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Abstract
In this work, we study optimization methods that
leverage the linear minimization oracle (lmo)
over a norm-ball. We propose a new stochastic
family of algorithms that uses the lmo to adapt
to the geometry of the problem and, perhaps sur-
prisingly, show that they can be applied to un-
constrained problems. The resulting update rule
unifies several existing optimization methods un-
der a single framework. Furthermore, we pro-
pose an explicit choice of norm for deep archi-
tectures, which, as a side benefit, leads to the
transferability of hyperparameters across model
sizes. Experimentally, we demonstrate signifi-
cant speedups on nanoGPT training using our al-
gorithm, Scion, without any reliance on Adam.
The proposed method is memory-efficient, re-
quiring only one set of model weights and one
set of gradients, which can be stored in half-
precision. The code is available at https:
//github.com/LIONS-EPFL/scion.

1. Introduction
Deep learning has greatly benefited from adaptive opti-
mization methods such as RMSProp (Hinton et al., 2012),
AdaGrad (Duchi et al., 2011; McMahan & Streeter, 2010),
and Adam (Kingma, 2014), which dynamically change
the geometry of the problem based on gradients encoun-
tered on-the-fly during training. While these methods have
demonstrated remarkable success, they fundamentally treat
neural networks (NNs) as optimization problems where we
lack any prior knowledge about their particular setting.

However, NNs are far from being black boxes—their struc-
ture is not only known but they are deliberately designed.
This simple observation raises directly the question:

Is it more beneficial to adapt the optimizer a priori,
instead of exploring their respective geometries on-the-fly?
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Adaptation on-the-fly has been the defacto standard in this
setting, with adaptive algorithms, such as Adam (Kingma,
2014), dominating the deep learning model training.

One possible way for adaptation a priori, which we fo-
cus on in this work, is to modify the underlying norm
used to measure distances in the parameter space. There
is precedence to our proposal, as the early work by Carl-
son et al. (2015a;b;c) introduced the stochastic spectral de-
scent method (SSD), which performs steepest descent in
the spectral norm, and demonstrated that the method can
substantially accelerate deep learning training.

The significance of the SSD approach has been very re-
cently brought back to attention by Bernstein & Newhouse
(2024b), who showed that the Shampoo optimizer (Gupta
et al., 2017)—winner of the external tuning track at the
2024 AlgoPerf: Training Algorithms competition (Dahl
et al., 2023)—can be viewed as SSD when a certain ac-
cumulation is disabled. Moreover, Bernstein & Newhouse
(2024b) introduced an efficient Newton-Schultz iteration
to replace the approximate SVD calculations previously
required. Jordan et al. (2024b) incorporated the Newton-
Schultz iteration with additional momentum into SSD un-
der the name Muon to achieve impressive results on the
nanoGPT architecture by applying it to the hidden layers.

Contributions This work focuses on developing an algo-
rithmic framework that can exploit an appropriate choice of
norm for the entire neural network with particular empha-
sis on hyperparameter transfer across model sizes (Yang &
Hu, 2021), convergence and practical performance.

To adapt to the geometry a priori, we will build on a clas-
sical (but unexpected) family of algorithms in contrast to
the steepest descent methods, namely the ones involving
the linear minimization oracle (lmo) over a norm-ball con-
straint known as the Conditional Gradient (CG) methods.

While classically being used for constrained problems,
we take the slightly unusual approach by showing that the
lmos can be used even for unconstrained problems. The
algorithm, dubbed as the unconstrained Stochastic Condi-
tional Gradient method (uSCG), shows improvements both
theoretically and practically when the norm-ball constraint
matches the natural geometry of the problem.
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Table 1. Special instantiations of uSCG according to different choices of norm. The reduced SVD is given as d = U diag(σ)V ⊤.
Weight decay is captured by SCG, which provides explicit control on the norm of the parameters.

Method αk Problem lmo constraint set D lmo Reference

Normalized SGD 1 Unconstrained Euclidean ∥ · ∥2-ball −ρ d
∥d∥2

(Hazan et al., 2015)

Momentum Normalized SGD [0, 1] Unconstrained Euclidean ∥ · ∥2-ball −ρ d
∥d∥2

(Cutkosky & Mehta, 2020)

SignSGD 1 Unconstrained Max-norm ∥ · ∥∞-ball −ρ sign(d) (Bernstein et al., 2018, Thm. 1)2

Signum [0, 1] Unconstrained Max-norm ∥ · ∥∞-ball −ρ sign(d) (Bernstein et al., 2018, Thm. 3)2

Muon1 [0, 1] Unconstrained Spectral ∥ · ∥S∞ -ball −ρUV ⊤ (Jordan et al., 2024b)
1 With non-Nesterov based momentum. 2 The theoretical guarantee relies on increasing batch size.

In particular, we build on the Stochastic Conditional Gra-
dient (SCG) method of Mokhtari et al. (2020) from the
constrained setting, which provides explicit control on the
norm of NN weight matrices. This is particularly relevant
for robust image classification (Cisse et al., 2017), gener-
alization bounds (Bartlett et al., 2017), Lipschitz control
of generative adversarial networks (Arjovsky et al., 2017;
Miyato et al., 2018), diffusion models (Karras et al., 2024,
Sec. 2.3), and for ensuring Lipschitz continuity of NNs
(Large et al., 2024).

Concretely, we make the following contributions:

Theoretical rates: We introduce a new, stochastic lmo
based family of algorithms uSCG, which can exploit the
specific geometry of the problem. In doing so we achieve
the O(n−1/4) order optimal convergence rate under general
nonconvexity and stochasticity for uSCG (Arjevani et al.,
2022). Moreover, we provide a new analogous guarantee
for the constrained case for SCG. A major benefit of both
methods is that their stepsize is agnostic to the Lipschitz
constant, in contrast to steepest descent which requires the
stepsize to be taken small enough.

Unification: Our lmo-based approach provides a unifying
framework for various popular algorithms, based on the
norm choice (see Table 1); as a byproduct we establish the
first provable rate for the Muon optimizer with and without
weight decay. More importantly, this generality allows us
to design a new method for deep learning based on operator
norms called SCION (Algorithm 3), which enjoys zero-shot
hyperparameter transferability (Yang et al., 2022), and can
be implemented storing only one set of parameters and one
gradient (stored in half-precision), economizing on mem-
ory in large-scale training.

Numerical validation: We carry out exhaustive numerical
evaluation of SCION ranging from small scale experiments
on MLPs and CNNs to ViT on ImageNet and NanoGPT
models with up to 3B parameters. We consistently observe
the transferability properties across all settings for SCION.
The scheme is more tolerant to large batch sizes and ex-
hibits superior performance due to the a priori adaptation.

An additional lmo-based algorithm ALMOND can be
found in Appendix D.3, generalizing the Normalized SGD
based method of Zhao et al. (2020), for training with large-
batches. Key differences of ALMOND with uSCG and
SCG are discussed to further motivate our algorithms.

2. Preliminaries
We are interested in solving the following general (possibly
nonconvex) optimization problem

min
x∈X

f(x) , (1)

where f is smooth in some not necessarily Euclidean norm
and the problem is either unconstrained (e.g., X = Rd) or
constrained to X = D where D is the norm-ball defined as

D := {x | ∥x∥ ≤ ρ}.

The central primitive in the algorithms considered in this
work is the linear minimization oracle (lmo) defined as

lmo(s) ∈ argmin
x∈D

⟨s, x⟩ , (2)

where we are particularly interested in the special case
where the constraint set is a norm constraint ∥x∥ ≤ ρ, for
some ρ > 0 and some norm ∥ · ∥, which does not have
to be the Euclidean norm. Examples of norm-constrained
lmos are provided in Table 1 and Table 2 regarding operator
norms. An important property of the lmo is that the opera-
tor is scale invariant, i.e., lmo(a · s) = lmo(s) for a > 0,
and in fact we have by construction under the norm con-
straints that ∥ lmo(s)∥ ≤ ρ. Thus, it is only the direction of
the input s that matters and not the magnitude.

A classical method for solving the constrained variant of
problem 1, when the lmo is available, is the Conditional
Gradient method (CG) (Frank et al., 1956; Clarkson, 2010;
Jaggi, 2013), which proceeds as follows with γk ∈ (0, 1)

xk+1 = (1− γk)x
k + γk lmo(∇f(xk)), (CG)

ensuring the feasibility of xk via simplicial combination.
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Algorithm 1 Unconstrained SCG (uSCG)
Input: Horizon n, initialization x1 ∈ X , d0 = 0, momen-
tum αk ∈ (0, 1], and stepsize γk ∈ (0, 1)

1: for k = 1, . . . , n do
2: Sample ξk ∼ P
3: dk ← αk∇f(xk, ξk) + (1− αk)d

k−1

4: xk+1 ← xk + γk lmo(dk)

5: Choose x̄n uniformly at random from {x1, . . . , xn}
Return x̄n

Usually, the CG is attractive when the constraint set is an
atomic set (e.g., the ℓ1-norm ball) in which case each up-
date may be efficiently stored. Our focus lies in the more
unconventional cases of the vector ℓ∞-norm ball and spec-
tral norm ball for which the updates are in contrast dense.
Furthermore, we are interested in the unconstrained case in
addition to the constrained problem which CG solves.

In the stochastic regime, the analyzing lmo-based al-
gorithms is involved. Even when the stochastic oracle
∇f(x, ξ) is unbiased, the direction of the updates, as de-
fined by lmo(∇f(x, ξ)), is not unbiased. To help overcome
this difficulty, we will employ a commonly used trick of av-
eraging past gradients with αk ∈ (0, 1] (aka momentum),

dk = (1− αk)d
k−1 + αk∇f(xk, ξk), (3)

which will rigorously help with algorithmic convergence.

3. Our Methods
For the unconstrained case we introduce a new method,
dubbed the unconstrained SCG method (uSCG):

xk+1 = xk + γk lmo(dk) (uSCG)

with stepsizes γk ∈ (0, 1). Instead of the convex combina-
tion in CG, the update rule simply sums the lmos. In con-
trast with e.g., gradient descent, the update always has the
same magnitude regardless of the size of the gradient aver-
age dk. The final algorithm is presented in Algorithm 1.

For the constrained case, we revisit the SCG method of
Mokhtari et al. (2020) and adopt it for the non-convex ob-
jectives typically encountered in deep learning model train-
ing. This algorithm (Algorithm 2) proceeds as follows

xk+1 = (1− γk)x
k + γk lmo(dk) (SCG)

with stepsizes γk ∈ (0, 1).

Connection to weight decay For uSCG, weight decay
has a very precise interpretation, since the method reduces
to SCG. Consider the following variant of uSCG with
weight decay xk+1 = xk + γk lmo(dk)− γkµx

k.

Algorithm 2 Stochastic Conditional Gradient (SCG)
Input: Horizon n, initialization x1 ∈ D, d0 = 0, momen-
tum αk ∈ (0, 1], and stepsize γk ∈ (0, 1)

1: for k = 1, . . . , n do
2: Sample ξk ∼ P
3: dk ← αk∇f(xk, ξk) + (1− αk)d

k−1

4: xk+1 ← (1− γk)x
k + γk lmo(dk)

5: Choose x̄n uniformly at random from {x1, . . . , xn}
Return x̄n

The weight decay parameter µ ∈ [0, 1] interpolates be-
tween uSCG and SCG. If the weight decay is in (0, 1) then
the algorithm is still an instance of SCG and thus solve a
constrained problem, but one with a larger radius of ρ′ = ρ

µ

with a stepsize chosen as γ′
k = γkµ.

Therefore, all schemes in Table 1 guarantees a norm bound
of ρ

µ on the parameters when combined with weight decay.
The connection between weight decay and constrained op-
timization, in the special case where lmo = sign (when the
norm-constraint in (2) is the vector ℓ∞-norm) has also been
observed in Xie & Li (2024); D’Angelo et al. (2023). Due
to the fixed magnitude of the lmo both methods provides a
guarantee on the maximum norm of the parameters.

Insight 3.1. Both uSCG and SCG provide explicit
control on the norm of the parameters:

(i) SCG guarantees ∥x∥ ≤ ρ.

(ii) uSCG guarantees ∥x∥ ≤ ρ
∑n

k=1 γk.

Norm control is particularly useful for long runs (cf. Fig-
ure 9) and to avoid overfitting in multi-epoch training (cf.
Figures 10 and 11 regarding CIFAR10 experiments).

3.1. Choice of Norm Constraint

To choose an appropriate norm for deep learning, we build
on the operator norm perspective of Large et al. (2024);
Bernstein & Newhouse (2024a). To simplify the presenta-
tion we will consider a linear MLP as a running example,
but in Section 3.2, we point to our theoretical guarantees
with activation functions.

Let us a consider a linear MLP with the initial hidden layer
defined as h1(z) = W1z + b1 and the remaining layers

hℓ(z) = Wℓhℓ−1(z) + bℓ, ∀ℓ ∈ 2, .., L;

with bL = 0. We denote the global loss as L(hL(z), y)
where L is the loss function and y is a 1-hot encoded target
vector. We use the overloaded notation Wℓ ∈ Rdout×din ,
where dout and din implicitly have dependency on ℓ and
can thus be distinct across different layers.
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Table 2. Example operator norms and the associated lmos of a matrix A ∈ Rdout×din . The reduced SVD is given as A = U diag(σ)V ⊤,
sign acts elementwise, colj(A) := A·,j and rowi(A) := Ai,·. Note that this table is not exhaustive.

1→ RMS (ColNorm) 1→∞ (Sign) RMS→ RMS (Spectral) RMS→∞ (RowNorm)

Norm maxj
1√
dout
∥ colj(A)∥2 maxi,j |Ai,j |

√
din/dout∥A∥S∞ maxi

√
din∥ rowi(A)∥2

LMO colj(A) 7→ −
√
dout

colj(A)
∥ colj(A)∥2

A 7→ − sign(A) A 7→ −
√

dout/dinUV ⊤ rowi(A) 7→ − 1√
din

rowi(A)
∥ rowi(A)∥2

Table 3. The choice of lmo can be different between layers and can depend on the assumptions on the input. For simplicity we overload
notation and write the reduced SVD as Wℓ = U diag(σ)V ⊤ ∈ Rdout×din for all ℓ ∈ [L].

Parameter W1 (image domain) {Wℓ}ℓ∈[2,...,L−1] WL bℓ

Norm RMS→ RMS RMS→ RMS RMS→ RMS RMS→∞ 1→∞ RMS

LMO −max(1,
√

dout/din)UV ⊤ −
√

dout/dinUV ⊤ −
√

dout/dinUV ⊤ rowi(WL) 7→ − 1√
din

rowi(WL)
∥ rowi(WL)∥2

− 1
din

sign(WL) − bℓ
∥bℓ∥RMS

Init. Semi-orthogonal Semi-orthogonal Semi-orthogonal Row-wise normalized Gaussian Random sign 0

Table 4. Example lmo choices for 1-hot encoded inputs.
Parameter W1 (1-hot encoded input)

Norm 2→ RMS 1→ RMS 1→∞

LMO −
√
doutUV ⊤ colj(W1) 7→ −

√
dout

colj(W1)
∥ colj(W1)∥2

− sign(W1)

Init. Semi-orthogonal Column-wise normalized Gaussian Random sign

We need that none of the intermediary hidden states hℓ(z)
blows up by requiring one of the following norm bounds:

(i) 1
dout
∥hℓ(z)∥1 ≤ 1 (the average entry is bounded)

(ii) ∥hℓ(z)∥RMS ≤ 1 (the typical entry is bounded)

(iii) ∥hℓ(z)∥∞ ≤ 1 (the maximum entry is bounded)

where ∥z∥RMS := 1√
d
∥z∥2 for z ∈ Rd. Assuming the

input to any given layer is bounded in some norm ∥ · ∥α,
this requirement corresponds to placing an operator norm
constraint on the weight matrices {Wℓ}ℓ∈[L] and a norm
constraint on the biases {bℓ}ℓ∈[L−1].

The operator norm is in turn defined as follows

∥A∥α→β := max
z∈Rd,z ̸=0

∥Az∥β
∥z∥α

= sup
∥z∥α=1

∥Az∥β . (4)

Directly from the definition, we have that if the input z is
bounded through ∥z∥α ≤ 1, then the output ∥Az∥β will be
bounded when ∥A∥α→β is bounded.

A collection of operator norms and their resulting lmos is
provided in Table 2. It will be convenient to convert be-
tween bounds on these different operator norm which the
following fact makes precise.

Fact 3.1. The operator norm satisfies for some ρ > 0

(i) ∥z∥β ≤ ρ∥z∥c, ∀z ∈ Rd⇒ ∥A∥α→β ≤ ρ∥A∥α→c.

(ii) ∥z∥α ≥ 1
ρ∥z∥c, ∀z ∈ Rd⇒ ∥A∥α→β ≤ ρ∥A∥c→β .

Fact 3.1 tells us that we can bound operator norms using
bounds on the vector norms, i.e.,

∥z∥∞ ≤ ∥z∥2 ≤ ∥z∥1 ≤
√
d∥z∥2 ≤ d∥z∥∞, ∀z ∈ Rd.

(5)

We start by focusing on controlling the RMS norm, but will
later consider other norms. There are three example opera-
tor norms to consider for the MLP in consideration:

(i) Initial layer h1(z): ∥W1∥α1→RMS ≤ 1.

(ii) Intermediary layers hℓ(z): ∥Wℓ∥RMS→RMS ≤ 1
∀ℓ ∈ {2, .., L− 1}.

(iii) Last layer hL(z): ∥WL∥RMS→βL
≤ 1.

Note that the operator norm ∥ · ∥RMS→RMS is a scaled
spectral norm, i.e., ∥A∥RMS→RMS =

√
din/dout∥A∥2→2 =√

din/dout∥A∥S∞ for A ∈ Rdout×din .

To concisely write the layerwise norm constraints in
terms of a norm constraint on the joint parameter x =
{Wℓ, bℓ}ℓ∈[L], we can define the norm in the lmo (2) as

∥x∥ := max
ℓ∈[L]

1
ρℓ

max{∥Wℓ∥αℓ→βℓ
, ∥bℓ∥βℓ

} ≤ 1 (6)

where ρℓ is a layerwise scaling factor of the constraint ra-
dius. What is particularly convenient algorithmically for
the ℓ∞-norm is that the layerwise lmos can be computed
separately (cf. Algorithm 3). A norm choice across layers
was made through the ℓ1-norm in Flynn (2017) and through
the ℓ∞-norm with the modular norm (Large et al., 2024)
and block-normalization (Balles et al., 2020; Yu et al.,
2017; Ginsburg et al., 2019).

A choice needs to be made for the input norm α1 and output
norm βL, which depends on the application:

Input layer For image domains, usually the input is
rescaled pixel-wise to e.g., ensure that z ∈ [−1, 1] in which
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case ∥z∥RMS ≤ 1 and the appropriate operator norm for the
first layer becomes ∥W1∥RMS→RMS =

√
din/dout∥W1∥S∞ .

In order to deal with the case where din > dout, we choose
the radius to be max(1,

√
dout/din) (cf., Appendix B.1).

For language tasks, the input z is usually a 1-hot encoded
vector in which case ∥z∥∞ = ∥z∥2 = ∥z∥1 = 1. In turn,
∥W1∥∞→RMS = ∥W1∥2→RMS = ∥W1∥1→RMS holds on
this restricted domain, where we can freely pick the oper-
ator norm that leads to the simplest update rule (Table 2).

The simplest form for the lmo is arguably induced by
∥ · ∥1→RMS since the lmo can be computed exactly, while
from ∥ · ∥2→RMS we can observe a more aggressive scaling
factor in the lmo, −

√
doutUV ⊤, than the−

√
dout/dinUV ⊤

used in intermediate layers. The norm choice ∥ · ∥1→RMS

was first proposed in Large et al. (2024) for 1-hot encoded
input. Through the above reasoning we see how the norm
is equivalent to an appropriately scaled spectral norm.

Output layer For the final layer, we are not restricted to
bounding the output in ℓRMS and can alternatively choose
bounding the maximal entry through ℓ∞. Additionally,
we can bound ∥A∥RMS→∞ ≤ 1

din
∥A∥1→∞, by using (5)

through Fact 3.1, which leads to a dimension scaled sign
update rule for the last layer.

We summarize the different norm choices and their result-
ing lmos in Tables 3 and 4. Table 3 provides an overview
of norm choices of output layers, while Table 4 provides
choices for input layers under 1-hot encoded input.

Provided that the input is bounded as described, each of
the hidden states hℓ(z) and logits hL(z) will be bounded in
the RMS norm. In order to ensure feasibility of the initial-
ization in the constrained case when employing SCG, we
propose to initialize on the boundary similar to Large et al.
(2024) (see Appendix B for details).

Insight 3.2.

(i) For 1-hot encoded input, ColNorm and Spec-
tral are equivalent for the first layer, in which
case ColNorm is favored since the lmo can be
computed exactly.

(ii) Sign can be used both for the first and last
layer which is crucial for weight sharing.

(iii) To transfer learning rate from proxy models
when the width is smaller than the input di-
mension it is important to rescale the lmo as
max(1,

√
dout/din).

These observations leads to the recommendations below.

Recommendation 3.1. We refer to the instantia-
tion of uSCG and SCG using operator norms as
UNCONSTRAINED SCION and SCION respectively
(cf. Algorithm 3), which stands for Stochastic
Conditional Gradient with Operator Norms. We
recommend the following configurations of the
layer norms (First layer → Intermediary layers →
Last layer):

(i) image domains: Spectral→ Spectral→ Sign

(ii) 1-hot input: ColNorm→ Spectral→ Sign

(iii) weight sharing: Sign→ Spectral→ Sign

The lmo names are defined in Table 2 and weight
sharing refers to parameter sharing between the
first and last layer. Each layer should be scaled ap-
propriately according to Tables 3 and 4.

Other norm choices So far our argument has been based
on the invariance provided by ∥ · ∥RMS→RMS for interme-
diary layers: i.e., the RMS norm of the output of layer ℓ is
bounded, so the input of next layer ℓ + 1 is also bounded
in the RMS norm. Since the lmo of ∥ · ∥RMS→RMS can be
computed efficiently we can directly use this norm choice
for our update rule. However, it is possible to choose an-
other norm such as ∥ · ∥1→RMS, as long as the RMS norm
guarantee on the output of Wℓ is converted into a guaran-
tee on the ℓ1-norm of the input of layer ℓ + 1. Specif-
ically, we have that ∥ · ∥RMS→RMS ≤ din∥ · ∥1→RMS

through Fact 3.1. Alternatively, we can rely on the invari-
ance provided by ∥ ·∥∞→∞, for which Fact 3.1 tells us that
∥·∥∞→∞ ≤

√
din∥·∥RMS→∞ and ∥·∥∞→∞ ≤ din∥·∥1→∞.

We obtain methods exclusively relying on RowNorm, Col-
Norm and Sign as summarized in Table 6 of Appendix B.

3.2. Hyperparameter Transfer

The intuition behind why (UNCONSTRAINED) SCION may
enjoy hyperparameter transfer is suggested by the spectral
scaling rule of Yang et al. (2023), which states that feature
learning may be ensured by requiring that, for MLPs with
weight matrices Wℓ ∈ Rdℓ−1×dℓ , the following holds:

∥Wℓ∥S∞ = Θ
(√

dℓ

dℓ−1

)
and ∥∆Wℓ∥S∞ = Θ

(√
dℓ

dℓ−1

)
where ∥ · ∥S∞ denotes the spectral norm and ∆Wℓ is the
update change. For uSCG, the update change is given by
xk+1 − xk = γ lmo(dk), so the requirement is automati-
cally satisfied by the spectral norm choice from Table 3.

We formalize this intuition in Lemma C.6 of Appendix C.2
following the proof technique of Yang et al. (2023), which
holds for losses including logistic regression and MSE,
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and activation functions including ReLU, GELU and Tanh.
Specifically, we show that the so-called maximal update
learning rate γ∗ (i.e., the learning rate that enables the
hidden layer preactivations to undergo the largest possible
change in a single update step) is independent of width.
Our theoretical analysis is conducted under a simplified set-
ting with momentum αk = 1 in Algorithm 1, which we
adopt to facilitate a clean derivation of the width-invariant
property. Thus, a learning rate tuned on a smaller model
can be directly applied to a wider model without compro-
mising the maximal update property.

4. Related Works
Hyperparameter transfer Yang & Hu (2021); Yang
et al. (2022) showed that there exists a parameterization
(i.e., a choice of initialization and layerwise stepsize scal-
ing) for which the features in every single layer evolve in a
width-independent manner. The so-called Maximal Update
Parametrization (µP) allows transferring optimal hyperpa-
rameter from a small proxy model to a large model.

A relationship with the spectral norm was established in
Yang et al. (2023). An operator norm perspective was taken
in the modular norm framework of Large et al. (2024);
Bernstein & Newhouse (2024a), which was used to show
Lipschitz continuity with constants independent of width.
We build on this perspective and propose the 1 → ∞ op-
erator norm and RMS → ∞, which leads to a sign update
rule and row normalization respectively.

Steepest descent in a normed space Steepest descent in
a possibly non-Euclidean space can be written in terms of
the lmo (cf., Appendix A.1) provided a stream of stochastic
gradients (gk)k∈N and an initialization x0 ∈ X ,

xk+1 = xk − γ[gk]♯ = xk + γ
ρ∥g

k∥∗ lmo(gk), (7)

where [·]♯ := argmaxx∈X ⟨·, x⟩ − 1
2∥x∥

2 is the sharp-
operator (Nesterov, 2012; Kelner et al., 2014).

The deterministic case is analyzed in Nesterov (2012);
Kelner et al. (2014), and was extended to the stochas-
tic case in Carlson et al. (2015b), with a particular
empirically focus on the spectral norm, named as (pre-
conditioned) stochastic spectral descent (SSD) (Carlson
et al., 2015a;b;c). Their SSD algorithm is an instance of
the Majorization-Minimization (MM) algorithms (Lange,
2016), which iteratively minimizes a locally tight upper
bound. The dualization in Bernstein & Newhouse (2024a)
is also motivated by the sharp-operator.

In contrast to (7), uSCG and SCG are invariant to the mag-
nitude of the gradients and do not need to compute the
dual norm ∥ · ∥∗, which cannot be computed independently
across layers. Intuitively, the scale invariance of the lmo al-
lows convergence to be established without knowledge of

the Lipschitz constant L (cf. Theorems 5.4 to 5.7).

Unlike the lmo-based schemes, extending sharp-operator-
based algorithms to handle constrained problems is non-
trivial even in the vector case (El Halabi, 2018). Addition-
ally, a practical concern of using specifically spectral norm
projections in deep learning is that the model weights them-
selves can be dense (so the required SVD would be expen-
sive), while gradients used in the lmo are usually low-rank
(allowing efficient SVD approximations).

Muon The Muon optimizer (Jordan et al., 2024b) is in-
troduced as a steepest descent method. The implementation
interestingly ignores the scaling ∥ · ∥∗ appearing in the up-
date (cf., (7)), so Muon is effectively using the lmo over
the spectral norm instead of the sharp operator. Provided a
stream of stochastic gradients (gk)k∈N and an initialization
x0 ∈ X the Muon optimizer can then be written as follows

Gk = gk + βGk−1 (Muon)

xk+1 =

{
xk + γ lmo(gk + βGk) if Nesterov
xk + γ lmo(Gk) otherwise

where the lmo corresponds implicitly to the spectral norm.

The accumulation Gk can be written in terms of the aver-
aged gradient dk in Algorithm 2. We have that dk = αGk

by picking α = (1 − β). Since the lmo is scale invariant,
dk and Gk can be used interchangeably without changing
the update. Thus, we can alternatively write Muon (with
non-Nesterov based momentum) exactly as uSCG.

In practice Muon is only applied to hidden layers, thus ex-
cluding the first layer and the last layer for which Adam(W)
or SGD is used. In contrast, we apply uSCG and SCG to
all layers and demonstrate transferability of the stepsize.

Moonlight Since the first version of this paper appeared
on arXiv on the 11th of February, Liu et al. (2025) also
proposed integrating Muon with weight decay to control
the norm of the parameters. They use the same scaling fac-
tor of the lmo,

√
max{din, dout}, as the Muon baseline we

compare against (cf. Appendix E.4).

MARS The MARS-Shampoo optimizer (Yuan et al.,
2024, Alg. 4) can be seen as an instance of SCG with
spectral norm constraints, but using the STORM gradient
estimator (Cutkosky & Orabona, 2019) instead of (3).

Sign SignSGD and the momentum variant Signum were
brought to prominence and further analyzed in Bernstein
et al. (2018) motivated by efficient communication for dis-
tributed optimization, while they are originally introduced
with the dual norm scaling and used only for weight bias
updates in Carlson et al. (2015a;b;c). These schemes are
typically studied under the framework of steepest descent,
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which results in the ∥gk∥1 stepsize scaling in (7) usually
not present in practice as remarked in Balles et al. (2020).

Normalization The LARS optimizer (You et al., 2017)
uses normalized gradient and was shown to be particu-
larly useful for large batch settings. The method can
be viewed as performing normalized SGD with momen-
tum (Cutkosky & Mehta, 2020) layerwise with a particular
adaptive parameter-dependent stepsize.

The layerwise normalization can be captured by uSCG with
the norm choice maxℓ ∥Wℓ∥F . The LAMB optimizer (You
et al., 2019) incorporates the update into an Adam-like
structure. Zhao et al. (2020) considers averaging the nor-
malized gradients rather than the gradients prior to normal-
ization. The update can be written in terms of an lmo, with
the (flattened) norm choice ∥x∥2, which we generalize with
a new algorithm in Appendix D.3 to arbitrary norms.

Continuous greedy With zero initialization, x1 = 0, and
stepsize γk = γ = 1/n, uSCG recovers the stochastic con-
tinuous greedy method (Mokhtari et al., 2020; Vondrák,
2008), which can be used to solve DR-submodular maxi-
mization problems under Matroid polytope constraints.

LMO for deep learning SCG for training neural net-
works has been suggested in Pokutta et al. (2020) and
Lu et al. (2022), where optimization was specifically con-
strained to the K-sparse polytope with increasing batch-
size for handling stochasticity. Beyond these works, we
provide convergence guarantees for SCG with constant
batch-sizes and, introduce a principled framework for se-
lecting effective constraints based on the input and output
space geometries of the layers of the network.

The perturbation in the sharpness-aware minimization
(SAM) has been interpreted as an lmo and generalized to
arbitrary norms (Pethick et al., 2025), focusing on the max-
norm over nuclear norms, maxℓ ∥Wℓ∥S1

.

Scion can also be seen as an instantiation of the Lion-K
(Chen et al., 2023) algorithm with ∂K chosen to be the lmo.
In this case, however, K is not smooth and the continuous-
time analysis presented in Chen et al. (2023) and related
works do not apply.

Trust-region The SCG method can be seen as a trust-
region method with a linear surrogate. Usually, the surro-
gate is taken to be quadratic (cf. Wright (2006, Ch. 4)).
We refer to Conn et al. (2000) for an extensive overview of
trust-region methods.

Preconditioned SGD We also recognize the spectral lmo
used in SCION as being related to the Preconditioned SGD
(PSGD) family of algorithms (Li, 2017; Pooladzandi & Li,
2024) in the sense of whitening the update. In contrast to

those methods, we do not keep track of an explicit precon-
ditioner; we compute the lmo at each iteration instead.

Natural gradient Early work on non-Euclidean meth-
ods considered measuring the “distance” between models
through the Kullback–Leibler (KL) divergence between the
output distributions of the models (Amari, 1998). Approxi-
mating the KL divergence through a Taylor expansion leads
to a steepest descent method, which preconditions with
the Fisher information matrix, known as the natural gra-
dient method. Trust-region variants of the natural gradi-
ent method were considered with TRPO (Schulman et al.,
2015) similarly to how uSCG can be seen as a trust-region
variant of steepest descent.

5. Analysis
We begin by presenting the two main assumptions we will
make to analyze Algorithms 1 and 2. The first is an as-
sumption on the Lipschitz-continuity of ∇f with respect
to the norm ∥ · ∥∗ restricted to X . We do not assume this
norm to be Euclidean which means our results apply to the
geometries relevant to training neural networks.

Assumption 5.1. The gradient∇f is L-Lipschitz with L ∈
(0,∞), i.e.,

∥∇f(x)−∇f(x)∥∗ ≤ L∥x− y∥ ∀x, y ∈ X . (8)

Furthermore, f is bounded below by f⋆.

Remark 5.2. Strictly speaking, uSCG only needs Lipschitz
continuity to hold locally within a radius γρ, since the as-
sumption is only invoked between two consecutive iterates.

Our second assumption is that the stochastic gradient oracle
we have access to is unbiased and has a bounded variance,
a typical assumption in stochastic optimization.

Assumption 5.3. The stochastic gradient oracle∇f(·, ξ) :
X → Rd satisfies.

(i) Unbiased: Eξ [∇f(x, ξ)] = ∇f(x) ∀x ∈ X .

(ii) Bounded variance:
Eξ

[
∥∇f(x, ξ)−∇f(x)∥22

]
≤ σ2 ∀x ∈ X , σ ≥ 0.

With these assumptions, we can state our worst-case con-
vergence rates, first for Algorithm 1 and then for Algo-
rithm 2.

To bridge the gap between theory and practice, we inves-
tigate these algorithms when run with a constant stepsize
γ, which depends on the specified horizon n ∈ N∗, and
momentum which is either constant α ∈ (0, 1) (except for
the first iteration where we take α = 1 by convention) or
vanishing αk ↘ 0. All results can be extended to any time
guarantees in a straightforward manner by choosing γk as
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a function of the iteration counter k instead of horizon n
and modifying the proofs accordingly.

The exact constants for the rates can be found in the proofs
in Appendix D; we try to highlight the dependence on the
parameters L and ρ, which correspond to the natural ge-
ometry of f and D, explicitly here. Our rates are non-
asymptotic and use big O notation for brevity.

Theorem 5.4 (Convergence rate for uSCG with constant
α). Suppose Assumptions 5.1 and 5.3 hold. Let n ∈ N∗ and
consider the iterates {xk}nk=1 generated by Algorithm 1
with constant stepsize γ = 1√

n
and constant momentum

α ∈ (0, 1). Then, it holds that

E[∥∇f(x̄n)∥∗] ≤ O
(

Lρ√
n
+ σ

)
.

Theorem 5.5 (Convergence rate for uSCG with vanish-
ing αk). Suppose that Assumptions 5.1 and 5.3 hold. Let
n ∈ N∗ and consider the iterates {xk}nk=1 generated by
Algorithm 1 with a constant stepsize γ satisfying 1

2n3/4 <

γ < 1
n3/4 and vanishing momentum αk = 1√

k
. Then, it

holds that

E[∥∇f(x̄n)∥∗] = O
(

1
n1/4 + Lρ

n3/4

)
.

Insight 5.1. The uSCG algorithm remarkably does
not require knowledge of the Lipschitz constant
L, which is intuitively explained by viewing the
method as a normalized version of steepest descent
through the relationship lmo(·) = − [·]♯

∥·∥∗
. Normal-

izing gradients with the dual norm has also been
used in the online learning community to adapt to
(local) Hölder smoothness as a simple alternative
to AdaGrad-Norm (Orabona, 2023).

These results show that, in the worst-case, running Algo-
rithm 1 with constant momentum α guarantees faster con-
vergence but to a noise-dominated region with radius pro-
portional to σ. In contrast, running Algorithm 1 with van-
ishing momentum αk is guaranteed to make the expected
dual norm of the gradient small but at a slower rate. Algo-
rithm 2 exhibits the analogous behavior, as we show next.

Before stating the results for Algorithm 2, we emphasize
that they are with constant stepsize γ, which is atypical for
conditional gradient methods. However, like most condi-
tional gradient methods, we provide a convergence rate on
the so-called Frank-Wolfe gap which measures criticality
for the constrained optimization problem over D.

Finally, we remind the reader that the iterates of Algo-
rithm 2 are always feasible for the set D by the design of
the update and convexity of the norm ball D.

Theorem 5.6 (Convergence rate for SCG with constant α).
Suppose Assumptions 5.1 and 5.3 hold. Let n ∈ N∗ and
consider the iterates {xk}nk=1 generated by Algorithm 2
with constant stepsize γ = 1√

n
and constant momentum

α ∈ (0, 1). Then, for all u ∈ D, it holds that

E[⟨∇f(x̄n), x̄n − u⟩] = O
(

Lρ2

√
n
+ σ

)
.

Theorem 5.7 (Convergence rate for SCG with vanishing
αk). Suppose Assumptions 5.1 and 5.3 hold. Let n ∈
N∗ and consider the iterates {xk}nk=1 generated by Algo-
rithm 2 with a constant stepsize γ satisfying 1

2n3/4 < γ <
1

n3/4 and vanishing momentum αk = 1√
k

. Then, for all
u ∈ D, it holds that

E[⟨∇f(x̄n), x̄n − u⟩] = O
(

1
n1/4 + Lρ2

n3/4

)
.

Insight 5.2. For both algorithms, our worst-case
analyses for constant momentum suggest that tun-
ing α requires balancing two effects. Making α
smaller helps eliminate a constant term that is pro-
portional to the noise level σ. However, if α be-
comes too small, it amplifies an O(1/

√
n) term and

an O(σ/n) term. The stepsize γ must also align
with the choice of momentum α; for vanishing αk

the theory suggests a smaller constant stepsize like
γ = 3

4(n3/4)
to ensure convergence.

6. Experiments
For computing the lmo of layers using a spectral norm con-
straint, we use the efficient implementation provided in Jor-
dan et al. (2024b) of the Newton-Schultz iteration proposed
in Bernstein & Newhouse (2024b). In this section, Muon
(Jordan et al., 2024b) refers to the version used in practice,
which uses AdamW for the first layer and last layer and
Nesterov type momentum.

GPT We build on the excellent modded-nanogpt code-
base (Jordan et al., 2024a), which makes the following
modernizations to Karpathy (2023): rotary embeddings is
used instead of positional embeddings, RMS norm is used
instead of LayerNorm, and linear decay schedule instead of
a cosine stepsize, and the ReLU2 instead of GELU activa-
tion function (scaled according to Appendix E.3). SCION
and UNCONSTRAINED SCION use the (Sign→ Spectral→
Sign) configuration with scaling factors in accordance with
Tables 3 and 4. We train for 5100 iterations with a batch-
size of 512 on the FineWeb dataset (see Table 7 regarding
hyperparameters). In comparison with Adam, both Muon
and (UNCONSTRAINED) SCION do not require learning
rate warmup. We sweep over stepsizes and model width
in Figure 1.
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Figure 1. Performance on NanoGPT with between 64M and 1B parameters. The optimal learning rate of SCION is invariant to width.
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Figure 2. Batch size sensitivity on NanoGPT (124M). The gener-
alization of SCION is less sensitive to larger batches.
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Figure 3. SCION leads to 30% fewer epochs for ViT on ImageNet
and >40% wallclock speedup due to a larger critical batch size.

From Figure 1, we observe that the optimal stepsize
of SCION and UNCONSTRAINED SCION transfer across
model width as oppose to Adam and Muon. The 124M
model size configuration in Figure 1 corresponds to one of
the official speedrun entries of Jordan et al. (2024a), for
which SCION has slightly lower validation loss (across 3
runs) than Muon. Even when Muon is tuned on the largest
model size it achieves a validation loss of 2.988 in compar-
ison with 2.984 of UNCONSTRAINED SCION.

Our methods completely remove the need for using Adam
otherwise present in the Muon implementation, which per-
mits an implementation that only requires storing one set
of weights and one set of gradient (stored in half-precision)
across all layers (see Appendix E.2). The experiments ad-
ditionally demonstrates that our method works for weight
sharing.

3B model Using the optimal configuration of the 124M
parameter proxy model, we perform a large model exper-
iment on a 3B parameter model, which also increases the
depth. Specifically, we take the embedding dimension to
be 2560 and the depth to be 36. We observe in Table 5 that
UNCONSTRAINED SCION outperforms all other methods.
The loss curve is provided in Figure 8 of Appendix E.

Table 5. Validation loss on a 3B parameter GPT model.
Adam Muon UNCONSTRAINED SCION SCION

3.024 2.909 2.882 2.890

Large batches To test the effect of large batches we fix
the total number of tokens for the 124M parameter model
and sweep over the batch sizes while rescaling the total
number of steps accordingly. The stepsize γ is optimized
over {2−17, 2−16, ..., 2−5} for each combination of batch
size and optimizer. We observe that (UNCONSTRAINED)
SCION is better at maintaining a low validation loss with
increasing batch size than the baselines (cf., Figure 2).

For large batches, SCION achieves a significantly better
validation loss than Muon. To assess the implication for
training time, we perform an additional experiment for the
large batch size of 6144, where we reduce the number of
iterations until SCION matches the larger validation loss of
Muon. We find that SCION can achieve the same validation
loss as Muon with a 25% smaller wallclock time.

We provide two possible explanations for why SCION fa-
vors large batches: The treatment of the noise is tied to the
Euclidean geometry, in order to exploit the unbiasedness of
the stochastic oracle, as apparent from the analysis. Addi-
tionally, in the extreme case of a single sample, the gradi-
ents of the linear layers are rank-1 and all Schatten norms
become equivalent (e.g., Frobenius and Spectral norm).

Image classification We additionally test on vision trans-
formers (ViT) on ImageNet and convolutional neural net-
works (CNN) on the CIFAR10 dataset using the configu-
ration (Spectral→ Spectral→ Sign). The explicit control
on the norm provided by SCION circumvents the need for
the Frobenius norm normalization of the weights present
in the CIFAR10 implementation of Muon (Jordan, 2024).
The results regarding ImageNet are shown in Figure 3 (cf.
Appendix E.4 for details and experiments on CIFAR10).
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A. Preliminaries
A.1. Relationship between steepest descent and uSCG

There are two prominent families of norm-based non-Euclidean method, namely the ones based on the lmo and the ones
based on the sharp operator, both of which can be expressed in the terms of the Fenchel conjugate. The Fenchel conjugate
of a proper, convex, and lower semicontinuous function h : X → R ∪ {∞} is defined as:

h∗(s) = sup
x∈X
{⟨s, x⟩ − h(x)} ,

where s ∈ X . The subdifferential ∂h∗ is equivalent to the argmax of the conjugate operation, i.e.,

∂h∗(s) = argmax
x∈X

{⟨s, x⟩ − h(x)} .

This follows from the Fenchel-Young inequality (see e.g. Bauschke & Lucet (2012)).

LMO The lmo is a special case when h is an indicator function of a convex set, i.e.,

lmo(s) = ∂h∗(−s)

with h(x) = ιD(x) :=

{
0 x ∈ D
+∞ otherwise

The lmo is commonly used for constrained minimization in e.g., CG since the operator ensure feasibility on the constrained
set D. When D := {x | ∥x∥ ≤ ρ}, the lmo satisfies ⟨s, lmo(s)⟩ = −ρ∥s∥∗, which is central to the convergence proof of
uSCG (see Lemma D.1).

Sharp operator Another important example is the sharp operator (Nesterov, 2012; Kelner et al., 2014) defined as

s♯ ∈ argmax
x∈X

{⟨s, x⟩ − 1
2∥x∥

2}

for some norm ∥ · ∥, which can equivalently be written as

s♯ ∈ ∂h∗(s) with h(x) = 1
2∥x∥

2.

The sharp operator satisfies ⟨s, s♯⟩ = ∥s♯∥2 = ∥s∥2∗ (Kelner et al., 2014, App. A.1).

The sharp operator and lmo can be defined in terms of each other when D := {x | ∥x∥ ≤ ρ}, specifically

s♯ = − 1
ρ∥s∥∗ lmo(s) (9)

From (9) we see a clear distinction between the lmo and the sharp operator, namely that, while the lmo is scale invariant
(i.e. lmo(a · s) = lmo(s) for a > 0) the sharp operator is not (since [a · s]♯ = a[s]♯ for a ∈ R).

Steepest descent Steepest descent in a normed space can be written in terms of the sharp operator as follows

xk+1 = xk − γ[∇f(xk)]♯

with a stepsize γ > 0. From (9) it becomes apparent that uSCG can be seen as a normalized variant of steepest descent
with momentum.

B. Method
B.1. Input radius scaling

Based on the spectral norm perspective (Yang et al., 2023), which requires that ∥Wℓ∥S∞ = Θ(
√

dout/din), one might
be inclined to pick the initialization such that ∥Wℓ∥S∞ =

√
dout/din is ensured exactly. This argument is indeed valid
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Algorithm 3 (Unconstrained) Scion
Input: Horizon n, init. x1 = (W 1

1 , ...,W
1
L), d

0 = 0, momentum αk ∈ (0, 1], stepsize γ ∈ (0, 1), radii ρi ∈ R+.
1: for k = 1, . . . , n− 1 do
2: Sample ξk ∼ P
3: dk ← αk∇f(xk, ξk) + (1− αk)d

k−1

4: xk+1
ℓ ←

{
xk
ℓ + γρℓ lmo∥·∥αℓ→βℓ

(dkℓ ) if unconstrained
(1− γ)xk

ℓ + γρℓ lmo∥·∥αℓ→βℓ
(dkℓ ) else

∀ℓ ∈ [L]

Return xn

SCG and uSCG with the layerwise norm choice from (6). For simplicity we ignore biases.
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Figure 4. Coordinate check at initialization. Preactivations are not constant with the spectral scaling
√

dout
din

, when din > dout.

asymptotically, since input dimension is kept fixed. However, when the input dimension is larger than the output dimension,
this does not lead to constant preactivations as demonstrated through a coordinate check (Yang & Hu, 2021) carried out in
Figure 4.

Kaiming initialization (He et al., 2015) fortunately circumvents this problem. From random matrix theory we have that
∥A∥S∞ ≈ σ(

√
din +

√
dout) for Aij ∼ N (0, σ2) (Vershynin, 2018). So the Kaiming initialization, [Wℓ]ij ∼ N(0, 1/din),

leads to ∥Wℓ∥S∞ ≈ 1 +
√

dout/din, which prevents the preactivation from going to zero as dout → 0. Alternatively, one
can simply choose ∥Wℓ∥S∞ = max(1,

√
dout/din).

Ensuring a correct norm scaling is particularly important for SCG and uSCG, since the scaling not only affects initialization
but also the update rule itself. Specifically, if the methods were run with the norm bound choice ∥Wℓ∥S∞ ≤

√
dout/din for

the input layer, then the issue in Figure 4 persists, due the lmo always lying on the boundary of the norm ball. The choice
∥Wℓ∥S∞ = max(1,

√
dout/din) resolves this issue.

B.2. Alternative norm choices

The primary argument in Section 3.1 for the norm choice is based on the invariance provided by the RMS→ RMS operator
norm: i.e., the RMS norm of the output of layer ℓ is bounded, so the input of next layer ℓ+ 1 is also bounded in the RMS
norm. Since the lmo of ∥ · ∥RMS→RMS can be computed efficiently, we can directly use this norm choice for our update
rule.

However, it is possible to choose another norm such as ∥ · ∥1→RMS, as long as the RMS norm guarantee on the output of
Wℓ is converted into a guarantee on the ℓ1-norm of the input of layer ℓ + 1. Specifically, we have that ∥ · ∥RMS→RMS ≤
din∥ · ∥1→RMS through Fact 3.1. Alternatively, we can rely on the invariance provided by ∥ · ∥∞→∞, for which Fact 3.1
tells us that ∥ · ∥∞→∞ ≤

√
din∥ · ∥RMS→∞ and ∥ · ∥∞→∞ ≤ din∥ · ∥1→∞. The resulting lmo choices for the three norm

choices across all layers are summarized in Table 6.
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Table 6. It is possible to use the same norm throughout the network if scaled appropriately. By not treating the network as a flattened
vector, hyperparameter can transfer across model sizes (cf. Figure 6). We have made use of Fact 3.1 and (5) to derive the correct
layerwise scaling. We assume that the image input dimension is smaller than the dout of the first layer (otherwise see Appendix B.1).

Weight norm (bias norm) W1 (1-hot encoded) W1 (image domain) (Wℓ)ℓ∈[2,...,L−1] WL bℓ

Spectral RMS→ RMS (RMS) lmo −
√
doutUV ⊤ −

√
dout/dinUV ⊤ − bℓ

∥bℓ∥RMS

ColNorm 1→ RMS (RMS) lmo colj(W1) 7→ −
√
dout

colj(W1)
∥ colj(W1)∥2

colj(Wℓ) 7→ −
√
dout

din

colj(Wℓ)
∥ colj(Wℓ)∥2

− bℓ
∥bℓ∥RMS

RowNorm RMS→∞ (RMS) lmo rowi(W1) 7→ − rowi(W1)
∥ rowi(W1)∥2

rowi(Wℓ) 7→ − rowi(Wℓ)√
din∥ rowi(Wℓ)∥2

− bℓ
∥bℓ∥RMS

Sign 1→∞ (∞) lmo − sign(W1) − 1
din

sign(Wℓ) − sign(bℓ)

B.3. Boundary initialization

Semi-orthogonal Following Saxe et al. (2013), perform QR decomposition of a random matrix

Gij ∼ N (0, 1), ∀i, j
G = QR

Use Q′ = Q sign(diag(R)) as the semi-orthogonal matrix as the initialization.

Column-wise normalized Gaussian As proposed in Large et al. (2024), initialize each column as follows

Wij ∼ N (0, 1), ∀i, j

colj(W ) =
colj(W )

∥ colj(W )∥2
, ∀i

Row-wise normalized Gaussian Initialize each row as follows

Wij ∼ N (0, 1), ∀i, j

rowi(W ) =
rowi(W )

∥ rowi(W )∥2
, ∀j

Random sign

Wij =

{
+1 with probability 0.5

−1 with probability 0.5
∀i, j

Each initialization should be scaled by the corresponding scaling of the lmo elementwise.

C. Proofs for Section 3 (Our Methods)
C.1. Notation and detailed problem setting

First, we introduce some notation and detailed problem settings. Consider an L-layer neural network with input dimension
d0, hidden layer widths {d1, d2, . . . , dL−1}, and output dimension dL. For any input data z ∈ Rd0 , the forward pass of the
network is defined as

f (1)(z) = W(1)z, h(1)(z) = σ
(
f (1)(z)

)
,

f (ℓ)(z) = W(ℓ)h(ℓ−1)(z), h(ℓ)(z) = σ
(
f (ℓ)(z)

)
, ∀ℓ = 2, . . . , L− 1,

f (L)(z) = W(L)h(ℓ−1)(z).

(10)

Here, W(ℓ) ∈ Rdℓ×dℓ−1 are the weight matrices of the network, and σ(·) is an element-wise activation function. We denote
f (ℓ)(z) ∈ Rdℓ as the preactivation of the l-th layer and h(ℓ)(z) ∈ Rdℓ as the corresponding postactivation. The network
output f (L)(z) is calculated as a linear transformation of the final hidden layer representation.

Below, we provide a brief overview of the specific assumptions for the input data and initialization. Then we explicitly
define the spectral norm choice used in our analysis:

16



Training Deep Learning Models with Norm-Constrained LMOs

Assumption C.1 (Input data). Training samples (z,y) are drawn from a distribution P , where z ∈ Rd0 and y ∈ RdL . We
assume z has bounded second moments, i.e., ∥z∥22 <∞.

Assumption C.2 (Initialization schemes). The initialization satisfy the following condition for the stability of the maximal
update learning rate (Yang et al., 2023):

∥W(ℓ)∥S∞ = Θ
(√

dℓ

dℓ−1

)
.

Both semi-orthogonal initialization and (with high probability) Gaussian initialization satisfy this condition.

Assumption C.3 (Spectral norm choice for lmo). We adopt the layer-wise linear maximization oracles (lmos) from Ta-
bles 3 and 4. Specifically, for the first layer W(1), we use

lmo
(
∇W(1)L

)
= max

(
1,
√

dout

din

)
U(1) V(1)⊤,

where W(1) = U(1)Λ(1)V(1)⊤ is the reduced SVD of W(1). For each intermediate layer W(ℓ), ℓ ∈ {2, . . . , L}, we
similarly set

lmo
(
∇W(ℓ)L

)
=
√

dout

din
U(ℓ) V(ℓ)⊤,

Remark C.4. In all cases, these choices are consistent with the (Spectral → Spectral → Spectral) configuration from
Tables 3 and 4. Our results will simultaneously hold for the (ColNorm→ Spectral→ Spectral) configuration, due to the
equivalence under 1-hot encoded (cf. Insight 3.2).

To investigate how these neuron preactivations change after one step of Algorithm 1, we consider a batch size = 1 setting.
We analyze the update dynamics of the network parameters under general loss functions L, including but not limited to
mean squared error (MSE) and logistic loss.

We follow Yang & Hu (2021) which states that a good learning rate enables hidden layer preactivations to undergo the
largest possible change in a single update step, while still avoiding divergence when the network width is large.

Let ∆f
(ℓ)
i (z) be the change in the preactivation of the i-th neuron in the l-th hidden layer after one step of Algorithm 1 on

(z,y). The so-called “maximal update” heuristic requires that:

The maximal update learning rate γ∗ := the learning rate for which E
[(
∆f

(ℓ)
i (z)

)2] ≃ 1,

with the expectation again taken over the initialization distribution.

C.2. Hyperparameter transfer

To begin with, we prove the following lemma that derives the lmo of the gradient in an L-layer neural network using the
spectral norm choice from Table 3.

Lemma C.5 (Spectral lmo for the gradient with respect to W(ℓ)). Consider an L-layer neural network with input di-
mension d0, hidden layer widths {d1, d2, . . . , dL−1}, and output dimension dL. Training samples (z,y) are drawn from
some distribution P , where z ∈ Rd0 and y ∈ RdL . The network follows the forward pass (10). For convenience, we
set f (0) = h(0) = z, making the notation consistent for all layers. The linear maximization oracle (lmo) over the scaled
spectral norm ball, D =

{
W | ∥W∥S∞ ≤

√
dℓ

dℓ−1

}
, for∇W(ℓ)L(z,y), denoted as lmo(∇W(ℓ)L(z,y)), is given by

lmo(∇W(ℓ)L(z,y)) =

√
dℓ

dℓ−1

(
dL(z,y)
df (ℓ)

)
h(ℓ−1)⊤∥∥∥dL(z,y)

df (ℓ)

∥∥∥
2
∥h(ℓ−1)∥2

.

Proof. First, we express the gradient with respect to W(ℓ). By applying the chain rule we have

∇W(ℓ)L(z,y) =
(dL(z,y)

df (ℓ)

)
h(ℓ−1)T .

We immediately have that the lmo is given as
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lmo(∇W(ℓ)L(z,y)) =

√
dℓ

dℓ−1

(
dL(z,y)
df (ℓ)

)
h(ℓ−1)⊤∥∥∥dL(z,y)

df (ℓ)

∥∥∥
2
∥h(ℓ−1)∥2

.

Now, we are equipped to state and prove Lemma C.6. We follow the proof technique of Yang et al. (2023) in our derivations.
Lemma C.6 (Width-invariance of the maximal update learning rate). Consider an L-layer MLP with widths d0, d1, . . . , dL
(where d1 ≥ d0), and assume d0 is a fixed constant. Let its activation function σ have Lipschitz constant Lσ and satisfy
σ(0) = 0 (e.g., ReLU, Tanh, or GELU). Suppose:

(i) The input data (z,y) meets the requirements in Assumption C.1,

(ii) The network is initialized according to Assumption C.2, and

(iii) Parameter updates use Algorithm 1 with the spectral-norm-based lmo described in Assumption C.3.

For various loss functions L (e.g., MSE, logistic), define the maximal update condition by

E
[(
∆f

(ℓ)
i (z)

)2] ≃ 1 for all ℓ ≤ L,

where ∆f
(ℓ)
i (z) is the change in the preactivation of the i-th neuron in the ℓ-th hidden layer after one update step. Unless

all activations are simultaneously zero during training (which is highly unlikely in practice), the optimal learning rate γ∗

(under the setting αk = 1 in Algorithm 1) satisfying this condition is independent of the hidden-layer widths.

Proof. For Algorithm 1 with the setting αk = 1, we have through the spectral norm choice Assumption C.3 and Lemma C.5
that

∆f
(ℓ)
i (z) =

dℓ−1∑
j=1

∆W
(ℓ)
i,j h

(ℓ−1)
j (z) +

dℓ−1∑
j=1

W
(ℓ)
i,j ∆h

(ℓ−1)
j (z)

= γ

dℓ−1∑
j=1

[
lmo(∇W(ℓ)L(z,y))

]
i,j

h
(ℓ−1)
j (z) + (W(ℓ)∆h(ℓ−1))i

= γ

dℓ−1∑
j=1

√
dℓ

dℓ−1

(
dL(z,y)
df (ℓ)

)
i∥∥∥dL(z,y)

df (ℓ)

∥∥∥
2

h
(ℓ−1)
j (z)

∥h(ℓ−1)(z)∥2
h
(ℓ−1)
j (z) + (W(ℓ)∆h(ℓ−1))i

= γ

√
dℓ

dℓ−1

(
dL(z,y)
df (ℓ)

)
i∥∥∥dL(z,y)

df (ℓ)

∥∥∥
2

∥h(ℓ−1)(z)∥2 + (W(ℓ)∆h(ℓ−1))i.

Unless these terms perfect cancel each other out, we have

E
[
∥∆f (ℓ)(z)∥22

]
= E

dℓ∑
i=1

[(
∆f

(ℓ)
i (z)

)2]

≃ E
dℓ∑
i=1

[
γ2 dℓ

dℓ−1

(
dL(z,y)
df (ℓ)

)2
i∥∥∥dL(z,y)

df (ℓ)

∥∥∥2
2

∥h(ℓ−1)(z)∥22
]
+ E

dℓ∑
i=1

[
(W(ℓ)∆h(ℓ−1))2i

]

= γ2 dℓ
dℓ−1

E∥h(ℓ−1)(z)∥22 + E
∥∥∥W(ℓ)∆h(ℓ−1)

∥∥∥2
2
.
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For the second term, we have

E∥∆h(ℓ−1)(z)∥22 ≤ L2
σE
∥∥∥∆f (ℓ−1)(z)

∥∥∥2
2

So

E
∥∥∥W(ℓ)∆h(ℓ−1)

∥∥∥2
2
≤ dℓ

dℓ−1
L2
σE
∥∥∥∆f (ℓ−1)(z)

∥∥∥2
2

Recall that, under Assumption C.1, the input z has bounded second moments, i.e., ∥z∥22 <∞. Consequently, we can treat
∥z∥22, d0, and Lσ as constants. Under these conditions, we have:

E
[
∥∆f (ℓ)(z)∥22

]
≃ γ2 dℓ

dℓ−1
E∥h(ℓ−1)(z)∥22 + E

∥∥∥W(ℓ)∆h(ℓ−1)
∥∥∥2
2
,

E
∥∥∥W(ℓ)∆h(ℓ−1)

∥∥∥2
2
=

dℓ
dℓ−1

O
(
E
∥∥∥∆f (ℓ−1)(z)

∥∥∥2
2

)
,

E∥∆h(ℓ−1)(z)∥22 = O
(
E
∥∥∥∆f (ℓ−1)(z)

∥∥∥2
2

)
,

Recall that, by Assumption C.1, the input z has bounded second moments, i.e., E[∥z∥22] <∞. Focusing on the case ℓ = 1,
we obtain

E
[
∥∆ f (1)(z)∥22

]
=

γ2d1∥z∥22
d0

≃ γ2d1 .

Moreover, by the Assumption C.2 and leveraging the proof from Yang et al. (2023) (specifically, by Eq. (8) at initialization),
we have:

E∥h(ℓ)(z)∥22 = Θ(dℓ) ∀ℓ ∈ [L− 1] .

By induction, unless all activations are simultaneously zero during training (which is unlikely in practice), we have:

E
[
∥∆ f (ℓ)(z)∥22

]
≃ γ2dℓ .

By symmetry, we obtain:

E
[
∥∆ f

(ℓ)
i (z)∥22

]
=

1

dℓ
E
[
∥∆ f (ℓ)(z)∥22

]
≃ γ2 ∀i ∈ [dℓ] ,

where independent with the width for every hidden layer.

Remark C.7. The maximal update condition ensures that the network operates in a stable but maximally adaptive regime,
balancing efficient learning and numerical stability.
Remark C.8. As the hidden layer widths d1, . . . , dL−1 increase, the learning rate required to maintain the maximal update
property remains unchanged, demonstrating width invariance in deep networks. Consequently, a learning rate tuned on a
smaller model can be directly applied to a wider model without sacrificing training dynamics.
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D. Proofs for Section 5 (Analysis)
In this section we present the proofs of the main convergence results of the paper as well as some intermediary lemmas
that we will make use of along the way. Throughout this section, we adopt the notation:

(stochastic gradient estimator error) λk := dk −∇f(xk)

(diameter of D in ℓ2 norm) D2 := max
x,y∈D

∥x− y∥2

(radius of D in ℓ2 norm) ρ2 := max
x∈D
∥x∥2

(norm equivalence constant) ζ := max
x∈X

∥x∥∗
∥x∥2

(Lipschitz constant of∇f with respect to ∥·∥2) L2 := inf{M > 0: ∀x, y ∈ X , ∥∇f(x)−∇f(y)∥2 ≤M ∥x− y∥2}

We analyze each algorithm separately, although the analysis is effectively unified between the two, modulo constants.
This is done in Appendices D.1 and D.2, respectively. Our convergence analysis proceeds in three steps: we begin by
establishing a template descent inequality for each algorithm via the descent lemma. Next, we analyze the behavior of the
second moment of the error E[

∥∥λk
∥∥2
2
] under different choices for α. Then, we combine these results to derive a convergence

rate. Finally, we note that when analyzing algorithms with constant momentum, we will still always take α = 1 on the first
iteration k = 1.

D.1. Convergence analysis of uSCG

We begin with the analysis of Algorithm 1 by establishing a generic template inequality for the dual norm of the gradient
at iteration k. This inequality holds regardless of whether the momentum αk is constant or vanishing, as long as it remains
in (0, 1].

Lemma D.1 (uSCG template inequality). Suppose Assumption 5.1 holds. Let n ∈ N∗ and consider the iterates {xk}nk=1

generated by Algorithm 1 with a constant stepsize γ > 0. Then we have

E[∥∇f(x̄n)∥∗] ≤
E[f(x1)− f⋆]

ργn
+

Lργ

2
+

1

n

(
ρ2
ρ

+ ζ

) n∑
k=1

√
E[∥λk∥22]. (11)

Proof. Under Assumption 5.1, we can use the descent lemma for the function f at the points xk and xk+1 to get, for all
k ∈ {1, . . . , n},

f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩+ L
2

∥∥xk+1 − xk
∥∥2

= f(xk) + ⟨∇f(xk)− dk, xk+1 − xk⟩+ ⟨dk, xk+1 − xk⟩+ L
2

∥∥xk+1 − xk
∥∥2

= f(xk) + γ⟨∇f(xk)− dk, lmo(dk)⟩+ γ⟨dk, lmo(dk)⟩+ Lγ2

2

∥∥lmo(dk)
∥∥2

≤ f(xk) + γρ2
∥∥λk

∥∥
2
+ γ⟨dk, lmo(dk)⟩+ Lγ2

2 ρ2,

(12)

the final step employing Cauchy-Schwarz, the definition of λk, and the definition of ρ2 as the radius of D in the ∥·∥2 norm.
By definition of the dual norm we have, for all u ∈ X ,

∥u∥∗ = max
v : ∥v∥≤1

⟨u, v⟩ = max
v∈D
⟨u, 1

ρv⟩ = −⟨u,
1
ρ lmo(u)⟩

which means that, for all k ∈ {1, . . . , n},

γ⟨dk, lmo(dk)⟩ = γρ⟨dk, 1
ρ lmo(dk)⟩ = −γρ∥dk∥∗.
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Plugging this expression for γ⟨dk, lmo(dk)⟩ into (12) gives, for all k ∈ {1, . . . , n},

f(xk+1) ≤ f(xk) + γρ2
∥∥λk

∥∥
2
− γρ∥dk∥∗ + Lγ2

2 ρ2

= f(xk) + γρ2
∥∥λk

∥∥
2
− γρ∥dk −∇f(xk) +∇f(xk)∥∗ + Lγ2

2 ρ2

(a)
≤ f(xk) + γρ2

∥∥λk
∥∥
2
+ γρ∥λk∥∗ − γρ∥∇f(xk)∥∗ + Lγ2

2 ρ2

(b)
≤ f(xk) + γ(ρ2 + ζρ)

∥∥λk
∥∥
2
− γρ∥∇f(xk)∥∗ + Lγ2

2 ρ2,

applying the reverse triangle inequality in (a) while (b) stems from the definition of ζ. By rearranging terms and taking
expectations, we get

γρE[
∥∥∇f(xk)

∥∥
∗] ≤ E[f(xk)− f(xk+1)] + γ (ρ2 + ζρ)E[

∥∥λk
∥∥
2
] +

Lρ2γ2

2
.

Summing this from k = 1 to n and dividing by γρn we get

E[∥∇f(x̄n)∥∗] =
1

n

n∑
k=1

E[
∥∥∇f(xk)

∥∥
∗]

≤ E[f(x1)− f(xn+1)]

ργn
+

Lργ

2
+

1

n

(
ρ2
ρ

+ ζ

) n∑
k=1

E[
∥∥λk

∥∥
2
]

(a)
≤ E[f(x1)− f⋆]

ργn
+

Lργ

2
+

1

n

(
ρ2
ρ

+ ζ

) n∑
k=1

E[
∥∥λk

∥∥
2
]

(b)
≤ E[f(x1)− f⋆]

ργn
+

Lργ

2
+

1

n

(
ρ2
ρ

+ ζ

) n∑
k=1

√
E[∥λk∥22],

using the definition of f⋆ for (a) and Jensen’s inequality for (b).

At this point, we need to determine the growth of the induced error captured by the quantity
∥∥λk

∥∥2
2
. To estimate this, we

first use a recursion relating E[
∥∥λk

∥∥2
2
] and E[

∥∥λk−1
∥∥2
2
] adapted from the proof in Mokhtari et al. (2020, Lem. 6) and then

we prove a bound on the decay of
∥∥λk

∥∥2
2

for Algorithm 1.

Lemma D.2 (Linear recursive inequality for E
∥∥λk

∥∥2
2
). Suppose Assumptions 5.1 and 5.3 hold. Let n ∈ N∗ and consider

the iterates {xk}nk=1 generated by Algorithm 1 with a constant stepsize γ > 0. Then, for all k ∈ {1, . . . , n},

E[
∥∥λk

∥∥2
2
] ≤

(
1− αk

2

)
E[
∥∥λk−1

∥∥2
2
] +

2L2
2ρ

2
2γ

2

αk
+ α2

kσ
2.

Proof. The proof is a straightforward adaptation of the arguments laid out in Mokhtari et al. (2020, Lem. 6), which in fact
do not depend on convexity nor on the choice of stepsize. Let n ∈ N∗ and k ∈ {1, . . . , n}, then∥∥λk

∥∥2
2
=
∥∥∇f(xk)− dk

∥∥2
2

=
∥∥∇f(xk)− αk∇f(xk, ξk)− (1− αk)d

k−1
∥∥2
2

=
∥∥αk

(
∇f(xk)−∇f(xk, ξk)

)
+ (1− αk)

(
∇f(xk)−∇f(xk−1)

)
− (1− αk)

(
dk−1 −∇f(xk−1)

)∥∥2
2

= α2
k

∥∥∇f(xk)−∇f(xk, ξk)
∥∥2
2
+ (1− αk)

2
∥∥∇f(xk)−∇f(xk−1)

∥∥2
2

+ (1− αk)
2
∥∥∇f(xk−1)− dk−1

∥∥2
2

+ 2αk(1− αk)⟨∇f(xk−1)−∇f(xk−1, ξk−1),∇f(xk)−∇f(xk−1)⟩
+ 2αk(1− αk)⟨∇f(xk)−∇f(xk, ξk),∇f(xk−1)− dk−1⟩
+ 2(1− αk)

2⟨∇f(xk)−∇f(xk−1),∇f(xk−1)− dk−1⟩.
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Taking the expectation conditioned on the filtration Fk generated by the iterates until k, i.e., the sigma algebra generated
by {x1, . . . , xk}, which we denote using Ek[·], and using the unbiased property in Assumption 5.3, we get,

Ek[
∥∥λk

∥∥2
2
] = α2

kEk[
∥∥∇f(xk)−∇f(xk, ξk)

∥∥2
2
] + (1− αk)

2
∥∥∇f(xk)−∇f(xk−1)

∥∥2
2

+ (1− αk)
2
∥∥λk−1

∥∥2
2
+ 2(1− αk)

2⟨∇f(xk)−∇f(xk−1), λk−1⟩.

From this expression we can estimate,

Ek[
∥∥λk

∥∥2
2
]

(a)
≤ α2

kσ
2 + (1− αk)

2
∥∥∇f(xk)−∇f(xk−1)

∥∥2
2
+ (1− αk)

2
∥∥λk−1

∥∥2
2
+ 2(1− αk)

2⟨∇f(xk)−∇f(xk−1), λk−1⟩
(b)
≤ α2

kσ
2 + (1− αk)

2
∥∥∇f(xk)−∇f(xk−1)

∥∥2
2
+ (1− αk)

2
∥∥λk−1

∥∥2
2

+ (1− αk)
2
(

αk

2

∥∥∇f(xk)−∇f(xk−1)
∥∥2
2
+ 2

αk

∥∥λk−1
∥∥2
2

)
(c)
≤ α2

kσ
2 + (1− αk)

2L2
2

∥∥xk − xk−1
∥∥2
2
+ (1− αk)

2
∥∥λk−1

∥∥2
2
+ (1− αk)

2
(
(αk

2 )L2
2

∥∥xk − xk−1
∥∥2
2
+ 2

αk

∥∥λk−1
∥∥2
2

)
(d)
≤ α2

kσ
2 + (1− αk)

2L2
2ρ

2
2γ

2 + (1− αk)
2
∥∥λk−1

∥∥2
2
+ (1− αk)

2
(
(αk

2 )L2
2ρ

2
2γ

2 + 2
αk

∥∥λk−1
∥∥2
2

)
(e)
≤ α2

kσ
2 + (1 + αk

2 )(1− αk)L
2
2ρ

2
2γ

2 + (1 + 2
αk

)(1− αk)
∥∥λk−1

∥∥2
2
,

using the bounded variance property from Assumption 5.3 for (a), Young’s inequality with parameter αk/2 > 0 for (b),
the Lipschitz property of f under norm ∥ · ∥2 for (c), the update definition from Algorithm 1 for (d), and the fact that
1− αk < 1 for (e). To complete the proof, we note that

(1 + 2
αk

)(1− αk) ≤ (1− αk

2 ) and (1− αk)(1 +
αk

2 ) ≤ 2
αk

which, applied to the previous inequality and taking total expectations, yields

E[
∥∥λk

∥∥2
2
] ≤

(
1− αk

2

)
E[
∥∥λk−1

∥∥2
2
] + α2

kσ
2 +

2L2
2ρ

2
2γ

2

αk
.

D.1.1. CONSTANT α

Lemma D.3. Suppose Assumptions 5.1 and 5.3 hold. Let n ∈ N∗ and consider the iterates {xk}nk=1 generated by
Algorithm 1 with constant stepsize γ > 0 and constant momentum α ∈ (0, 1) with the exception of the first iteration, where
we take α = 1. Then, we have for all k ∈ {1, . . . , n}√

E[∥λk∥22] ≤
√
2L2ρ2γ

α
+

(
√
α+

(√
1− α

2

)k
)
σ.

Proof. Let n ∈ N∗, k ∈ {1, . . . , n}, and invoke Lemma D.2 to get

E[
∥∥λk

∥∥2
2
] ≤

(
1− α

2

)
E[
∥∥λk−1

∥∥2
2
] +

2L2
2ρ

2
2γ

2

α
+ α2σ2.

Applying Lemma D.9 with β = α
2 and η =

2L2
2ρ

2
2γ

2

α + α2σ2 gives directly

E[
∥∥λk

∥∥2
2
] ≤ 2L2

2ρ
2
2γ

2

α2
+ ασ2 +

(
1− α

2

)k
E[
∥∥λ1

∥∥2
2
]

≤ 2L2
2ρ

2
2γ

2

α2
+

(
α+

(
1− α

2

)k)
σ2

after using Assumption 5.3 in the final inequality. Taking square roots and upper bounding then yields√
E[∥λk∥22] ≤

√
2L2ρ2γ

α
+

(
√
α+

(√
1− α

2

)k
)
σ.
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Theorem 5.4 (Convergence rate for uSCG with constant α). Suppose Assumptions 5.1 and 5.3 hold. Let n ∈ N∗ and
consider the iterates {xk}nk=1 generated by Algorithm 1 with constant stepsize γ = 1√

n
and constant momentum α ∈ (0, 1).

Then, it holds that
E[∥∇f(x̄n)∥∗] ≤ O

(
Lρ√
n
+ σ

)
.

Proof. Let n ∈ N∗; we will first invoke Lemma D.1 and then we will estimate the error terms inside using Lemma D.2
under Assumptions 5.1 and 5.3. As shown in Lemma D.1,

E[∥∇f(x̄n)∥∗] ≤
E[f(x1)− f⋆]

ργn
+

Lργ

2n
+

1

n

(
ρ2
ρ

+ ζ

) n∑
k=1

√
E[∥λk∥22]. (13)

By Lemma D.2 with Lemma D.9, we get√
E[∥λk∥22] ≤

√
2L2ρ2γ

α
+

(
√
α+

(√
1− α

2

)k
)
σ

which, if we sum from k = 1 to n, gives us

n∑
k=1

√
E[∥λk∥22] ≤ n

√
2L2ρ2γ

α
+

(
n
√
α+

√
1− α

2

1−
√
1− α

2

)
σ.

Plugging this estimate into Equation (13) gives

E[∥∇f(x̄n)∥∗] ≤
E[f(x1)− f⋆]

ργn
+

Lργ

2
+

1

n

(
ρ2
ρ

+ ζ

) n∑
k=1

E[
∥∥λk

∥∥
2
]

≤ E[f(x1)− f⋆]

ργn
+

Lργ

2
+

1

n

(
ρ2
ρ

+ ζ

)(
n

√
2L2ρ2γ

α
+

(
n
√
α+

√
1− α

2

1−
√
1− α

2

)
σ

)

=
E[f(x1)− f⋆]

ργn
+

Lργ

2
+

(
ρ2
ρ

+ ζ

)(√
2L2ρ2γ

α
+

(
√
α+

√
1− α

2

n(1−
√
1− α

2 )

)
σ

)
.

(14)

Finally, by substituting γ = 1√
n

and noting f(xn+1) ≥ f⋆ we arrive at

E[∥∇f(x̄n)∥∗] ≤
E[f(x1)− f⋆]√

nρ
+

Lρ

2
√
n
+

(
ρ2
ρ

+ ζ

)(√
2L2ρ2
α
√
n

+

(
√
α+

√
1− α

2

n(1−
√
1− α

2 )

)
σ

)

= O

(
1√
n
+ σ

)
.

D.1.2. VANISHING αk

Lemma D.4 (Bound on the gradient error with vanishing α). Suppose Assumptions 5.1 and 5.3 hold. Let n ∈ N∗ and
consider the iterates {xk}nk=1 generated by Algorithm 1 with a constant stepsize γ satisfying

1

2n3/4
< γ <

1

n3/4
. (15)

Moreover, consider momentum which vanishes αk = 1√
k

. Then, for all k ∈ {1, . . . , n} the following holds

E[
∥∥λk

∥∥2
2
] ≤ 4σ2 + 8L2

2ρ
2
2√

k
. (16)
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Proof. Let k ∈ {1, . . . , n}, then by invoking the recursive inequality obtained in Lemma D.2 for E[
∥∥λk

∥∥2
2
] we have,

E[
∥∥λk

∥∥2
2
] ≤

(
1− αk

2

)
E[
∥∥λk−1

∥∥2
2
] + α2

kσ
2 +

2L2
2ρ

2
2γ

2

αk
. (17)

Using the particular choice of γ given in the statement of the lemma,

1

2n3/4
< γ <

1

n3/4
, (18)

as well as the choice of αk and the fact that n ≥ k, we get

E[
∥∥λk

∥∥2
2
] ≤

(
1− αk

2

)
E[
∥∥λk−1

∥∥2
2
] + α2

kσ
2 +

2L2
2ρ

2
2

αkn3/2

≤
(
1− αk

2

)
E[
∥∥λk−1

∥∥2
2
] + α2

kσ
2 +

2L2
2ρ

2
2

αkk3/2

=

(
1− 1

2
√
k

)
E[
∥∥λk−1

∥∥2
2
] +

σ2

k
+

2L2
2ρ

2
2

k

=

(
1− 1

2
√
k

)
E[
∥∥λk−1

∥∥2
2
] +

σ2 + 2L2
2ρ

2
2

k
.

Then, by applying Lemma D.10 with uk = E[
∥∥λk

∥∥2
2
] and c = σ2 + 2L2

2ρ
2
2 we readily obtain

E[
∥∥λk

∥∥2
2
] ≤ 4σ2 + 8L2

2ρ
2
2√

k
(19)

since Q as defined in Lemma D.10 is given by Q = max{E[
∥∥λ1

∥∥2
2
], 4σ2 + 8L2

2ρ
2
2} ≤ 4σ2 + 8L2

2ρ
2
2, which concludes our

result.

Combining these results yields our accuracy guarantees for Algorithm 1 with vanishing αk, presented in the next lemma.

Theorem 5.5 (Convergence rate for uSCG with vanishing αk). Suppose that Assumptions 5.1 and 5.3 hold. Let n ∈ N∗

and consider the iterates {xk}nk=1 generated by Algorithm 1 with a constant stepsize γ satisfying 1
2n3/4 < γ < 1

n3/4 and
vanishing momentum αk = 1√

k
. Then, it holds that

E[∥∇f(x̄n)∥∗] = O
(

1
n1/4 + Lρ

n3/4

)
.

Proof. Let n ∈ N∗, k ∈ {1, . . . , n}; by combining Lemma D.1 and Lemma D.4 we have

E[∥∇f(x̄n)∥∗]
(D.1)
≤ 2E[f(x1)− f⋆]

ρn1/4
+

2(ρ2 + ζρ)
∑n

k=1

√
E[∥λk∥22]

ρn
+

Lρ

n3/4

(D.4)
≤ 2E[f(x1)− f⋆]

ρn1/4
+

2(ρ2 + ζρ)
√

4σ2 + 8L2
2ρ

2
2

∑n
k=1

1
k1/4

ρn
+

Lρ

n3/4

≤ 2E[f(x1)− f⋆]

ρn1/4
+

2(ρ2 + ζρ)
√

4σ2 + 8L2
2ρ

2
2

∑n
k=1

1
k1/4

ρn
+

Lρ

n3/4
.

(20)

Using the integral test and noting that x 7→ 1
x1/4 is decreasing on R+, we can upper bound the sum in the right hand side

as
n∑

k=1

1

k1/4
≤ 1 +

∫ n

1

1

x3/4
dx = 1 +

4

3
[x3/4]n1 = 1 +

4

3
(n3/4 − 1) =

4

3
n3/4 − 1

3
≤ 4

3
n3/4.

24



Training Deep Learning Models with Norm-Constrained LMOs

Inserting the above estimation into (20) we arrive at

E[∥∇f(x̄n)∥∗] ≤
2E[f(x1)− f⋆]

ρn1/4
+

8n3/4(ρ2 + ζρ)
√

4σ2 + 8L2
2ρ

2
2

3ρn
+

Lρ

n3/4

=
2E[f(x1)− f⋆] + 8

3 (ρ2 + ζρ)
√

4σ2 + 8L2
2ρ

2
2

ρn1/4
+

Lρ

n3/4

= O

(
1

n1/4
+

Lρ

n3/4

)
which is the claimed result.

D.2. Convergence analysis of SCG

In this section we will analyze the worst-case convergence rate of Algorithm 2. To do this, we will prove bounds on the ex-
pectation of the so-called Frank-Wolfe gap, max

u∈D
⟨∇f(x), x−u⟩, which ensures criticality for the constrained optimization

problem over D, i.e., for x⋆ ∈ D

0 = ∇f(x⋆) + ND(x
⋆) ⇐⇒ max

u∈D
⟨∇f(x⋆), x⋆ − u⟩ ≤ 0

where ND is the normal cone to the set convex D.

This next lemma characterizes the descent of Algorithm 2 for any stepsize γ and momentum αk in (0, 1].
Lemma D.5 (Nonconvex analog Mokhtari et al. (2020, Lem. 2)). Suppose Assumption 5.1 holds. Let n ∈ N∗ and consider
the iterates {xk}k=1n generated by Algorithm 2 with constant stepsize γ ∈ (0, 1]. Then, for all k ∈ {1, . . . , n}, for all
u ∈ D, it holds

γE[⟨∇f(xk), xk − u⟩] ≤ E[f(xk)− f(xk+1)] +D2γ
√

E[∥λk∥22] + 2Lρ2γ2. (21)

Proof. Let n ∈ N∗, then by Assumption 5.1 we can apply the descent lemma for the function f at the points xk and xk+1

to get, for all k ∈ {1, . . . , n},

f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩+ L
2 ∥x

k+1 − xk∥2

= f(xk) + ⟨dk, xk+1 − xk⟩+ ⟨λk, xk+1 − xk⟩+ L
2 ∥x

k+1 − xk∥2

= f(xk) + γ⟨dk, lmo(dk)− xk⟩+ γ⟨λk, lmo(dk)− xk⟩+ L
2 γ

2∥ lmo(dk)− xk∥2

(a)
≤ f(xk) + γ⟨dk, u− xk⟩+ γ⟨λk, lmo(dk)− xk⟩+ L

2 γ
2∥ lmo(dk)− xk∥2

= f(xk) + γ⟨−λk, u− xk⟩+ γ⟨∇f(xk), u− xk⟩+ γ⟨λk, lmo(dk)− xk⟩+ L
2 γ

2∥ lmo(dk)− xk∥2

= f(xk) + γ⟨∇f(xk), u− xk⟩+ γ⟨λk, lmo(dk)− u⟩+ L
2 γ

2∥ lmo(dk)− xk∥2

(b)
≤ f(xk) + γ⟨∇f(xk), u− xk⟩+ γ⟨λk, lmo(dk)− u⟩+ 2Lρ2γ2,

using the optimality of lmo(dk) for the linear minimization subproblem for (a) and the 2ρ upper bound on ∥ lmo(dk)−xk∥
for (b). Rearranging and estimating we find, for all k ∈ {1, . . . , n}, for all u ∈ D,

γ⟨∇f(xk), xk − u⟩
(a)
≤ f(xk)− f(xk+1) + γ∥λk∥2∥ lmo(dk)− u∥2 + L

2 γ
2∥ lmo(dk)− xk∥2

(b)
≤ f(xk)− f(xk+1) +D2γ∥λk∥2 + 2Lρ2γ2

where we have used the Cauchy-Schwarz inequality in (a) and and bounded ∥ lmo(dk) − xk∥2 using the diameter of the
set D with respect to the Euclidean norm, denoted D2, in (b). Taking the expectation of both sides and applying Jensen’s
inequality we finally arrive, for all k ∈ {1, . . . , n}, for all u ∈ D,

γE[⟨∇f(xk), xk − u⟩] ≤ E[f(xk)− f(xk+1)] +D2γE[∥λk∥2] + 2Lρ2γ2

≤ E[f(xk)− f(xk+1)] +D2γ
√

E[∥λk∥22] + 2Lρ2γ2.
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D.2.1. SCG WITH CONSTANT α

Lemma D.6. Suppose Assumptions 5.1 and 5.3 hold. Let n ∈ N∗ and consider the iterates {xk}nk=1 generated by
Algorithm 2 with constant stepsize γ = 1√

n
and constant momentum α ∈ (0, 1) with the exception of the first iteration,

where we take α = 1. Then we have

E[
∥∥λk

∥∥2
2
] ≤ 4L2

2D
2
2

γ2

α2
+

(
2α+

(
1− α

2

)k)
σ2.

Proof. Under Assumptions 5.1 and 5.3, Lemma 1 in Mokhtari et al. (2020) yields, after taking expectations, for all k ∈
{1, . . . , n}

E[∥λk+1∥22] ≤ (1− αk+1

2
)E[∥λk∥22] + σ2α2

k+1 + 2L2
2D

2
2

γ2

αk+1
.

Taking γ and α to be constant we get

E[∥λk+1∥22] ≤ (1− α

2
)E[∥λk∥22] + σ2α2 + 2L2

2D
2
2

γ2

α
.

Applying Lemma D.9 to the above with uk = E[∥λk+1∥22], β = α
2 , and η = σ2α2 + 2L2

2D
2
2
γ2

α we obtain

E[
∥∥λk

∥∥2
2
] ≤ 2ασ2 + 4L2

2D
2
2

γ2

α2
+
(
1− α

2

)k
E[
∥∥λ1

∥∥2
2
]

≤ 4L2
2D

2
2

γ2

α2
+

(
2α+

(
1− α

2

)k)
σ2

with the final inequality following by the variance bound in Assumption 5.3.

Theorem 5.6 (Convergence rate for SCG with constant α). Suppose Assumptions 5.1 and 5.3 hold. Let n ∈ N∗ and
consider the iterates {xk}nk=1 generated by Algorithm 2 with constant stepsize γ = 1√

n
and constant momentum α ∈ (0, 1).

Then, for all u ∈ D, it holds that
E[⟨∇f(x̄n), x̄n − u⟩] = O

(
Lρ2

√
n
+ σ

)
.

Proof. Let n ∈ N∗ and let k ∈ {1, . . . , n}. By Assumption 5.1, we can invoke Lemma D.5 to get, for all k ∈ {1, . . . , n},
for all u ∈ D,

γE[⟨∇f(xk), xk − u⟩] ≤ E[f(xk)− f(xk+1)] +D2γ
√

E[∥λk∥22] + 2Lρ2γ2.

Since Assumption 5.3 holds, we can then invoke Lemma D.6 and apply this to the above. This gives, for all u ∈ D

γE[⟨∇f(xk), xk − u⟩] ≤ E[f(xk)− f(xk+1)] + 2Lρ2γ2 +D2γ

√
4L2

2D
2
2

γ2

α2
+

(
2α+

(
1− α

2

)k)
σ2

≤ E[f(xk)− f(xk+1)] + 2Lρ2γ2 + 2L2D
2
2

γ2

α
+D2γ

(
√
2α+

(√
1− α

2

)k
)
σ.

Summing from k = 1 to n then dividing by nγ we find, for all u ∈ D,

E[⟨∇f(x̄n), x̄n − u⟩] = 1

n

n∑
k=1

E[⟨∇f(xk), xk − u⟩]

(a)
≤ E[f(x1)− f(xn+1)]

γn
+ 2Lρ2γ + 2L2D

2
2

γ

α
+D2

(
√
2α+

1

n

n∑
k=1

(√
1− α

2

)k
)
σ

(b)
≤ E[f(x1)− f(xn+1)]

γn
+ 2Lρ2γ + 2L2D

2
2

γ

α
+D2

(
√
2α+

√
1− α

2

n
(
1−

√
1− α

2

))σ

(c)
≤ E[f(x1)− f⋆]

γn
+ 2Lρ2γ + 2L2D

2
2

γ

α
+D2

(
√
2α+

√
1− α

2

n
(
1−

√
1− α

2

))σ,

(22)
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applying the subadditivity of the square root for (a), geometric series due to
√
1− α

2 ∈ (0, 1) for (b), and the definition of
f⋆ for (c). Taking γ = 1√

n
then gives the final result, for all u ∈ D,

E[⟨∇f(x̄n), x̄n − u⟩] ≤ E[f(x1)− f⋆]√
n

+
2Lρ2√

n
+

2L2D
2
2

α
√
n

+D2

(
√
2α+

√
1− α

2

n
(
1−

√
1− α

2

))σ = O

(
Lρ2√
n

+ σ

)
.

D.2.2. SCG WITH VANISHING α

We now proceed to analyze the convergence of Algorithm 2 with vanishing αk. The next lemma provides an estimation on
the decay of the second moment of the noise λk.

Lemma D.7 (Bound on the gradient error with vanishing α Algorithm 2). Suppose Assumptions 5.1 and 5.3 hold. Let
n ∈ N∗ and consider the iterates {xk}nk=1 generated by Algorithm 2 with a constant stepsize γ satisfying

1

2n3/4
< γ <

1

n3/4
. (23)

Moreover, consider vanishing momentum αk = 1√
k

. Then, for all k ∈ {1, . . . , n} the following holds

E[
∥∥λk

∥∥2
2
] ≤ 4σ2 + 8L2

2D
2
2√

k
. (24)

Proof. Under Assumptions 5.1 and 5.3, we have the following recursion from Lemma 1 in Mokhtari et al. (2020) after
taking expectations, for all k ∈ N∗,

E[∥λk+1∥22] ≤ (1− αk+1

2
)E[∥λk∥22] + σ2α2

k+1 + 2L2
2D

2
2

γ2

αk+1
.

Comparing with the bound in Lemma D.4, we see the only difference is the change of the constant D2
2 by ρ22. Re-

peating the argument in Lemma D.4, the desired claim is directly obtained with D2
2 in place of ρ22, with the constant

Q = max{E[
∥∥λ1

∥∥2
2
], 4σ2 + 8L2

2D
2
2} ≤ 4σ2 + 8L2

2D
2
2 since E [

∥∥λ1
∥∥2
2
] ≤ σ2 by Assumption 5.3.

Theorem 5.7 (Convergence rate for SCG with vanishing αk). Suppose Assumptions 5.1 and 5.3 hold. Let n ∈ N∗ and
consider the iterates {xk}nk=1 generated by Algorithm 2 with a constant stepsize γ satisfying 1

2n3/4 < γ < 1
n3/4 and

vanishing momentum αk = 1√
k

. Then, for all u ∈ D, it holds that

E[⟨∇f(x̄n), x̄n − u⟩] = O
(

1
n1/4 + Lρ2

n3/4

)
.

Proof. Let n ∈ N∗ and k ∈ {1, . . . , n}. By Assumption 5.1, we can invoke Lemma D.5 to get,

γE[⟨∇f(xk), xk − u⟩] ≤ E[f(xk)− f(xk+1)] +D2γ
√
E[∥λk∥22] + 2Lρ2γ2.

Applying the estimate given in Lemma D.7 to the above we get

γE[⟨∇f(xk), xk − u⟩] ≤ E[f(xk)− f(xk+1)] +D2γ

√
4σ2 + 8L2

2D
2
2√

k
+ 2Lρ2γ2

= E[f(xk)− f(xk+1)] +D2

√
4σ2 + 8L2

2D
2
2γ

1

k1/4
+ 2Lρ2γ2.
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Summing from k = 1 to n and then dividing by nγ we find, for all u ∈ D,

E[⟨∇f(x̄n), x̄n − u⟩] = 1

n

n∑
k=1

E[⟨∇f(xk), xk − u⟩]

(a)
≤ E[f(x1)− f(xn+1)]

nγ
+

D2

√
4σ2 + 8L2

2D
2
2

n

n∑
k=1

1

k1/4
+ 2Lρ2γ

(b)
≤ E[f(x1)− f(xn+1)]

nγ
+

4D2

√
4σ2 + 8L2

2D
2
2n

3/4

3n
+ 2Lρ2γ

=
E[f(x1)− f(xn+1)]

nγ
+

4D2

√
4σ2 + 8L2

2D
2
2

3n1/4
+ 2Lρ2γ,

using division by γn for (a) and the integral test with decreasing function x 7→ 1
x1/4 for (b). Using the definition of f⋆ and

estimating nγ > n1/4

2 and γ < 1
n3/4 gives

E[⟨∇f(x̄n), x̄n − u⟩] ≤ 2E[f(x1)− f⋆]

n1/4
+

4D2

√
4σ2 + 8L2

2D
2
2

3n1/4
+

2Lρ2

n3/4

= O

(
1

n1/4
+

Lρ2

n3/4

)
.

D.3. Averaged LMO Directional Descent (ALMOND)

In this section we present a variation on Algorithm 1 that computes the lmo directly on the stochastic gradient oracle and
then does averaging. This is in contrast to how we have presented Algorithm 1 which first does averaging (aka momentum)
with the stochastic gradient oracle and then computes the lmo. A special case of this algorithm is the Normalized SGD
based algorithm of Zhao et al. (2020) when the setD is with respect to the Euclidean norm. In contrast with Algorithm 1, the
method relies on large batches, since the noise is not controlled by the momentum parameter α due to the bias introduced
by the lmo.

Algorithm 4 Averaged LMO directioNal Descent (ALMOND)
Input: Horizon n, initialization x1 ∈ X , d0 = 0, momentum α ∈ (0, 1), stepsize γ ∈ (0, 1)

1: for k = 1, . . . , n do
2: Sample ξk ∼ P
3: dk ← α lmo(∇f(xk, ξk)) + (1− α)dk−1

4: xk+1 ← xk + γdk

5: Choose x̄n uniformly at random from {x1, . . . , xn}
Return x̄n

Lemma D.8. Suppose Assumptions 5.1 and 5.3 hold. Let n ∈ N∗ and consider the iterates {xk}nk=1 generated by
Algorithm 4 with stepsize γ = 1√

n
. Then, it holds

E[∥∇f(x̄n)∥∗] ≤
E[f(x1)− f⋆]

ρ
√
n

+
L(1− α)ρ

α
√
n

+
Lρ

2
√
n
+ 2µσ = O

(
1√
n

)
+ 2µσ

where1 µ = max
x∈X

∥x∥∗
∥x∥2

.

Proof. Let n ∈ N∗ and denote zk = 1
αx

k − 1−α
α xk−1 with the convention that x0 = x1 so that z1 = x1 and, for all

k ∈ {1, . . . , n},

zk+1 − zk =
1

α
xk+1 − 1− α

α
xk − 1

α
xk +

1− α

α
xk−1 =

1

α

(
γdk − γ(1− α)dk−1

)
= γ lmo(gk).

1Alternatively, instead of invoking the constant µ we could make an assumption that the gradient oracle has bounded variance
measured in the norm ∥·∥∗.
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Applying the descent lemma for f at the points zk+1 and zk gives

f(zk+1) ≤ f(zk) + ⟨∇f(zk), zk+1 − zk⟩+ L

2

∥∥zk+1 − zk
∥∥2

= f(zk) + γ⟨∇f(zk), lmo(gk)⟩+ Lγ2

2

∥∥lmo(gk)
∥∥2

= f(zk) + γ
(
⟨∇f(zk)−∇f(xk), lmo(gk)⟩+ ⟨∇f(xk)− gk, lmo(gk)⟩+ ⟨gk, lmo(gk)⟩

)
+

Lγ2

2

∥∥lmo(gk)
∥∥2

= f(zk) + γ
(
⟨∇f(zk)−∇f(xk), lmo(gk)⟩+ ⟨∇f(xk)− gk, lmo(gk)⟩ − ρ

∥∥gk∥∥∗)+ Lγ2

2

∥∥lmo(gk)
∥∥2

(a)
≤ f(zk) + γ

((∥∥∇f(zk)−∇f(xk)
∥∥
∗ +

∥∥∇f(xk)− gk
∥∥
∗

) ∥∥lmo(gk)
∥∥− ρ

∥∥gk∥∥∗)+ Lγ2

2

∥∥lmo(gk)
∥∥2

(b)
≤ f(zk) + γ

(
ρ
(∥∥∇f(zk)−∇f(xk)

∥∥
∗ +

∥∥∇f(xk)− gk
∥∥
∗

)
− ρ

∥∥gk∥∥∗)+ Lρ2γ2

2
(c)
≤ f(zk) + γ

(
ρ
(
L
∥∥zk − xk

∥∥+ ∥∥∇f(xk)− gk
∥∥
∗

)
− ρ

∥∥gk∥∥∗)+ Lρ2γ2

2
,

(25)
applying Hölder’s inequality with norm ∥·∥∗ for (a), the radius ρ of D for (b), and Assumption 5.1 for (c). We note that

xk+1−xk = γdk = γ
(
(1− α)dk−1 + α lmo(gk)

)
= αγ lmo(gk)+(1−α)γ

(
xk − xk−1

γ

)
= αγ lmo(gk)+(1−α)(xk−xk−1)

which we can use to bound∥∥xk − xk−1
∥∥ ≤ (1− α)

∥∥xk − xk−1
∥∥+ αγ

∥∥lmo(gk)
∥∥ ≤ (1− α)

∥∥xk − xk−1
∥∥+ αργ ≤ αργ

(1− α)
.

We then have ∥∥zk − xk
∥∥ =

(1− α)

α

∥∥xk − xk−1
∥∥ ≤ (1− α)ργ

α

by using the definition of the update and the lmo, which can be plugged into (25) to get

ργ
∥∥gk∥∥∗ ≤ f(zk)− f(zk+1) + γρ

(
L
∥∥zk − xk

∥∥+ ∥∥∇f(xk)− gk
∥∥
∗

)
+

Lρ2γ2

2

=⇒
∥∥gk∥∥∗ (a)

≤ f(zk)− f(zk+1)

ργ
+ L

∥∥zk − xk
∥∥+ ∥∥∇f(xk)− gk

∥∥
∗ +

Lργ

2
(b)
≤ f(zk)− f(zk+1)

ργ
+

L(1− α)ργ

α
+
∥∥∇f(xk)− gk

∥∥
∗ +

Lργ

2

=⇒
∥∥∇f(xk)

∥∥
∗

(c)
≤ (f(zk)− f(zk+1)

ργ
+

L(1− α)ργ

α
+ 2

∥∥∇f(xk)− gk
∥∥
∗ +

Lργ

2

(26)

where (a) is the result of dividing both sides by ργ, (b) is the result of bounding
∥∥zk − xk

∥∥, and (c) follows by the reverse
triangle inequality after adding and subtracting ∇f(xk) in the norm on the left hand side. Taking expectations, using
Assumption 5.3 and the constant µ = max

x∈X
∥x∥∗
∥x∥2

, it holds

E[
∥∥∇f(xk)− gk

∥∥
∗] ≤ µE[

∥∥∇f(xk)− gk
∥∥
2
] ≤ µ

√
E[∥∇f(xk)− gk∥22] ≤ µσ

which we can sum from k = 1 to n to obtain

n∑
k=1

E[
∥∥∇f(xk)

∥∥
∗] ≤

E[f(z0)− f(zn+1)]

ργ
+

nL(1− α)ργ

α
+ 2nµσ +

nLργ

2
.

Diving both sides by n and then plugging in γ = 1√
n

yields the desired final result.
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D.4. Linear recursive inequalities

We now present two elementary lemmas that establish bounds for linear recursive inequalities. These results are essential
for analyzing the convergence behavior of our stochastic gradient estimator, particularly when examining the error term
E[
∥∥λk

∥∥2
2
].

Lemma D.9 (Linear recursive inequality with constant coefficients). Let n > 1 and consider {uk}nk=1 ∈ Rn
+ a sequence

of nonnegative real numbers satisfying, for all k ∈ {2, . . . , n},

uk ≤ (1− β)uk−1 + η

with η > 0 and β ∈ (0, 1). Then, for all k ∈ {2, . . . , n}, it holds

uk ≤ η

β
+ (1− β)ku1.

Proof. We prove the claim by induction on k. For the base case k = 2 we find

u2 ≤ (1− β)u1 + η ≤ η

β
+ (1− β)u1

since β < 1. Assume now for some k ∈ {2, . . . , n} that the claim holds. Then, by the assumed recursive inequality on
{ui}ni=1, we have

uk+1 ≤ (1− β)uk + η ≤ (1− β)

(
η

β
+ (1− β)ku1

)
+ η = (1− β)k+1u1 +

(
1− β

β
+ 1

)
η = (1− β)k+1u1 +

η

β

and thus the desired claim holds by induction.

The first lemma establishes a geometric decay bound for sequences with constant momentum. The following lemma
extends this analysis to the case of variable coefficients, which we will use when we analyze Algorithm 1 and Algorithm 2
with vanishing momentum αk.

Lemma D.10 (Linear recursive inequality with vanishing coefficients). Let {uk}k∈N∗ be a sequence of nonnegative real
numbers satisfying, for all k ∈ N∗, the following recursive inequality

uk ≤
(
1− 1

2
√
k

)
uk−1 +

c

k

where c > 0 is constant. Then, the sequence {uk}k∈N∗ satisfies, for all k ∈ N∗,

uk ≤ Q√
k

with Q = max{u1, 4c}.

Proof. We prove the claim by induction. For k = 1 the inequality holds by the definition of Q, since

u1 ≤ Q =
Q√
1
.

Let k > 1 and assume that
uk−1 ≤ Q√

k − 1
.

Then, by the assumed recursive inequality for uk, we have

uk ≤
(
1− 1

2
√
k

)
uk−1 +

c

k

≤
(
1− 1

2
√
k

)
Q√
k − 1

+
c

k
.

(27)
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Since k > 1, we can estimate

1√
k − 1

=

√
k√

k(k − 1)
=

1√
k

√
k

k − 1
=

1√
k

√
1 +

1

k − 1
≤ 1√

k

(
1 +

1

2(k − 1)

)
which, when applied to (27), gives

uk ≤
(
1− 1

2
√
k

)(
1 +

1

2(k − 1)

)
Q√
k
+

c

k
. (28)

Furthermore, as k > 1, we also have(
1− 1

2
√
k

)(
1 +

1

2(k − 1)

)
≤
(
1− 1

4
√
k

)
.

Applying the above to (28) gives

uk ≤
(
1− 1

4
√
k

)
Q√
k
+

c

k

=
Q√
k
+

c−Q/4

k

≤ Q√
k

with the last inequality following since Q ≥ 4c. The desired claim is therefore obtained by induction.

E. Experiments
E.1. Additional experiments

MLP We consider a 3-layer MLP with ReLU activations to demonstrate the various output layers in Table 3. We consider
the configuration (Spectral→ Spectral→ X) where X is the output layer. Hyperparameters are provided in Table 9. We
observe in Figure 5 that the optimal learning rate transfers across model width for all output layer configurations.

Shallow GPT We consider a 3-layer GPT model (Karpathy, 2023) with the same modernizations as for the deep GPT
in Section 6. We additionally remove the weight sharing between the first and last layer so that the various input layers
from Table 4 can be investigated. We consider SCION and UNCONSTRAINED SCION with the configuration (X→ Spectral
→ Sign) where X sweeps over the possible input layer lmos. We additionally consider the variant of UNCONSTRAINED
SCION using the configuration (Sign→ Sign→ Sign), which is useful for distributed settings. The hyperparameters can
be found in Table 8. We observe in Figure 7 that all configurations exhibit transferability of the optimal stepsize across
layer width.

E.2. Implementation details

It is possible to implement SCG and uSCG, while only storing on set of parameter and one set of gradients (possibly
stored in half-precision). For concreteness, we focus on SCG, but the reasoning applies to uSCG as well. Due to the scale
invariance of the lmo, uSCG can be equivalently written as

Gk = (1− α)Gk−1 +∇f(xk, ξk)

xk+1 = xk + γk lmo(Gk)

By rearranging the update, it suffice to maintain only two states:

G← G+∇f(x, ξ) (backpropagation)
x← x+ γ lmo(G)

G← (1− α)G

Implementation wise this approach relies on storing the averaged gradient at the memory location where backpropagation
is accumulating the gradient. Thus, it is important not to zero out the gradient at any point during training. We provide a
reference implementation in PyTorch referred to as ScionLight.
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E.3. Scaled ReLU2

Large et al. (2024, App. B.2) introduces ScaledReLU(x) :=
√
2 · ReLU(x) in order to preserve the variance of the input.

Building on this we define ScaledReLU2(x) := ScaledReLU(x)2 = 2 · ReLU(x)2 as a heuristic.

E.4. Hyperparameters

For all hyperparameter configuration (Tables 7 to 10) we first tune the radius parameters in (6) on a small proxy model,
similar to the input and output scaling factor in µP (Yang & Hu, 2021). The parameters can be tuned with a suboptimal
stepsize γ. The radius ρ1 refers to the radius of the input layer, the radius ρℓ refers to the radius scaling of the intermediary
layers, while ρL refers to the radius scaling of the last layer in the hyperparameter configuration tables Tables 7 to 11.

All experiments report the loss computed at the last iterate. A linear decay stepsize schedule is employed, which is
theoretically motivated by the last iterate guarantee provided in Zamani & Glineur (2023). The linear decay schedule is
compatible with any algorithm having regret bounds (Defazio et al., 2024), which was established for SCG in (Hazan &
Kale, 2012).

NanoGPT For NanoGPT we specifically build on the version snapshot at:
https://github.com/KellerJordan/modded-nanogpt/blob/master/records/101724_
DistributedMuon/22d24867-eb5a-4fcc-ae2c-263d0277dfd1.txt.

ViT We train a DeiT-base model on ImageNet using the DeiT codebase (Touvron et al., 2021) in order to reach the
reported test accuracy of 81.8%. For the AdamW, we retain the optimized hyperparameters reported in the original code,
for both SCION and UNCONSTRAINED SCION, we introduce several revisions.

Specifically, inspired by the NanoGPT architecture, we replace the LayerNorm layers in DeiT-base with RMSNorm (Root
Mean Square Normalization), implemented without learnable parameters. Our empirical results indicate that this modifi-
cation significantly improves the performance of SCION, while it does not produce a similar improvement for AdamW.

Furthermore, we disable the learning rate warmup for SCION and increase the batchsize. The complete set of hyperparam-
eters can be found in Table 11 and the results can be found in Figures 3 and 12.
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Figure 5. Hyperparameter transfer for all three last layer choices on MLP.

2
17

2
15

2
13

2
11

2
9

Learning rate

1.8

2.0

2.2

2.4

2.6

2.8

3.0

Va
lid

at
io

n 
lo

ss

Signum

Width
256
512
1024
2048

2
11

2
9

2
7

2
5

2
3

2
1

Learning rate

Unconstrained Scion (Sign throughout)

2
11

2
9

2
7

2
5

2
3

2
1

Learning rate

1.8

2.0

2.2

2.4

2.6

2.8

3.0

Va
lid

at
io

n 
lo

ss

Unconstrained Scion (RowNorm throughout)

Width
256
512
1024
2048

2
11

2
9

2
7

2
5

2
3

2
1

Learning rate

Unconstrained Scion (ColNorm throughout)

Figure 6. Hyperparameter transfer on a 3-layer GPT using appropriately rescaled Sign, RowNorm and ColNorm (cf. Table 6).
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Figure 7. Hyperparameter transfer on a 3-layer GPT for all three input layer norms.
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Figure 9. (left,middle) Spectral norm of weight matrices on NanoGPT (124M) throughout one training run. Recall that the linear stepsize
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on NanoGPT. The norm control of the constrained algorithm SCION appears to be particularly important for long runs as also observed
in Liu et al. (2025) regarding Muon \w weight decay.
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Figure 10. The optimal hyperparameters for (UNCONSTRAINED) SCION on the airbench setting with increasing total number of epochs
(indicated in red). SCION outperforms UNCONSTRAINED SCION, which is not surprising since norm control is important in the setting.
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Figure 11. (left,middle) Spectral norm of weight matrices on CIFAR10, while sweeping over total number of epochs. The spectral norm
grows empirically as

√
n for UNCONSTRAINED SCION with a fixed stepsize γ, whereas the norm (provably) stays bounded for SCION.

(right) The optimal stepsize transfers across width.
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Figure 12. Test accuracy curve on the DeiT-base model. The more stringent norm control of SCION is beneficial, similar to what is
observed for the CIFAR10 experiments.
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Table 7. NanoGPT hyperparameters.
Hyperparameter AdamW Muon UNCONSTRAINED SCION SCION

Layers 12
Head dim 128

Activation function ReLU2 ScaledReLU2 (see Appendix E.3)
Vocabulary size 50304

Dataset FineWeb
batch size 512
block size 1024

Iterations n 5100
Warmdown 28.5%

Stepsize schedule Constant then linear decay γk =

{
γ if k < n−m

γ · (n−k
m ) if k ≥ n−m

Warmup 5% 0
Gradient clipping Yes No

Momentum β1 / β2 0.9 / 0.95 -
Averaging parameter α - 0.1

Muon stepsize multiplier1 - 0.1 -
Nesterov - Yes -

Boundary init. - No
Radius ρ1 / ρℓ / ρL - - /50 / 3000

1 Muon uses Adam for the first and last layer. The stepsize for the intermediary layers is multiplied by a constant.

Table 8. Shallow GPT hyperparameters. We increase the batch size to 32, which is the maximum allowed for a model with an embedding
size of 4096 on an A100.

Hyperparameter AdamW UNCONSTRAINED SCION SCION

Layers 3
Head dim 64

Activation function
√
2· GELU (scaled to preserve variance)

Vocabulary size 64
Dataset Shakespeare

batch size 32
block size 1024

Iterations n 122
Stepsize schedule Linear decay γk = γ · (1− k/n)
Gradient clipping Yes No

β1 / β2 0.9 / 0.95 -
Averaging parameter α - 0.1

Boundary init. - Yes
Radius ρ1 / ρℓ / ρL - 1 / 3 / 10
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Table 9. Shallow MLP hyperparameters.
Hyperparameter SCION

Layers 3
Activation function ReLU

Dataset CIFAR10 (50000 training examples)
batch size 2048

Epochs 20
Stepsize schedule Linear decay γk = γ · (1− k/n)

Averaging parameter α 0.1
Boundary init. Yes

Radius ρ1 / ρℓ / ρL 1 / 1 / 1024

Table 10. Hyperparameters for the CNN experiments building on the airbench codebase (Jordan, 2024). Batch norm parameters use
the Euclidean ℓ2 norm and shares scaling factor ρℓ with intermediary layers. A further optimized configuration can be found in the
associated Github repository, where we also conduct a speedrun matching Muon (with Frobenious normalization) with SCION.

Hyperparameter UNCONSTRAINED SCION SCION

Block size (block 1, block 2, block 3) width factor × (64, 256, 256)
Activation function GELU

Dataset CIFAR10 (50000 training examples)
batch size 2000

Epochs 8
Stepsize schedule Linear decay γk = γ · (1− k/n)

Averaging parameter α 0.5
Boundary init. Yes

Radius ρ1 / ρℓ / ρL 1 / 1 / 20 1 / 1 / 100

Table 11. DeiT-base hyperparameters. SCION and UNCONSTRAINED SCION uses the configuration (Spectral → Spectral → Sign) with
ℓRMS-norm constraints for the learnable positional embeddings and class tokens, sharing the scaling factor ρℓ of the intermediary layers.

Hyperparameter AdamW UNCONSTRAINED SCION SCION

Layers 12
Head dim 64

Activation function GELU
√
2· GELU (scaled to preserve variance)

Normalization function LayerNorm RMSNorm
Sequence Length 197

Dataset ImageNet-1k
Stepsize schedule Linear warmup and then cosine decay

Max lr 0.001 0.00024 0.0004
Warmup epochs 5 0
Start warmup lr 10−6 -

End lr 10−5 10−7

Batch size 1024 4096
Epochs 300 200
β1 / β2 0.9 / 0.999 -

Averaging parameter α - 0.1
Boundary init. - No

Radius ρ1 / ρℓ / ρL - 25 / 25 / 500
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