >

√
KβR2

0

d

√
d

Kβ

)
≤ d

KβR2
0

≤ 1

2(1 + 4R0)l

≤ 1

2
.

Combining (C.8) and (C.9), we derive

Eu(θ∞)− u(θ∗) ≤ d

2β
log

(
2πe(B + d/β)

Ad

)
− 1

β
log

(
1

2

(
2π

Kβ

)d/2)
≤ 1

β

[
d

2
log

(
Ke

A

(
B

d
β + 1

))
+ log 2

]
. (C.10)

Consequently, from (C.7) and (C.10), we derive

Eu(θλn)− u(θ∗) ≤ M5W2(L(θλn, πβ))

+
1

β

[
d

2
log

(
Ke

A

(
B

d
β + 1

))
+ log 2

]

where M5 = a1
l+1

√
E|θ0|2l + Al

η2 + a1
l+1

√
E|θ∞|2l + 2E[K(X0)].

7
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D PROOFS OF LEMMAS IN APPENDIX C

Proof of Lemma C.1. Define Ĝ(i)
λ,c(θ, x) = G(i)(θ,x)

1+
√
λ|G(i)(θ,x)|

(
1 +

√
λ

ε+|G(i)(θ,x)|

)
, which is part of the

adaptive gradient of H(i)
λ,c(θ, x). One observes that i ∈ {1, · · · , d}

|Ĝ(i)
λ,c(θ, x)| =

|G(i)(θ, x)|
1 +
√
λ|G(i)(θ, x)|

+
√
λ

|G(i)(θ, x)|
(ε+ |G(i)(θ, x)|)(1 +

√
λ|G(i)(θ, x)|)

≤ 1√
λ

+
√
λ
|G(i)(θ, x)|/ε

1 + |G(i)(θ, x)|/ε

≤ 1√
λ

+
√
λ (D.1)

to obtain

〈θ, Hλ,c(θ, x)〉 =

d∑
i=1

θ(i) · Ĝ(i)
λ,c(θ, x) + η

|θ|2r+2

1 +
√
λ|θ|2r

≥
d∑
i=1

|θ(i)|
(
− 1√

λ
−
√
λ

)
+ η

|θ|2r+2

1 +
√
λ|θ|2r

≥ −
(

1√
λ

+
√
λ

)√
d|θ|+ η

|θ|2r+2

1 +
√
λ|θ|2r

for all x ∈ Rm and θ ∈ Rd. Then,

2λE
[
〈 θ

λ
n

|θλn|2
, Hλ,c(θ

λ
n, Xn+1)〉

∣∣∣∣θλn] ≥ −2

(√
λ+ λ

3
2

)√
d

|θλn|
+ 2ηλ

|θλn|2r

1 +
√
λ|θλn|2r

. (D.2)

On the other hand, due to (D.1),

|Hλ,c(θ, x)|2 = 〈Hλ,c(θ, x), Hλ,c(θ, x)〉 =

d∑
i=1

(
Ĝ

(i)
λ,c(θ, x) + η

θ(i)|θ|2r

1 +
√
λ|θ|2r

)2

≤
d∑
i=1

(
2|Ĝ(i)

λ,c(θ, x)|2 + 2η2 |θ(i)|2|θ|4r

(1 +
√
λ|θ|2r)2

)

≤ 2d

(
1√
λ

+
√
λ

)2

+ 2η2 |θ|4r+2

(1 +
√
λ|θ|2r)2

≤ 4d

(
1

λ
+ λ

)
+ 2η2|θ|2 |θ|4r

(1 +
√
λ|θ|2r)2

. (D.3)

which yields that

2λE
[
− λ

2|θλn|2
|Hλ,c(θ

λ
n, Xn+1)|2

∣∣∣∣θλn] ≥ −2λ

(
2d

(1 + λ2)

|θλn|2
+ η2 λ|θ|4r

(1 +
√
λ|θ|2r)2

)
≥ −4λd

(1 + λ2)

|θλn|2
− 2λη2. (D.4)

From (D.2) and (D.4), one calculates that

2λE
[
〈 θ

λ
n

|θλn|2
, Hλ,c(θ

λ
n, Xn+1)〉 − λ

2|θλn|2
|Hλ,c(θ

λ
n, Xn+1)|2

∣∣∣∣θλn]
≥ −2

(√
λ+ λ

3
2

)√
d

|θλn|
+ 2ηλ

|θλn|2r

1 +
√
λ|θλn|2r

− 4λd
(1 + λ2)

|θλn|2
− 2λη2 =: f(θλn).

8
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Since f(θ) tends to 2η
√
λ− 2λη2 as |θ| → ∞, there exists M0 > 0 such that

f(θλn) ≥ η
√
λ− λη2 = η

√
λ(1−

√
λη)

for all |θλn| ≥M0 and λ < 1
η2 . Moreover, for λ ≤ 1

4η2 , it can rewritten as there exists M0 > 0 such
that

f(θλn) ≥ η
√
λ− λη2 =

η
√
λ

2
(D.5)

for all |θλn| ≥M0.

Therefore,

E
[(

2λ〈θλn, Hλ,c(θ
λ
n, Xn+1)〉 − λ2|Hλ,c(θn, Xn+1)|2

)
1|θλn|≥M0

∣∣∣∣θλn] ≥ η
√
λ

2
|θλn|2,

implying that

E
[
|θλn+1|21|θλn|≥M0

∣∣∣∣θλn]
= E

[(
|θλn|2 − 2λ〈θλn, Hλ,c(θn, Xn+1)〉+ λ2|Hλ,c(θn, Xn+1)|2 +

2λ

β
|ξn+1|2

)
1|θλn|≥M0

∣∣∣∣θλn]
≤

(
1− η

√
λ

2

)
|θλn|2 +

2λd

β
. (D.6)

Let us consider the case of |θλn| < M0. From the fact that

〈θ, Hλ,c(θ, x)〉 =

d∑
i=1

θ(i) · Ĝ(i)
λ,c(θ, x) + η

|θ|2r+2

1 +
√
λ|θ|2r

≤
d∑
i=1

|θ(i)|
(

1√
λ

+
√
λ

)
+ η

|θ|2r+2

1 +
√
λ|θ|2r

≤
(

1√
λ

+
√
λ

)√
d|θ|+ η

|θ|2r+2

1 +
√
λ|θ|2r

(D.7)

and (D.3), it can be shown that

E
[
|θλn+1|21|θλn|<M0

∣∣∣∣θλn]
= E

[(
|θλn|2 − 2λ〈θλn, Hλ,c(θ

λ
n, Xn+1)〉+ λ2|Hλ,c(θ

λ
n, Xn+1)|2 +

2λ

β
|ξn+1|2

)
1|θλn|<M0

∣∣∣∣θλn]
≤

(
|θλn|2 +

2λd

β

)
1|θλn|<M0

+ E
[(

2λ|〈θλn, Hλ,c(θ
λ
n, Xn+1)〉|+ λ2|Hλ,c(θ

λ
n, Xn+1)|2

)
1|θλn|<M0

∣∣∣∣θλn]
≤ |θλn|2 +

2λd

β
+ 2

(√
λ+ λ

3
2

)√
dM0 + 2η

√
λM2

0 + 4d(λ+ λ3) + 2η2M2
0λ

≤
(

1− η
√
λ

2

)
|θλn|2 +

√
λ

(
5η

2
M2

0 +
2
√
λd

β
+ 2(1 + λ)

√
dM0 + 4d(

√
λ+ λ

5
2 ) + 2η2M2

0

√
λ

)
.(D.8)

Consequently, (D.6) and (D.8) yield that

E
[
|θλn+1|2

∣∣∣∣θλn] ≤
(

1− η
√
λ

2

)
|θλn|2 +

√
λ

(
5η

2
M2

0 +
2
√
λd

β
+ 2(1 + λ)

√
dM0 + 4d(

√
λ+ λ

5
2 ) + 2η2M2

0

√
λ

)
.

As a result,

E
[
|θλn+1|2

]
≤

(
1− η

√
λ

2

)n
E|θλ0 |2

+
√
λ

(
5η

2
M2

0 +
2
√
λd

β
+ 2(1 + λ)

√
dM0 + 4d(

√
λ+ λ

5
2 ) + 2η2M2

0

√
λ

) ∞∑
j=1

(
1− η

√
λ

2

)j
≤

(
1− η

√
λ

2

)n
E|θλ0 |2 +

(
5M2

0 +
4
√
λd

βη
+ 4(1 + λ)

√
dM0η

−1 + 8d(
√
λ+ λ

5
2 )η−1 + 4ηM2

0

√
λ

)
.

9
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Proof of Lemma C.2. For any integer p > 1, |θλn+1|2p is written as

|θλn+1|2p =

(
|∆n|2 +

2λ

β
|ξn+1|2 + 2〈∆n,

√
2λ

β
ξn+1〉

)p
where ∆n = θλn − λHλ,c(θ

λ
n, Xn+1). Then, we obtain

E[|θλn+1|2p|θλn] = E
[(
|∆n|2 +

∣∣∣∣
√

2λ

β
ξn+1

∣∣∣∣2 + 2〈∆n,

√
2λ

β
ξn+1〉

)p∣∣∣∣θλn]

=
∑

k1+k2+k3=p

p!

k1!k2!k3!
E
[
|∆n|2k1

∣∣∣∣
√

2λ

β
ξn+1

∣∣∣∣2k2(2〈∆n,

√
2λ

β
ξn+1〉

)k3∣∣∣∣θλn]

≤ E[|∆n|2p|θλn] + 2pE
[
|∆n|2p−2〈∆n,

√
2λ

β
ξn+1〉

∣∣∣∣θλn]

+

2p∑
k=2

(
2p
k

)
E
[
|∆n|2p−k

∣∣∣∣
√

2λ

β
ξn+1

∣∣∣∣k∣∣∣∣θλn]

≤ E[|∆n|2p|θλn] +

2(p−1)∑
l=0

(
2p
l + 2

)
E
[(
|∆n|2(p−1)−l

∣∣∣∣
√

2λ

β
ξn+1

∣∣∣∣q−1)
2λ

β
|ξn+1|2

∣∣∣∣θλn]

= E[|∆n|2p|θλn] +

(
2p
2

) 2(p−1)∑
l=0

(
2(p− 1)

l

)
E
[(
|∆n|2(p−1)−l

∣∣∣∣
√

2λ

β
ξn+1

∣∣∣∣l)2λ

β
|ξn+1|2

∣∣∣∣θλn]
≤ E[|∆n|2p|θλn] + 22p−3p(2p− 1)

(
E[|∆n|2p−2|θλn]

2λd

β
+

(
2λ

β

)p
E|ξn+1|2p

)
. (D.9)

Define |∆n|2 = |θλn|2 + rn where rn = −2λ〈θλn, Hλ,c(θ
λ
n, Xn+1)〉+λ2|Hλ,c(θ

λ
n, Xn+1)|2 to write

E
[
|∆n|2p

∣∣∣∣θλn] =

p∑
k=0

(
p
k

)
|θλn|2(p−k)E[rkn|θλn]

= |θλn|2p + p|θλn|2p−2E[rn|θλn] +

p∑
k=2

(
p
k

)
|θλn|2(p−k)E[rkn|θλn]. (D.10)

Now, we focus on the case where |θλn| > M where

M := max

{
M0, 1,

2
√
λmaxd(1 + λ2

max)

(2−
√
λmaxη)η

,
(1 + λmax)

√
d

η(2− η)
,

22p−2p(2p− 1)d

ηβ

}
and M0 is defined in the proof of Lemma C.1. We need the following relations to estimate the
moments of rn: for all x ∈ Rd and |θ| ≥M ,

λ2|Hλ,c(θ, x)|2 ≤ 4d(λ+ λ3) + 2η2λ|θ|2 λ|θ|4r

(1 +
√
λ|θ|2r)2

≤ 4dλ(1 + λ2) + 2η2λ|θ|2

≤ 4dλ(1 + λ2)|θ|+ 2η2λ|θ|2

≤ 2
√
λη

(
2
√
λmaxd(1 + λ2

max)

|θ|η
+
√
λmaxη

)
|θ|2

≤ 2
√
λη

(
2d
√
λmax(1 + λ2

max)

Mη
+
√
λmaxη

)
|θ|2

≤ 4
√
λη|θ|2 (D.11)
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where we have used the inequality (D.3), 0 ≤ η < 1 and

M >
2
√
λmaxd(1 + λ2

max)

(2−
√
λmaxη)η

⇔
(

2d
√
λmax(1 + λ2

max)

Mη
+
√
λmaxη

)
< 2

and note that 2
√
λmaxd(1+λ2

max)

(2−
√
λmaxη)η

is finite due to λmax being less than 1
4η2 . Moreover, from (D.7), we

have the following inequality

|2λ〈θ, Hλ,c(θ, x)〉| ≤ 2(
√
λ+ λ1.5)

√
d|θ|+ 2η

√
λ|θ|2

√
λ|θ|2r

1 +
√
λ|θ|2r

≤ 2
√
λ(1 + λ)

√
d|θ|+ 2η

√
λ|θ|2

≤ 2
√
λη

(
(1 + λmax)

√
d

|θ|η
+ η

)
|θ|2

≤ 2
√
λη

(
(1 + λmax)

√
d

Mη
+ η

)
|θ|2

≤ 4
√
λη|θ|2 (D.12)

where the last inequality holds since

M >
(1 + λmax)

√
d

η(2− η)
⇔
(

(1 + λmax)
√
d

Mη
+ η

)
≤ 2.

Thus, rkn can be written as

E[1{|θλn|>M}|rn|
k|θλn] = E

[
1{|θλn|>M}

(
− 2λ〈θλn, Hλ,c(θ

λ
n, Xn+1)〉+ λ2|Hλ,c(θ

λ
n, Xn+1)|2

)k∣∣∣∣θλn]
≤ E

[
1{|θλn|>M}

(
|2λ〈θλn, Hλ,c(θ

λ
n, Xn+1)〉|+ λ2|Hλ,c(θ

λ
n, Xn+1)|2

)k∣∣∣∣θλn]
≤ E

[
1{|θλn|>M}(8

√
λη|θλn|2)k

∣∣∣∣θλn] ≤ λ k2 (8η)k|θλn|2k.

Moreover, (D.5) implies that

E[1{|θλn|>M}rn|θ
λ
n] ≤ −η

√
λ

2
|θλn|2,

equivalently,

p|θλn|2p−2E[1{|θλn|>M}rn|θ
λ
n] ≤ −pη

√
λ

2
|θλn|2p. (D.13)

Using (D.13), the L2p-norm of ∆n conditional on θλn > M is given by

E
[
1{|θλn|>M}|∆n|2p

∣∣∣∣θλn] ≤ |θλn|2p + p|θλn|2p−2E[1{θλn>M}rn|θ
λ
n] +

p∑
k=2

(
p
k

)
|θλn|2(p−k)E[1{θλn>M}|rn|

k|θλn]

≤ |θλn|2p − p
η
√
λ

2
|θλn|2p +

p∑
k=2

(
p
k

)
|θλn|2(p−k)λ

k
2 (8η)k|θλn|2k

≤ |θλn|2p − p
η
√
λ

2
|θλn|2p + |θλn|2p

p∑
k=2

(
p
k

)
λ
k
2 (8η)k. (D.14)

Choose λ such that

λ ≤ 1

(27ηpCd p2 e)
2

=
1

28(8η)2
pC2

d p2 e
≤ 1

2
8
k−1 (8η)2(pC2

d p2 e
)

2
k−1

11
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which is equivalent to

λ
k−1
2 ≤ 1

24(8η)k−1
pCd p2 e

=
η

2(8η)kpCd p2 e

for all integer 2 ≤ k ≤ p. Then, since the following inequality can be obtained

p∑
k=2

pCkλ
k
2 (8η)k ≤

p∑
k=2

pCd p2 eλ
k
2 (8η)k

≤ 1

2

p∑
k=2

√
λη

=
p− 2

2

√
λη,

we have

E
[
1{|θλn|>M}|∆n|2p

∣∣∣∣θλn] ≤ (1− η
√
λ)|θλn|2p (D.15)

and

E
[
1{|θλn|>M}|∆n|2p−2

∣∣∣∣θλn] ≤ (1− η
√
λ)|θλn|2(p−2) ≤ 1

M2
(1− η

√
λ)|θλn|2p. (D.16)

By combining (D.9), (D.16) and (D.15), we derive

E[1{|θλn|>M}|θ
λ
n+1|2p|θλn] ≤ (1− η

√
λ)|θλn|2p

+
22p−2p(2p− 1)λd

M2β
(1− η

√
λ)|θλn|2p + 22p−3p(2p− 1)

(
2λ

β

)p
E|ξn+1|2p

≤ (1− η
√
λ)

(
1 +

22p−2p(2p− 1)λd

M2β

)
|θλn|2p

+ 22p−3p(2p− 1)

(
2λ

β

)p
E|ξn+1|2p

≤ (1− η2λ)|θλn|2p + 22p−3p(2p− 1)

(
2λ

β

)p
E|ξn+1|2p (D.17)

where we used the fact that M ≥ 22p−2p(2p−1)d
ηβ for the last inequality.

Consider the case of |θλn| ≤M . By observing that from (D.3)

1{|θ|≤M}λ
2|Hλ,c(θ, x)|2 ≤ λ

(
4d(1 + λ2

max) + 2η2M2

)
and

1{|θ|≤M}|2λ〈θ, Hλ,c(θ, x)〉| ≤ 2λ
√
|θ|
√
|Hλ,c(θ, x)|

≤ 2λ
√
M

√
|G(θ, x)|+ d

√
λ+ 2ηM2r+1

≤ 2λ
√
M

√
|K(x)|(1 +Mq) + d

√
λ+ 2ηM2r+1,

12
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it can be shown that

E
[
1{|θλn|≤M}|rn|

k

∣∣∣∣θλn] = E
[
1{|θλn|≤M}

(
|2λ〈θλn, Hλ,c(θ

λ
n, Xn+1)〉|+ λ2|Hλ,c(θ

λ
n, Xn+1)|2

)k∣∣∣∣θλn]
≤ E

[
1{|θλn|≤M}

(
2λ
√
M

√
K(Xn+1)(1 +Mq) + d

√
λmax + 2ηM2r+1

+ λ

(
4d(1 + λ2

max) + 2η2M2

))k∣∣∣∣θλn]
≤ D̃kλ

k

where D̃k = 2k−1

(
(2
√
M)k(E[K(X0)](1 +Mq) + d

√
λmax + 2ηM2r+1)k/2 + (4d(1 + λ2

max) +

2η2M2)k
)

. Hence, one calculates that

E
[
1{|θλn|≤M}|∆n|2p

∣∣∣∣θλn] ≤ |θλn|2p +

p∑
k=1

(
p
k

)
|θλn|2(p−k)E[1{θλn≤M}|rn|

k|θλn]

≤ (1− η2λ)|θλn|2p + η2λM2p +M2pλ

p∑
k=1

(
p
k

)
λk−1D̃k

and

E
[
1{θλn≤M}|∆n|2p−2

∣∣∣∣θλn] ≤
p−1∑
k=0

(
p− 1
k

)
|θλn|2(p−1−k)E[1{|θλn|≤M}|rn|

k|θλn]

≤ M2p−2

p−1∑
k=0

(
p
k

)
D̃kλ

k.

Consequently, we obtain

E[1{|θλn|≤M}|θ
λ
n+1|2p|θλn] ≤ (1− η2λ)|θλn|2p + η2λM2p + λM2p

p∑
k=1

(
p
k

)
λk−1D̃k

+
λd

β
22p−2p(2p− 1)M2p−2

p−1∑
k=0

(
p
k

)
λkD̃k (D.18)

+ 22p−3p(2p− 1)

(
2λ

β

)p
E|ξn+1|2p.

By defining

Ap = η2M2p +M2p

p∑
k=1

(
p
k

)
λk−1

maxD̃k

+ 22p−3p(2p− 1)

(
2dM2p−2

β

p−1∑
k=0

(
p
k

)
λkD̃k +

2

β

(
2λmax

β

)p−1

dp(2p− 1)!!

)
,

we conclude that

E|θλn+1|2p ≤ (1− η2λ)E|θλn|2p + λAp

≤ (1− η2λ)nE|θλ0 |2p + λAp

∞∑
j=0

(1− η2λ)j

≤ (1− η2λ)nE|θλ0 |2p +
Ap
η2
.

13
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Proof of Lemma C.6. We begin by observing that

E|θ̄λt − ζ̄
λ,m
t |2 = −2λ

∫ t

mT

E〈ζ̄λ,ms − θ̄λs , h(ζ̄λ,ms )−Hλ(θ̄λbsc, Xdse)〉ds

= −2λ

∫ t

mT

E〈ζ̄λ,ms − θ̄λs , h(ζ̄λ,ms )− h(θ̄λs )〉ds

− 2λ

∫ t

mT

E〈ζ̄λ,ms − θ̄λs , h(θ̄λs )− h(θ̄λbsc)〉ds

− 2λ

∫ t

mT

E〈ζ̄λ,ms − θ̄λs , h(θ̄λbsc)−H(θ̄λbsc, Xdse)〉ds

− 2λ

∫ t

mT

E〈ζ̄λ,ms − θ̄λs , H(θ̄λbsc, Xdse)−Hλ(θ̄λbsc, Xdse)〉ds

≤ 2λa

∫ t

mT

E|ζ̄λ,ms − θ̄λs |2ds

+
λa

2

∫ t

mT

E|ζ̄λ,ms − θ̄λs |2ds+

∫ t

mT

2λ

a
E|h(θ̄λs )− h(θ̄λbsc)|

2ds

+

∫ t

mT

(
− 2λE〈ζ̄λ,ms − θ̄λs , h(θ̄λbsc)−H(θ̄λbsc, Xdse)〉

)
ds

+
λa

2

∫ t

mT

E|ζ̄λ,ms − θ̄λs |2ds+

∫ t

mT

2λ

a
E|H(θ̄λbsc, Xdse)−Hλ,c(θ̄

λ
bsc, Xdse)|

2ds

= 3λa

∫ t

mT

E|ζ̄λ,ms − θ̄λs |2ds+

∫ t

mT

Aλ,ms +Bλ,ms +Dλ,m
s ds (D.19)

where we have used Proposition B.1 and the Young’s inequality in the first inequality and

Aλ,mt :=
2λ

a
E|h(θ̄λt )− h(θ̄λbtc)|

2

Bλ,mt := −2λE〈ζ̄λ,mt − θ̄λt , h(θ̄λbtc)−H(θ̄λbtc, Xdte)〉

Dλ,m
t :=

2λ

a
E|H(θ̄λbtc, Xdte)−Hλ,c(θ̄

λ
btc, Xdte)|

2.

In addition, from the definition of θ̄λt and (D.3), we have

|θ̄λt − θ̄λbtc|
4 ≤

(
λ

∣∣∣∣ ∫ t

btc
Hλ,c(θ̄

λ
bsc, Xdse)ds

∣∣∣∣+
√

2λβ−1|B̄λt − B̄λbtc|
)4

≤ 8λ2

(
λ2|Hλ,c(θ̄

λ
btc, Xdte)|

4 + 4β−2|B̄λt − B̄λbtc|
4

)
≤ 8λ2

(
(4d(1 + λ2) + 2η2|θ̄λbtc|

2)2 + 4β−2|B̄λt − B̄λbtc|
4

)
≤ λ225

(
23d2(1 + λ4) + η4|θ̄λbtc|

4 + β−2|B̄λt − B̄λbtc|
4

)
which yields √

E|θ̄λt − θ̄λbtc|4 ≤ C̃1λ (D.20)

where C̃1 = 25/2
√

8d2(1 + λ4
max) + η4(E|θ0|4 +A2/η2) + 3

β2 d2.

14
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Using Proposition B.2, Aλ,mt can be bounded as follows:

Aλ,mt ≤ 2λ

a
LXE[(1 + |θ̄λt |+ |θ̄λbtc)

2l|θ̄λt − θ̄λbtc|
2]

≤ 2λ

a
LX

√
E(1 + |θ̄λt |+ |θ̄λbtc)4l

√
E|θ̄λt − θ̄λbtc|4

≤ 2λ

a
LX32l

√
(1 + E|θ̄λt |4l + E|θ̄λbtc|4l)

√
E|θ̄λt − θ̄λbtc|4

≤ C1λ
2 (D.21)

where LX = L222ρ−1(1 + E|X0|2ρ) and C1 = 2
aLX9l

√
(1 + 2E|θ̄λ0 |4l + 2A2l

η2 )C̃1 and (D.20) is
used for the last inequality.

To estimate Bλ,mt , we observe that

Bλ,mt = −2λE〈ζ̄λ,mt − θ̄λbtc, h(θ̄λbtc)−H(θ̄λbtc, Xdte)〉

− 2λE〈θ̄λbtc − θ̄
λ
t , h(θ̄λbtc)−H(θ̄λbtc, Xdte)〉

≤ −2λE
[
E
[
〈ζ̄λ,mt − θ̄λbtc, h(θ̄λbtc)−H(θ̄λbtc, Xdte)〉

∣∣∣∣ζ̄λ,mt , θ̄λbtc

]]
− 2λE

[
〈θ̄λbtc − θ̄

λ
t , h(θ̄λbtc)−H(θ̄λbtc, Xdte)〉

]
≤ −2λE

[
〈λ
∫ t

btc
Hλ(θ̄λbsc, Xdse)ds−

√
2λ

β
B̃λt−btc, h(θ̄λbtc)−H(θ̄λbtc, Xdte)〉

]
≤ −2λ2E

[
〈Hλ(θ̄λbtc, Xdte), h(θ̄λbtc)−H(θ̄λbtc, Xdte)〉

]
≤ 2λ2

√
E|Hλ(θ̄λbtc, Xdte)|2

√
E|h(θ̄λbtc)−H(θ̄λbtc, Xdte)|2

≤ 2λ2
√

6E|K(X0)|2(1 + E|θ̄λbtc|2q) + 3λd+ 3η2E|θ̄λbtc|4r+2
√

4E|H(θ̄λbtc, Xdte)|2

≤ 4λ2
√

6E|K(X0)|2(1 + E|θ̄λbtc|2q) + 3λd+ 3η2E|θ̄λbtc|4r+2

×
√

4E|K(X0)|2(1 + E|θ̄λbtc|2q) + 2η2E|θ̄λbtc|4r+2

≤ C2λ
2 (D.22)

where

C2 = 4

√
6E|K(X0)|2(1 + E|θ0|2q +

Aq
η2

) + 3λd+ 3η2|θ̄λbtc|4r+2

×

√
4E|K(X0)|2(1 + E|θ0|2q +

Aq
η2

) + 2η2

(
E|θ̄λ0 |4r+2 +

A2r+1

η2

)
.

Note that we have used the independence of θ̄λbsc and Xdse to obtain the second inequality, and used
Remark B.4 and Lemma C.2 to calculate the bound of E|Hλ(θ̄λbtc, Xdte)|

2 and E|H(θ̄λbtc, Xdte)|
2.

Moreover, Dλ,m
t can be estimated as follows, from Remark B.3,

Dλ,m
t ≤ 6λ2

a

[
8E|K(X0)|4(1 + E|θ̄λbtc|

4q) + d+ η2E|θ̄λbtc|
8r+2

]
≤ C3λ

2 (D.23)

where the independence of θ̄λbsc and Xdse is used and C3 is given by

C3 =
6

a

[
8E|K(X0)|4(1 + E|θ̄λ0 |4q +A2q/η

2) + d+ η2(E|θ̄λ0 |8r+2 +A4r+1/η
2)

]
.
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Plugging (D.21), (D.22) and (D.23) into (D.19), one can derive

E|θ̄λt − ζ̄
λ,m
t |2 ≤ 3λa

∫ t

mT

E|θ̄λs − ζ̄λ,ms |2ds+

∫ t

nT

(C1 + C2 + C3)λ2ds

≤ 3λa

∫ t

mT

E|θ̄λs − ζ̄λ,ms |2ds+ (C1 + C2 + C3)λ <∞

where the second inequality follows from the fact that (t −mT ) ≤ T = 1
λ and the use of Grown-

wall’s inequality gives

E|θ̄λt − ζ̄
λ,m
t |2 ≤ cλ

where c = e3a(C1 + C2 + C3).

Proof of Lemma C.7. Since Zλt = ζ̄λ,0t and t ∈ [mT, (m+ 1)T ), we can write

W1

(
L
(
ζ̄λ,mt

)
,L
(
Zλt
))

≤
m∑
k=1

W1

(
L
(
ζ̄λ,kt

)
,L
(
ζ̄λ,k−1
t

))
≤

m∑
k=1

w1,2

(
L
(
ζ̄λ,kt

)
,L
(
ζ̄λ,k−1
t

))
where we have used the fact W1(µ, ν) ≤ w1,2(µ, ν) for µ, ν ∈ PV2 for the second inequality. Using
Remark C.5 and λ(t− kT ) ≥ m− k, we further have

w1,2

(
L
(
ζ̄λ,kt

)
,L
(
ζ̄λ,k−1
t

))
≤ ĉe−ċλ(t−kT )w1,2

(
L(θ̄λkT ),L(ζ̄λ,k−1

kT )
)

≤ ĉe−ċ(m−k)w1,2

(
L(θ̄λkT ),L(ζ̄λ,k−1

kT )
)

≤ ĉe−ċ(m−k)W2

(
L(θ̄λkT ),L(ζ̄λ,k−1

kT )
)√

E
∣∣∣∣1 + V2(θ̄λkT ) + V2(ζ̄λ,k−1

kT )

∣∣∣∣2
≤ ĉe−ċ(m−k)W2

(
L(θ̄λkT ),L(ζ̄λ,k−1

kT )
)

×
[
1 +

√
E[V4(θ̄λkT )] +

√
E[V4(ζ̄λ,k−1

kT )]

]
≤ ĉe−ċ(m−k)

√
λ
√
e3a(C1 + C2 + C3)

[
1 +

√
2E|θ0|4 + 2 + 2

A2

η2

+

√
2E|θ0|4 + 2 + 2

A2

η2
+
c̃(4)

c̄(4)

]
(D.24)

where the Cauchy-Schwarz inequality is applied to the third inequality and Lemma C.3, C.6 and C.4
are used for the last inequality. By combining the two inequalities above, we obtain

W1

(
L
(
ζ̄λ,mt

)
,L
(
Zλt
))

≤ ĉ
√
λ
√
e3a(C1 + C2 + C3)

[
1 +

√
2E|θ0|4 + 2 + 2

A2

η2

+

√
2E|θ0|4 + 2 + 2

A2

η2
+
c̃(4)

c̄(4)

] m∑
k=1

e−ċ(m−k)

≤ z1

√
λ

where z1 = ĉ
1−exp(−ċ)

√
e3a(C1 + C2 + C3)

[
1 +

√
2E|θ0|4 + 2 + 2A2

η2 +√
2E|θ0|4 + 2 + 2A2

η2 + c̃(4)
c̄(4)

]
.
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Proof of Lemma C.8. We begin by observing that

W2

(
L
(
ζ̄λ,kt

)
,L
(
ζ̄λ,k−1
t

))
≤

√
2w1,2

(
L
(
ζ̄λ,kt

)
,L
(
ζ̄λ,k−1
t

))
≤ λ1/4e−ċ(m−k)/2

[
ĉ
√
e3a(C1 + C2 + C3)

(
1 +

√
2E|θ0|4 + 2 + 2

A2

η2

+

√
2E|θ0|4 + 2 + 2

A2

η2
+
c̃(4)

c̄(4)

)]1/2

where we have used the factW2 ≤
√

2w1,2 for the first inequality, and the second inequality follows
from (D.24). Consequently, we derive

W2

(
L
(
ζ̄λ,mt

)
,L
(
Zλt
))

≤
m∑
k=1

W2

(
L
(
ζ̄λ,kt

)
,L
(
ζ̄λ,k−1
t

))

≤ λ1/4

[
ĉ
√
e3a(C1 + C2 + C3)

(
1 +

√
2E|θ0|4 + 2 + 2

A2

η2

+

√
2E|θ0|4 + 2 + 2

A2

η2
+
c̃(4)

c̄(4)

)]1/2 m∑
k=1

e−ċ(m−k)/2

≤ λ1/4z2

where

z2 =

√
ĉe3a/4(C1 + C2 + C3)1/4

1− exp(−ċ/2)

[(
1+

√
2E|θ0|4 + 2 + 2

A2

η2
+

√
2E|θ0|4 + 2 + 2

A2

η2
+
c̃(4)

c̄(4)

)]1/2

.

E DETAILS OF EXPERIMENTS

E.1 IMAGE CLASSIFICATION

The experiments are exactly replicated in the official implementation of Zhuang et al. (2020). More
specifically, VGG11, ResNet34 and DenseNet121 are trained for 500 epochs. We apply a weight
deacy of 0.0005 and decay the initial learning rate by 10 after 150 epochs to all optimizers. Batch
normalization proposed in Ioffe & Szegedy (2015) is employed to prevent the models from overfit-
ting and boost the training speed for all three models. The batch size is 128.

Regarding hyperparameter values of Adam, AdaBelief, AdamP, AdaBound, AMSGrad and RM-
SProp, the best hyperparameters are used across all the experiments in Luo et al. (2019) and Zhuang
et al. (2020), which are λ = 0.001, β1 = 0.9, β2 = 0.999 and ε = 10−8. For SGD, we set the
momentum to 0.9 for SGD. For THεO POULA, the best hyperparameters are λ = 0.1, ε = 0.1 and
β = 1012.

Figure 2 shows test accuracy for VGG11, ResNet34 and DenseNet121 on CIFAR-10 and CIFAR-
100.

E.2 LANGUAGE MODELING

We conduct language modeling for Penn Treebank (PTB) data set. For this task, we train the AWD
LSTM of Merity et al. (2018) for 750 epochs. The details of models can be found in the official
implementation of AWD-LSTM 1.

For NT-ASGD and averaged THεO POULA, the constant learning rate of 30 is used for 2 and 3-
layer LSTMs. For 1-layer LSTMs, we set to 10. ε = 100 and β = 1010 are set across all the
experiments.

1https://github.com/salesforce/awd-lstm-lm
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(a) VGG11 on CIFAR10 (b) ResNet34 on CIFAR10 (c) DenseNet121 on CIFAR10

(d) VGG11 on CIFAR100 (e) ResNet34 on CIFAR100 (f) DenseNet121 on CIFAR100

Figure 2: Test accuracy for VGG11, ResNet34 and DenseNet121 on CIFAR-10 and CIFAR-100.
THεOPOULA† and THεOPOULA∗ represent the performances of THεO POULA under the best
and second best hyperparameters, respectively.

For AdaBelief, we used the best hyperparameters reported in Zhuang et al. (2020). Thus, we obtain
the same results of AdaBelief in Zhuang et al. (2020). Specifically, we set β1 = 0.9, β2 = 0.999,
ε = 10−12 and an initial learning rate of 0.01 for 2 and 3-layer LSTMs. λ = 0.001 and ε = 10−16

are used for 1-layer LSTMs.

The averaging is triggered when no improvement has been made for 5 consecutive epochs for THεO
POULA. Also, AdaBelief uses a development-based learning rate decay, which decreases the learn-
ing rate by a constant factor δ if the model does not attain a new best value for k epochs. We
have searched the optimal hyperparameters for the development-based learning rate decay among
δ = {0.1, 0.5} and k = {5, 10, 20}. We have found δ = 0.1 and k = 5 yield the best performance.
Figure 3 displays test perplexity for different AWD-LSTM models on PTB.

(a) 1-layer (b) 2-layer (c) 3-layer

Figure 3: Test perplexity for 1, 2 and 3-layer AWD-LSTMs on PTB

E.3 EFFECTIVENESS OF THE BOOSTING FUNCTION

This subsection empirically tests the effectiveness of the boosting function in our algorithm. THεO
POULA without the boosting function updates the parameter as follows:

θλ0 := θ0, θλn+1 := θλn − λHλ,c(θ
λ
n, Xn+1) +

√
2λβ−1ξn+1, n ∈ N,
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where Hλ,c := (H
(1)
λ,c(θ, x), · · · , H(d)

λ,c(θ, x))T is given by

H
(i)
λ,c(θ, x) =

G(i)(θ, x)

1 +
√
λ|G(i)(θ, x)|

+ η
θ(i)|θ|2r

1 +
√
λ|θ|2r

, (E.1)

and {ξn}n≥1 is a sequence of independent standard d-dimensional Gaussian random variables.

Indeed, this is a special case of THεO POULA with ε = ∞. We train VGG11, ResNet34 and
DenseNet121 on CIFAR-10 and CIFAR-100 using the iterating rule of (E.1). The hyperparameters
are the same with the best hyperparameters of THεO POULA. As Table 4 shows, THεO POULA
without the boosting function is worsen than THεO POULA. The result indicates that the addition
of the boosting function leads to a meaningful increase of test accuracy, validating that the boosting
function works well for the sparsity of neural networks as expected.

Table 4: The best accuracy for VGG11, ResNet34 and DenseNet121 on CIFAR-10 and CIFAR-
100. THεOPOULA† represents the performances of THεO POULA with the best hyperparameters.
THεOPOULA(ε =∞) means the performance without the boosting function with the same hyper-
parameters.

dataset CIFAR-10 CIFAR-100
model VGG ResNet DenseNet VGG ResNet DenseNet

THεOPOULA† 92.10 95.43 95.66 70.31 77.53 79.90
THεOPOULA(ε = ∞) 91.48 94.93 95.26 68.11 75.91 77.99

F ADDITIONAL EXPERIMENTS

F.1 EFFECT OF β ON THE PERFORMANCE OF THεO POULA

This subsection examines the effect of β on the performance of THεO POULA. We conduct exper-
iments for VGG11 and ResNet34 on CIFAR10 and CIFAR100 with different values of β ranging
from 104 to 1012. As shown in Table 5, THεO POULA achieves the highest accuracy when β is
108 ∼ 1012, which is consistent with the phenomenon, so called the cold posterior effect, see Wenzel
et al. (2020) and Aitchison (2021).

Table 5: The accuracy for VGG11 and ResNet34 on CIFAR-10 and CIFAR-100. We use the best
hyperparameters for λ and ε in Appendix E.1.

β
model dataset 104 106 108 1010 1012

VGG
CIFAR10 73.10 91.53 92.31 92.29 92.10

(0.407) (0.141) (0.055) (0.120) (0.023)

CIFAR100 20.69 70.0 70.28 70.16 70.31
(0.718) (0.343) (0.124) (0.110) (0.117)

ResNet
CIFAR10 80.84 94.67 95.42 95.34 95.43

(0.264) (0.145) (0.117) (0.141) (0.095)

CIFAR100 63.58 77.22 77.4 77.6 77.53
(0.103) (0.291) (0.036) (0.208) (0.143)

F.2 EXPERIMENTS WITH η 6= 0

We conduct additional experiments with η 6= 0 to demonstrate that there is no gap between theory
and practice of our work. When the regularization parameter r is large (possibly, overestimated) and
the dimension of θ is big, |θ|2r becomes substantially huge. As a result, the stochastic gradient of the

regularization term, η θ(i)|θ|2r

1+
√
λ|θ|2r , in (8) will approximately behave like η√

λ
θ(i), which is equivalent

to `2-regularization. In all the numerical experiments in Table 2, we applied a weight decay with
5× 10−4 for image classification and with 1.2× 10−6 for language modeling. That is, by choosing
η = 5× 10−4

√
λ and large r, one can obtain accuracy of models with `2-regularization.
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Table 6 shows that the accuracy for VGG, ResNet and DenseNet on CIFAR-10 and CIFAR-100 with
r = 10 and η = 5 × 10−4

√
λ. One observes a very similar performance by THεO POULA as in

Table 2 without any noticeable loss of accuracy.

Table 6: The accuracy for VGG11, ResNet34 and DenseNet121 on CIFAR-10 and CIFAR-100. We
use the best hyperparameters reported in Appendix E.1 with r = 10 and η = 5× 10−4

√
λ.

dataset CIFAR-10 CIFAR-100
model VGG ResNet DenseNet VGG ResNet DenseNet

THεO POULA (η 6= 0) 92.2 95.38 95.69 70.07 77.78 80.47

F.3 SAMPLING FROM A SYNTHETIC MULTI-MODAL DISTRIBUTION

We provide a brief overview of recent progress on sampling and Bayesian neural networks to de-
scribe the potential of THεO POULA as a sampling algorithm. Deng et al. (2020b) proposed an
adaptive MCMC algorithm, called CSGLD, which uses a scalable dynamic importance sampler to
flatten the target distribution and reduce the energy barriers to escape local optima. Deng et al.
(2020a) devloped reSGMCMC motivated by replica exchange monte carlo algorithm. In particular,
reSGMCMC obtained the state-of-the art results on CIFAR-10, CIFAR-100 and SVHN in Bayesian
neural networks. Zhang et al. (2020) developed cyclical stochastic gradient MCMC with a cyclical
stepsize schedule.

We replicate the simulation of a synthetic multi-modal distribution in Deng et al. (2020b) to evaluate
the performance of THεO POULA as a sampling method. A target distribution is π(x) ∝ e−U(x)

where U(x) =
∑2
i=1

x(i)2−10 cos(1.2πx(i))
3 and x = (x(1), x(2)). Detail of the setting in the experi-

ment such as hyperparameters, regularizer, training epochs can be found in Appendix D.3 of Deng
et al. (2020b). THεO POULA is compared with SGLD, CSGLD (Deng et al. (2020b)), reSGLD
(Deng et al. (2020a)), cycSGLD (Zhang et al. (2020)). For THεO POULA, we used λ = 0.05,
ε = 1 and T = 0.3. A resampling scheme is used for CSGLD. Figure 4 illustrates that THεO
POULA recovers the target multi-modal distribution successfully without the local trap issue ob-
served in SGLD and cycSGLD.

Figure 4: simulations of a multi-modal distribution.
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G TABLE OF CONSTANTS

Table 7 displays full expressions for constants which appear in the main results of this paper. In
addition, Table 8 shows all main constants and their dependencies on key parameters such as d, β,
the moments of K(X0) and η.

Table 7: Explicit expression for constants with ĉ and ċ from Proposition 3.14 of Chau et al. (2019).

SYMBOL FULL EXPRESSION

M max

{
M0, 1,

2
√
λmaxd(1+λ

2
max)

(2−
√
λmaxη)η

,
(1+λmax)

√
d

η(2−η) ,
22p−2p(2p−1)d

ηβ

}

D̃k
2k−1

[
(2λmax

√
M)k(E[K(X0)](1 +Mq) + d

√
λmax + 2ηM2r+1)k/2

+(4d(1 + λ2
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c(p) Ap
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Table 8: Main constants and their dependency to key parameters

CONSTANT KEY PARAMETERS

d β MOMENTS OF X0 η

A - - O(EK(X0)) -

B - - O(EK(X0)q+2) O( 1

ηq+1 )

R - - O(E|X0|ρ) O( 1

η2r−q
)

a - - O
(
E|X0|ρ(q−1)

)
O( 1

η(2r−q)(q−1)
)

Ap poly(d) O( dβ ) O(EK|X0|p/2) O( 1

ηp−2 )

ċ O(e−d) INHERITED FROM CONTRACTION ESTIMATES IN EBERLE ET AL. (2019)

ĉ O(ed) INHERITED FROM CONTRACTION ESTIMATES IN EBERLE ET AL. (2019)
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