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Abstract

Pre-trained language models (PLMs) excel for001
In-Topic setups where training and evaluation002
data originate from the same topics. Simulta-003
neously, they struggle with Cross-Topic setups004
where we withhold instances from distinct top-005
ics for evaluations. In this paper, we aim to006
understand better how and why such general-007
ization gaps emerge by probing various PLMs008
for different aspects. We show for the first time009
that these generalization gaps and the fragility010
of token-level interventions notably vary across011
PLMs. Further, by evaluating large language012
models (LLMs), we show how our analysis013
scales to bigger models. Overall, we observed014
diverse pre-training objectives and architectural015
regularization contribute to more robust PLMs016
and mitigate generalization gaps. Our research017
attributes to a better understanding of PLMs,018
selecting appropriate ones, or building more019
robust ones. 1020

1 Introduction021

Fine-tuning is widely used to impart pre-trained022

language models (PLMs) (Devlin et al., 2019; Liu023

et al., 2019; He et al., 2021; Radford et al., 2019)024

new tasks and results on remarkable performance025

gains for general NLP - including GLUE (Wang026

et al., 2018) or SuperGLUE (Wang et al., 2019).027

However, such benchmarks are not well aligned028

to real-world applications where data is limited or029

unavailable. At the same time, PLMs may not meet030

expectations when we expect heavy disparities be-031

tween training and testing data, like Cross-Topic032

evaluation (Sapkota et al., 2014; Stab et al., 2018;033

Ren et al., 2021). As a result, apparent general-034

ization gaps exist between the commonly used In-035

Topic and the more realistic Cross-Topic evaluation036

setup. These gaps primarily arise when training037

and testing data originate from the same topics038

and cover the same vocabulary (In-Topic) or from039

1We provide data and code anonymized online.

Figure 1: Generalization gap of fine-tuning PLMs on
argumentative stance detection (Stab et al., 2018) in the
In- or Cross-Topic evaluation setup. The dashed line
marks the ideal case of equal performance.

different topics (Cross-Topic). For Cross-Topic, 040

we see topic-specific tokens encapsulating the se- 041

mantic distinctions between topics and contributing 042

to distribution shifts. Consequently, it is impera- 043

tive that PLMs effectively generalize learned tasks 044

across such shifts, particularly for Cross-Topic. 045

Exemplary, we illustrate in Figure 1 generaliza- 046

tion gaps when fine-tuning on the UKP ArgMin 047

dataset (Stab et al., 2018) for In- and Cross-Topic. 048

This Argument Mining dataset annotates arguments 049

as either in favor, against, or neutral towards one 050

of eight topics like Gun Control. Although we an- 051

ticipate a better performance of PLMs for In-Topic, 052

we make a crucial observation that In- vs. Cross- 053

Topic performance differences vary considerably 054

across PLMs - like BART performing similarly for 055

In- but outperforming the others for Cross-Topic. 056

As a result, we can not generalize findings or draw 057

practical conclusions from one setup to another - 058

such as choosing a model for new data. 059

The analysis and comparison of In- vs. Cross- 060

Topic generalization gaps are crucial to building 061

more robust models but remain understudied in 062

the current literature. Mostly general behaviors of 063

PLMs (Belinkov et al., 2017; Peters et al., 2018) 064

are studied, while little research has been done 065
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on generalization (Aghazadeh et al., 2022; Zhu066

et al., 2022). To the best of our knowledge, we067

propose for the first time an in-depth analysis of068

the In- and Cross-Topic generalization gap across069

various PLMs (§ 2). More precisely, we propose070

three probing-based experiments covering three071

commonly used linguistic tasks (dependency-tree072

parsing, part-of-speech tagging, and named-entity073

recognition) and argumentative stance detection074

(UKP ArgMin) as a reference.075

Ultimately, this work contributes by demonstrat-076

ing the effectiveness of probing to analyze and com-077

pare different generalization scenarios and their gap078

(like In- vs. Cross-Topic). We conduct three com-079

prehensive experiments to examine generalization080

capabilities thoroughly:081

How do generalization gaps of PLMs differ after082

pre-training? (§ 4) The probing results showed083

that generalization gaps differ among the PLMs084

and are more pronounced for semantic than syn-085

tactic probing tasks. Further, we observe apparent086

probing performance degradation when consider-087

ing lexical unseen instances - like highly rare en-088

tities. In addition, we compare PLMs with large089

language models (LLMs) and found LLMs have090

advantages on semantic while PLMs on syntactic091

probing tasks.092

How do PLMs depend on topic-specific tokens?093

(§ 5) By removing information about topic-094

specific tokens, PLMs demonstrate apparent dif-095

ferences in their reliance and robustness regarding096

such vocabulary, which crucially contributes to top-097

ical distribution shifts.098

How do generalization gaps evolve during fine-099

tuning? (§ 6) We found fine-tuning significantly100

impacts the embedding space when we re-probed101

PLMs tuned on the UKP ArgMin dataset for In- or102

Cross-Topic. We observe that fine-tuning partly103

erases linguistic properties, which is more pro-104

nounced for In- than Cross-Topic fine-tuning.105

2 In- and Cross-Topic Probing106

The following section formally outlines the used107

probing setup and tasks before elaborating on the108

generalization gap, and comparing In- and Cross-109

Topic probing evaluation.110

2.1 Probing Setup and Tasks111

We define a probe fp comprised of a frozen encoder112

h and linear classifier c without any intermediate113

layer. This classifier is trained to map instances 114

X = {x1, . . . , xn} to targets Y = {y1, . . . , yn} 115

for a given probing task. Using a frozen PLM as h, 116

the probe converts xi into a vector hi. In detail, we 117

encode the entire sentence, which wraps xi, and 118

average relevant positions of xi to find hi. Relevant 119

positions for the considered probing task are either 120

single tokens for part-of-speech tagging (POS)), a 121

span for named entity recognition (NER), or the 122

concatenation of two tokens for dependency tree 123

parsing (DEP). Then, the classifier c utilizes hi to 124

generate a prediction ŷi, as shown in Equation 1. 125

ŷi = fp(xi) = c(h(xi)) (1) 126

2.2 Generalization Gap 127

Generalization gaps arise when we compare evalu- 128

ation setups focusing on different capabilities for 129

the same task. This work focuses on gaps occur- 130

ring when we use data from the same (In-Topic) or 131

different topics (Cross-Topic) for training and eval- 132

uation. Such topics T = {t1, . . . , tm} are given 133

by a dataset and involve semantically grouping its 134

instances. - i.e., arguments about Nuclear Energy. 135

This gap between In- and Cross-Topic is visible 136

in Figure 2, which shows how NER instances (in 137

blue) are distributed in the semantic space. For 138

Cross-Topic, entities cover only specific topics and 139

thereby are less broadly spread, while In-Topic 140

ones are spread more broadly since they cover all 141

datasets’ topics. Simultaneously, we note more lex- 142

ically unseen entities (in red) during training for 143

Cross-Topic. 144

In an ideal case, the generalization gaps do not 145

exist because pre-trained language models (PLMs) 146

are robust enough to overcome such distribution 147

shifts between different evaluation setups. How- 148

ever, practically, we saw in Figure 1 these gaps 149

being pronounced on a varying scale for different 150

models. 151

2.3 Difference between In- and Cross-Topic 152

Evaluation 153

By evaluating probing tasks for In- and Cross- 154

Topic, we examine the varying generalization gaps 155

between these setups across different PLMs. 156

Cross-Topic With Cross-Topic evaluation, we 157

investigate how well a probe generalizes when the 158

train, dev, and test instances cover distinct sets 159

of topics {T (train), T (dev), T (test)}. A probe fp 160

must generalize across the distribution shift in this 161
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Figure 2: Density plot of the NER test split (blue) for In-
and Cross-Topic, encoded with bert-base-uncased and
reduced with the same t-SNE model (van der Maaten
and Hinton, 2008). While both test splits have the same
number of instances, the Cross-Topic test split has more
instances (a subset of all) with unseen vocabulary (red)
compared to In-Topic.

setup. This shift originates because distinct topics162

cover different specific vocabulary Z - i.e., Z(test)163

for topics in T (test). We formally describe this164

shift, denoted as ∆Z, as the relative complement165

between topic-specific vocabulary from train and166

test instances - ∆Z = Z(train) \Z(test). For Cross-167

Topic, we expect ∆Z to be large (Figure 2).168

In-Topic In contrast, ∆Z is smaller for the In-169

Topic setup because instances from every split170

(train/dev/test) cover the same topics. We expect171

similar topic distribution and minor semantic differ-172

ences within these splits compared to Cross-Topic173

(Figure 2). Thus, we see fewer difficulties for In-174

Topic because a classifier does not need to general-175

ize across a big distribution shift ∆Z.176

Topic-Specific Vocabulary As discussed previ-177

ously, we see topic-specific vocabulary as one178

main reason for generalization gaps between In-179

and Cross-Topic because ∆Z differs for these se-180

tups considering a dataset d covering topics T =181

t1, . . . , tm. The topic-specificity of a token zi is182

a latently encoded property within the encodings183

hi for a token wi. To capture this property on184

the token level, we adopt the approach of Kawin-185

tiranon and Singh (2021) and use the maximum186

log-odds-ratio ri of a token regarding a set of top-187

ics T . Firstly, we calculate the odds of finding the188

token wi in a topic tj as o(wi,tj) =
n(wi,tj)
n(¬wi,tj)

, where189

n(wi, tj) is the number of occurrences of wi in tj ,190

and n(¬wi, tj) is the number of occurrences of ev-191

ery other token ¬wi in tj . We then compute r as192

the maximum log-odds ratio of wi for all topics in193

T as r(wi,T ) = maxtj∈T (log(
o(wi,tj)
o(wi,¬tj)

)).194

Model # Params Objectives Data

ALBERT (Lan et al., 2020) 12M MLM + SOP 16GB
BART (Lewis et al., 2020) 121M DAE 160GB
BERT (Devlin et al., 2019) 110M MLM + NSP 16GB

DeBERTa (He et al., 2021) 100M MLM 80GB
RoBERTa (Liu et al., 2019) 110M MLM 160GB
ELECTRA (Clark et al., 2020) 110M MLM+DISC 16GB
GPT-2 (Radford et al., 2019) 117M LM 40GB

Table 1: Overview of the used PLMs trained on MLM,
LM, DISC, NSP, SOP, or DAE objectives.

3 Experimental Setup 195

We propose three experiments to analyze the vary- 196

ing generalization gap between PLMs after pre- 197

training (§ 4), their dependence on topic-specific 198

vocabulary (§ 5), and the evolution of these gaps 199

during fine-tuning (§ 6). Following, we outline gen- 200

eral details about these experiments, while details 201

and results are provided in the subsequent sections. 202

Models We examine how various PLMs (Table 1) 203

with varying pre-training objectives or architectural 204

designs differ regarding our probing tasks. We 205

cover PLMs pre-trained using masked language 206

modeling (MLM), next sentence prediction (NSP), 207

sentence order prediction (SOP), language mod- 208

eling (LM), discriminator (DISC), and denoising 209

autoencoder (DAE) objectives. We group them 210

into the ones pre-trained using token- (MLM) and 211

sentence-objectives (NSP, SOP, or DAE) and four 212

purely token-based pre-trained (MLM, LM, DISC). 213

We consider the base-sized variations to compare 214

their specialties in a controlled setup. Apart from 215

these seven contextualized PLMs, we use a static 216

PLM with GloVe (Pennington et al., 2014). 217

Data We require a dataset with distinguishable 218

topic annotations to evaluate probing tasks in the 219

In- and Cross-Topic evaluation setup. Therefore, 220

we mainly2 rely on the UKP ArgMin dataset (Stab 221

et al., 2018), which provides 25,492 arguments an- 222

notated for their argumentative stance (pro, con, or 223

neutral) towards one of eight distinct topics like 224

Nuclear Energy or Gun Control. Using these in- 225

stances, we heuristically generate at most 40,000 226

instances for the three linguistic properties depen- 227

dency tree parsing (DEP), part-of-speech tagging 228

(POS), or named entity recognition (NER) using 229

spaCy.3 Additionally, we consider the main task 230

2We verified our findings with another dataset in the Ap-
pendix § B.1.

3We show in the Appendix (§ B.8) that the heuristically
generated labels are reliable, and our results are well aligned

3



of the UKP ArgMin dataset (Stab et al., 2018) -231

argumentative stance detection (Stance). There-232

fore, we have a topic-dependent reference probe to233

relate the results of other probes and evaluate the234

generalization ability of PLMs on real-world tasks235

after pre-training. We use a three-folded setup for236

all these four probing tasks to consider the full data237

variability for both In- and Cross-Topic evaluation.238

Details about the compositions of these folds and239

how we ensure a fair comparison between In- and240

Cross-Topic are provided in the Appendix (§ A.2)241

as well as examples for probing tasks (Appendix242

§ A.1).243

Evaluation We evaluate the three folds of a prob-244

ing task on three random seeds to get nine mea-245

surements per task and calculate the macro aver-246

aged F1 score to consider the variability of labels.247

Since recent work (Voita and Titov, 2020; Pimentel248

et al., 2020) questioned whether purely quantita-249

tive measures (like F1) are enough to measure a250

probe’s success, we include the information com-251

pression I (Voita and Titov, 2020) for a holistic252

evaluation. It measures the effectiveness of a probe253

as the ratio ( u
mdl ) between uniform code length254

u = n ∗ log2(K) and minimum description length255

mdl, where u denotes how many bits are needed256

to encode n instances with label space of K. We257

follow online variation of mdl and use the same258

ten-time steps t1:11 = { 1
1024 ,

1
512 , ...,

1
2}, where259

we train a probe for every tj with a fraction of260

instances and evaluate with the same fraction of261

non-overlapping instances. Exemplary, for, t9 we262

use the first fraction of 1
4 instances to train and an-263

other fraction of 1
4 to evaluate. We find the final264

mdl as the sum of the evaluation losses of every265

time step t1:11. For Cross-Topic, we group train-266

ing instances into two groups of distinct topics and267

sample the same fraction of instances to train and268

evaluate. Thus, we ensure a similar distribution269

shift between training and evaluation fractions as270

in all instances.271

4 The Generalization Gap of PLMs272

The first experiment shows that the generalization273

gap already exists after pre-training and varies re-274

garding specific PLMs and probing tasks. We ana-275

lyze general (Table 2 and Figure 3) and fine-grained276

(Table 3) results and discuss them for the different277

evaluating setups, probing tasks, and PLMs. While278

with previous work.

DEP POS NER Stance Average

In Cross In Cross In Cross In Cross In Cross ∆

ALBERT 43.8 39.5 80.2 78.0 48.6 45.8 54.8 45.9 56.9 52.3 -4.6
BART 36.5 36.9 75.4 74.1 48.7 45.3 60.8 44.4 55.3 50.2 -5.1
BERT 25.4 25.6 68.5 67.5 45.4 41.6 56.9 43.0 49.0 44.4 -4.6
DeBERTa 32.8 29.9 73.7 74.6 48.8 42.4 59.8 45.8 53.4 48.2 -5.2
RoBERTa 25.1 23.6 64.0 65.5 48.4 42.1 51.8 40.1 47.3 42.8 -4.5
ELECTRA 33.6 33.6 75.3 75.3 41.5 41.2 46.6 43.1 49.3 48.3 -1.0
GPT-2 25.2 23.9 63.5 61.9 45.5 38.6 51.1 38.4 46.3 40.7 -5.6
GloVe 12.1 11.9 26.5 26.2 43.4 37.5 41.6 34.1 30.9 27.4 -3.5
Avg. ∆ -1.2 -0.5 -4.5 -11.0 - - -

Table 2: In- and Cross-Topic probing results for eight
PLMs. We report the macro F1 over three random seeds,
the average difference between the two setups (last row),
and their average per PLM (last three columns). Best
results within a gap of 1.0 are marked by columns.

DEP POS NER

all ∆ seen ∆ unseen all ∆ seen ∆ unseen all ∆ seen ∆ unseen

Instance Ratio - 85% 15% - 86% 14% - 65% 35%

In
-T

op
ic

ALBERT 43.8 +0.21 -3.2 80.2 +0.41 -17.7 48.6 +1.1 -5.8
BART 36.5 +0.13 -3.0 75.4 +0.20 -16.5 48.7 +1.3 -7.0
BERT 25.4 -0.02 -0.8 68.5 +0.20 -16.5 45.4 +1.0 -5.8
DeBERTa 32.8 +0.07 -1.5 73.7 +0.09 -12.7 48.8 +1.0 -5.6
RoBERTa 25.1 -0.01 -0.9 64.0 -0.04 -15.5 48.4 +1.0 -5.7
Average - -0.08 -1.9 - +0.17 -15.8 - +1.1 -6.0

Instance Ratio - 78% 22% - 81% 19% - 51% 49%

C
ro

ss
-T

op
ic ALBERT 39.5 +0.03 -2.3 78.0 +0.51 -12.9 45.8 +2.2 -5.3

BART 36.9 +0.01 -4.0 74.1 +0.24 -16.5 45.3 +2.4 -5.8
BERT 25.6 -0.09 -0.7 67.5 +0.20 -14.0 41.6 +1.9 -5.1
DeBERTa 29.9 -0.07 -1.3 74.6 +0.14 -11.7 42.4 +2.0 -5.2
RoBERTa 23.6 -0.22 -0.3 65.5 +0.00 -14.7 42.1 +1.9 -5.2
Average - -0.08 -1.7 - +0.22 -14.0 - +2.1 -5.3

Table 3: Performance difference of seen and unseen
instances compared to the full set (all). We report for
ALBERT, BART, BERT, DeBERTa, & RoBERTa, and
include the ratio of seen and unseen instances.

we mainly focus on mid-size PLMs usable for fine- 279

tuning, we will close this experiment by comparing 280

them with large language models (LLMs) in § 4. 281

Design We evaluate eight PLMs using the probe 282

fp (§ 2.1) on the probing tasks DEP, POS, NER, 283

and Stance. We verified these tasks by observ- 284

ing significant performance drains when evaluat- 285

ing them on randomly initialized PLMs (Appendix 286

§ B.2). For a holistic evaluation, we provide results 287

by grouping instances into two categories: seen 288

and unseen. We define seen instances as already 289

processed during training but in another context. 290

For example, the pronoun he might appear in both 291

training and test data, but in distinct sentences. By 292

evaluating the PLMs on seen instances, we gain in- 293

sights into the influence of token-level lexical infor- 294

mation versus context information from surround- 295

ing tokens. In contrast, unseen instances were not 296

encountered during the training of a probe. They 297

allow assessing whether PLMs generalize to tokens 298

that are similar to some extent (such as Berlin and 299

Washington) but not seen during training. 300
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Figure 3: Comparision of the difference in ∆F1 and ∆I
between Cross-Topic and In-Topic for all eight PLMs
on the four probing tasks.

Results for Evaluation Setups Upon analyzing301

Table 2, we observe a clear generalization gap302

between In- and Cross-Topic evaluation for all303

tasks and PLMs. As shown in Figure 3, the mag-304

nitude of this gap (∆F1) correlates with the dif-305

ference in compression (∆I). Interestingly, we306

find a stronger correlation between F1 and I for307

Cross-Topic (ρ = 0.72) as compared to In-Topic308

(ρ = 0.69). Thus, a higher performance level, like309

for In-Topic, leaves less room for compression im-310

provements.311

Further, we examine the performance of seen312

and unseen instances in Table 3. It shows that seen313

performs slightly better than all, while unseen ones314

underperform the complete set (all) and seen in-315

stances. Considering the average over PLMs, there316

are fewer relative gains for seen for In-Topic and317

more loss for unseen instances (+1.2, -6.0 for NER)318

compared to Cross-Topic (+2.0, -5.3 for NER).319

This observation relates to the lower percentage320

of unseen instances (i.e., made of topic-specific321

terms) for In- compared to Cross-Topic. We see322

unseen instances on In-Topic are harder and cover323

rare vocabulary, and seen instances on Cross-Topic324

are easier and made of general terms. These results325

confirm our theoretic and semantic assumptions326

(§ 2).327

Results for Probing Tasks Considering Table 2328

and Figure 3, we note higher generalization gaps329

(Avg. ∆ of -4.5 and -11.0) for semantic tasks (NER330

and Stance) than for syntactic tasks (DEP and POS)331

- Avg. ∆ of -1.2 and -0.5. We verify this trend332

with results in the Appendix (§ B.5), where we333

observe a more pronounced gap for semantic NER334

classes (like ORG) than for syntactic ones - like335

ORDINAL.336

Next, we separately compare tasks for seen and337

unseen instances. DEP shows the slightest perfor-338

mance difference compared to all. We assume this339

is due to the pairwise task nature, which leads to a340

larger shared vocabulary between unseen and train- 341

ing instances. We assume frequent words (like of ) 342

are part of the unseen instances. In contrast, appar- 343

ent differences between NER and POS are visible 344

- with less performance drain on unseen instances 345

for NER than POS. Therefore, we assume for NER 346

a higher semantic overlap with training instances 347

since they could include - as being an n-gram - 348

words from the training vocabulary. In contrast, 349

tokens of unseen POS instances are always single 350

words; thus, we assume a smaller semantic overlap 351

with the training. 352

Results for Encoding Models We now com- 353

pare PLMs amongst themselves. The four best- 354

performing PLMs of In-Topic differ up to 7.6 (AL- 355

BERT - BERT), while for Cross-Topic, this differ- 356

ence narrows to 4.1 (ALBERT - ELECTRA). These 357

results confirm the varying generalization gap be- 358

tween them and, again, that we can not transfer 359

conclusions from one evaluation setup to another. 360

For example, the probing performance of BART for 361

In-Topic Stance is the best and the third best for 362

Cross-Topic. 363

Generally, we do not see a clear correlation be- 364

tween better average performance and a smaller 365

generalization gap. PLMs like DeBERTa perform 366

better for In- and Cross-Topic but show a bigger 367

gap (-5.1) compared to lower performing PLMs 368

like ELECTRA (-1.0), but there are also worse 369

PLMs with a bigger gap (GPT-2, -5.6) or better 370

ones with a smaller gap (ALBERT, -4.6). Over- 371

all, we see the generalization gap being more pro- 372

nounced for better-performing PLMs. 373

Considering absolute performance, AL- 374

BERT and BART performs the best on average for 375

both evaluation setups, while ELECTRA excels 376

POS and DEP, and DeBERTa performs for NER 377

and Stance. In contrast, BERT, RoBERTa, GPT-2, 378

and GloVeunderperform the others. Thus, PLMs 379

with architectural regularization, such as layer-wise 380

parameter sharing (ALBERT), encoder-decoder 381

layers (BART), disentangled attention (DeBERTa), 382

or discriminator (ELECTRA), tend to provide 383

higher Cross-Topic performance. Similarly, 384

regularized PLMs, such as ALBERTor DeBERTa, 385

generally achieve more performance gains for 386

seen instances and fewer performance drops for 387

unseen ones than models without regularization 388

such as BERT or RoBERTa. We hypothesize 389

that architectural and regularization aspects equip 390

PLMs with a more generalizable and robust 391
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DEP POS NER Stance Average

In Cross In Cross In Cross In Cross In Cross ∆

ALBERT 43.8 39.5 80.2 78.0 48.6 45.8 54.8 45.9 56.9 52.3 -4.6
BART 36.5 36.9 75.4 74.1 48.7 45.3 60.8 44.4 55.3 50.2 -5.1

T5 (3B) 33.9 32.5 68.5 68.9 48.3 42.2 53.2 42.1 51.0 46.5 -4.5
FLAN-T5 (3B) 33.1 29.7 66.8 66.9 48.5 43.1 56.0 45.1 51.1 46.2 -4.9
GPT-Neo (2.7B) 36.4 33.1 76.4 77.1 52.9 49.6 62.4 40.5 57.0 50.1 -6.9

Table 4: Results (macro F1) of the four probing tasks
using the two overall best-performing PLMs (AL-
BERT and BART) in the In- and Cross-Topic setup
based on the ArgMin dataset (Table 2) and three LLMs.

encoding space.392

Results for Larger Models We compare in Ta-393

ble 4 three relevant and open accessible LLMs with394

the two best performing models (ALBERT and395

BART) on the first experiments. In general, we see396

that the scaling law (Brown et al., 2020) applies to397

our setting for LLMs with LM-based pre-training.398

Specifically, GPT-Neo (2.7B) (Black et al., 2021)399

is more robust and outperforms GPT-2 while per-400

forming on par or slightly better than the other401

PLMs. In contrast, T5 (3B) (Raffel et al., 2022)402

or FLAN-T5 (3B) (Chung et al., 2022) underper-403

form PLMs on syntactic tasks and perform slightly404

worse on semantic tasks. We hypothesize that their405

task-specific pre-training result in less robust and406

generalizable token encoding space. This is in line407

with the fact that amongst these two LLMs, FLAN-408

T5 (3B) performs worse than T5 (3B), which expe-409

rienced additional instruction-based pre-training.410

5 The Dependence on Topic-Specific411

Vocabulary412

To this point, we saw that the generalization gap413

varies between different PLMs and probing tasks.414

Since we see topic-specific vocabulary crucially415

affects generalization gaps, we analyze the vary-416

ing dependence on the topic-specific vocabulary of417

PLMs using Amnesic Probing (Elazar et al., 2021).418

We observe clear differences among PLMs and419

therefore assume that their embedding space clearly420

differs beyond single evaluation metrics. Therefore,421

we emphasize considering various PLMs when us-422

ing Amnesic Probing. Additional insights of com-423

paring seen and unseen instance and distinct NER424

classes are provided in the Appendix (§ B.4, § B.6).425

Design To measure how PLMs depend on topic-426

specific vocabulary, we employ Amnesic Probing427

(Elazar et al., 2021) to remove the latently encoded428

topic-specificity zi from the embeddings hi of a429

token wi. More precisely, we compare how the430

performance of a probing task (like NER) changes 431

when we remove zi. A more negative effect indi- 432

cates a higher dependence on topic-specific vocab- 433

ulary, while this property is a hurdle when perfor- 434

mance improves. We first train a linear model on 435

token-level topic-specificity r (§ 2.3). To shape it 436

as a classification task, we categorize r into three 437

classes (low, medium, high). 4 Next, we find a 438

projection matrix P that projects all embeddings 439

hi - gathered as H - using the learned weights Wl 440

of l to the null space as WlPH = 0. Using P 441

we update hi by neutralizing topic-specificity from 442

the input as h
′
i = Phi before training the probe. 443

Following (Elazar et al., 2021), we verified our re- 444

sults by measuring less effect of removing random 445

information from hi (see Appendix § B.3). 446

Results Considering Figure 4, we see ALBERT, 447

BART, and BERT depend less on topic-specific vo- 448

cabulary. We see their diverse pre-training (token- 449

and sentence-objectives or sentence denoising) re- 450

sults in a more robust embedding space. Surpris- 451

ingly, they show positive effects (3.2 for DEP 452

for BART) when removing topic-specificity. This 453

could remove potentially disturbing parts of the em- 454

bedding space. Similarly, GPT-2 is less affected 455

by the removal - we assume this is due to its gen- 456

erally lower performance level. Therefore, it has 457

less room for performance drain, and capturing 458

topic-specificity is less powerful. 459

Comparing In- and Cross-Topic setups shows 460

a narrowing generalization gap for more affected 461

models (like RoBERTa and GloVe on NER or 462

Stance). Simultaneously, less affected PLMs ei- 463

ther maintain the gap or enlarge it slightly - like 464

BART on DEP, NER, or Stance. Further, De- 465

BERTa, RoBERTa, ELECTRA, and GloVe rely 466

more on topic-specific vocabulary since they 467

show significant performance loss (up to 34.6 468

for GloVe on POS) when removing this infor- 469

mation. Specifically, GloVe as a static language 470

model, and RoBERTa is affected the highest for 471

all tasks. ELECTRA shows similar behavior, but 472

is less pronounced for POS. Thus, its reconstruc- 473

tion pre-training objective provides a more robust 474

embedding space than purely MLM (DeBERTa or 475

RoBERTa). Comparing, DeBERTa and RoBERTa, 476

DeBERTa is less affected by the removal of se- 477

mantic tasks (NER and Stance). We hypothesize 478

that distinguishing between token content and to- 479

ken position via disentangled attention makes De- 480

4Please find examples in the Appendix § A.6.
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Figure 4: Comparison of the probing results with (blue bars) or without (red bars) topic information. The white text
indicates the difference between these two scenarios (∆F

\T
1 ).

BERTa more robust for the semantic than for syn-481

tactic tasks (DEP and POS).482

6 The Evolution of the Generalization483

Gap during Fine-Tuning484

Finally, we re-evaluate fine-tuned PLMs using our485

proposed probing setups and show that fine-tuning486

leads to a drain in probing performance. We use487

these results to retrace apparent differences be-488

tween evaluation setups and the varying general-489

ization gap between PLMs. This is relevant for a490

broader understanding of how fine-tuning affects491

PLMs (Mosbach et al., 2020; Kumar et al., 2022a),492

and what they learn during fine-tuning (Merendi493

et al., 2022; Ravichander et al., 2021).494

Design We fine-tune the PLMs on an argumen-495

tative stance detection task and re-evaluate them496

on the probing tasks DEP, POS, and NER. To be497

consistent with our probing setup, we used the498

same folds for fine-tuning. Further details are499

in the Appendix (§ A.5). We compare these re-500

sults with the probing performance of their pre-501

trained counterparts (§ 4 and § 5) and correlate502

this change with the generalization gap observed503

on the downstream task. We limit our analysis to504

ALBERT, BERT, BART, DeBERTa, and RoBERTa.505

Results Table 5 shows that fine-tuning clearly506

boost the performance on Stance compared to the507

probing performance (§ 4) but leads to a clear508

performance drop (∆F1) for both evaluation se-509

tups and the probing tasks. Cross-Topic achieved510

more gains on average (+12.6) and fewer drains511

(-17.1) on the three linguistic properties than In-512

Topic (+9.5, -20.4). On average, we assume that513

In-Topic fine-tuning affects the encoding space of514

Stance DEP POS NER Avg. DEP POS NER

F1 fine-tuned ∆F1 probing ∆F
\T
1

In
-T

op
ic

ALBERT 55.4 +0.6 -27.3 -40.2 -25.0 -30.8 -0.6 -3.0 -0.1
BART 69.8 +9.0 -17.3 -32.2 -4.0 -17.8 -0.8 -4.0 +0.3
BERT 67.2 +10.3 -7.5 -24.8 +1.0 -10.4 +0.4 +0.7 +1.1
DeBERTa 70.1 +10.3 -13.2 -25.3 -8.8 -15.8 -0.8 -3.8 -0.4
RoBERTa 68.9 +17.1 -19.7 -48.6 -29.7 -27.2 -0.8 -3.0 -0.7
Avg. 66.3 +9.5 -16.6 -32.6 -12.1 -20.4 -0.5 -2.6 +0.1

C
ro

ss
-T

op
ic ALBERT 51.4 +5.5 -14.4 -20.3 -12.6 -15.8 +1.6 -1.3 +2.1

BART 61.9 +17.5 -16.5 -33.9 -5.4 -18.6 -1.0 -3.5 -1.6
BERT 56.6 +13.6 -5.7 -19.5 +0.6 -8.2 +0.7 +0.6 +1.2
DeBERTa 55.9 +10.1 -13.4 -33.4 -11.8 -19.5 -1.2 -8.6 +1.6
RoBERTa 55.5 +15.4 -16.6 -48.3 -23.1 -23.5 -1.9 -4.8 -0.3
Avg. 56.3 +12.6 -13.0 -29.3 -9.1 -17.1 -0.4 -3.5 +0.6

Table 5: Results of evaluating our probing setup on fine-
tuned PLMs on Stance. The first column shows these
fine-tuned results and the gained improvement com-
pared to probing for Stance on pre-trained PLMs (Ta-
ble 2). Next, we show performance differences between
pre-trained and fine-tuned PLMs (∆F1 probing) and
how removing topic-specificity affects the fine-tuned
PLMs (∆F

\T
1 ).

PLMs more heavily than Cross-Topic. Regarding 515

the different probing tasks, the performance drain 516

is more pronounced for syntactic tasks (DEP and 517

POS) than semantic tasks (NER). This hints that 518

PLMs acquire competencies of semantic nature - 519

which holds for stance detection. Similarly, remov- 520

ing topic-specificity influences fine-tuned PLMs 521

the least for NER. At the same time, this removal 522

is more pronounced for Cross-Topic. This con- 523

firms the assumption that the Cross-Topic setup 524

has smaller effects on PLMs internals, since we 525

saw big impacts of this removal (§ 5). 526

Considering the single PLMs, we see apparent 527

differences. For example, ALBERT, with its shared 528

architecture and priorly best-performing PLM, ex- 529

periences big probing performance drains and the 530

smallest fine-tuning gains (+0.6, +5.5). In con- 531
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trast, we note effective fine-tuning of BERTwith532

+10.3 for In- and +13.6 for Cross-Topic, and that533

it lost the least probing performance. Compar-534

ing RoBERTa and DeBERTa reveals again the ef-535

fectiveness of architectural regularization of De-536

BERTa. RoBERTa shows the most gains when537

fine-tuning on Stance and almost catching up with538

DeBERTa. However, it experiences a more clear539

performance drain (-27.2, -23.5) regarding the540

probing tasks for In- and Cross-Topic compared541

to DeBERTa (-15.8, -19.5). Next, we focus on542

BART and its superior Cross-Topic performance543

on Stance. It seems already well-equipped for this544

downstream task due to its high In-Topic probing545

performance on Stance. Therefore, it can learn the546

task more robustly during fine-tuning.547

7 Related Work548

The rise of PLMs (Devlin et al., 2019; Liu et al.,549

2019; Radford et al., 2019; He et al., 2021) enabled550

big success on a wide range of tasks (Wang et al.,551

2018, 2019). Nevertheless, they still fall behind552

on more realistic Cross-Topic, like generalizing553

towards unseen topics (Stab et al., 2018; Gulra-554

jani and Lopez-Paz, 2021; Allaway and McKeown,555

2020). One primary reason is that PLMs often556

rely on unwanted spurious correlations. Despite557

PLMs seeing such vocabulary during pre-training,558

they failed to consider test vocabulary in the re-559

quired fine-grained way (Thorn Jakobsen et al.,560

2021; Reuver et al., 2021). Further, Kumar et al.561

(2022b) found linear models can outperform fine-562

tuning PLMs when considering out-of-distribution563

data. Thus, a broader understanding of PLMs in564

challenging evaluation setups is crucial.565

Probing (Belinkov et al., 2017; Conneau et al.,566

2018; Peters et al., 2018) helps to analyze inners567

of PLMs. This includes to examine how linguistic568

(Tenney et al., 2019a,b), numeric (Wallace et al.,569

2019), reasoning (Talmor et al., 2020), or discourse570

(Koto et al., 2021) properties are encoded. Other571

works focus on specific properties used for other572

tasks (Elazar et al., 2021; Lasri et al., 2022), or fine-573

tuning dynamics (Merchant et al., 2020; Zhou and574

Srikumar, 2022; Kumar et al., 2022b). However,575

these works target the commonly used In-Topic576

setup and less work considering Cross-Topic setups.577

Aghazadeh et al. (2022) analyzed metaphors across578

domains and language, or Zhu et al. (2022) cross-579

distribution probing for visual tasks. They found580

that models generalize to some extent across distri-581

bution shifts in probing-based evaluation. Never- 582

theless, these works focus on specialized tasks and 583

consider the generalizations across distributions in 584

isolation. In contrast, we propose with our exper- 585

iments a more holistic probing-based evaluation 586

of PLMs, covering different generalization aspects 587

after pre-training and fine-tuning. 588

8 Conclusion 589

Discussion We demonstrated the practical use- 590

fulness of probing to analyze and compare PLMs 591

on different generalization setups. Thereby, we 592

show that generalization gaps vary regarding PLM 593

and probing tasks. Further, we provide prelimi- 594

nary insights into how LLMs differ from PLMs 595

using our proposed setup and found they tend to 596

have strong performance for semantic tasks. By 597

re-evaluating fine-tuned PLMs, we found that gen- 598

eralization gaps arise differently and linguistic 599

properties partly disappear during training - be- 600

ing more prominent for In- than Cross-Topic fine- 601

tuning. Overall, we found architectural regulariza- 602

tion and diverse pre-training objectives positively 603

affect the generalizability and robustness of PLMs 604

- like, being less influenced by removing the topic- 605

specificity of tokens. We verified our results using 606

a second dataset from the social media domain 607

(Conforti et al., 2020) - details in the Appendix 608

§ B.1. 609

To conclude, we analyzed and compared PLMs 610

on different generalization setups and shed light on 611

why generalization gaps evolve differently across 612

PLMs. We emphasized the importance of differ- 613

ent pre-training or architectural specialties to im- 614

prove the robustness of PLMs. Further, we demon- 615

strated how probing could help to identify promis- 616

ing PLMs like BART, which seems to overcome 617

semantic difficulties for Cross-Topic more quickly 618

due to its high In-Topic probing performance on 619

the downstream task. 620

Outlook We extended the probing focus to ana- 621

lyze and compare In- and Cross-Topic generaliza- 622

tion capabilities and their varying generalization 623

gap of PLMs. With our findings in mind, we see 624

regularly probing PLMs and LLMs on new tasks 625

and considering forthcoming learning paradigms 626

as indispensable for a holistic evaluation of their 627

verity and multiplicity. Therefore, we will continue 628

to analyze language models, including a broader 629

set of tasks to increase our understanding of how, 630

why, and where they differ. 631
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Ethical Considerations and Limitations632

Automatic Annotations for Linguistic Proper-633

ties Our experiments require all instances origin634

in the same datasets with topic annotations. Thanks635

to this condition, we align all our experiments, like636

probing PLMs, with the same data as they got pre-637

trained. Therefore, we minimize other influences638

like semantic shifts of other datasets. However,639

there are no corresponding annotations for linguis-640

tic properties, which forces us to rely on automat-641

ically gathered annotations. This work addresses642

this issue by transparently stating the libraries and643

models we used to derive these annotations and644

providing the source code and the extracted labels645

in our repository. We compared our results (§ B.8)646

with previous work (Tenney et al., 2019a,b; He-647

witt and Liang, 2019) and found our results well648

aligned. Further, we verify the probing task results649

on the different PLMs with randomly initialized650

counter-parts (§ B.2) and confirm our findings with651

a second dataset (§ B.1).652

Definition of Topic-Specific Vocabulary This653

work considers a topic as a semantic grouping654

provided by a given dataset. As previously men-655

tioned, this focus on the context of one dataset656

allows in-depth and controlled analysis, like exam-657

ining the change of PLMs during fine-tuning. On658

the other hand, we need to thoroughly re-evaluate659

other datasets, since the semantic space and gran-660

ularity of the topic are different in almost every661

other dataset. Nevertheless, results in the Appendix662

(§ B.1) let us assume that our findings correlate663

with other datasets and domains. Further, we con-664

sider only token-level specific vocabulary, as done665

previously in literature (Kawintiranon and Singh,666

2021). We think that considering n-grams could667

give a better approximation of topic-specific terms.668

Still, we do not take them into account because Am-669

nesic Probing (Elazar et al., 2021) require token-670

level properties to apply resulting intervention on671

token-level tasks like POS.672

Impact of PLMs Design choices This work ana-673

lyzes PLMs regarding a set of different properties674

like pre-training objectives or architectural regu-675

larization. However, we do not claim the com-676

pleteness of these aspects nor a clear causal re-677

lationship. Making such a final causal statement678

would require significant computational resources679

to pre-train models to verify single properties with680

full certainty. Instead, we use same-sized model681

variations, evaluate all probes on three folds and 682

three random seeds to account for data variability 683

and random processes, and verify our results on a 684

second dataset. Nevertheless, we use them to cor- 685

relate results on aggregated properties (like having 686

diverse pre-training objectives or not) and not on 687

single aspects like the usefulness of the Sentence- 688

Order objective. 689
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A Additional Details of the Experiments998

A.1 Probing Tasks999

Table 6 shows examples and additional details of1000

the different probing tasks.1001

A.2 Fold Composition1002

We rely on a three-folded evaluation for In- and1003

Cross-Topic for a generalized performance mea-1004

sure. These folds cover every instance exactly once1005

in a test split. In addition, we require that In- and1006

Cross-Topic train/dev/test splits have the same num-1007

ber of instances for a fair comparison, as visualized1008

in Figure 5. For Cross-Topic, we make sure that1009

every topic {t1, ..., tm} is covered precisely once1010

by one of the three test splits X(test)
cross . To compose1011

X
(train)
cross and X

(dev)
cross , we randomly distribute the re-1012

maining topics for every fold. For In-Topic, we ran-1013

domly5 form subsequent test splits X(test)
in for ev-1014

ery fold from all instances {x1, ..., xm}. X(train)
in1015

and X
(dev)
in are then randomly composed for every1016

fold using the remaining instance set following the1017

dimension of X(train)
cross and X

(dev)
cross .1018

A.3 Training Setup1019

For all our experiments, we use NVIDIA RTX1020

A6000 GPUs, python (3.8.10), transformers1021

(4.9.12), and PyTorch (1.11.0).1022

A.4 Probing Hyperparameters1023

Further, we use for the training of the probes the1024

following fixed hyperparameters: 20 epochs, where1025

we find the best one using dev instances; AdamW1026

(Loshchilov and Hutter, 2019) as optimizer; a batch1027

size of 64; a learning rate of 0.0005; a dropout rate1028

of 0.2; a warmup rate of 10% of the steps; random1029

seeds: [0, 1, 2]1030

In addition, we use the following tags from the1031

huggingface model hub:1032

• albert-base-v21033

• bert-base-uncased1034

• facebook/bart-base1035

• microsoft/deberta-base1036

• roberta-base1037

5We expect that all folds cover all topics given the small
number of topics (8) and the big number of instances.

Figure 5: Overview of the In- and Cross-Topic setup
using three folds. The colour indicates a topic; solid
lines train-, dotted lines dev-, and dashed lines test-
splits.

• google/electra-base- 1038

discriminator 1039

• gpt2 1040

• t5-3b 1041

• google/flan-t5-xl 1042

• EleutherAI/gpt-neo-2.7B 1043

A.5 Fine-Tuning Hyperparameters 1044

To fine-tune on stance detection, we use the fol- 1045

lowing setup: 5 epochs, where we find the best 1046

one using dev instances; AdamW (Loshchilov and 1047

Hutter, 2019) as optimizer; a batch size of 16; a 1048

learning rate of 0.00002; a warmup rate of 10% of 1049

the steps; random seeds: [0, 1, 2]. 1050

A.6 Token-Level Examples for Topic 1051

Relevance 1052

In § 5, we use the binned topic-specificity (§ 5) for 1053

each token. We show in Table 7 examples for three 1054

bins low, medium, and high. The first bin (low) is 1055

made of tokens, which barely occur in the dataset. 1056

The second one (medium) consists of tokens which 1057

are part of most topics. Finally, the last bin (high) 1058

includes tokens with a high topic relevance for ones 1059

like Cloning or Minimum Wage. 1060

B Further Results 1061

B.1 Generalization Across Datasets 1062

With Table 8, Figure 6, and Table 9, we verify the 1063

results of § 4, § 5, and § 4 using another stance de- 1064

tecion dataset. Namely, we use the wtwt (will-they- 1065

wont-they) (Conforti et al., 2020) dataset which 1066

covers 51.284 tweets annotated either support, re- 1067

fute, comment, or unrelated towards five financial 1068

topics. For the overall performance comparison 1069

between In- and Cross-Topic, the results show the 1070
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Task Example Label # Instances # Labels

DEP I think there is a lot we can learn from Colorado and Washington State. nsubj 40,000 41
POS I think there is a lot we can learn from Colorado and Washington State. PRON 40,000 17
NER I think there is a lot we can learn from Colorado and Washington State. PERS 25,892 17
Stance I think there is a lot we can learn from Colorado and Washington State. PRO 25,492 3

Table 6: Overview and examples of the different probing tasks.

low medium high

fianc, joking, validate, as, on, take, cloning, uniform, wage,
latitude, poignantly, informative some, like, how, marijuana, minimum, gun,

ameliorate, bonding, mentors so, one, these, cloned, wear, clone,
brigade, emancipation, deriving, instead, while, ago nuclear, energy, penalty,

ignatius, 505, nominations, where, came, still, many, uranium, legalization, cannabis,
electorate, SWPS, 731 come, engage, seems execution, wast, employment

Table 7: Examples of tokens with a low, medium, or
high token relevance following § 4.

DEP POS NER Stance Average

In Cross In Cross In Cross In Cross In Cross ∆

ALBERT 33.5 32.9 75.1 74.2 30.9 28.6 57.3 32.8 49.1 42.1 -7.0
BART 32.9 33.1 63.2 62.1 32.4 30.5 51.9 47.2 45.1 43.2 -1.9
BERT 21.6 21.2 54.8 55.9 27.2 27.8 47.4 32.1 37.8 34.2 -3.6
DeBERTa 26.9 27.6 69.6 67.9 29.4 28.5 49.5 35.7 43.9 40.0 -3.9
RoBERTa 20.4 19.9 54.7 53.5 26.1 25.5 37.0 37.8 35.6 34.2 -1.4
ELECTRA 26.6 26.6 69.6 68.6 21.7 24.1 35.1 36.7 38.2 39.0 +0.8
GPT-22 16.9 16.5 42.2 42.2 25.1 24.0 40.8 32.6 31.2 28.8 -2.4
GloVe 12.9 12.2 23.5 22.6 28.1 24.6 45.2 34.2 27.4 23.4 -4.0
Avg. ∆ -0.3 -0.7 -0.9 -9.5 - - -

Table 8: Results of the four probing tasks using eight
PLMs in the In- and Cross-Topic setup. We report the
mean F1 (macro averaged) over three random seeds, the
average difference between the two evaluation setups
per task (last row), and their average per PLM (last two
columns). Best-performing results within a margin of
1pp are marked for every task and setup.

same trend as we already saw in § 4, but on a1071

lower level. We assume that this is mainly due to1072

this dataset’s more specific domain (twitter) com-1073

pared to UKP ArgMin. Focusing on the influence1074

of topic-specific vocabulary verifies the previously1075

presented results (§ 5) again. PLMs pre-trained1076

with purely token-based objectives highly depend1077

on topic-specific vocabulary. Considering LLMs1078

(Table 9), we see again similar behavior as on the1079

ArgMin dataset (§ 4).1080

B.2 Comparison of Probing Tasks against1081

Random Initialized PLMs1082

We show in Table 10 and Table 11 the results of run-1083

ning the three linguistic probes on the seven contex-1084

tualized PLMs in their random initialized version.1085

For In- and Cross-Topic, there is a clear perfor-1086

mance drop of having random initialized models.1087

DEP POS NER Stance Average

In Cross In Cross In Cross In Cross In Cross ∆

ALBERT 33.5 32.9 75.1 74.2 30.9 28.6 57.3 32.8 49.1 42.1 -7.0
BART 32.9 33.1 63.2 62.1 32.4 30.5 51.9 47.2 45.1 43.2 -1.9
T5 (3B) 25.5 26.3 59.7 59.3 34.9 36.4 53.4 38.7 43.4 40.2 -3.2
FLAN-T5 (3B) 25.5 26.3 59.7 59.3 34.9 36.4 53.4 38.7 43.4 40.2 -3.2
GPT-Neo (2.7B) 29.5 29.7 69.4 68.4 37.4 34.3 74.9 43.9 52.8 44.1 -8.7

Table 9: Results (macro F1) of the four probing tasks
using the overall best PLMs (ALBERT and BART) in
the In- and Cross-Topic setup based on the wtwt dataset
(Table 8) and three LLMs.

DEP POS NER

Random ∆ Random ∆ Random ∆

ALBERT 1.4 -42.4 6.8 -41.8 3.4 -76.8
BART 1.4 -35.1 5.0 -43.7 2.7 -72.7
BERT 2.7 -22.7 9.4 -36.0 4.6 -63.9
DeBERTa 7.0 -25.8 16.3 -32.5 16.1 -57.6
RoBERTa 2.2 -22.9 11.0 -37.4 4.7 -59.3
ELECTRA 1.7 -31.9 8.4 -33.1 3.8 -71.5
GPT-2 5.8 -19.4 12.3 -33.2 12.5 -51.0

Table 10: Results of evaluating DEP, POS, and NER
using the seven contextual PLMs (random initialized)
for In-Topic and the difference to their pre-trained coun-
terparts in Table 2.

B.3 The Effect of Removing Random 1088

Information 1089

We saw in § 5 that removing topic-specificity has 1090

a big impact for some models (like RoBERTa or 1091

ELECTRA) but at the same time can even boost 1092

the performance of others like BERT. As suggested 1093

in Elazar et al. (2021), we apply a sanity check by 1094

removing random information from the encodings 1095

of PLMs. Following the results in Figure 7, remov- 1096

ing random information (green bars) performs in 1097

between the scenarios with (blue bars) or without 1098

(red bars) topic information for cases where we see 1099

a clear negative effect when removing topic infor- 1100

mation. In contrast, removing random information 1101

can produce a more pronounced effect when we 1102

see performance improvements. This observation 1103

backs our assumption that removing information 1104

can have a regularization effect. 1105
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Figure 6: Comparison of the probing results with (blue bars) or without (red bars) topic-specificity for the will-they-
wont-they dataset (Conforti et al., 2020). The white text indicates the difference between these two scenarios.

Figure 7: Comparison of the probing results with (blue bars) and without (red bars) topic information, or without
random information (green bars). The white text indicates the difference between the blue and red bars.
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DEP POS NER

Random ∆ Random ∆ Random ∆

ALBERT 1.4 -38.1 6.2 -39.6 3.4 -74.6
BART 1.5 -35.4 5.0 -40.3 2.9 -71.2
BERT 2.1 -23.5 9.6 -32.0 4.5 -63.0
DeBERTa 6.8 -23.1 14.0 -28.4 17.2 -57.4
RoBERTa 2.6 -21.0 10.0 -32.1 5.2 -60.3
ELECTRA 3.0 -30.6 9.8 -31.4 4.1 -71.2
GPT-2 5.8 -18.1 13.6 -25.0 11.0 -50.9

Table 11: Results of evaluating DEP, POS, and NER
using the seven contextual PLMs (random initialized)
for Cross-Topic and the difference to their pre-trained
counterparts in Table 2.

Figure 8: Performance difference for seen (x-axis) and
unseen (y-axis) instances when removing topic informa-
tion or not. One dot represents one PLM.

B.4 The Effect of Removing Topic1106

Information on Seen and Unseen1107

Instances1108

We show in Figure 8 that a performance drop1109

affects seen and unseen instances for In- and1110

Cross-Topic equally. Exceptionally, we see unseen1111

ones are more affected on POS for DeBERTa and1112

RoBERTa. This result indicates that these PLMs1113

fall short of generalizing towards rare vocabularies1114

- like unseen instances of POS.1115

B.5 Analysis of Per-Class Results for NER1116

When considering the per-class results of NER in1117

Table 12, we see the classes CARDINAL, MONEY,1118

ORG, and PERSON show the biggest differences1119

between In- and Cross-Topic. For ORG and PER-1120

SON, we see their topic-specific terms as the main1121

reason for the performance gap. In contrast, we1122

were surprised about the high difference for CAR-1123

DINAL. We think this is mainly because this class1124

embodies all numbers belonging to no other class.1125

For MONEY, we see its uneven distribution over1126

topics as the main reason for the performance dif-1127

ference - one topic covers more than 50% of the1128

instances. These entities are highly topic-specific1129

from a statistical point of view.1130

CARDINAL DATE GPE MONEY NORP ORDINAL ORG PERCENT PERSON

In

ALBERT 95.0 95.3 89.4 95.0 91.3 97.8 80.2 99.2 82.7
BART 94.8 94.6 89.7 95.6 91.6 97.3 81.0 99.4 83.5
DeBERTa 95.3 95.6 90.0 96.5 91.5 97.4 81.1 99.2 83.7

C
ro

ss

ALBERT 91.2 95.0 88.6 55.6 90.8 98.1 78.8 98.9 81.7
BART 90.1 94.2 88.9 35.0 90.7 97.6 79.1 98.8 81.8
DeBERTa 88.3 95.3 88.6 0.0 90.5 97.5 79.8 98.6 81.8

Table 12: Per-class results of ALBERT, BART, and
DeBERTa on NER for In- and Cross-Topic.

CARDINAL DATE GPE MONEY NORP ORDINAL ORG PERCENT PERSON

In

BART -0.23 0.04 0.15 0.15 0.02 -0.04 0.08 -0.13 0.20
BERT 1.65 -0.15 -0.04 28.00 -0.14 -0.58 0.06 0.00 0.22
DEBERTA -1.14 -0.13 -1.48 -7.74 -14.40 -0.30 -0.82 -0.12 -0.10
ROBERTA -6.00 -3.00 -7.82 -24.09 -90.61 -98.06 -2.66 -0.51 -0.58

C
ro

ss

BART -0.48 0.01 -0.13 2.45 -0.06 -0.52 -0.38 -0.09 -0.03
BERT -0.05 -0.05 1.00 0.00 8.95 -0.60 0.29 0.00 0.00
DEBERTA -0.07 -0.16 -2.52 0.00 -21.88 -0.35 -0.91 -0.01 0.07
ROBERTA -9.04 -2.63 -7.45 0.00 -85.23 -98.07 -2.99 -35.97 -0.46

Table 13: Class-wise effect on the performance when
removing topic information of BART, BERT, DeBERTa,
and RoBERTa on NER for In- and Cross-Topic.

Despite having almost the same performance 1131

for In-Topic, BART and DeBERTa tend to out- 1132

perform ALBERT on classes with more semantic 1133

complexities - like GPE, ORG or PERSON. For 1134

Cross-Topic, we see ALBERT performing better in 1135

classes unevenly distributed instances over topics 1136

- like MONEY. Further, it outperforms BART and 1137

DeBERTa on less semantical classes (CARDINAL, 1138

ORDINAL, PERCENT). 1139

B.6 Effect of Removing Token-Level Topic 1140

Information of Per-Class Results for NER 1141

Similar to the previous analysis, there are apparent 1142

effects of removing topic information when consid- 1143

ering NER classes separately. Table 13 shows these 1144

results for BART, BERT, DeBERTa, and RoBERTa. 1145

Like the overall result, BART, DeBERTa, and 1146

RoBERTa perform less when removing topic infor- 1147

mation. Whereby the effect is the most pronounced 1148

for RoBERTa with the highest performance drop 1149

for In- and Cross-Topic on classes like NORP or 1150

ORDINAL. In addition, these results show that the 1151

performance gain from removing topic information 1152

within BERT happens on MONEY for In-Topic 1153

and NORP for Cross-Topic. 1154

B.7 The Effect of Fine-Tuning on NER 1155

Classes 1156

Analysing the results (Table B.7) for every NER 1157

class gives additional insights into where the fine- 1158

tuning had the most significant effect. We generally 1159

see the biggest effect on classes with less semantic 1160

meaning, like ORDINAL, PERCENT, or MONEY. 1161

At the same time, GPE, PERSON, and ORG are 1162
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CARDINAL DATE GPE MONEY NORP ORDINAL ORG PERCENT PERSON
In

ALBERT -34.2 -25.4 -26.9 -95.0 -51.9 -60.3 -22.4 -99.2 -21.8
BART -8.5 -7.2 -7.5 -7.2 -10.4 -36.6 -4.1 -3.8 -2.7
BERT -1.9 -2.0 -2.0 34.8 -4.4 -17.9 -0.8 -3.9 -1.1
DEBERTA -15.1 -6.8 -8.7 -19.5 -43.7 -60.8 -8.8 -24.8 -8.3

C
ro

ss

ALBERT -21.5 -10.4 -19.1 -55.6 -34.4 -13.1 -10.7 -81.0 -9.2
BART -9.2 -7.4 -7.0 -16.3 -11.2 -24.4 -3.9 -4.5 -2.1
BERT -2.5 -1.2 -1.2 3.6 -2.2 -9.7 -0.8 -2.6 -0.5
DEBERTA -18.2 -6.2 -12.7 0.0 -50.6 -76.0 -11.7 -73.5 -6.8

Table 14: Per-class difference before and after fine-
tuning on stance detection of ALBERT, BART, BERT,
and DeBERTa on NER for In- and Cross-Topic.

less affected as classes with more attached seman-1163

tics. Regarding the different PLMs, ALBERT and1164

DeBERTa show the most performance training,1165

while BERT gains performance for the MONEY1166

class.1167

DEP POS NER

In Cross In Cross In Cross

ALBERT 85.2 83.9 93.8 93.6 86.9 85.0
BART 80.9 81.0 92.6 92.0 87.1 84.5
BERT 76.1 76.1 89.2 88.6 85.2 82.9
DeBERTa 81.2 79.9 92.8 93.1 87.5 84.0
RoBERTa 75.9 75.5 89.6 90.1 86.3 83.2
ELECTRA 81.1 80.7 92.3 92.2 82.8 82.2
GPT-2 69.8 69.1 85.8 85.7 84.6 81.1
GloVe 39.5 38.5 46.6 45.9 78.8 77.2
Average 73.7 73.1 85.3 85.2 84.9 82.5
BERT (Tenney et al., 2019b) 93.0 97.0 96.1
BERT (Tenney et al., 2019a) 95.2 96.5 96.0
BERT (Hewitt and Liang, 2019) 89.0 97.2 -

Table 15: Accuracy results for In- and Cross-Topic prob-
ing results for eight PLMs, across three random seeds.

B.8 Annotation Verification1168

To evaluate probing tasks in the In- and Cross-1169

Topic setup, we rely on data with topic annota-1170

tions on the instance level - like the UKP ArgMin1171

(Stab et al., 2018) or the wtwt (Conforti et al.,1172

2020) dataset. Since these datasets do not in-1173

clude linguistic annotations, we rely on spaCy1174

to automatically derive the labels for dependency1175

tree parsing (DEP), part-of-speech tagging (POS),1176

or named entity recognition (NER). We used the1177

en_core_web_sm model, which provides reli-1178

able labels with an accuracy of 97.0 for POS, 90.0-1179

92.0 for DEP, and an F1 score of 85.0 for NER1180

(details available online).In addition, we see our1181

results (§ 4) well aligned (DEP < NER < POS)1182

with previous work (Tenney et al., 2019b), even1183

though we mainly report F1 score. This finding is1184

also supported by considering the accuracy eval-1185

uation (Table 15), which corresponds to previous1186

results. Note that we can expect a generally lower1187

performance level since we trained the probes on1188

fewer instances than related work.1189

17

https://spacy.io/models/en

