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ABSTRACT

Is there a way to design powerful AI systems based on machine learning meth-
ods that would satisfy probabilistic safety guarantees? With the long-term goal
of obtaining a probabilistic guarantee that would apply in every context, we con-
sider estimating a context-dependent bound on the probability of violating a given
safety specification. Such a risk evaluation would need to be performed at run-
time to provide a guardrail against dangerous actions of an AI. Noting that differ-
ent plausible hypotheses about the world could produce very different outcomes,
and because we do not know which one is right, we derive bounds on the safety vi-
olation probability predicted under the true but unknown hypothesis. Such bounds
could be used to reject potentially dangerous actions. Our main results involve
searching for cautious but plausible hypotheses, obtained by a maximization that
involves Bayesian posteriors over hypotheses. We consider two forms of this re-
sult, in the i.i.d. case and in the non-i.i.d. case, and conclude with open problems
towards turning such theoretical results into practical AI guardrails.

1 INTRODUCTION

Ensuring that an AI system will not misbehave is a challenging open problem (Bengio et al., 2024),
particularly in the current context of rapid growth in AI capabilities. Governance measures and
evaluation-based strategies have been proposed to mitigate the risk of harm from highly capable AI
systems, but do not provide any form of safety guarantee when no undesired behavior is detected. In
contrast, the safe-by-design paradigm involves AI systems with quantitative (possibly probabilistic)
safety guarantees from the ground up, and therefore could represent a stronger form of protection
(Dalrymple et al., 2024). However, how to design such systems remains an open problem too.

Since testing an AI system for violations of a safety specification in every possible context, e.g.,
every (query, output) pair, is impossible, we consider a rejection sampling approach that declines a
candidate output or action if it has a probability of violating a given safety specification that is too
high. The question of defining the safety specification (the violation of which is simply referred to
as “harm” below) is important and left to future work, possibly following up approaches such as
constitutional AI (Bai et al., 2022). We also note that being Bayesian about the interpretation of
a human-specified safety specification would protect against the AI wrongly believing an incorrect
interpretation. Here we instead focus on a question inspired by risk-management practice (McNeil
et al., 2015): even though the true probability of harm following from some proposed action is un-
known, because the true data-generating process is unknown, can we bound that risk using quantities
that can be estimated by machine learning methods given the observed data?

To illustrate this question, consider a committee of “wise” humans whose theories about the world
are all equally compatible with the available data, knowing that an unknown member of the commit-
tee has the correct theory. Each committee member can make a prediction about the probability of
future harm that would result from following some action in some context. Marginalizing this harm
probability over the committee members amounts to making them vote with equal weights. If the
majority is aligned with the correct member’s prediction, then all is good, i.e., if the correct theory
predicts harm, then the committee will predict harm and can choose to avoid the harmful action. But
what if the correct member is in the minority regarding their harm prediction? To get a guarantee
that the true harm probability is below a given threshold, we could simply consider the committee
member whose theory predicts the highest harm probability, and we would be sure that their harm
probability prediction upper bounds the true harm probability. In practice, committee members are
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not equally “wise”, so we can correct this calculation based on how plausible the theory harbored
by each committee member is. In a Bayesian framework, the plausibility of a theory corresponds to
its posterior over all theories given the observed data, which is proportional to the data likelihood
given the theory multiplied by the prior probability of that theory.

In this paper, we show how results about posterior consistency can provide probabilistic risk bounds.
All the results have the form of inequalities, where the true probability of harm is upper bounded by
a quantity that can in principle be estimated, given enough computational resources to approximate
Bayesian posteriors over theories given the data. In addition, these are not hard bounds but only hold
with some probability, and there is generally a trade-off between that probability and the tightness
of the bound. We study two scenarios in the corresponding sections: the i.i.d. data setting in §3 and
the non-i.i.d. data setting in §4, followed by an experiment in §5. In all cases, a key intermediate
result is a bound relating the Bayesian posterior on the unknown true theory and the probability of
other theories (with propositions labeled True theory dominance). The idea is that because the true
theory generated the data, its posterior tends to increase as more data is acquired, and in the i.i.d.
case it asymptotically dominates other theories. From such a relationship, the harm risk bound can
be derived with very little algebra (yielding propositions labeled Harm probability bound).

We conclude this paper with a discussion of open problems that should be considered in order to
turn such bounds into a safe-by-design AI system, taking into account the challenge of representing
the notion of harm and reliable conditional probabilities, as well as the fact that, in general, the
estimation of the required conditional probabilities will be imperfect.

Related Work. The concept of blocking actions based on probabilistic criteria resembles prob-
abilistic shielding in Markov Decision Processes (MDPs) (Jansen et al., 2020), but our bounds do
not require knowledge of the true model, extending beyond Carr et al. (2023)’s work on partially
observable MDPs. While Beckers et al. (2023) and Richens et al. (2022) propose specific frame-
works for quantifying harm, our approach remains agnostic, by only requiring harmful outcomes to
be representable as binary events 𝐻 = 1, allowing various harm definitions, while providing conser-
vative probability bounds for safety-critical contexts. Osband & Van Roy (2017) study translating
concentration bounds from a pure predictive setting to an MDP setting with exploration, whereas we
address an orthogonal question: providing safety guarantees without relying on potentially harmful
exploration to gain information.

2 SAFE-BY-DESIGN AI?

Before an AI is built and deployed, it is important that the developers have high assurances that the
AI will behave well. Dalrymple et al. (2024) propose an approach to “guaranteed safe AI” designs
with built-in high-assurance quantitative safety guarantees, although these guarantees can sometimes
be probabilistic and only asymptotic. It remains an open question whether and how that research
program can be realized. The authors take existing examples of quantitative guarantees in safety-
critical systems and motivate why such a framework should be adopted if we ever build AI systems
that match or exceed human cognitive abilities and could potentially act in dangerous ways. Their
program is motivated by current known limitations of state-of-the-art AI systems based on deep
learning, including the challenge of engineering AI systems that robustly act as intended (Cohen
et al., 2022b; Krakovna et al., 2020; Pan et al., 2021; Pang et al., 2023; Zhuang & Hadfield-Menell,
2020; Skalse et al., 2022; 2023; Karwowski et al., 2023; Skalse et al., 2024).

The approach proposed by Dalrymple et al. (2024) has the following components: a world model
(which can be a distribution about hypotheses explaining the data), a safety specification (what are
considered unacceptable states of the world), and a verifier (a computable procedure that checks
whether a policy or action violates the safety specification).

Here, we study a system that infers a probabilistic world model, or theory, 𝜏 and updates its estimate
of 𝜏 via machine learning, using the stream of observed data 𝐷. The observations 𝐷 are assumed
to come from a data-generating process given by a ground-truth world model 𝜏∗, which lies in the
system’s space of possible theories. The inference of the theory 𝜏 is Bayesian, meaning that the
system maintains an estimate 𝑞 of the true posterior P(− | 𝐷) over theories: 𝑞(𝜏 | 𝐷) ≈ P(𝜏 | 𝐷),
where P(𝜏 | 𝐷) is proportional to the product of the prior probability P(𝜏) with the likelihood of the
observations under the theory, P(𝐷 | 𝜏). In the simplest case, 𝑞 is a point estimate, optimally placing
its mass on the mode of the posterior. Assuming an observation 𝑥 and a theory 𝜏 are independent
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given 𝐷, inference of the latent theory 𝜏 allows the system to approximate conditional probabilities
P(𝑦 | 𝑥, 𝐷) ≈ E𝜏∼𝑞 (𝜏 |𝐷) [P𝜏 (𝑦 | 𝑥, 𝐷)] over any random variables 𝑋,𝑌 known to the world model.

The safety specification is given in the form of a binary random variable 𝐻 (called “harm” below)
whose probability given the other variables depends on the theory 𝜏. We are interested in predicting
the probability of harm under the true theory 𝜏∗. Because 𝜏∗ is unknown, we propose to estimate
upper bounds on this probability using the estimated posteriors. These upper bounds can be used as
thresholds for a verifier that checks whether the risk of harm falls below some acceptable level.

Following Dalrymple et al. (2024), we assume that the notion of harm has been specified, possibly
in natural language, and that the ambiguities about its interpretation are encoded within the Bayesian
posterior 𝑃(𝜏 | 𝐷). This paper focuses on the verifier under different assumptions of i.i.d. or non-
i.i.d. data.

What do the observations and context represent? We give a possible interpretation of the ob-
jects introduced in the preceding discussion in the simple case of an agent acting in a fully observed
environment (Markov Decision Process, or MDP), where the theory is a transition model and the
occurrence of harm at a state 𝑠 is conditionally independent of all other variables given 𝑠.

• Observations 𝑍 are transitions 𝑧 = (𝑠, 𝑎, 𝑠′, 𝑟), where 𝑠 is a state, 𝑎 is an action, 𝑠′ is the next state,
and 𝑟 is the reward received.

• Theories 𝜏 encode the state visitation, transition probabilities1, as well as the behavior policy from
which observations are collected.

• The dataset 𝐷 is a sequence of observed transitions.
– In the non-i.i.d. setting, 𝐷 could consist, for example, of the observations from a finite rollout

in the order in which they occurred.
– In the i.i.d. setting, 𝐷 would need to be a sequence of independent samples from a fixed state-

action-reward visit distribution. This could be achieved, for example, by rolling out a behavior
policy multiple times and randomly sampling transitions from the resulting trajectories.

In the common special case of a contextual bandit MDP under a fixed policy, the two coincide.
• The context 𝑋 is a pair 𝑥 = (𝑠, 𝑎), where 𝑠 is a state and 𝑎 is an action being considered at state 𝑠.
• The harm probability P(𝐻 = 1 | 𝑋 = (𝑠, 𝑎), 𝜏, 𝐷) can be any function of the theory 𝜏, the context
𝑥 = (𝑠, 𝑎), and the data 𝐷. For example, this probability could be derived from a fixed specification
of what it means for a state 𝑠′ to be harmful, Pharm (𝐻 = 1 | 𝑠′). Then, the harm probability could
be computed as P(𝐻 = 1 | 𝑋 = (𝑠, 𝑎), 𝜏, 𝐷) = ∑

𝑠′ ,𝑟 P𝜏 (𝑠′, 𝑟 | 𝑠, 𝑎) Pharm (𝐻 = 1 | 𝑠′).
We note that the interpretation of harm probability in the example above includes the case where
the occurrence of harm is an observed variable 𝑠′harm that is part of the state 𝑠′: in that case, we set
Pharm (𝐻 = 1 | 𝑠′) = 1 if 𝑠′ is harmful (i.e., 𝑠′harm = 1), and Pharm (𝐻 = 1 | 𝑠′) = 0 otherwise. Then
the harm probability is just the probability, under 𝜏, of reaching a harmful state, and observations of
harm in 𝐷 affect the Bayesian posterior over theories.

This interpretation also includes the case where the harm probability is a function of the state 𝑠′,
but (non)occurrence of harm is not observed in 𝐷. For example, a language model encoding world
knowledge and human preferences or constraints, or an iterative reasoning procedure that uses those
constraints, could generate some specification of harm Pharm (𝐻 = 1 | 𝑠′), perhaps unreliably.

Finally, a setting that separates the predicted next state 𝑠′ from the harm variable 𝐻 in this way
gives a framework for studying how an agent might tamper with harm guardrails. If the state 𝑠′

decomposes as 𝑠′ = (𝑠′harm, 𝑠
′
rest), and Pharm is deterministic as a function of 𝑠′harm, except for some

difficult-to-reach values of 𝑠′rest, then the agent can try to reach those values of 𝑠′rest, so that harm is
‘recorded’ as not having occurred, even though it has. We discuss this briefly at the end of §4.

3 I.I.D. DATA

Following the notation introduced in the previous section, here, we consider the easier-to-analyze
case where the observed examples 𝐷 = (𝑧1, 𝑧2, . . . , 𝑧𝑛) are sampled i.i.d. from the unknown distri-
bution 𝜏∗. Assuming that the prior assigns nonzero mass to 𝜏∗, and all theories are distinct distribu-
tions, it can be shown that the posterior P(𝜏 | 𝐷) converges to a point mass at 𝜏∗. We show that for
sufficiently large 𝑛, we can bound the probability under 𝜏∗ of a harm event 𝐻 = 1 given conditions

1To be more precise, we can obtain transition probabilities from 𝜏 by conditioning on (𝑠, 𝑎) to get 𝑃𝜏 (𝑠′, 𝑟 |
𝑠, 𝑎), but only for state-action pairs with non-zero probability under 𝜏.
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𝑥 (e.g., a context and an action) by considering the probability of 𝐻 = 1 given 𝑥 and 𝐷, under a
plausible but “cautious” theory 𝜏 that maximizes P(𝜏 | 𝐷) P(𝐻 = 1 | 𝑥, 𝜏, 𝐷).
Setting. Fix a complete separable metric space Z, called the observation space, let F be its Borel
𝜎-algebra, and fix a 𝜎-finite measure 𝜇 on F . A theory is a probability distribution on the mea-
surable space (Z, F ) that is absolutely continuous w.r.t. 𝜇. If 𝜏 is a theory, we denote by P𝜏 (·) the
Radon-Nikodym derivative 𝑑𝜏

𝑑𝜇
: Z → R≥0, which is uniquely defined up to 𝜇-a.e. equality.

One can keep in mind two cases:

(1) Z is a finite or countable set and 𝜇 is the counting measure. Theories 𝜏 are equivalent to
probability mass functions P𝜏 : Z → R≥0.

(2) Z = R𝑑 and 𝜇 is the Lebesgue measure. Theories are equivalent to their probability density
functions P𝜏 : Z → R≥0 up to a.e. equality.

Consider a countable (possibly finite) set of theories M containing a ground truth theory 𝜏∗ and fix
a choice of a (measurable) density function P𝜏 for each 𝜏 ∈ M.

Definition of posterior as a random variable. If P is a prior distribution2 on M and 𝑧 ∈ Z, we
define the posterior to be the distribution with mass function

P(𝜏 | 𝑧) = P(𝜏) P𝜏 (𝑧)∑
𝜏′∈M P(𝜏′) P𝜏′ (𝑧)

∝ P(𝜏) P𝜏 (𝑧), (1)

assuming the denominator converges and the sum is nonzero. Otherwise, the posterior is considered
to be undefined. As written, the posterior depends on the choice of density functions P𝜏 , but any
two P𝜏 that are 𝜇-a.e. equal yield the same posterior for 𝜇-a.e. 𝑧.

For 𝑧1, 𝑧2 ∈ Z, we write P(· | 𝑧1, 𝑧2) for the posterior given observation 𝑧2 and prior P(· | 𝑧1), and
similarly for a longer sequence of observations. It can be checked that P(· | 𝑧1, . . . , 𝑧𝑡 ) is invariant to
the order of 𝑧1, . . . , 𝑧𝑡 and that it is defined in one order if and only if it is defined in all orders. This
allows us to unambiguously write P(· | 𝐷) where 𝐷 is a finite multiset of observations, and we have

P(𝜏 | 𝐷) ∝ P(𝜏)
∏
𝑧∈𝐷

P𝜏 (𝑧). (2)

Let 𝜏∗ ∈ M be the ground truth theory and P(·) a prior over M. Consider a sequence of i.i.d.
Z-valued random variables 𝑍1, 𝑍2, . . . (whose realizations are the observations), where each 𝑍𝑖
follows the distribution 𝜏∗. For any 𝑡 ∈ N, the posterior P(· | 𝑍1:𝑡 ) is then a random variable taking
values in the space of probability mass functions on M.3

Bayesian posterior consistency. We recall and state, in our setting, a result about the concentra-
tion of the posterior at the ground truth theory 𝜏∗ as the number of observations increases.

Proposition 3.1 (True theory dominance). Under the above conditions and supposing that P(𝜏∗) >
0, the posterior P(· | 𝑍1:𝑡 ) is almost surely defined for all 𝑛, and the following almost surely hold:

(a) P(· | 𝑍1:𝑡 )
𝑡→∞−−−−→ 𝛿𝜏∗ as measures, where 𝛿𝜏∗ is the Dirac measure, which assigns mass 1 to the

theory 𝜏∗ and 0 elsewhere; equivalently, lim𝑡→∞ P(𝜏 | 𝑍1:𝑡 ) = 1[𝜏 = 𝜏∗].
(b) There exists 𝑁 ∈ N such that arg max𝜏∈M P(𝜏 | 𝑍1:𝑡 ) = 𝜏∗ for all 𝑡 ≥ 𝑁 .

(All proofs can be found in appendix A.) Note that this result assumes that all theories in M are
distinct as probability measures (so no two of the P𝜏 are 𝜇-a.e. equal).

On necessity of conditions. The i.i.d. assumption in Prop. 3.1 is necessary; see Remark 4.3 for an
example where lim sup𝑡→∞ P(𝜏∗ | 𝑍1:𝑡 ) does not almost surely approach 1.

Remark 3.2. The assumption that the data-generating process 𝜏∗ lies in M and has positive prior
mass is also necessary for convergence of the posterior. To illustrate this, we give a simple ex-

2To be precise, M is endowed with the counting measure and we flexibly interchange distributions and mass
functions on M.

3To be precise, if the 𝑍𝑖’s are measurable functions from a sample space Ω to Z and ⟨𝑍1, . . . , 𝑍𝑡 ⟩ is their

pairing, the random variable P(· | 𝑍1:𝑡 ) : Ω
⟨𝑍1 ,...,𝑍𝑡 ⟩−−−−−−−−−→ Z𝑡 P( · |−)

−−−−−−→ P(M) has codomain the space P(M) of
functions M → R≥0 summing to 1. The function P(· | −) mapping a sequence of observations to the posterior
probability mass function is measurable, due to each P𝜏 (𝑧) being measurable in 𝑧 and elementary facts.
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ample in which the theories are Bernoulli distributions and the posterior does not converge to any
distribution over M.

Take Z = {−1, 1} and M = {𝜏𝑝 , 𝜏1/2, 𝜏1−𝑝} for some 1
2 < 𝑝 < 1, where P𝜏𝑐 (1) = 𝑐. Assume a prior

with P(𝜏𝑝) = P(𝜏1−𝑝) = 1
2 and take the true data-generating process 𝜏∗ to be 𝜏1/2, which has prior

mass 0. The log-ratio of posterior masses is then an unbiased random walk:

log
P(𝜏𝑝 | 𝑍1:𝑡 )

P(𝜏1−𝑝 | 𝑍1:𝑡 )
= log

P𝜏𝑝 (𝑍1:𝑡 )
P𝜏1−𝑝

(𝑍1:𝑡 )
=

(
log

𝑝

1 − 𝑝

) 𝑡∑︁
𝑖=1

𝑍𝑖 .

This quantity almost surely takes on arbitrarily large and small values infinitely many times. In fact,
by the law of iterated logarithms, for any 𝜖 > 0 there are infinitely many 𝑡 such that

log
P(𝜏𝑝 | 𝑍1:𝑡 )

P(𝜏1−𝑝 | 𝑍1:𝑡 )
≥ (1 − 𝜖)

(
log

𝑝

1 − 𝑝

) √︁
2𝑡 log log 𝑡

and the same holds for log P(𝜏1−𝑝 |𝑍1:𝑡 )
P(𝜏𝑝 |𝑍1:𝑡 ) , by symmetry. In particular, lim𝑡→∞ P(𝜏 | 𝑍1:𝑡 ) almost surely

does not exist for any 𝜏 ≠ 𝜏∗, and the lim inf and lim sup are almost surely 0 and 1, respectively.

However, in practice, Prop. 3.1 can be adapted to more general scenarios, by substituting the subset
T ⊆ M of theories with minimum relative entropy to 𝜏∗ for 𝜏∗ (when 𝜏∗ is not in M). Then, we
can replace convergence to 𝛿𝜏∗ with P(T | 𝑍1:𝑡 ) → 1 in (a), and replace 𝜏∗ with T in (b).

On generalizations to uncountable sets of theories. We have critically used that the set of theo-
ries M is countable in the proof above when passing from almost sure convergence under 𝜏∗ sampled
from the prior to almost sure convergence for any particular 𝜏∗ with positive prior mass. This argu-
ment fails for uncountable M; indeed, characterization of the 𝜏∗ for which the posterior converges
to 𝛿𝜏∗ is a delicate problem (see, e.g., (Freedman, 1963; 1965; Diaconis & Freedman, 1986)). Con-
centration of the posterior in neighborhoods of 𝜏∗ under some topology on M has been studied by
Schwartz (1965); Barron et al. (1999); Miller (2021), among others. For parametric families of the-
ories with parameter 𝜃 ∈ R𝑑 , under smoothness and nondegeneracy assumptions, the Bernstein-von
Mises theorem guarantees convergence of the posterior P(𝜃 | 𝑍1:𝑡 ) to the true parameter 𝜃∗ at a
rate that is asymptotically Gaussian with inverse covariance 𝐼 (𝜃∗)𝑡, where 𝐼 (·) denotes the Fisher
information matrix.

On convergence rates. While we do not handle the rate of convergence in Prop. 3.1, guarantees
can be obtained under specific assumptions on the prior and the set of theories.

For example, for any 𝜏 ∈ M, the quantity 𝐷𝑡
𝜏 := log P(𝜏∗ |𝑍1:𝑡 )

P(𝜏 |𝑍1:𝑡 ) is a process with 𝐷0
𝜏 = log P(𝜏∗ )

P(𝜏 ) and
i.i.d. increments, with

E[𝐷𝑡+1
𝜏 − 𝐷𝑡

𝜏] = 𝐷KL (𝜏∗ ∥ 𝜏), E
[
(𝐷𝑡+1

𝜏 − 𝐷𝑡
𝜏)2] = E𝑍∼𝜏∗ [(log

P𝜏∗ (𝑍)
P𝜏 (𝑍)

)2
]
. (3)

Under the assumption that the variances are finite and uniformly bounded in 𝜏, the central limit
theorem would give posterior convergence rate guarantees.

Note that, above, we make no assumptions on the theories, and Prop. 3.1 is a ‘law-of-large-numbers-
like’ result that holds even if the variances in (3) are not finite and uniformly bounded.

Harm probability bounds. So far, we have considered a collection M of distributions over an
observation space. Now, we show bounds when each theory computes probabilities over some
additional variables. The following lemma extends Prop. 3.1 (b) to estimates of real-valued functions
of the theories and observations.

Lemma 3.3. Under the conditions of Prop. 3.1, let 𝑓 : M × ⋃∞
𝑡=0 Z𝑡 → R≥0 be a bounded

measurable function. Then there exists 𝑁 ∈ N such that for all 𝑡 ≥ 𝑁 and any 𝜏 ∈ arg max𝜏 [P(𝜏 |
𝑍1:𝑡 ) 𝑓 (𝜏, 𝑍1:𝑡 )], it holds that 𝑓 (𝜏∗, 𝑍1:𝑡 ) ≤ 𝑓 (𝜏, 𝑍1:𝑡 ).

A particular case of interest is when each theory is associated with estimates of probabilities of
harm (𝐻 = 1) given a context 𝑥 and past observations 𝑍1:𝑡 . That is, M gives rise to a collection of
conditional probability mass functions over the possible harm outcomes, denoted P(· | 𝑥, 𝜏, 𝑍1:𝑡 ),
for every 𝑥 lying in some space of possible contexts. In this setting, we have the following corollary:
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Proposition 3.4 (Harm probability bound). Under the same conditions as Prop. 3.1, there exists
𝑁 ∈ N such that for all 𝑡 ≥ 𝑁 and 𝜏 ∈ arg max𝜏 P(𝜏 | 𝑍1:𝑡 ) P(𝐻 = 1 | 𝑥, 𝜏, 𝑍1:𝑡 ), it holds that

P(𝐻 = 1 | 𝑥, 𝜏∗, 𝑍1:𝑡 ) ≤ P(𝐻 = 1 | 𝑥, 𝜏, 𝑍1:𝑡 ). (4)

4 NON-I.I.D. DATA

In this section, we remove the assumption made in §3 that the 𝑍𝑖’s are i.i.d. given a theory 𝜏∗.

Setting. As before, let (Z, F , 𝜇) be a 𝜎-finite Borel measure space of observations. For the
results below to hold, we must also assume that (Z, F ) is a Radon space (e.g., any countable set or
manifold), so as to satisfy the conditions of the disintegration theorem.

Let (Z∞, F∞, 𝜇∞) be the space of infinite sequences of observations, Z∞ = {(𝑧1, 𝑧2, . . . ) : 𝑧𝑖 ∈
Z)}, with the associated product 𝜎-algebra and 𝜎-finite measure. This object is the projective
limit of the measure spaces (Z𝑡 , F ⊗𝑡 , 𝜇⊗𝑡 ), where Z𝑡 = {(𝑧1, . . . , 𝑧𝑡 ) : 𝑧𝑖 ∈ Z} and the projection
Z𝑡+1 → Z𝑡 ‘forgets’ the observation 𝑧𝑡+1. A theory 𝜏 is a probability distribution on (Z∞, F∞) that
is absolutely continuous w.r.t. 𝜇∞. For 𝐴 ∈ F ⊗𝑡 , we write 𝜏1:𝑡 (𝐴) for the measure of the cylindrical
set, 𝜏(𝐴×Z×Z× . . . ), so 𝜏1:𝑡 is a measure on (Z𝑡 , F ⊗𝑡 ). Because F∞ is generated by cylindrical
sets, the absolute continuity condition on 𝜏 is equivalent to absolute continuity of 𝜏1:𝑡 w.r.t. 𝜇⊗𝑡 for
all 𝑡.4 This condition allows to define measurable probability density functions P𝜏 : Z𝑡 → R≥0 as
Radon-Nikodym derivatives, so that

∀𝐴 ∈ F ⊗𝑡 , 𝜏1:𝑡 (𝐴) =
∫
𝑧1:𝑡 ∈𝐴

P𝜏 (𝑧1:𝑡 ) 𝑑𝜇⊗𝑡 ,

and measurable conditional probability densities P𝜏 (𝑧𝑡+1 | 𝑧1:𝑡 ) := P𝜏 (𝑧1:𝑡 ,𝑧𝑡+1 )
P𝜏 (𝑧1:𝑡 ) when P𝜏 (𝑧1:𝑡 ) > 0.

The disintegration theorem for product measures implies that these conditionals and marginals over
finitely many observations can be manipulated algebraically using the usual rules of probability for
𝜇∞-a.e. collection of values, e.g., one has the autoregressive decomposition P𝜏 (𝑧1:𝑡 ) =

∏𝑡
𝑖=1 P𝜏 (𝑧𝑖 |

𝑧1:𝑖−1), with the conditional P𝜏 (𝑧1 | 𝑧1:0) understood to be the marginal P𝜏 (𝑧1).
A theory is canonically associated with a random variable 𝑍1:∞ taking values in Z∞. We denote its
components by 𝑍1, 𝑍2, . . . and the collection of the first 𝑡 observations by 𝑍1:𝑡 .

Definition of posterior as a random variable. Let M = (𝜏𝑖)𝑖∈𝐼 be a collection of theories indexed
by a countable set 𝐼5 and let P be a prior distribution on 𝐼. We define the posterior over indices to be

P(𝑖 | 𝑧1:𝑡 ) :=
P(𝑖) P𝜏𝑖 (𝑧1:𝑡 )∑
𝑗∈𝐼 P( 𝑗) P𝜏 𝑗

(𝑧1:𝑡 )
, (5)

assuming the denominator converges to a positive value.

Consider a ground truth index 𝑖∗ ∈ 𝐼 and abbreviate 𝜏∗ := 𝜏𝑖∗ . Let 𝑍1:∞ be the random variable
taking values in Z∞ corresponding to 𝜏∗. Similarly to the i.i.d. case, the posterior P(· | 𝑍1:𝑡 ) is a
random variable taking values in the space of probability mass functions on 𝐼.

For all results below, we assume that P(𝑖∗) > 0.

Bayesian posterior convergence. Previous work (e.g., (Cohen et al., 2022a)) has shown that if
𝑍1:∞ ∼ 𝜏∗, then the limit inferior of P(𝑖∗ | 𝑍1:𝑡 ) is almost surely positive. More generally, with
probability at least 1−𝛿, the posterior on the truth will not asymptotically go below 𝛿 times the prior
on the truth. We repeat that result here in our notation.

Lemma 4.1 (Martingale). The process 𝑊𝑡 := P(𝑖∗ | 𝑍1:𝑡 )−1 is a supermartingale, i.e., it does not
increase over time in expectation.

Proposition 4.2 (Posterior on truth). For all 𝛿 > 0, with probability at least 1− 𝛿, inf𝑡 P(𝑖∗ | 𝑍1:𝑡 ) ≥
𝛿 P(𝑖∗); that is, 𝜏∗

({
𝑧1:∞ : inf𝑡 P(𝑖∗ | 𝑧1:𝑡 ) < 𝛿 P(𝑖∗)

})
≤ 𝛿, or equivalently:

𝜏∗
(
sup
𝑡≥0

𝑊𝑡 ≥ (𝛿 P(𝑖∗))−1) ≤ 𝛿 (6)

4This is, in turn, equivalent to absolute continuity of conditional distributions, i.e., for every measurable
subset 𝐴 ⊆ Z𝑡 such that 𝜏1:𝑡 (𝐴) > 0, 1

𝜏1:𝑡 (𝐴) 𝜏1:𝑡+1 |𝐴×Z ≪ 𝜇𝑡+1��
𝐴×Z , where 𝐴 ×Z ⊆ Z𝑡 ×Z � Z𝑡+1.

5Unlike in §3, we do not require theories to be distinct for the results in this section.
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In the language of financial markets, if 𝑊𝑡 was the price of a stock at time 𝑡, you could never make
money in expectation by holding it. Suppose that you “bought shares” at time 0, paying 𝑊0, and
waited for their value to increase by a factor of 𝛿−1. If (6) did not hold and the probability of such
an increase occurring was greater than 𝛿, then you could make an expected profit by “𝛿−1-tupling”
your money with probability greater than 𝛿.
Remark 4.3. Prop. 4.2 is “tight” in the following sense: for all 𝛿, 𝜀 > 0, there exist M, P, and
𝜏𝑖∗ ∈ M, such that with probability at least 𝛿, lim sup𝑡 P(𝑖∗ | 𝑍1:𝑡 ) ≤ (𝛿 + 𝜀) P(𝑖∗).
We construct such an example. Consider the following setting: M = {𝜏∗, 𝜏′} (indexed by 𝐼 = {𝑖∗, 𝑖′}
as 𝜏𝑖∗ = 𝜏∗, 𝜏𝑖′ = 𝜏′), Z = {0, 1}, and the theories are defined by

P𝜏∗ (1) = 𝛿, P𝜏′ (1) = 1, P𝜏𝑖 (1 | 𝑧1:𝑡 ) =
1
2
∀𝑖 ∈ 𝐼, 𝑡 ≥ 1, 𝑧1:𝑡 ∈ Z𝑡 .

One has P(𝑖∗ | 𝑍1 = 1) =
𝛿 P(𝑖∗ )

𝛿 P(𝑖∗ )+P(𝑖′ ) < 𝛿
P(𝑖∗ )

1−P(𝑖∗ ) . Since 𝜏∗ and 𝜏′ give the same conditional
probabilities of 𝑍𝑡 given 𝑍1:𝑡−1 for 𝑡 > 1, one has P(𝑖∗ | 𝑍1:𝑡 ) = P(𝑖∗ | 𝑍1). So, for all 𝑡 ≥ 1,
P(𝑖∗ | 𝑍1 = 1, 𝑍2:𝑡 = 𝑧2:𝑡 ) < 𝛿(1 − P(𝑖∗))−1 P(𝑖∗), and hence

𝜏∗
({
𝑧1:∞ : lim sup

𝑡

P(𝑖∗ | 𝑧1:𝑡 ) < 𝛿(1 − P(𝑖∗))−1 P(𝑖∗)
})

≥ 𝜏∗
({
𝑧1:∞ : 𝑧1 = 1

})
= P𝜏∗ (1) = 𝛿.

So by choosing P(𝑖∗) < 1 − 1/(1 + 𝜀
𝛿
), so that 𝛿(1 − P(𝑖∗))−1 < 𝛿 + 𝜀, we get the desired property.

Harm probability bounds. We now state analogues of Prop. 3.4 in the non-i.i.d. setting. As
above, let 𝐻𝑡 be a binary random variable that may depend on 𝑍1:𝑡 , 𝜏, and a context variable 𝑥𝑡 .
Proposition 4.4 (Weak harm probability bound). For any 𝛿 > 0, with probability at least 1 − 𝛿, the
following holds for all 𝑡 ∈ N and all 𝑥𝑡 :

P(𝐻𝑡 = 1 | 𝑍1:𝑡 , 𝜏
∗, 𝑥𝑡 ) ≤ sup

𝑖∈𝐼

P(𝑖 | 𝑍1:𝑡 ) P(𝐻𝑡 = 1 | 𝑍1:𝑡 , 𝜏𝑖 , 𝑥𝑡 )
𝛿 P(𝑖∗) .

Next, we show how the bound in Prop. 4.4 can be strengthened by restricting to theories that have
sufficiently high posterior mass relative to theories that are “better” than them.

Let 𝑖1
𝑍1:𝑡

, 𝑖2
𝑍1:𝑡

, 𝑖3
𝑍1:𝑡

, . . . be an enumeration of 𝐼 in order of decreasing posterior weight P(𝑖 | 𝑍1:𝑡 ),
breaking ties arbitrarily, for example, following some fixed enumeration of 𝐼 (i.e., we have P(𝑖𝑛

𝑍1:𝑡
|

𝑍1:𝑡 ) ≥ P(𝑖𝑛+1
𝑍1:𝑡

| 𝑍1:𝑡 ) for all 𝑛). Each 𝑖𝑛
𝑍1:𝑡

is an 𝐼-valued random variable (i.e., the index of a theory
in M). For any 0 < 𝛼 ≤ 1, we also define the P(𝐼)-valued random variable

I𝛼
𝑍1:𝑡

:=
{
𝑖𝑛𝑍1:𝑡

∈ 𝐼 : P(𝑖𝑛𝑍1:𝑡
| 𝑍1:𝑡 ) ≥ 𝛼

∑︁
𝑚≤𝑛

P(𝑖𝑚𝑍1:𝑡
| 𝑍1:𝑡 )

}
, (7)

which is the set of indices that contain at least 𝛼 of the posterior mass of all indices that are more
likely than it under the posterior. If 𝛼 = 1, this set is the singleton {𝑖1

𝑍1:𝑡
}. For any 0 < 𝛼 < 1, it

is nonempty, because it contains 𝑖1
𝑍1:𝑡

, and finite, since |I𝛼
𝑍1:𝑡

| ≥ 𝑁 implies (easily by induction) that∑
𝑖∈I𝛼

𝑍1:𝑡
P(𝑖 | 𝑍1:𝑡 ) ≥

(
1

1−𝛼

)𝑁−1
P(𝑖1

𝑍1:𝑡
| 𝑍1:𝑡 ).

The following proposition is a variant of Cohen et al. (2022a, Thm 2).
Proposition 4.5 (True theory dominance). If 𝛼 < 𝛿 P(𝑖∗), then with probability at least 1 − 𝛿, for
all 𝑡 ∈ N, 𝑖∗ ∈ I𝛼

𝑍1:𝑡
.

Proposition 4.6 (Harm probability bound). If 𝛼 < 𝛿 P(𝑖∗), then with probability at least 1− 𝛿, for
all 𝑡 ∈ N and all 𝑥𝑡 ,

P(𝐻𝑡 = 1 | 𝑍1:𝑡 , 𝜏
∗, 𝑥𝑡 ) ≤ max

𝑖∈I𝛼
𝑍1:𝑡

P(𝐻𝑡 = 1 | 𝑍1:𝑡 , 𝜏𝑖 , 𝑥𝑡 ) (8)

Because the conclusion of Prop. 4.6 is much stronger than that of Prop. 4.4, it would be much safer
(or more useful, depending on the value of 𝛼) to use arg max𝑖∈I𝛼

𝑍1:𝑡
P(𝐻𝑡 = 1 | 𝑍1:𝑡−1, 𝜏𝑖 , 𝑥𝑡 ) as

a ‘paranoid’ theory rather than arg max𝑖∈𝐼 P(𝜏𝑖 | 𝑍1:𝑡−1) P(𝐻𝑡 = 1 | 𝑍1:𝑡−1, 𝜏𝑖 , 𝑥𝑡 ). The factor of
(𝛿 P(𝑖∗))−1 in Prop. 4.4 could render the upper bound on harm probability much larger than the
trivial upper bound of 1. However, we note that approximating I𝛼

𝑍1:𝑡
– such as by amortization or by

Monte Carlo methods – is much more difficult than approximating the posterior alone.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

1.
0 ·

10
−5

3.
0 ·

10
−5

1.
0 ·

10
−4

3.
0 ·

10
−4

1.
0 ·

10
−2

3.
0 ·

10
−2

1.
0 ·

10
−1

3.
0 ·

10
−1 1.

0

α

0

1

2

3

4

R
ew

ar
d

Reward vs α (C = 0.001)

Prop 3.4

Posterior

Cheating

Prop 4.6

1.
0 ·

10
−5

3.
0 ·

10
−5

1.
0 ·

10
−4

3.
0 ·

10
−4

1.
0 ·

10
−2

3.
0 ·

10
−2

1.
0 ·

10
−1

3.
0 ·

10
−1 1.

0

α

2.5

5.0

7.5

10.0

12.5

15.0

Reward vs α (C = 0.01)

Prop 3.4

Posterior

Cheating

Prop 4.6

1.
0 ·

10
−5

3.
0 ·

10
−5

1.
0 ·

10
−4

3.
0 ·

10
−4

1.
0 ·

10
−2

3.
0 ·

10
−2

1.
0 ·

10
−1

3.
0 ·

10
−1 1.

0

α

10

15

20

25

30

Reward vs α (C = 0.1)

Prop 3.4

Posterior

Cheating

Prop 4.6

1.
0 ·

10
−5

3.
0 ·

10
−5

1.
0 ·

10
−4

3.
0 ·

10
−4

1.
0 ·

10
−2

3.
0 ·

10
−2

1.
0 ·

10
−1

3.
0 ·

10
−1 1.

0

α

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
ea

th
s

Deaths vs α (C = 0.001)

Prop 3.4

Posterior

Cheating

Prop 4.6

1.
0 ·

10
−5

3.
0 ·

10
−5

1.
0 ·

10
−4

3.
0 ·

10
−4

1.
0 ·

10
−2

3.
0 ·

10
−2

1.
0 ·

10
−1

3.
0 ·

10
−1 1.

0

α

0.0

0.1

0.2

0.3

0.4

Deaths vs α (C = 0.01)

Prop 3.4

Posterior

Cheating

Prop 4.6

1.
0 ·

10
−5

3.
0 ·

10
−5

1.
0 ·

10
−4

3.
0 ·

10
−4

1.
0 ·

10
−2

3.
0 ·

10
−2

1.
0 ·

10
−1

3.
0 ·

10
−1 1.

0

α

0.2

0.4

0.6

Deaths vs α (C = 0.1)

Prop 3.4

Posterior

Cheating

Prop 4.6

Figure 1: Mean episode deaths and reward for different guardrails in the exploding bandit setting.

On the harm-recording mechanism. Suppose that 𝜏𝑖∗ = 𝜏∗ is a data-generating process meeting
the description “𝐻𝑡 = 1 when harm has occurred”, while 𝜏𝑖† = 𝜏† is a data-generating process
meeting the description “𝐻𝑡 = 1 when harm is recorded as having occurred” and agreeing with 𝜏∗ in
its observational predictions otherwise. If, and only if, the recording process is functioning correctly,
𝜏∗ = 𝜏†. For as long as the recording process is functioning correctly, P(𝑖∗ | 𝑍1:𝑡 )/P(𝑖† | 𝑍1:𝑡 ) =

P(𝑖∗)/P(𝑖†). If the recording process ever fails at time 𝑡, then 𝑍𝑡 ∼ P𝜏† , not P𝜏∗ , since 𝑍𝑡 is the
result of this recording process; therefore, P(𝑖∗ | 𝑍1:𝑡 )/P(𝑖† | 𝑍1:𝑡 ) would decrease in expectation,
perhaps dramatically. We should not expect P(𝑖∗) to naturally win out over P(𝑖†), even if there are
no mistakes when recording how harmful certain situations are. However, the following holds with
probability approaching 1 as 𝛼 → 0: for all 𝑡, if the recording process has not failed by time 𝑡,
I𝛼
𝑍1:𝑡

contains both 𝑖∗ and 𝑖†. If 𝜏∗ considers tampering with the recording process to be a ‘harmful’
outcome, then an AI system could attempt to avoid a first instance of tampering at time 𝑡, for all 𝑡.

5 EXPERIMENTS

Exploding bandit setting. We evaluate the performance of safety guardrails based on Prop. 3.4
and Prop. 4.6 in a bandit MDP with 10 arms (actions). Each arm 𝑎 ∈ {1, . . . , 10} is represented
by a feature vector 𝑓𝑎 ∈ {0, 1}𝑑 (we take 𝑑 = 10, but 𝑑 is not necessarily equal to the number of
arms), which is sampled uniformly at random at the start of each episode and known to the agent.
The reward distribution of each arm is fixed for the duration of each episode and assumed to be
of the following form: the reward received after taking action 𝑎 follows a unit-variance normal
distribution, 𝑟 (𝑎) ∼ N ( 𝑓𝑎 · 𝑣∗, 1), where 𝑣∗ ∈ {0, 1}𝑑 is some vector sampled uniformly at random
at the start of each episode and unknown to the agent. Taking any action and observing the reward
gives evidence about the identity of 𝑣∗ and thus about the reward distributions of the other actions.
The agent maintains a belief over the vector used to compute the reward, beginning with a uniform
prior over {0, 1}𝑑 and updating its posterior with each observation of an action-reward pair.

We assume that the agent samples its actions from a Boltzmann policy (with temperature 2) using the
expected reward of each action under its posterior given the data seen so far, meaning that a reward
vector 𝑣 ∈ {0, 1}𝑑 determines a distribution over sequences of action-reward pairs. Thus each
𝑣 ∈ {0, 1}𝑑 can be naturally associated with a theory 𝜏𝑣

6, and thus 𝐼 := {0, 1}𝑑 is an indexing set for
a collection of theories M = (𝜏𝑣)𝑣∈𝐼 . Inference of 𝑣 with evidence collected on-policy is equivalent
to inference of 𝜏𝑣 given data generated by a true theory 𝜏∗ := 𝜏𝑣∗ . Since the policy changes across
timesteps, so does the distribution of action-reward pairs, so we are in the non-i.i.d. setting.

6The mapping 𝑣 ↦→ 𝜏𝑣 is not necessarily injective – multiple vectors may represent the same collection of
reward distributions and therefore the same distribution over sequences of action-reward pairs.
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Figure 2: Overestimate frequency and harm estimate distribution for the Prop. 4.6 guardrail for varying 𝛼.

The bandit comes with a notion of harm: if the reward received at a given timestep exceeds some
threshold 𝐸 , the bandit explodes and the agent dies7, terminating the episode. In other words, we
define harm as 𝐻𝑡 := 1[𝑅𝑡 > 𝐸], where 𝑅𝑡 is the random variable representing the reward received
when taking action 𝑎𝑡 . 𝐸 is set to a Monte Carlo approximation of the expected highest mean reward
of any action (i.e., E [max𝑎 ( 𝑓𝑎 · 𝑣∗)]). The maximum episode length is 25 timesteps.

Safety guardrails. A guardrail is an algorithm that, given a possible action and context (e.g.,
current state and history), determines whether taking the action in the context is admissible. A
guardrail can be used to mask the policy to forbid certain actions, such as those whose estimated
harm exceeds some threshold 𝐶. We compare several guardrails (formally defined below): those
constructed from Prop. 3.4 and Prop. 4.6, one that marginalizes across the posterior over 𝜏 to get
the posterior predictive harm probability, and one that ‘cheats’ by using the probability of harm
under the true theory 𝜏∗. Recall that 𝑍1:𝑡 consists of the observations (i.e., actions taken and rewards
received) at previous timesteps.

• Prop. 3.4 guardrail: rejects an action 𝑎𝑡+1 if there exists �̃� ∈ arg max𝑣 P(𝑣 | 𝑍1:𝑡 ) P(𝐻𝑡+1 = 1 |
𝜏, 𝑍1:𝑡 , 𝑎𝑡+1) with P(𝐻𝑡+1 = 1 | 𝜏�̃� , 𝑍1:𝑡 , 𝑎𝑡+1) > 𝐶 (note that the assumptions of i.i.d. observations
and distinct theories are not satisfied here).

• Prop. 4.6 guardrail: rejects an action 𝑎𝑡+1 if max𝑣∈I𝛼
𝑍1:𝑡

P(𝐻𝑡+1 = 1 | 𝑍1:𝑡 , 𝜏𝑣 , 𝑎𝑡+1) > 𝐶.

• Posterior predictive guardrail: rejects an action 𝑎𝑡+1 if P(𝐻𝑡+1 = 1 | 𝑍1:𝑡 , 𝑎𝑡+1) > 𝐶.
• Cheating guardrail: rejects an action 𝑎𝑡+1 if P(𝐻𝑡+1 = 1 | 𝑍1:𝑡 , 𝜏

∗, 𝑎𝑡+1) > 𝐶 (note that this
guardrail assumes knowledge of the true theory 𝜏∗).

The guardrail is run at every sampling step, and actions that the guardrail rejects are forbidden to be
sampled by the agent. If all actions are rejected by the guardrail, the episode terminates.

Results. Fig. 1 shows mean episode rewards and episode deaths under each guardrail across 10000
episodes, for different values of the rejection threshold 𝐶. The cheating guardrail achieves near zero
deaths for sufficiently small 𝐶, but for 𝐶 = 0.1 its death probability is high.8 The posterior predictive
guardrail achieves zero deaths for small 𝐶, while for larger 𝐶 it dies frequently, generally receiving
lower reward compared to the cheating guardrail. The behavior of the Prop. 4.6 guardrail depends
strongly on 𝛼. When 𝛼 is close to 1, actions are rarely rejected, leading to frequent deaths. Up to a
point, this riskier behavior allows the agent to get more reward, but for 𝐶 = 0.1 and high 𝛼 the trend
starts to reverse, as early deaths become frequent enough to preclude the opportunity. At the other
extreme, when 𝛼 is close to 0, the candidate set of theory indices I𝛼

𝑍1:𝑡
is larger and the guardrail is

extremely conservative. It rejects almost all actions, resulting in low deaths and low reward. This is
the case even for larger 𝐶, since the estimated probability used to filter actions tends to overestimate
an action’s harm probability under the true theory. For middling values of 𝛼, Prop. 4.6 guardrail
performs more similarly to the posterior predictive, sometimes with lower reward and higher deaths,
and sometimes the opposite. The Prop. 3.4 guardrail, which makes the incorrect assumptions of
i.i.d. data and distinct theories, is similarly conservative to the Prop. 4.6 guardrail with low 𝛼.

Tightness of bounds. Fig. 2 shows how often and how tightly the inequality in Prop. 4.6 is satis-
fied. For an agent following a uniform policy across 10000 bandit episodes without action rejection

7This emulates in a simplified form the important and problematic scenario where the user goal, e.g., maxi-
mizing profits, conflicts with safety, and we need to, for example, maximize profit under safety constraints.

8Indeed, if every action taken had a harm probability of 0.1, the probability of death across an episode
would be 1 −

(
(1 − 0.1)25) ≈ 0.93.
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or death, Fig. 2a shows the frequency with which max𝑣∈I𝛼
𝑍1:𝑡

P(𝐻𝑡+1 = 1 | 𝑍1:𝑡 , 𝜏𝑣 , 𝑎𝑡+1) overesti-
mates the true harm probability. Prop. 4.6 gives us a strict lower bound of 1 − 𝛼

P(𝑣∗ ) (which may
be below 0) on the overestimation frequency, but the frequency significantly exceeds the bound for
larger 𝛼. Fig. 2b shows the distribution of harm estimates for actions with a ground truth harm
probability of 0.5. For large 𝛼 the harm of these dangerous actions is usually underestimated – so
the high overestimation rate in Fig. 2a comes from actions with lower harm probabilities.

6 CONCLUSION AND OPEN PROBLEMS

The approach to safety verification proposed here is based on context-dependent run-time verifi-
cation because the set of possible inputs for a machine learning system is generally astronomical,
whereas the safety of the answer to a specific question is more likely to be tractable. It focuses
on the risk of wrongly interpreting the data, including the safety specification itself (called “harm”
above) and exploits the fact that, as more evidence is gathered (necessary with i.i.d. data) and when
different theories predict different observations, the true interpretation rises towards the maximal
value of the Bayesian posterior. The bound is tighter with the i.i.d. data, but the i.i.d. assumption
is also unrealistic, and for safety-critical decisions, we would prefer to err on the side of prudence
and fewer assumptions. However, it provides a template to think about variants of this idea in future
work. Several challenges remain for turning such bounds into an operational run-time safeguard:

1. Upper-bounding overcautiousness. Can we ensure that we do not underestimate the probability
of harm but do not massively overestimate it? Some simple theories consistent with the dataset
(even an arbitrarily large one) might deem non-harmful actions harmful. Can we bound how
much this harm-avoidance hampers the agent? A plausible approach would be to make use of a
mentor for the agent that demonstrates non-harmful behavior (Cohen & Hutter, 2020).

2. Tractability of posterior estimation. How can we efficiently estimate the required Bayesian
posteriors? For computational tractability, a plausible answer would rely on amortized inference,
which turns the difficult estimation of these posteriors into the task of training a neural net prob-
abilistic estimator which will be fast at run-time. Recent work on amortized Bayesian inference
for symbolic models, such as causal structures (Deleu et al., 2022; 2023), and for intractable
posteriors in language models (Guo et al., 2021; Hu et al., 2024; Venkatraman et al., 2024; Song
et al., 2024; Yu et al., 2024) – which are useful when prior knowledge is encoded in a pretrained
foundation model – suggests that this is feasible. Advances in efficient and adaptive Monte Carlo
methods, e.g., for language models (Phan et al., 2023; Zhao et al., 2024; Lew et al., 2023), can
also be useful for this purpose, and MCMC approaches can complement and aid amortization
(Hu et al., 2023; Kim et al., 2024b; Sendera et al., 2024; Kim et al., 2024a).

3. Efficient search for a cautious theory. How can we efficiently identify a cautious but plausible
theory that upper-bounds the risk, since this requires an optimization at run-time? Again, a
plausible answer is to rely on amortized probabilistic inference, e.g., by sampling theories with
a low or annealed temperature, a technique that has been used for decades in the nonconvex
optimization literature and more recently combined with amortized sequential sampling methods
(Zhang et al., 2023a;b; Zhou et al., 2024, inter alia).

4. Partial specification of theories. Another issue is that a full explanatory theory 𝜏 for the ev-
idence 𝐷 will generally be too large an object to make the above bound calculations and opti-
mization sufficiently efficient. An alternative would be to derive bounds that only require partial
explanations, similarly to how humans tell cautious ‘stories’ about what could go wrong in uncer-
tain circumstances when thinking about taking a potentially dangerous decision (Bengio, 2024).

5. Harm specification in natural language. How can natural language safety specifications, as
in Constitutional AI (Bai et al., 2022), be turned into a random variable over which conditional
probabilities can be estimated? Manually labeling numerous examples matching the desired
constraint is impractical. Instead, Bengio (2024) propose learning to interpret natural language
statements as formal random variables over which probabilistic causal reasoning can occur. The
ambiguity of natural language can then be captured by a distribution over formal interpretations.

6. Effect of approximation error. Finally, because we plan to use machine learning to estimate
the bound, we have to consider the fact that a learned predictor will be imperfect. How do we
conservatively correct for the potentially dangerous errors made by this predictor? This may
be crucial if we use a neural network to estimate probabilities, since they are subject to lack of
robustness and adversarial attacks (Goodfellow et al., 2015; Wei et al., 2023), e.g., how do we
ensure that the agent proposing the actions has not learned to find loopholes in the risk estimator?
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A PROOFS

Proposition 3.1 (True theory dominance). Under the above conditions and supposing that P(𝜏∗) >
0, the posterior P(· | 𝑍1:𝑡 ) is almost surely defined for all 𝑛, and the following almost surely hold:

(a) P(· | 𝑍1:𝑡 )
𝑡→∞−−−−→ 𝛿𝜏∗ as measures, where 𝛿𝜏∗ is the Dirac measure, which assigns mass 1 to the

theory 𝜏∗ and 0 elsewhere; equivalently, lim𝑡→∞ P(𝜏 | 𝑍1:𝑡 ) = 1[𝜏 = 𝜏∗].
(b) There exists 𝑁 ∈ N such that arg max𝜏∈M P(𝜏 | 𝑍1:𝑡 ) = 𝜏∗ for all 𝑡 ≥ 𝑁 .

Proof of Proposition 3.1. This is an application of Doob’s posterior consistency theorem (Doob
(1949); see also Miller (2018) for a modern summary). This result, which follows from the the-
ory of martingales, assumes that 𝜏∗ is sampled from the prior distribution P(𝜏) and the observations
𝑍𝑖 are defined as above. Doob’s theorem states that if for every 𝑆 ∈ F , the map 𝜏 ↦→ P𝜏 (𝑆) is
measurable, then the posteriors P(· | 𝑍1:𝑡 ) are almost surely defined and (a) holds P-almost surely
with respect to the choice of 𝜏∗.

In our case, because M is countable, the measurability condition is satisfied, showing that (a) holds
for P-almost every 𝜏∗ ∈ M. In particular, if P(𝜏∗) > 0, then (a) holds.

Finally, by (a), we have that for any 𝜀 > 0, there exists 𝑁 such that for every 𝑡 ≥ 𝑁 , P(𝜏∗ | 𝑍1:𝑡 ) >
1 − 𝜀, or, equivalently,

∑
𝜏≠𝜏∗ P(𝜏 | 𝑍1:𝑡 ) < 𝜀, and therefore P(𝜏 | 𝑍1:𝑡 ) < 𝜀 for all 𝜏 ≠ 𝜏∗. In

particular, taking 𝜀 = 1/2, we get that for sufficiently large 𝑡, P(𝜏∗ | 𝑍1:𝑡 ) > P(𝜏 | 𝑍1:𝑡 ) for every 𝜏,
which shows (b). ⊠

Lemma 3.3. Under the conditions of Prop. 3.1, let 𝑓 : M × ⋃∞
𝑡=0 Z𝑡 → R≥0 be a bounded

measurable function. Then there exists 𝑁 ∈ N such that for all 𝑡 ≥ 𝑁 and any 𝜏 ∈ arg max𝜏 [P(𝜏 |
𝑍1:𝑡 ) 𝑓 (𝜏, 𝑍1:𝑡 )], it holds that 𝑓 (𝜏∗, 𝑍1:𝑡 ) ≤ 𝑓 (𝜏, 𝑍1:𝑡 ).

Proof of Lemma 3.3. First, note that the argmax exists by boundedness of 𝑓 and P(· | 𝑍1:𝑡 ). By
Prop. 3.1 (b), there exists 𝑁 ∈ N such that for all 𝑡 ≥ 𝑁 and 𝜏 ≠ 𝜏∗, P(𝜏∗ | 𝑍1:𝑡 ) > P(𝜏 | 𝑍1:𝑡 ) ≥ 0.
Let 𝑡 ≥ 𝑁 and 𝜏 ∈ arg max𝜏 [P(𝜏 | 𝑍1:𝑡 ) 𝑓 (𝜏, 𝑍1:𝑡 )]. Then

P(𝜏∗ | 𝑍1:𝑡 ) 𝑓 (𝜏, 𝑍1:𝑡 ) ≥ P(𝜏 | 𝑍1:𝑡 ) 𝑓 (𝜏, 𝑍1:𝑡 ) ≥ P(𝜏∗ | 𝑍1:𝑡 ) 𝑓 (𝜏∗, 𝑍1:𝑡 ).
When 𝜏 ≠ 𝜏∗, the result follows since P(𝜏∗ | 𝑍1:𝑡 ) > 0. The case 𝜏 = 𝜏∗ is trivial. ⊠

Proposition 3.4 (Harm probability bound). Under the same conditions as Prop. 3.1, there exists
𝑁 ∈ N such that for all 𝑡 ≥ 𝑁 and 𝜏 ∈ arg max𝜏 P(𝜏 | 𝑍1:𝑡 ) P(𝐻 = 1 | 𝑥, 𝜏, 𝑍1:𝑡 ), it holds that

P(𝐻 = 1 | 𝑥, 𝜏∗, 𝑍1:𝑡 ) ≤ P(𝐻 = 1 | 𝑥, 𝜏, 𝑍1:𝑡 ). (4)

Proof of Proposition 3.4. Apply Lemma 3.3 to the function 𝑓 (𝜏, 𝑍1:𝑡 ) = P(𝐻 = 1 | 𝑥, 𝜏, 𝑍1:𝑡 ). ⊠

Lemma 4.1 (Martingale). The process 𝑊𝑡 := P(𝑖∗ | 𝑍1:𝑡 )−1 is a supermartingale, i.e., it does not
increase over time in expectation.

Proof of Lemma 4.1. We have

E𝜏∗ [𝑊𝑡+1 | 𝑍1:𝑡 = 𝑧1:𝑡 ] =
∫
{
𝑧𝑡+1∈Z : P𝜏∗ (𝑧𝑡+1 |𝑧1:𝑡 )>0

} P(𝑖∗ | 𝑧1:𝑡+1)−1 P𝜏∗ (𝑧𝑡+1 | 𝑧1:𝑡 ) 𝑑𝜇

(𝑎)
=

∫
{
𝑧𝑡+1∈Z : P𝜏∗ (𝑧𝑡+1 |𝑧1:𝑡 )>0

}
∑

𝑗∈𝐼 P( 𝑗 | 𝑧1:𝑡 ) P𝜏 𝑗
(𝑧𝑡+1 | 𝑧1:𝑡 )

P(𝑖∗ | 𝑧1:𝑡 ) P𝜏∗ (𝑧𝑡+1 | 𝑧1:𝑡 )
P𝜏∗ (𝑧𝑡+1 | 𝑧1:𝑡 ) 𝑑𝜇

(𝑏)
≤

∫
Z

∑
𝑗∈𝐼 P( 𝑗 | 𝑧1:𝑡 ) P𝜏 𝑗

(𝑧𝑡+1 | 𝑧1:𝑡 )
P(𝑖∗ | 𝑧1:𝑡 )

𝑑𝜇

= 𝑤𝑡

∑︁
𝑗∈𝐼

P( 𝑗 | 𝑧1:𝑡 )
∫
Z

P𝜏 𝑗
(𝑧𝑡+1 | 𝑧1:𝑡 ) 𝑑𝜇

(𝑐)
= 𝑤𝑡 (9)

where (𝑎) is by the definition (5), (𝑏) follows from cancellation and positivity of the integrand,
𝑤𝑡 := P(𝑖∗ | 𝑍1:𝑡 = 𝑧1:𝑡 )−1 is the realization of 𝑊𝑡 , and (𝑐) follows because both the posterior and
the conditional probability measure integrate to 1.
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This holds for any 𝑧1:𝑡 , so we can remove the conditional:

E𝜏∗ [𝑊𝑡+1 | 𝑤𝑡 ] =
∫
𝑧1 ,...,𝑧𝑡

E𝜏∗ [𝑊𝑡+1 |𝑧1:𝑡 , 𝑤𝑡 ] P𝜏∗ (𝑧1, . . . , 𝑧𝑡 | 𝑊𝑡 = 𝑤𝑡 ) 𝑑𝜇⊗𝑡

(𝑎)
=

∫
𝑧1:𝑡

E𝜏∗ [𝑊𝑡+1 |𝑧1:𝑡 ] P𝜏∗ (𝑧1:𝑡 | 𝑤𝑡 ) 𝑑𝜇⊗𝑡

(𝑏)
≤

∫
𝑧1:𝑡

𝑤𝑡 P𝜏∗ (𝑧1:𝑡 | 𝑤𝑡 ) 𝑑𝜇⊗𝑡

=𝑤𝑡

where (𝑎) follows because 𝑤𝑡 is a function of 𝑧1:𝑡 and (𝑏) is Inequality 9. ⊠

Proposition 4.2 (Posterior on truth). For all 𝛿 > 0, with probability at least 1− 𝛿, inf𝑡 P(𝑖∗ | 𝑍1:𝑡 ) ≥
𝛿 P(𝑖∗); that is, 𝜏∗

({
𝑧1:∞ : inf𝑡 P(𝑖∗ | 𝑧1:𝑡 ) < 𝛿 P(𝑖∗)

})
≤ 𝛿, or equivalently:

𝜏∗
(
sup
𝑡≥0

𝑊𝑡 ≥ (𝛿 P(𝑖∗))−1) ≤ 𝛿 (6)

Proof of Proposition 4.2. By Ville’s inequality (Ville, 1939) for the supermartingale 𝑊𝑡 := P(𝑖∗ |
𝑍1:𝑡 )−1, for any 𝜆 > 0:

𝜏∗
(
sup
𝑡≥0

𝑊𝑡 ≥ 𝜆

)
≤ E[𝑊0]

𝜆
=

1
𝜆 P(𝑖∗)

Setting 𝜆 = (𝛿 P(𝑖∗))−1, we get

𝜏∗
(
sup
𝑡≥0

𝑊𝑡 ≥ (𝛿 P(𝑖∗))−1) ≤ 𝛿

and given that{
𝑧1:∞ : sup

𝑡≥0
𝑤𝑡 := sup

𝑡≥0
P(𝑖∗ | 𝑧1:𝑡 )−1 > (𝛿 P(𝑖∗))−1} =

{
𝑧1:∞ : inf

𝑡≥0
P(𝑖∗ | 𝑧1:𝑡 ) < 𝛿 P(𝑖∗)

}
,

the result follows. ⊠

Proposition 4.4 (Weak harm probability bound). For any 𝛿 > 0, with probability at least 1 − 𝛿, the
following holds for all 𝑡 ∈ N and all 𝑥𝑡 :

P(𝐻𝑡 = 1 | 𝑍1:𝑡 , 𝜏
∗, 𝑥𝑡 ) ≤ sup

𝑖∈𝐼

P(𝑖 | 𝑍1:𝑡 ) P(𝐻𝑡 = 1 | 𝑍1:𝑡 , 𝜏𝑖 , 𝑥𝑡 )
𝛿 P(𝑖∗) .

Proof of Proposition 4.4. Substituting 𝑖 for 𝑖∗ on the r.h.s. can never increase the r.h.s., since 𝑖∗ ∈ 𝐼.
Then, after canceling and rearranging the terms, the proposition is readily implied by Prop. 4.2. ⊠

Proposition 4.5 (True theory dominance). If 𝛼 < 𝛿 P(𝑖∗), then with probability at least 1 − 𝛿, for
all 𝑡 ∈ N, 𝑖∗ ∈ I𝛼

𝑍1:𝑡
.

Proof of Proposition 4.5. For any 𝑡 ≥ 1, by Prop. 4.2,

𝛿 ≥ 𝜏∗
({
𝑧1:∞ : inf

𝑡 ′
P(𝑖∗ | 𝑧1:𝑡 ′ ) < 𝛿 P(𝑖∗)

})
≥ 𝜏∗ ({𝑧1:∞ : P(𝑖∗ | 𝑧1:𝑡 ) < 𝛿 P(𝑖∗)})
≥ 𝜏∗ ({𝑧1:∞ : P(𝑖∗ | 𝑧1:𝑡 ) < 𝛼}).

So 𝜏∗ ({𝑧1:∞ : P(𝑖∗ | 𝑧1:𝑡 ) ≥ 𝛼}) ≥ 1 − 𝛿, and the result follows by the fact that I𝛼
𝑍1:𝑡

⊇ {𝑖 ∈ 𝐼 : P(𝑖 |
𝑍1:𝑡 ) ≥ 𝛼}, since the sum in (7) never exceeds 1. ⊠

Proposition 4.6 (Harm probability bound). If 𝛼 < 𝛿 P(𝑖∗), then with probability at least 1− 𝛿, for
all 𝑡 ∈ N and all 𝑥𝑡 ,

P(𝐻𝑡 = 1 | 𝑍1:𝑡 , 𝜏
∗, 𝑥𝑡 ) ≤ max

𝑖∈I𝛼
𝑍1:𝑡

P(𝐻𝑡 = 1 | 𝑍1:𝑡 , 𝜏𝑖 , 𝑥𝑡 ) (8)

Proof of Proposition 4.6. This follows directly from Prop. 4.5. ⊠
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