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ABSTRACT

Recent research has introduced various approaches for prompt-tuning black-box
vision-language models, referred to as black-box prompt-tuning (BBPT). While
BBPT has demonstrated considerable potential, it is often found that many exist-
ing methods require an excessive number of queries (i.e., function evaluations),
which poses a significant challenge in real-world scenarios where the number of
allowed queries is limited. To tackle this issue, we propose Zeroth-order Intrinsic-
dimensional Prompt-tuning (ZIP), a novel approach that enables efficient and
robust prompt optimization in a purely black-box setting. The key idea of ZIP is
to reduce the problem dimensionality and the variance of zeroth-order gradient
estimates, such that the training is done fast with far less queries. We achieve this
by re-parameterizing prompts in low-rank representations and designing intrinsic-
dimensional clipping of gradients. We evaluate ZIP on 13+ vision-language tasks
in standard benchmarks and show that it achieves an average improvement of
approximately 6% in few-shot accuracy and 48% in query efficiency compared to
the best-performing alternative BBPT methods, establishing a new state of the art.
Our ablation analysis further shows that the proposed clipping mechanism is robust
and nearly optimal, without the need to manually select the clipping threshold,
matching the result of expensive hyperparameter search.

1 INTRODUCTION

Foundation models pre-trained on a vast amount of data are creating tremendous success across a
wide range of applications in various domains (Ramesh et al., 2021; Radford et al., 2021; Jia et al.,
2021; Singh et al., 2022; Copet et al., 2024; Liu et al., 2024). A notable example is CLIP (Radford
et al., 2021) which learns visual concepts from natural language supervision and works zero-shot at
inference.

In fact, these models are fine-tuned for specific downstream tasks at deployment to create yet more
performance refinement in practice (Liu et al., 2022). However, fine-tuning these models is not only
computationally expensive, but also requires full access to model specifications. The complication
here is that many high-performing foundation models are provided only as a software-as-a-service
(OpenAI, 2023; Google, 2023) without model details due to commercial interests and security
concerns.

To overcome this challenge, recent works have suggested to fine-tune such black-box models via
so-called black-box prompt-tuning (BBPT) (Sun et al., 2022b; Diao et al., 2023; Oh et al., 2023; Yu
et al., 2023); i.e., by parameterizing input prompts and only optimizing them via classic derivative-free
optimization methods such as evolutionary strategies (Hansen & Ostermeier, 2001; Hansen et al.,
2003) and zeroth-order optimization (Spall, 1992; 1997; Ghadimi & Lan, 2013), it enables fine-tuning
without access to the model details or back-propagation.

Nevertheless, it still remains a major challenge to secure query-efficiency in existing BBPT methods.
Specifically, we find that many existing approaches require excessive model evaluations (i.e., queries),
often spanning several tens of thousands times (Tsai et al., 2020; Oh et al., 2023), and moreover,
they result in significant performance drop when they are given a limited query budget. This is quite
critical in many practical scenarios where large models are provided in the form of prediction APIs,
and users can only make use of it with a limited budget.
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Figure 1: ZIP performance summary: (a) number of queries required to reach a given target accuracy,
(b) training accuracy vs. number of queries, and (c) test set errors, measured on 13 standard vision-
language tasks; the first two are arithmetic mean. ZIP shows its outstanding performance compared to
other black-box prompt-tuning methods (e.g., BAR (Tsai et al., 2020), BLACKVIP (Oh et al., 2023),
BPTVLM (Yu et al., 2023); the details are provided in Appendix D.4) in terms of both training and
generalization performances.

In this work, we propose a new method called ZIP: Zeroth-order Intrinsic-dimensional Prompt-tuning
to tackle this challenge. The key idea is to reduce the dimensionality of the problem (hence the term
“intrinsic”) and the variance of zeroth-order gradients, such that the training is done fast with far less
queries, and subsequently, improves generalization. In essence, we achieve this by re-parameterizing
prompts in low-rank representations in effective forms and designing intrinsic-dimensional clipping
of zeroth-order gradients (Section 4).

Fundamentally, we are inspired by a line of previous works that hint at the dimension dependency of
zeorth-order methods (Spall, 1992; Ghadimi & Lan, 2013; Duchi et al., 2015) and noise in stochastic
methods (Bottou et al., 2018) causing optimization difficulty when it comes to large models. Indeed,
we find this pertinent to BBPT in our empirical analysis, in which we show that a naive zeroth-order
method suffers from increased dimensionality unlike the first-order counterpart (Section 3).

Our extensive experimental results show that ZIP is extremely efficient and robust, setting a new
state of the art. To be specific, we evaluate ZIP on 13+ datasets for various vision-language tasks in
standard benchmarks including few-shot learning, base-to-new generalization, cross-dataset transfer,
and out-of-distribution generalization tasks, and across all, we find that ZIP consistently outperforms
existing BBPT methods by substantial margins in terms of prediction accuracy, while demanding far
less number of queries (Section 5). We provide a summary of how ZIP performs in Figure 1.

2 BACKGROUND

Prompt-tuning is an emerging paradigm to update large pre-trained models before utilizing them for
various downstream tasks (Lester et al., 2021; Liu et al., 2023). It works by prepending learnable
context tokens to the input prompts embedding and training them on some data for a target task.
Specifically, we can formulate it as an optimization problem as follows:

min
θ

f(θ, ω;D) (1)

where θ ∈ Rd refers to the learnable parameters where d = p×m denotes the problem dimensionality
with p and m being the word embedding dimensions and number of context tokens, respectively, and
ω refers to the pre-trained model; also, f refers to the loss function, which is the cross-entropy for
vision-language tasks in our case, and D is a given dataset.

However, prompt-tuning is not directly applicable to black-box models since back-propagation is not
allowed, and thus, the optimization must be done derivative-free. To this end, many approaches have
been developed to address this issue for namely derivative-free optimization (Larson et al., 2019). In
particular, a series of evolution strategies such as covariance matrix adaptation (Hansen, 2016) has
been used for black-box prompt tuning or BBPT (Sun et al., 2022b;a; Yu et al., 2023).
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(b) First-order results

Figure 2: Zeroth-order vs. first-order methods for prompt tuning under varying number of prompt
parameters. The training progresses are plotted measured on the Flowers102 dataset; where we
observe the same trend that the zeroth-order method suffers from increasing prompt dimensionality.

An alternative approach to prompt-tuning in a black-box situation is by zeroth-order optimization
which leverages approximate gradients estimated from only function evaluations. In particular, one of
the foundational techniques is the simultaneous perturbation stochastic approximation (SPSA) (Spall,
1992; 1997), by which the gradient estimate is computed as follows:

∇̂f(θ;B) = 1

N

N∑
i=1

f(θ + czi;B)− f(θ − czi;B)
2c

(zi)
−1, (2)

where zi refers to the perturbation vector randomly drawn from a probability distribution with zero
mean and finite inverse moment, (·)−1 denotes element-wise reciprocal, and N indicates the number
of perturbation vector samples used for one gradient estimate; also, c and B refer to a small positive
scalar controlling the perturbation magnitude and the mini-batch of data points, respectively; i.e.,
SPSA estimates gradients by simultaneously perturbing all dimensions in θ. Then, the optimization
is done iteratively using the zeroth-order stochastic gradient descent (ZO-SGD) (Ghadimi & Lan,
2013) with (2) as follows:

θt+1 = θt − ηt∇̂f(θt;Bt), (3)
where ηt denotes the step size at iteration t.

This approach has been demonstrated to be effective for BBPT tuning of vision-language models (Oh
et al., 2023; Tsai et al., 2020), and yet, in theory, zeroth-order methods can suffer from high variance
and slow convergence, especially for high-dimensional problems (Spall, 1992; Ghadimi & Lan, 2013;
Duchi et al., 2015). This means that one needs to query the model a high number of times, which we
find is critical to secure the feasibility of BBPT in practice. As we show throughout this work, our
key idea to fix this issue is to reduce the dimensionality of θ and the variance of ∇̂f .

3 MOTIVATION

In this section, we motivate our work by disclosing that naively applying a zeroth-order method
can lead to a failure of BBPT. Precisely, we show that its performance deteriorates as the number
of the context tokens (i.e., dimension of trainable parameters) increases. This is rather unexpected
because increasing their dimensions, in fact, is found to improve performance when optimized with a
first-order method for prompt tuning.

To be specific, we optimize a vision-language model using both the basic zeroth-order or ZO (3)
and first-order or FO (i.e., SGD) methods, with varying the number of context token (1, 8, 64), and
measure their training progress. We used CLIP (Radford et al., 2021), a representative pre-trained
vision-language model widely used in the literature. The results are plotted in Figure 2. These
experiments clearly demonstrate the influence of zeroth-order optimization on training speed and
overall performance in the prompt tuning framework, leading to two key observations:

• General prompt tuning can benefit from increased parameters, achieving higher expressive power
and performance, especially with a moderate number of context tokens (e.g., 8 tokens).

• In contrast, prompt tuning with zeroth-order optimization suffers in both training speed and
performance as the number of context tokens increases.

3
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Figure 3: Overview of ZIP framework.

These findings highlight a fundamental limitation of zeroth-order optimization in prompt tuning: Al-
though zeroth-order enables black-box scenario with prompt tuning, there exist noticeable dissonance
between zeroth-order and prompt tuning, which prevent prompt tuning with zeroth-order benefits
from increased number of context tokens.

Our research aims to alleviate this dissonance. This approach represents a significant departure from
previous studies on BBPT, which have primarily focused on applying derivative-free optimization to
specific domains, such as LLMs (Sun et al., 2022b) or vision-language models (Yu et al., 2023; Oh
et al., 2023). By focusing on narrowing the behavior between general prompt tuning and zeroth-order
optimization, our work addresses the fundamental challenges of zeroth-order optimization in prompt
tuning, offering a novel direction that enhances both efficiency and effectiveness in BBPT.

Additionally, we prove the convergence rate of ZO-SGD (3) with the version (2) to show its depen-
dency on the problem dimensionality d, highlighting the limitation of the zeroth-order approach. The
result is provided in Theorem 1 of Appendix B.2.

4 ZIP: ZEROTH-ORDER INTRINSIC-DIMENSIONAL PROMPT-TUNING

In this section, we introduce ZIP to address inherent discrepancy between zeroth-order optimization
and prompt tuning. Specifically, ZIP enables to use more context tokens without the drawbacks from
query inefficiency and reduced performance associated with zeroth-order methods. To this end, we
reduce the number of learnable parameters by leveraging the concept of intrinsic dimension (Li et al.,
2018; Aghajanyan et al., 2021) which suggests that training with a low-dimensional reparameterization
can be as effective as using the full parameter space. We then further reparameterization with low-
rank approximation style with diagonal term to reduce more parameters, (Section 4.1) and introduce
feature sharing technique to improve model expressibility (Section 4.2). In addition, we introduce a
gradient clipping technique tailored for zeroth-order optimization (Section 4.3), to further enhance
the efficiency and effectiveness of ZIP. An overview of the ZIP framework is provided in Figure 3.

4.1 PROMPT TUNING IN LOWER DIMENSIONAL SPACES

As discussed in previous sections, the performance of zeroth-order optimization methods depends
heavily on the problem dimensionality (Ghadimi & Lan, 2013; Duchi et al., 2015). To improve the
query efficiency of BBPT, we propose reducing the optimization space dimensionality.

Inspired by intrinsic dimensionality (Li et al., 2018; Aghajanyan et al., 2021), we project learnable
parameters of each context tokens θi ∈ Rp onto a lower-dimensional space vi ∈ Rq using a Fastfood
transform1 (Le et al., 2014) matrix Mi ∈ Rp×q. With it, the total number of trainable parameters
are reduced from d = p×m, to d′ = q ×m with d′ ≪ d. Each vector indexed by i corresponds to
the i-th trainable context token where m indicates the total number of context tokens. The random
projection can then be expressed as follows:

θi = θ0,i +Mivi (4)

where θ0,i is initial parameters. With this reparameterization, we can project learnable parameter to
much lower dimension, from d to d′.

1We use this transformation for computational efficiency, as in Li et al. (2018); Aghajanyan et al. (2021).
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Further, we apply additional reparameterization with a low-rank approximation style as below, to get
trainable parameter matrix W:

W = [v′
1|v′

2| · · · |v′
m] = Udiag(s)VT (5)

We initialized U with standard normal distribution, V to zeros, and s to ones, ensuring W starts at
zero. Through this reparameterization, the trainable parameters transform to U ∈ Rq×r, V ∈ Rr×m,
and s ∈ Rr. We argue that this reparameterization allows to reduce number of trainable parameters
while perserving key characteristics of original parameter as possible, which can effectively improve
our method (see Section 6.2).

Unlike conventional low-rank approximation style (Hu et al., 2022), we interpose a diagonal matrix,
which can effectively adjust importance of dimension by letting diagonal parameters directly scaling
each dimension independently. We compare our approach with naive low rank decomposition with
two square matrices in Appendix C.3.

4.2 ENHANCING EXPRESSIVENESS WITH FEATURE SHARING

While reducing the number of parameters can accelerate training speed with zeroth-order, it may also
reduce the model expressive power. To address this, we introduce a feature sharing technique, which
incorporate a vector u ∈ Rq within W, which can serve as a common base across the partitioned
vectors. The vector u is integrated into original vectors v′i, by using a outer product with a vector
1 ∈ Rm, forming the final trainable parameter matrix Ξ:

Ξ = W + u⊗ 1 (6)

= Udiag(s)VT + u⊗ 1

= [v′
1 + u|v′

2 + u| · · · |v′
m + u]

= [w1|w2| · · · |wm]

where each wi ∈ Rq is a mixed vector that blends the original components vi with the feature sharing
by u. With the incorporation of feature sharing, the updated parameters for context tokens are then
computed as:

θi = θ0,i +Miwi (7)
With the feature sharing, we argue that the capability of the model to capture complex patterns
enhances, leading to improved performance. This techinique can be done by adding neligible amount
of learnable parameters. We will empirically validate the importance of the feature sharing in
Section 6.3.

4.3 REDUCING VARIANCE WITH INTRINSIC-DIMENSIONAL CLIPPING

Through a series of reparameterization schemes, we obtained the final trainable parameters matrix Ξ,
in which there are δ = r(q +m+ 1) + q parameters in total. Now, the problem (1) reduces to

min
Ξ

f(Ξ, ω;D). (8)

One can consider employing ZO-SGD (3) to solve this problem, and yet, as demonstrated in Section 3,
it can still cause slow convergence in practice due to its large variance.

To address this issue, we propose a simple yet robust zeroth-order method based on what we call
intrinsic-dimensional gradient clipping mechanism defined as follows

Ξt+1 = Ξt − ηtαt∇̂f(Ξt, ω;B), (9)

where αt is a scaling factor defined as follows

αt = min

 √
δ√∑δ

i=1 ∇̂f(Ξt, ω;B)2i
, 1

 , (10)

where δ refers to the problem dimensionality as mentioned above; i.e., it clips the zeroth-order
stochastic gradient estimates ∇̂f if its norm exceeds

√
δ as a threshold, while iteratively updating Ξt.

There are several interesting aspects of this method as described below.

5
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First, the immediate advantage of this approach is that there is no need to manually select the
clipping threshold (which is prone to be suboptimal) or perform an expensive hyperparameter search.
Considering that gradient clipping can accelerate the optimization process in general (Zhang et al.,
2019), and yet, that an appropriate choice of the threshold value is required, this advantage is certainly
nontrivial. We validate this adaptivity by showing that the threshold chosen based on (10) is, quite
surprisingly, nearly optimal across diverse training workloads in Section 6.1.

Also, the threshold being expressed in terms of the problem dimensionality δ, in particular,
√
δ,

should be reasonably inspiring, considering research results in the literature. Specifically, we can
interpret that previous work suggests setting the clipping threshold (for general first-order methods)
to be the standard deviation of estimated gradients (Zhang et al., 2020a; Pascanu et al., 2012; Zhang
et al., 2019; 2020b). While this is again not quite practical to compute, we notice that it can be done
relatively straightforwardly for zeroth-order optimization, since the variance of zeroth-order gradients
is inherently bounded in terms of the problem dimensionality δ, thus the standard deviation being

√
δ.

We explicitly show this in Lemma 2 of Appendix B.1.

5 EVALUATIONS

5.1 EXPERIMENTAL SETUP

Datasets and Tasks. To assess the query efficiency and performance of ZIP, we conduct evaluations
on standard generalization tasks following the protocols of Zhou et al. (2022a;b); Oh et al. (2023).
These tasks include few-shot learning, base-to-new generalization, cross-dataset transfer, and out-
of-distribution (OOD) generalization. For few-shot learning, base-to-new generalization, and cross-
dataset transfer, we evaluate ZIP across 13 diverse image classification tasks: ImageNet (Deng et al.,
2009), Caltech101 (Fei-Fei et al., 2004), OxfordPets (Parkhi et al., 2012), Flowers102 (Nilsback &
Zisserman, 2008), Food101 (Bossard et al., 2014), FGVCAircraft (Maji et al., 2013), SUN397 (Xiao
et al., 2010), Resisc45 (Cheng et al., 2017), DTD (Cimpoi et al., 2014), SVHN (Netzer et al., 2011),
EuroSAT (Helber et al., 2019), CLEVR (Johnson et al., 2017), and UCF101 (Soomro et al., 2012).
For evaluating OOD generalization, we employ four established OOD datasets to measure ZIP’s
robustness under distribution shifts: ImageNetV2 (Recht et al., 2019), ImageNet-Sketch (Wang et al.,
2019), ImageNet-A (Hendrycks et al., 2021b), and ImageNet-R (Hendrycks et al., 2021a).

Baselines. To thoroughly evaluate the performance of ZIP, we compare it against a variety of
baselines: (1) manual prompt, where manually composed prompts to conduct the evaluation (human-
written prompts are detailed in Table 8); (2) state-of-the-art BBPT approaches for VLMs including
BAR (Tsai et al., 2020), BLACKVIP (Oh et al., 2023) and BPTVLM (Yu et al., 2023). For
all baselines, we follow the standardized few-shot evaluation protocol across datasets, consistent
with Zhou et al. (2022b); Oh et al. (2023), which includes specific few-shot splits to ensure a fair
comparison.

Implementation details. We mainly experiment using the CLIP (Radford et al., 2021) model with
vision transformer (Dosovitskiy et al., 2021), keeping the CLIP model frozen. We consistently set the
number of context tokens m as 8 for ZIP and use 5,000 queries across all tasks for all BBPT baselines.
The number of the intrinsic dimensionality d′ is set to 500, and the rank of low-rank matrices r = 5,
resulting in a total of 417 learnable parameters δ with the formula r(⌊d′/m⌋+m+ 1) + ⌊d′/m⌋.
Following the previous works for transfer learning (Zhou et al., 2022a;b; Oh et al., 2023), we initialize
soft prompts from prompts derived from source tasks. We use the official code to reproduce BBPT
baselines, and the results are averaged over three different random seeds.

5.2 GENERALIZATION PERFORMANCE

We present empirical evidence showcasing the effectiveness and robustness of our proposed method,
ZIP, across 13+ vision-language tasks. Our results, summarized in Table 1, 2, and 3, cover evaluations
on few-shot accuracy, base-to-new generalization, and cross-dataset transfer with out-of-distribution
generalization. The experiments reveal two main insights: (i) ZIP consistently outperforms other
BBPT baselines across various tasks; (ii) ZIP achieves better robustness to unseen data distribution
compared to existing BBPT methods; Detailed analyses of these findings are provided below.
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Table 1: Few-shot performance on 13 vision-language tasks. All the results are based on 16-shots
per class. The bold numbers denote the highest accuracy of all baselines on each dataset, and the
underlined values indicate the second. ZIP clearly outperforms other BBPT baselines.
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Manual Prompt 0k 93.0 89.1 70.6 85.9 24.8 62.6 44.1 18.8 48.1 58.1 14.5 67.5 66.7 57.2
BAR 37.6k 92.5 85.6 65.0 83.0 21.6 62.4 42.9 19.8 51.6 53.9 18.1 63.5 64.0 55.7
BLACKVIP 9.9k 92.6 86.9 63.5 83.5 21.5 62.3 43.1 27.5 44.4 55.5 25.9 64.0 65.5 56.6
BPTVLM 4.0k 88.6 89.4 66.9 84.2 24.0 53.2 40.6 29.8 53.0 56.2 16.4 64.8 55.5 55.6
ZIP 0.4k 93.4 91.7 70.0 86.3 26.6 62.2 47.8 44.2 64.2 65.2 25.1 69.8 66.0 62.5

Table 2: Base-to-new generalization performance. H represents the harmonic mean, providing a
balanced measure of accuracy across seen and unseen classes (Xian et al., 2017). ZIP consistently
outperforms BAR, BLACKVIP, and BPTVLM across base, new, and harmonic mean evaluations.
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BAR 96.5 87.3 67.5 87.5 25.6 69.2 51.2 23.5 60.2 66.1 27.5 66.4 69.6 61.4
BLACKVIP 96.6 87.7 67.9 87.6 25.8 69.0 51.8 26.4 66.4 69.9 38.9 67.0 70.3 63.5
BPTVLM 93.2 90.6 66.9 88.7 29.1 65.3 53.2 45.4 70.3 72.0 41.5 68.3 66.3 65.4
ZIP

Base

96.6 94.9 72.1 89.9 29.8 70.3 61.7 52.9 84.0 81.6 50.1 75.1 72.1 71.6

BAR 94.5 94.9 73.2 88.9 29.2 74.6 55.8 27.3 72.1 62.3 27.1 73.3 64.9 64.5
BLACKVIP 93.2 90.9 74.5 89.4 30.9 73.9 55.4 21.8 48.8 61.2 28.0 72.6 66.8 62.1
BPTVLM 92.7 95.8 72.7 85.4 32.3 64.8 45.3 40.1 47.0 61.3 28.4 65.0 55.2 60.5
ZIP

New

93.2 97.0 73.4 90.0 32.0 71.5 51.0 45.8 64.4 65.2 26.8 69.5 65.6 65.0

BAR 95.5 90.9 70.2 88.2 27.3 71.8 53.4 25.3 65.6 64.1 27.3 67.7 67.2 62.9
BLACKVIP 94.9 89.3 71.0 88.5 28.1 71.4 53.5 23.9 56.3 65.3 32.6 69.7 68.5 62.8
BPTVLM 92.9 93.1 69.7 87.0 30.6 65.0 48.9 42.6 56.3 66.2 33.7 66.6 60.2 62.9
ZIP

Harmonic

94.9 95.9 72.7 89.9 30.9 70.9 55.8 49.1 72.9 72.5 34.9 72.2 68.7 68.2

Table 3: Cross-dataset transfer and out-of-distribution generalization performance. After training
on ImageNet (i.e., source) with 16-shot data per class, ZIP is evaluated on 12 target datasets for
CDT and 4 ImageNet variants for OOD. ZIP consistently demonstrates better transferability and
generalizability, outperforming BAR, BLACKVIP, and BPTVLM.
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BAR 64.0 92.3 84.3 64.3 83.1 20.8 61.0 42.2 20.0 49.6 50.6 14.5 63.0 53.8 40.2 57.5 72.0 43.8 53.4
BLACKVIP 65.5 92.5 86.2 64.9 83.6 22.3 62.0 43.3 18.7 40.5 55.7 15.2 64.1 54.1 42.5 59.2 73.1 44.6 54.9
BPTVLM 55.5 80.7 77.7 50.3 77.6 16.3 43.8 30.8 15.5 34.6 37.7 12.4 54.8 44.4 32.7 46.7 61.7 33.5 43.7
ZIP 66.0 90.4 85.6 65.6 83.6 20.5 60.6 40.9 27.0 42.3 55.6 14.5 63.6 54.2 47.8 59.5 74.7 45.4 56.9

Few-shot performance. As represented in Table 1, our experimental result indicates that ZIP con-
sistently outperforms state-of-the-art BBPT approaches, including BAR, BLACKVIP, and BPTVLM,
across 9 out of 13 datasets. On average, ZIP achieves accuracy gains of +6.8%, +5.9%, and +6.9%
over BAR, BLACKVIP, and BPTVLM, respectively, demonstrating notable effectiveness in few-shot
learning. In particular, ZIP excels on datasets requiring coarse semantic understanding, with improve-
ments of +3.7% on DTD, +11.2% on EuroSAT, and +7.1% on Resisc45 compared to the second-best
method. Additionally, ZIP shows remarkable performance in digit recognition, surpassing the next
best method by +14.4% on the SVHN dataset, further highlighting its capability in few-shot learning.

Base-to-new generalization. Table 2 presents the base-to-new generalization results, where
models are trained on base classes and evaluated on both base and new classes across 13 datasets. ZIP
consistently outperforms all BBPT baselines, achieving the highest base, new, and harmonic mean
scores. By leveraging its lower parameter count and the robustness of zeroth-order optimization, ZIP
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Figure 4: Training performance measured on Caltech101, OxfordPets, Flowers102, and Food101.
We provide more results on other datasets in Figure 14.
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Figure 5: Number of queries to reach a target accuracy. For the datasets Caltech101, OxfordPets,
Flowers102, Food101, and FGVCAircraft, ZIP requires fewer API calls to reach target accuracy
thresholds in most cases. This demonstrates considerable query efficiency when compared to other
BBPT methods. We provide more results on other datasets in Figure 15.

effectively mitigates overfitting, as its reduced model capacity and rough gradient estimates help
avoid fitting to noisy outliers, resulting in better generalization.

Cross-dataset transfer & Out-of-distribution generalization. To assess robustness in chal-
lenging scenarios, we evaluate ZIP for cross-dataset transfer (CDT) and out-of-distribution (OOD)
generalization. As shown in Table 3, ZIP, trained on ImageNet (i.e., source), demonstrates competi-
tive generalization capabilities in the CDT setting, achieving slight improvements of 0.4% over BAR
and 0.1% over BLACKVIP, with a more notable gain of 9.8% over BPTVLM across 12 diverse target
datasets. More significantly, in the OOD evaluations on four ImageNet variants, ZIP consistently
outperforms all baselines, achieving substantial gains of 2.5% over BAR, 2.0% over BLACKVIP,
and a remarkable 13.2% improvement over BPTVLM. These results highlight ZIP’s exceptional
robustness and adaptability in handling domain shifts, making it particularly effective for real-world
applications where OOD generalization is critical.

5.3 QUERY EFFICIENCY

This section provides empirical evidence highlighting the query efficiency of ZIP. We start by tracking
the training progress of different BBPT methods, ensuring all operate within the same computational
budget. For a fair comparison, ZIP and other baselines are allocated a budget of 5,000 queries. This
query budget was chosen to reflect a more practical scenario, as many existing methods often require
thousands of epochs (Oh et al., 2023), which is unrealistic for real-world applications with strict API
query limitations. By setting a more feasible budget, we aim to evaluate efficiency of each methods
under conditions that closely resemble practical deployment settings.

Figure 4 shows that ZIP consistently achieves faster training speed and higher accuracy than other
BBPT methods under identical query budget constraints. This efficiency is attributed to the effective
combination of low-rank approximation with diagonal matrix and our specialized threshold for
zeroth-order optimization, which accelerates training, while the feature sharing and compactness of
the low-rank representation enhance overall performance. These design elements work synergistically,
allowing ZIP to achieve rapid training progress and improved accuracy. To further analyze query
efficiency, we evaluate the number of queries required to reach target accuracy, which is determined
as the minimum of the maximum accuracy achieved by all methods. As shown in Figure 5, ZIP
demonstrates strong query efficiency, achieving the best performance in datasets like Caltech101
and Food101, and maintaining competitive efficiency in OxfordPets and Flowers102, even when not
the absolute best. The overall results, summarized in Figure 1a, show that ZIP achieves over a 48%

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1K 2K 3K 4K 5K
Number of Queries

65

70

75

80

Tr
ai

n 
Ac

cu
ra

cy
 (%

)

Caltech101

No Clipping
Clipping

0.7

1.0

1.3

1.6

Tr
ai

n 
Lo

ss

1K 2K 3K 4K 5K
Number of Queries

56

65

74

83

Tr
ai

n 
Ac

cu
ra

cy
 (%

)

OxfordPets

0.6

1.0

1.4

1.8

Tr
ai

n 
Lo

ss

(a) Effects of our clipping threshold (in Section 6.1)

0
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9
10

10
10

Exponent k

88

90

92

94

Te
st

 A
cc

ur
ac

y 
(%

)

Caltech101

0
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9
10

10
10

Exponent k

85

88

91

94

Te
st

 A
cc

ur
ac

y 
(%

)

OxfordPets

(b) clipping method varying threshold δk

Figure 7: Effects of gradient clipping and optimal threshold. (a) Training accuracy comparison with
and without gradient clipping. (b) Test accuracy with varying thresholds δk. The red point indicates
ZIP’s chosen threshold, which consistently achieves near-optimal accuracy.

Table 4: Benefits of low-rank approximation with diagonal matrix. Comparing our method against
standard dimensionality reduction, demonstrating notable test accuracy improvements.
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Ours 93.1 90.8 67.1 86.0 25.2 59.0 44.4 40.9 60.6 63.3 20.2 67.4 64.8 60.2

improvement in query efficiency compared to the second-best BBPT method. This indicates that ZIP
utilizes its query budget effectively, making it particularly suited in resource-constrained scenarios.
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Figure 6: Training curves of first-order (FO),
zeroth-order (ZO) and ZIP. ZIP effectively bridges
the gap between FO and ZO with notably faster
training and high accuracy.

We also compare ZIP ’s query efficiency with
first-order and naive zeroth-order optimization,
using 8 tokens and 5,000 queries across all meth-
ods. As shown in Figure 6, ZIP bridges the
gap between first-order and zeroth-order opti-
mization, achieving training speeds similar to
first-order on the OxfordPets dataset. While
zeroth-order methods typically exhibit depen-
dence on d for training speed, ZIP ’s efficient de-
sign allows it to match first-order optimization
behavior. This demonstrates ZIP’s enhanced
query efficiency, making it highly suitable for
practical applications where efficient resource
utilization is critical. Further details on query
efficiency across additional datasets can be found in Figure 14, 15 and 16.

6 ABLATIONS

6.1 INTRINSIC-DIMENSIONAL CLIPPING

In this section, we evaluate the effectiveness of our clipping method, with setting threshold as
√
δ.

We begin by tracking the training progress of ZIP with gradient clipping and the one without. As
shown in Figure 7a, ZIP with our clipping threshold consistently achieves faster training speeds and
higher accuracy, indicating its efficiency in enhancing zeroth-order optimization. This improvement
is largely due to the variance-reducing nature of clipping, which results in more stable gradient
estimates and consequently accelerates the training process.

To further validate the effectiveness of gradient clipping with our threshold, we compared
√
δ thresh-

old against various alternative values to ensure its optimality. As shown in Figure 7b, the
√
δ threshold

consistently achieved near-optimal performance on Caltech101 and OxfordPets, outperforming other
clipping settings ranging from 1 (= δ0/10) to δ (= δ10/10). The gray dashed line, representing no
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Table 5: Benefits of feature sharing over unshared. Integrating shared features consistently boosts
model expressive power and accuracy across diverse tasks, demonstrating improved performance.
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Shared 93.5 91.8 70.6 86.2 26.3 62.2 46.5 43.8 66.2 65.6 24.4 69.0 65.5 62.4

clipping, further underscores the advantage of
√
δ threshold. These results highlight the effectiveness

of the
√
δ threshold, demonstrating its capability as an efficient clipping strategy for zeroth-order

optimization without requiring extensive hyperparameter tuning. Additional validation results on
other datasets are available in Figure 20 and 21.

6.2 LOW RANK APPROXIMATION WITH DIAGONAL MATRIX
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Figure 8: Effects of low-rank approximation with diag-
onal matrix. Our method improves training efficiency
compared to standard dimensionality reduction.

The low-rank approximation with a diag-
onal matrix is pivotal in enhancing both
the efficiency and performance of our
method. Unlike naive lower-dimensional
projections, this approach effectively pre-
serves the most crucial components of the
parameter space, allowing for accelerated
training without compromising the model’s
expressive power.

As shown in Figure 8 and Table 4, this
approach not only accelerates the training
process but also improves model accuracy.
For instance, the average accuracy across
datasets increased from 57.6% to 60.2% with the application of low-rank approximation using a
diagonal matrix. These gains highlight the technique’s effectiveness in enhancing training efficiency
and overall model performance, making it particularly advantageous for optimizing zeroth-order
based prompt tuning compared to more straightforward projection methods. Additional results on
other datasets further validating this improvement can be found in Figure 18.

6.3 FEATURE SHARING

To evaluate the expressive power of feature sharing, we compared the performance of models with and
without feature sharing. As shown in Table 5, models utilizing feature sharing consistently achieved
higher accuracy, increasing the overall average score from 60.2% to 62.4%. These consistent gains
across diverse datasets highlight the effectiveness of features sharing in retaining model expressiveness
and improving performance, even when parameters are reduced. This confirms that feature sharing is
a valuable technique for maintaining model accuracy while optimizing for efficiency.

7 CONCLUSION

In this paper, we propose ZIP, a new method for prompt-tuning black-box vision-language models.
Extensive experiments show that ZIP outperforms state-of-the-art BBPT methods in generalization
performance while offering faster training with far less number of queries.

REPRODUCIBILITY STATEMENT
To ensure reproducibility, we provide detailed information on our experimental setup in Appendix D.3,
including training and evaluation procedures. All datasets used are publicly available. The source
code, along with implementation details and hyper-parameter settings, will be released in a public
repository upon publication.
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Table 6: Few-shot performance on 13 vision-language tasks with varying combinations of the
proposed modules (e.g., diagonal matrix, feature sharing (FS), and intrinsic-dimensional clipping).
All the results are based on 16-shots per class. The bold numbers denote the highest accuracy of all
baselines on each dataset, and the underlined values indicate the second.

Number Diagonal FS Clipping C
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01

Im
ag
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et

Av
er

ag
e

1 ✓ ✗ ✗ 91.2 82.3 56.9 83.4 13.2 56.8 41.0 38.9 58.8 58.5 23.1 64.4 61.5 56.2
2 ✗ ✓ ✗ 90.1 89.3 65.3 84.6 22.7 60.6 42.4 38.4 59.3 59.8 18.9 66.7 63.4 58.6
3 ✗ ✗ ✓ 90.7 89.3 68.1 85.0 23.7 57.4 43.9 36.0 59.2 57.1 21.2 65.2 62.6 58.4
4 ✓ ✓ ✗ 91.3 86.0 59.7 83.4 16.6 58.9 46.1 44.9 61.2 59.2 23.0 64.8 59.0 58.0
5 ✗ ✓ ✓ 89.8 89.5 66.4 85.3 25.1 58.5 44.7 38.3 61.0 58.9 18.9 65.9 63.4 58.9
6 ✓ ✗ ✓ 93.1 90.8 67.1 86.0 25.2 59.0 44.4 40.9 60.6 63.3 20.2 67.4 64.8 60.2
7 ✓ ✓ ✓ 93.4 91.7 70.0 86.3 26.6 62.2 47.8 44.2 64.2 65.2 25.1 69.8 66.0 62.5

A ADDITIONAL MATERIALS FOR REVIEWER CLARIFICATIONS

During the rebuttal process, we have included additional figures, tables, and discussions to address
specific questions and concerns raised by the reviewers. These materials are temporarily placed in
Appendix A for clarity and ease of reference during this period. After the rebuttal process, they will
be integrated into the appropriate sections of the main manuscript.

We appreciate the reviewers’ insightful feedback, which has guided these additions to further clarify
and substantiate our work. Please refer to the detailed captions accompanying each figure and table
for an explanation of how they address the specific points raised.

A.1 DISCUSSION

In this section, we present key findings, discuss their implications, and propose potential directions
for future research.

Analysis of module combinations. We evaluate all combinations of the proposed modules,
including diagonal matrix, feature sharing (FS), and intrinsic-dimensional clipping. The results
are presented in Table 6. First, we observe that using all the proposed modules together results in
significantly better performance compared to using individual modules or pairs of modules. This
demonstrates that each component works harmoniously to contribute to the generation of effective
results. Additionally, from the transitions 1 → 6, 4 → 7 and 5 → 7, we find that combining
the low-rank approximation with diagonal matrix with intrinsic dimensional clipping yields more
pronounced performance improvements (+4%, +4.5%, +3.6%) compared to other combinations.
These findings suggest that while each component is effective on its own, their combination creates
a complementary synergy that maximizes overall performance. In future work, we plan to conduct
an in-depth analysis to uncover the underlying mechanisms behind this synergy. This will provide
deeper insights into its practical utility, paving the way for its application to a broader range of tasks.

2In the final version, we will make sure to indicate this as no prompt (m = 0).
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Figure 9: Validation curves illustrating the performance of different optimization methods across
various vision-language tasks. The black dotted line represents (the manual →) no prompt (m = 0)2.
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Figure 10: Validation curves with 5,000 query budgets across various vision-language tasks.
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Figure 11: Validation curves of first-order, zeroth-order and ZIP across various vision-language tasks.
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Figure 12: Validation curves showing the impact of zeroth-order gradient clipping across various
vision-language tasks.
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B THEORETICAL ANALYSIS

B.1 ASSUMPTION & LEMMA

Assumption 1. On the function f(·), there exists some L > 0 such that for all x, y, we have
∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥
Lemma 1. (Unbiasdness of ZO-SGD) In the ct −→ 0 limit, ZO-SGD is a unbiased estiamtor of
FO-SGD in terms of random perturbation vector, which follows a Bernoulli distribution of two
different values with equal absolute value and probability. That is,

E{zn}N
n=1

(∇̂f(θt;Bt)) = ∇f(θt;Bt) (11)

Proof of Lemma 1. Note that as ct −→ 0 limit, we have

∇̂f(θt;Bt) =
1

N

N∑
i=1

(zi)
−1(zi)

⊤∇f(θt;Bt)

let Ak ∈ Rd×d be a matrix of (zk)−1(zk)
⊤, then we get

Ak
ij =

{
1 if i = j
zkj

zki
otherwise

Note that zni is a i-th element for the vector zn. By taking expectation in terms of zn over matrix A,
we can get

E{zn}N
n=1

(An
ij) =

{
1 if i = j

0 otherwise
since znt have zero inverse moment and zero mean as we assumed. Therefore,

E{zn}N
n=1

(∇̂f(θt;Bt)) = ∇f(θt;Bt)

as desired.

Lemma 2. (Second moment of ZO-SGD) In the ct −→ 0 limit, second moment of ZO-SGD in terms of
random perturbation vector, which follows a Bernoulli distribution of two different values with equal
absolute value and probability. That is,

E{zn}N
n=1

(∥∇̂f(θt;Bt)∥2) =
d

N
∥∇f(θt;Bt)∥2 (12)

Proof of Lemma 2. Starting from Lemma 1, zeroth-order gradient can be represented as below.

∇̂f(θt;Bt) =
1

N

N∑
n=1

An∇f(θt;Bt)

Therefore, the second moment of zeroth-order gradient

E{zn}N
n=1

(∥∇̂f(θt;Bt)∥2) = E{zn}N
n=1

(
1

N

N∑
n=1

∇f(θt;Bt)
⊤(An)⊤An∇f(θt;Bt))

let Bn ∈ Rd×d be a result of (An)⊤An, we can get

Bn
ij =

{
d if i = j∑d

k=1
(zni)

2

znjzni
otherwise

Taking expectation over matrix Bn, we can get

E{zn}N
n=1

(Bn
ij) =

{
d if i = j

0 otherwise
By plugging above results, the second moment of zeroth-order gradient is

E{zn}N
n=1

(∥∇̂f(θt;Bt)∥2) =
d

N
∥∇f(θt;Bt)∥2.

as desired.
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Lemma 3. With assumption 1, for any unbiased gradient estimate ∇̂f(θt; z,Bt),

E(f(θt+1)|xt) ≤ f(θt)− η∥∇f(θt)∥2 +
L

2
η2
∥∥∥∇̂f(θt; z,Bt)

∥∥∥2
B.2 CONVERGENCE ANALYSIS OF ZEROTH-ORDER OPTIMIZATION

The high variance of zeroth-order gradient estimates stems from the estimation process involving
random perturbations, introducing an additional problem dimension (d) related terms in convergence
compared with corresponding first-order (FO) methods. Although the convergence rate was originally
proven by Ghadimi & Lan (2013), we have also confirmed similar convergence behavior using
Spall (1992) approach. Note that we assumed zi has zero inverse moment, as it is sampled from a
Bernoulli distribution of two different values with equal absolute value and probability in practice.
The convergence rate of ZO-SGD using (2) is as follows:
Theorem 1 (Convergence rate of ZO-SGD). Under Assumption 1, in the ct → 0 limit, when

η =
√

2NF
LGd

√
1
T where F := f(x0)− f(x∗) and sampling the zn from a Bernoulli distribution of

two different values with equal absolute value and probability convergence rate of ZO-SGD is

1

T

T−1∑
t=0

Et,{zn}N
n=1

∥∇̂f(θt;Bt)∥22 = O

(√
d

T

)
. (13)

Proof of Theorem 1. With Lemma 1, we can start from Lemma 3. By assuming that FO-SGD has

finite variance bound as Et

[∥∥∥∇̃f(xt)
∥∥∥2
2

]
≤ G and reformulate Lemma 3 then we get :

∥∇f(xt)∥22 ≤ 1

η
Et,{zn} [f(xt)− f(xt+1)] +

Ld

2N
ηG.

Summing over from t = 0 to t = T :
T−1∑
t=0

∥∇f(xt)∥22 ≤ 1

η
[f(x0)− Ef(xT )] +

Ld

2N
ηGT.

Remind that f is lower bounded with f∗ and divide with T :

1

T

T−1∑
t=0

∥∇f(xt)∥22 ≤ f(x0)− f∗
ηT

+
Ld

2N
ηG.

Let η = O
(√

1
dT

)
then,

1

T

T−1∑
t=0

∥∇f(xt)∥22 = O

(√
d

T

)
.

C FURTHER ANALYSIS

We conducted additional supplementary experiments to further validate and gain deeper insights
into our proposed method, ZIP. To ensure a comprehensive analysis, we extended our evaluation
to include all remaining standard classification tasks mentioned in Section 5 and 6. This extended
evaluation provides a more detailed understanding of the performance of ZIP across a diverse range
of datasets.

C.1 IMPACT OF OPTIMIZATION METHODS VARYING CONTEXT TOKEN COUNTS

We conduct a series of experiments to examine how varying the number of context tokens affects both
first-order and zeroth-order optimization methods across multiple datasets, as illustrated in Figure 2
and 13.
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Figure 13: Effect of optimization methods across various vision-language tasks.
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Figure 14: Training curves with 5,000 query budgets across various vision-language tasks.

Our findings reveal that zeroth-order optimization generally performs better with fewer context
tokens (e.g., 1 token). However, certain datasets such as UCF101, SVHN, and CLEVR deviate from
this trend. In contrast, first-order optimization typically aligns with the trends shown in Section 3,
displaying improved accuracy with a moderate number of context tokens across most datasets, except
for SVHN and CLEVR, which demonstrate variations in optimal token counts.

These results suggest that the ideal number of context tokens can vary depending on the dataset,
reinforcing our claim in Section 3 that first-order optimization generally benefits from a larger context
token counts, whereas zeroth-order optimization tends to be more effective with fewer tokens.

C.2 QUERY EFFICIENCY

Figure 4 and 14 display the training accuracy curves of ZIP under a 5,000 query budget across various
tasks. Throughout the training process, ZIP consistently demonstrates faster training speeds and
achieves higher accuracy compared to other BBPT methods across most datasets, highlighting its
capability to utilize the available query budget more efficiently.

In Figure 5 and 15, we further analyze the number of API calls required to reach specific accuracy
targets across various datasets. The target accuracy is determined as the minimum of the maximum
accuracy achieved by all methods. The results indicate that ZIP consistently reaches these accuracy
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Figure 15: Queries to reach target accuracy across various vision-language tasks.

milestones with fewer queries than other methods, underscoring its query-efficient design and
adaptability across a diverse range of tasks.

Additionally, in Figure 6 and 16, we compare the performance of first-order, zeroth-order optimization,
and ZIP across multiple datasets. These results further validate our claim in Section 5.3 that ZIP
effectively bridges the gap between first-order and zeroth-order optimization. ZIP not only consistently
outperforms standard zeroth-order methods in test accuracy across all evaluated datasets but also
frequently surpasses first-order optimization, demonstrating its outstanding training efficiency.

Moreover, we include results for context token m = 1 as a reference (See Figure 17), demonstrating
that naive zeroth-order optimization with one token often struggles to match the performance of ZIP
with 8 tokens, particularly in maintaining stable training accuracy. ZIP significantly outperforms
the naive method on OxfordPets, FGVCAircraft, EuroSAT, and CLEVR. While the naive method
shows comparable results on some other datasets, it is worth noting that even the first-order method
with 8 tokens does not yield substantial improvements over the first-order method with 1 token on
Caltech101, OxfordPets, and Food101 (See Figure 13). Additionally, using 1 token performs better
on CLEVR and SVHN, highlighting that the optimal number of prompt tokens remains an important
factor for performance.

These supplementary findings reinforce our assertions in Section 5.3, confirming that ZIP not only
accelerates training but also makes highly efficient use of query budgets, making it exceptionally
suited for resource-constrained scenarios.

C.3 LOW-RANK APPROXIMATION WITH DIAGONAL MATRIX

To further validate the effectiveness of our low-rank approximation with a diagonal matrix, introduced
in Section 4.1, we conducted a comprehensive ablation study. This study compares the standard

22
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Figure 16: Training curves of first-order, zeroth-order and ZIP across various vision-language tasks.

Table 7: Benefits of low-rank approximation with diagonal matrix. Our method outperforms both
standard dimensionality reduction and LoRA, showing significant improvements in test accuracy.

Method C
al
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1

FG
V

C
A

ir
cr

af
t

SU
N

39
7

D
T

D
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R
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5

C
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01

Im
ag
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et
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Standard 90.9 88.1 67.5 84.6 23.8 57.9 43.2 31.5 56.5 58.3 18.3 65.3 62.3 57.6
LoRA 90.7 89.3 68.1 85.0 23.7 57.4 43.9 36.0 59.2 57.0 21.2 65.2 62.6 58.4
Ours 93.1 90.8 67.1 86.0 25.2 59.0 44.4 40.9 60.6 63.3 20.2 67.4 64.8 60.2

dimensionality reduction technique with our proposed low-rank approximation, evaluated in two
settings.

First, we fixed the intrinsic dimensionality at 500 for both the standard method and our approach.
However, our method applies an additional low-rank approximation with a diagonal matrix, reducing
the parameter size to 417. As shown in Figure 18, this results in improved training speed.

Next, to isolate the effects of the low-rank approximation, we set the parameter size to 417 for both
methods, demonstrating that hyper-parameter size alone is not the key factor driving the efficiency
gains. As illustrated in Figure 19, our low-rank approximation method retains core information while
reducing parameters, significantly enhancing both training speed and performance.

Additionally, we compared our technique to the LoRA-style approximation (Hu et al., 2022). Our
method, which introduces only r parameters in the diagonal matrix, effectively captures essential
information from the parameter space, boosting the model’s expressive power without significant
parameter overhead. Table 7 presents the test accuracy comparison between our approach, the standard
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Figure 17: Training curves of zeroth-order (m = 1), zeroth-order (m = 8) and ZIP (m = 8) across
various vision-language tasks.

dimensionality reduction method, and LoRA. Our method consistently outperforms both alternatives,
demonstrating the clear advantage of integrating a diagonal matrix with low-rank approximation.

These findings highlight the effectiveness of our approach in preserving model expressiveness while
optimizing parameter efficiency, making it a compelling solution for efficient model training.

C.4 GRADIENT CLIPPING AND OPTIMAL THRESHOLD

In Figure 15 and 21, we further investigate the impact of gradient clipping and the effect of varying
the optimal clipping threshold across multiple datasets. The results indicate that applying gradient
clipping consistently enhances training accuracy and reduces loss across most datasets, demonstrating
its effectiveness in stabilizing the training process.

When evaluating test accuracy with varying gradient clipping thresholds, ZIP achieves near-optimal
performance across the majority of datasets, consistently outperforming cases where no gradient
clipping is applied. Although there are some exceptions, such as SVHN, DTD, and CLEVR,
where gradient clipping does not yield significant improvements in test accuracy, the results remain
comparable to ZIP without clipping, indicating that the technique does not hinder performance in
these cases.

These findings substantiate that our gradient clipping approach significantly improves the overall
performance of zeroth-order optimization, and the selected

√
δ threshold effectively serves as a

reliable and practical choice for enhancing training efficiency.

D EXPERIMENT DETAILS

D.1 ALGORITHM

During the training process, our method, ZIP, initiates by calculating the low-rank approximation
and integrating shared feature representations. These approximations are subsequently utilized to
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Algorithm 1: The training process of ZIP.
Input: The training data D = {xi,yi}, pre-trained CLIP model g, projection matrix

{Mi}mi=1, learnable parameters of each context token θi, gradient clipping threshold√
δ, context token counts m, number of gradient estimates N for N -SPSA,

smoothing parameter c, batch size B, and API call budget T .
Function f(Ξt; X):

Calculate the original token parameters θt
for i to m do

θt,i = θ0,i +Miwt,i

end
Forward propagate through CLIP model with reconstructed tokens g̃ = g(θt;X)
return g̃

Function N-SPSA(Ξt, c, N , X):
for n to N do

Sample a ∼ Uniform(0, 1), with ensuring a is not 0
Sample zn ∼ Bernoulli(a : 0.5,−a : 0.5)
Calculate the first loss f(Ξt + czn;X)
Calculate the second loss f(Ξt − czn;X)
Calculate the n-th gradient estimation
∇̂fn(Ξt;X) = f(Ξt+czn;X)−f(Ξt−czn;X)

2c (zn)
−1.

end
Calculate N -SPSA gradient estimation ∇̂f(Ξt;X) = 1

N

∑N
n=1 ∇̂fn(Ξt;X)

return ∇̂f(Ξt;X)
Initialize Ξ0,U0, s0,V0

for t to T /2N do
for each training mini-batch X , Y do

Calculate the weight matrix Ξt = [wt,1|wt,2| · · · |wt,q] = Utdiag(st)VT
t + ut ⊗ 1

Calculate the gradient estimation ∇̂f(Ξt;X) using N-SPSA(Ξt, c, N , X)

Calculate the clipping coefficient αt = min(
√
δ√∑δ

i=1 ∇̂f(θt)2i
, 1)

Gradient descent using clipping Ξt+1 = Ξt − ηtαt∇̂f(Ξt)
end

end
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Figure 18: Effects of low-rank approximation with diagonal matrix across various vision-language
tasks.

reconstruct the original parameter space through random projection, allowing ZIP to generate the
prompt representations necessary for loss computation efficiently. To ensure clarity and provide a
comprehensive understanding of the training procedure, the summarized training algorithm can be
found in Algorithm 1, which outlines each stage of the process for easy reference.

D.2 DATASET DETAILS

In this study, we leverage a total of 13 general classification datasets and 4 out-of-distribution (OOD)
datasets, widely used in prior research. These 13 classification tasks are employed to comprehensively
evaluate ZIP’s performance in general few-shot learning, base-to-new generalization, and cross-
dataset transfer scenarios. Additionally, the 4 OOD datasets are used to rigorously assess ZIP’s ability
to handle out-of-distribution generalization. A detailed overview of each dataset, including task
descriptions and evaluation metrics, is provided in Table 8.

D.3 HYPER-PARAMETERS

To achieve stable and accurate gradient approximations, zeroth-order optimization algorithms typi-
cally perform multiple gradient estimations, with the results being averaged to obtain a more reliable
gradient estimate. Following the methodology outlined in Oh et al. (2023), we repeat this gradient
estimation process five times for all zeroth-order-based baselines to ensure consistency and robustness.
For SPSA methods, we tune key hyper-parameters, including the perturbation magnitude and decay
factor. For evolutionary strategies, we adjust the population size, intrinsic dimensionality, and the
number of visual and text tokens. The search ranges for these hyper-parameters are based on the
recommendations provided by the authors of BAR (Tsai et al., 2020), BLACKVIP (Oh et al., 2023),
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Figure 19: Effects of low-rank approximation with diagonal matrix at fixed parameter size (i.e., 417)
across various vision-language tasks.

and BPTVLM (Yu et al., 2023), and are summarized in Table 9. Regarding the learning objectives,
cross-entropy loss is employed for BLACKVIP and BPTVLM, while focal loss is used for BAR. All
BBPT experiments utilize a batch size of 128 across all datasets, ensuring consistent and comparable
evaluation.
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Figure 20: Effects of optimal threshold across various vision-language tasks.

D.4 BASELINE DETAILS

D.4.1 ZERO-SHOT CLIP

CLIP (Radford et al., 2021) is a prominent vision-language foundation model widely employed
across various tasks, such as classification, segmentation, and other vision-language applications.
Trained on large-scale image-text datasets, CLIP has demonstrated exceptional effectiveness in
numerous downstream tasks, thanks to its ability to leverage visual concepts learned from natural
language supervision. It performs zero-shot classification using manually crafted prompt templates
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Figure 21: Effects of zeroth-order gradient clipping across various vision-language tasks.

Classification Tasks
Dataset #Train #Valid #Test Classification Type Manual Prompt
ImageNet 1.28M N/A 50,000 Generic object “a photo of a [CLASS].”
Caltech101 4,128 1,649 2,465 Generic object “a photo of a [CLASS].”
OxfordPets 2,944 736 3,669 Fine-grained objects “a photo of a [CLASS], a type of pet.”
Flowers102 4,093 1,633 2,463 Fine-grained objects “a photo of a [CLASS], a type of flower.”
Food101 50,500 20,200 30,300 Fine-grained objects “a photo of [CLASS], a type of food.”
FGVCAircraft 3,334 3,333 3,333 Fine-grained objects “a photo of a [CLASS], a type of aircraft.”
SUN397 15,880 3,970 19,850 Scene “a photo of a [CLASS].”
DTD 2,820 1,128 1,692 Text “[CLASS] texture.”
SVHN 73,257 26,032 26,032 Digit “This is a photo of a [CLASS].”
EuroSAT 13,500 5,400 8,100 Satellite “a centered satellite photo of a [CLASS].”
Resisc45 6,300 2,520 7,560 Scene “This is a photo of a [CLASS].”
CLEVR 70,000 15,000 15,000 Diagnosis “This is a photo of [CLASS] objects.”
UCF101 7,639 1,898 3,783 Action “a photo of a person doing [CLASS].”

ImageNetV2 N/A N/A 10,000 Generic object “a photo of a [CLASS].”
ImageNet-Sketch N/A N/A 50,889 Sketch image “a photo of a [CLASS].”
ImageNet-A N/A N/A 7,500 Adversarially filtered image “a photo of a [CLASS].”
ImageNet-R N/A N/A 30,000 Cartoon, Sculptures, Paintings “a photo of a [CLASS].”

Table 8: The datasets used in this study, along with the corresponding manual prompts. Samples are
drawn exclusively from the original training set to ensure consistency with baseline data.

(e.g., “a photo of a CLASS”). Due to its versatility and strong performance, CLIP serves as the
backbone for many black-box prompt tuning models, including our proposed method, ZIP.

D.4.2 BAR

Originally developed for transferring knowledge from an ImageNet pre-trained model to the medical
domain, BAR (Tsai et al., 2020) reprograms pre-trained models using a frame-shaped, learnable
program that embeds the target task image within this frame and optimizes it via zeroth-order
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Hyper-parameter Assignment Algorithm

initial LR {40.0, 20.0, 10.0, 5.0, 1.0} BAR

initial LR (a1) {1.0, 0.1, 0.01, 0.005} BLACKVIP, ZIP

min LR {0.1, 0.01, 0.001} BAR

decaying step {0.9, 0.5, 0.1} BAR

LR decaying factor {0.6, 0.5, 0.4, 0.3} BLACKVIP, ZIP

initial PM (c1) {0.01, 0.005, 0.001} BLACKVIP, ZIP

PM decaying factor {0.2, 0.1} BLACKVIP, ZIP

std. of perturbation {1.0, 0.5} BAR

smoothing {0.1, 0.01, 0.001} BAR

gradient smoothing {0.9, 0.7, 0.5, 0.3} BLACKVIP

population size {5, 10, 15, 20} BPTVLM

intrinsic dimensionality {500, 1000, 2000} BPTVLM, ZIP

rank {1, 3, 5} ZIP

visual tokens {5, 10} BPTVLM

text tokens {5, 10} BPTVLM

Table 9: Hyper-parameter search range for BBPT approaches.

algorithms. The size of this learnable program is adjusted based on the input image resolution. For
example, in the original study, when the resolution of the downstream image was larger than that of the
pre-trained model, an embedded target image size of 64× 64 was used within a 299× 299 learnable
program. In contrast, BLACKVIP (Oh et al., 2023) modified this approach by designing an embedded
image resolution of 194× 194 to avoid performance degradation caused by the heavy-padding of thin
images within the prompt. In this paper, we adopt the settings established by BLACKVIP (Oh et al.,
2023) when optimizing BAR, ensuring consistency and addressing the limitations of the original
design.

D.4.3 BLACKVIP

BLACKVIP (Oh et al., 2023) generates input-conditional visual prompts for each image via a
projection network, allowing prompts to adapt dynamically to the specific features of each input.
For the optimization process, BLACKVIP employs Simultaneous Perturbation Stochastic Approx-
imation with Gradient Correction (SPSA-GC), which integrates Nesterov Accelerated Gradients
(NAG)(Nesterov, 1983), enhancing the efficiency of zeroth-order training. Unlike other methods such
as CoCoOp (Zhou et al., 2022a), which optimize additional input-attached parameters, BLACKVIP
focuses exclusively on the projection network, effectively creating adaptive, input-conditioned visual
prompts for BBPT tasks. While this design choice makes BLACKVIP highly adaptable and well-
suited for black-box settings, the large number of parameters introduced by the projection networks
can negatively impact training efficiency, posing a challenge in resource-constrained environments.

D.4.4 BPTVLM

BPTVLM (Yu et al., 2023) utilizes evolutionary strategies for BBPT, distinguishing itself from
previous approaches. In this method, BPTVLM introduces learnable parameters into both text and
image prompts, enabling a more comprehensive adaptation to various tasks. To enhance efficiency,
BPTVLM incorporates the concept of intrinsic dimensionality, reducing the overall number of
learnable parameters by applying a random projection matrix to both text and image prompts. This
approach effectively balances adaptability and parameter efficiency, making BPTVLM a more
versatile option for BBPT scenarios.
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