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Abstract

Relation extraction (RE) is a standard infor-001
mation extraction task playing a major role in002
downstream applications such as knowledge003
discovery and question answering. Although004
decoder-only large language models are ex-005
celling in generative tasks, smaller encoder006
models are still the go to architecture for RE. In007
this paper, we revisit fine-tuning such smaller008
models using a novel dual-encoder architecture009
with a joint contrastive and cross-entropy loss.010
Unlike previous methods that employ a fixed011
linear layer for predicate representations, our012
approach uses a second encoder to compute013
instance-specific predicate representations by014
infusing them with real entity spans from corre-015
sponding input instances. We conducted exper-016
iments on three different RE datasets from both017
general and biomedical domains. Our approach018
achieved F1 score improvements ranging from019
1% to 2% over state-of-the-art methods with a020
simple but elegant formulation. Ablation stud-021
ies justify the importance of various compo-022
nents built into the proposed architecture.023

1 Introduction024

Relation extraction (RE) is a basic task in natural025

language processing (NLP), especially in applied026

domains such as biomedicine and healthcare where027

relations among biomedical entities drive disease028

and treatment processes. A relation typically con-029

nects a subject entity and an object entity via a pred-030

icate (or relation type) as in (tamoxifen, treats,031

breast cancer). The goal is to extract such rela-032

tions from natural language inputs, with at times033

the added goal of normalizing the entity spans to034

standardized vocabularies. Having a database of re-035

lations pertinent to a domain of interest can enable036

knowledge discovery and question answering.037

1.1 Relation extraction trends038

Early RE efforts focused on rule-based sys-039

tems, kernel methods, and shortest path algo-040

Figure 1: We employ a dual-encoder architecture with
instance adapted predicate descriptions for relation ex-
traction tasks.

rithms (Riloff et al., 1993; Zelenko et al., 2002; 041

Bunescu and Mooney, 2005). As the field evolved, 042

methods shifted to purely supervised models with 043

labeled data. An initial approach was to use n- 044

gram features leveraging dependency paths be- 045

tween the subject and object entity spans (Kamb- 046

hatla, 2004). Subsequently neural embeddings, 047

convolutional (Nguyen and Grishman, 2015) and 048

recurrent architectures (Miwa and Bansal, 2016) 049

and their combinations (Vu et al., 2016) enhanced 050

with attention mechanisms (Guo et al., 2019) be- 051

came popular. Since transformers were invented, 052

the BERT architecture and its variants became pop- 053

ular for named entity recognition (NER) and RE 054

efforts (Lin et al., 2019; Joshi et al., 2020). 055

There was a general consensus that joint end- 056

to-end modeling (where entities and relations are 057

extracted together in a single model) was better 058

over pipeline based approaches (where an NER 059

model and a separate RE model are stitched to form 060

a pipeline). However, Zhong and Chen (Zhong 061

and Chen, 2021) challenged that paradigm and 062

showed that pipelines can still be superior with 063

a clever marker based representation for entities. 064

So pipelines are going through a revival and it is 065

still worthwhile to build separate high quality mod- 066
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els for NER and RE and join them in the end. Here,067

the RE component assumes the entities are already068

spotted. In this paper, we focus on this RE compo-069

nent that identifies relations between pre-spotted070

entities provided as part of the input.071

We realize that decoder-only (autoregressive)072

large language models (LLMs) have become quite073

popular for general NLP tasks. While they clearly074

excel at generative tasks (e.g., summarization) and075

zero and few-shot situations for RE (Li et al., 2023),076

there is scarce evidence (if any) that they perform077

on par with encoder models when ample training078

data is available; their use has been mostly limited079

to data augmentation to enhance training dataset080

with synthetic examples while the eventual model081

to be trained is still a BERT variant or a encoder-082

decoder model such as T5 (Wadhwa et al., 2023).083

1.2 High level idea of our method084

Here we set out to improve relation classification085

abilities of encoder models. The default approach086

to RE once the entities are spotted is to derive en-087

tity (span) representations using the encoder and088

merging them in some way (typically, via concate-089

nation) to derive softmax probability estimates for090

all predicates including the NULL (no relation) label.091

This corresponds to the left block of Figure 1 (note092

that softmax layer is not shown in the figure).093

We propose to use predicate descriptions or094

definitions as an auxiliary signal. Most RE095

datasets/tasks have definitions of what a predicate096

is supposed to encode in relations that use it. For097

example, the US National Library of Medicine’s098

semantic network1 has the following official defini-099

tion for the TREATS predicate: “Applies a remedy100

with the object of effecting a cure or managing101

a condition.” This could be seen as a canonical102

way of describing a treatment relation although103

people could discuss it in myriad ways in natu-104

ral language. The high level idea is to first derive105

an instance-adapted predicate description by in-106

stantiating the canonical predicate definition with107

entity spans from input text. Next, compare this108

description with the input text and pick the predi-109

cate whose instance-adapted description matches110

the most with the input. For example, consider111

the input sentence with italicized entity spans: “Ta-112

moxifen is the most common endocrine therapy113

administered worldwide to women with hormone114

receptor-positive metastatic breast cancer.” The115

1https://lhncbc.nlm.nih.gov/semanticnetwork/

treats predicate associated description for this in- 116

stance is: “Applies a tamoxifen remedy with the 117

object of effecting a cure or managing a breast 118

cancer condition.” It is straightforward to see this 119

description semantically matches better with the 120

input sentence compared with descriptions of other 121

predicates (e.g., CAUSES). We carry this out using 122

a dual encoder architecture as shown in Figure 1 123

where the left block encodes the input instance 124

and the right block encodes the instance-specific 125

predicate descriptions. In the rest of the paper, we 126

formalize this intuition and evaluate the resulting 127

method with three different datasets. We show F1 128

score improvements ranging from 1% to 2.1% com- 129

pared to prior best methods. The datasets we used 130

are all public and our code is attached for review 131

and will be made available on GitHub if accepted. 132

2 Dual Encoder Architecture Details 133

Formally, for any input text containing mentions 134

of entity spans say constituting set E, the goal is 135

to determine a predicate r ∈ R for each possible 136

pair (es, eo) ∈ E × E, where R includes the gen- 137

erally most frequent NULL predicate. As indicated 138

in Section 1.2, we have two encoders, one for the 139

original input text and one for the input adapted 140

predicate descriptions. We first discuss the input 141

text encoder. 142

2.1 Input representation 143

It is important to note we are representing the input 144

text along with an entity pair (es, eo) ∈ E × E 145

to classify if they participate in a relation as as- 146

serted in the input. Since the eventual classification 147

is dependent on the particular pair of entities, the 148

representation is a linear projection of the entity 149

embeddings from the first encoder model. Since 150

we know the spans of ei and ej , it is customary to 151

encapsulate these spans with special tokens (Zhong 152

and Chen, 2021; Ai and Kavuluru, 2023). Specif- 153

ically subject es is placed between entity marker 154

tokens [SUB:ts] and [/SUB:ts] to denote the be- 155

gin and end of the subject entity es with entity type 156

ts. Likewise, object eo is placed between markers 157

[OBJ:to] and [/OBJ:to]. The original input along 158

with these demarcated spans is input to the encoder 159

and the output embeddings of the start tokens of 160

es and eo are concatenated to represent the candi- 161

date pair. With ET denoting the input encoder, the 162

associated input representation is 163

ρT (es, eo) = WT(ET [SUB:ts] ∥ ET [OBJ:to]), 164
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where the concatenated embedding is subjected to a165

linear transformation WT. The entity markers are166

crucial given it is important to capture the roles of167

subjects and objects and their types in determining168

viable predicates informed by contextual cues.169

2.2 Predicate description representations170

We recall that predicates in scientific areas have of-171

ficial descriptions of what they are expected to cap-172

ture. For example, in BioRED dataset (Luo et al.,173

2022), the POSITIVE CORRELATION relation be-174

tween Chemical and Disease entities is described175

as: “The drug A may induce the disease B, increase176

its risk, or the levels may correlate with disease177

risk.” For the NULL predicate, we simply describe178

it as: “There are no relations between the drug179

A and disease B.” When we find that the original180

definitions are overly simplistic or not sufficiently181

informative, we make necessary modifications to182

enhance clarity by prompting GPT-4. For example,183

in the SciERC dataset (Luan et al., 2018), the origi-184

nal definition provided for the predicate PART-OF185

reads: “B is a part of A.” This definition, while186

broad, lacks sufficient elaboration and specificity187

needed for model training. To address this, we re-188

vise the definition to better capture the essence of189

the relationship, making it more informative and190

directly applicable for our purposes. Our revised191

definition, crafted to enhance clarity, is: “B is a192

component or segment that is integral to the struc-193

ture or composition of A.”194

Instance adaption is accomplished by inserting195

the entity spans from the input into natural place196

holders for each predicate description. The main ra-197

tionale for adaptation is to encode the entity spans198

in the context of the language used in the canonical199

definitions rather than simply using the definition200

without grounding in specific entities used. Since201

identifying subject/object placeholder slots in def-202

initions is a one-time task for each predicate, this203

is done manually. Entity spans from the input are204

directly inserted into the chosen placeholder slots205

to create instance specific predicate descriptions,206

as shown for the TREATS predicate in Section 1.2.207

Though incorporating entity spans in the descrip-208

tion texts grounds their representation, it primarily209

focuses on the “hard tokens”, which may not cap-210

ture the full essence of contextual nuances present211

in the input text. To address this potential limita-212

tion, we also incorporate the [CLS] representation213

from the first encoder ET into the predicate de-214

scription representation. Thus the instance-adapted215

representation for a specific r ∈ R is 216

ρrD(es, eo) = WD(ET [CLS] ∥ Er
D[SUB:ts] 217

∥ Er
D[OBJ:to]), 218

where ED is description encoder, Er
D is the rep- 219

resentation derived for description of predicate r 220

grounded with entity spans from the input, and 221

WD is a linear transformation. By matching pro- 222

jection dimensions for WT and WD, ρT and ρrD 223

lend themselves to similarity comparisons. 224

2.3 Contrastive and cross entropy objectives 225

Although two entities can be linked via multiple 226

predicates in the real world, for a specific input 227

textual instance, it is generally safe to assume only 228

one predicate is at play. Using this multiclass (and 229

not multilabel) assumption, we formulate a con- 230

trastive objective to push the representations of ρT 231

and ρr
+

D (r+ ∈ R, the correct predicate) closer to 232

each other while pushing ρr
−

D away from ρT for all 233

r− ∈ R \ {r+}, the incorrect predicates. We rep- 234

resent this closeness/farness via vector similarity 235

sim(ρT , ρ
r
D) = cos(ρT , ρ

r
D). We chose the cosine 236

distance which is naturally in the [0, 1] range as 237

it was better than the dot product, which produced 238

suboptimal performance due to scaling issues in 239

initial experiments. (Note that we still use the nor- 240

malized dot product formulation for cosine imple- 241

mentation instead of calling Python’s math.cos().) 242

With this setup, the contrastive loss function for a 243

given input using the instance adapted predicate 244

descriptions is 245

Lct((es, eo), r
+, r−1 , . . . , r

−
|R|−1) (1) 246

= − log
esim(ρT ,ρr

+

D )

esim(ρT ,ρr
+

D ) +
∑

j e
sim(ρT ,ρ

r−
j

D )

247

During our implementation, though contrastive 248

training (from Equation (1)) was effective in push- 249

ing the input and positive predicate representations 250

closer, we observed it does not learn robust relation 251

representations of the input (the ρT s). To address 252

this, we propose to add a new linear layer and si- 253

multaneously optimize the cross-entropy loss 254

Lce(es, eo) = −
∑
r∈R

yr log(pr) (2) 255

where yr is a binary indicator of whether class 256

label r is the correct classification for the instance 257
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Figure 2: Our model architecture in detail with a 3-class example: we incorporate instance information by inserting
entity spans from the input text and concatenate the [CLS] embedding or the input encoder to the description encoder
representations. (Note that the linear and softmax layers used during training for equation (2) are not shown here.)

and pr is the predicted probability of the instance258

belonging to class r. We use the unified loss259

Lu = αLce + (1− α)Lct (3)260

during training, where the 0 ≤ α ≤ 1 serves as a261

hyper-parameter that determines the influence of262

the contrastive loss component in the overall loss.263

Although training is done via Equation (3), our264

model exclusively relies on the contrastive scores265

to make predictions at inference time as266

rpred = argmax
r∈R

sim(ρT , ρ
r
D).267

The full architecture is shown in Figure 2 with268

the two encoders handling the input and instance-269

specific label descriptions separately.270

3 Experimental Setup271

3.1 Datasets272

We looked for public RE datasets that encompass a273

variety of relation types with apt predicate defini-274

tions and landed on three: SciERC, ChemProt, and275

BioRED with stats as shown in Table 1.276

• SciERC (Luan et al., 2018): This dataset is277

created from AI conference or workshop pa-278

per abstracts and includes annotations for both279

Dataset # Predicates # Train # Dev # Test

SciERC 7 350 50 100
ChemProt 5/13 1020 612 800
BioRED 8 400 100 100

Table 1: Statistics of datasets used (columns 3–5 are
numbers of abstracts, not relations).

entities and relationships offering predicates 280

common in scientific discourse. 281

• ChemProt (Krallinger et al., 2017): This 282

dataset is designed for chemical-protein inter- 283

action detection in biomedical literature and 284

was created as part of the BioCreative shared 285

task series. Although entities were annotated 286

with the potential to be connected by one of 287

ten predicates, only five are consistently used 288

for evaluation following the shared task con- 289

ventions, due to their relative importance and 290

relevance in the context of chemical-protein 291

interactions. These five predicates were fur- 292

ther subdivided into a total of 13 fine-grained 293

predicates, which characterize further nuances 294

in interaction types (such as distinguishing be- 295

tween different kinds of upregulators or activa- 296

tors.) We test our methods with both schemes 297
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(the five and 13 predicate variations).298

• BioRED (Luo et al., 2022): This is a more re-299

cent and broad scoped biomedical RE dataset300

that includes four distinct entity types and301

eight different predicates. In its original form,302

entity normalization to standardized vocabu-303

laries is also expected. We adapt the dataset304

to fit our needs by treating it as a conventional305

RE task. In this adaptation, we address the306

issue of multiple entity mentions associated307

with a single entity ID by splitting these men-308

tions into separate relations. This modifica-309

tion ensures that each entity mention is treated310

independently, simplifying the RE process un-311

der our current system capabilities. However,312

it does not reduce task difficulty because it313

is evaluated based on obtaining relations be-314

tween all spans corresponding to both subject315

and object entities.316

SciERC and ChemProt deal with sentence-level317

relations (the participating entities are within the318

same sentence) but the surrounding context of the319

full abstract maybe needed to extract the relations.320

BioRED is a more general document level dataset321

and includes cross-sentence relations.322

3.2 Baseline methods and prior efforts323

We used the basic Google BERT model (De-324

vlin et al., 2019) and its biomedical variants325

BioBERT (Lee et al., 2019) and PubMedBERT (Gu326

et al., 2021) (trained on PubMed corpora) as our327

baselines. While BioBERT uses the original BERT328

tokenizer, PubMedBERT’s vocabulary is built from329

scratch and has shown improvements in the past330

over BERT and BioBERT. Another recent pop-331

ular method that revived pipelines by using en-332

tity role and type specific markers is the Prince-333

ton University Relation Extraction (PURE) frame-334

work (Zhong and Chen, 2021). PURE uses a BERT335

model as its base and builds on it with special to-336

kens for entity boundaries. We also compare with337

two other prior efforts. The first by Su et al. (2021)338

introduced a novel method that enhances RE capa-339

bilities with contrastive learning for data augmen-340

tation. This approach refines text representations341

derived from the BERT model specifically for RE342

tasks. Wan et al. (2023) developed GPT-RE, a new343

RE system that integrates GPT-3, using an LLM344

as an instance-aware retrieval mechanism to obtain345

relevant demonstrations from the training dataset.346

The demonstrations are then used for in-context 347

learning to predict outputs with GPT-3. 348

3.3 Base encoder choices and settings 349

Our method relies on two encoder models working 350

together. Following prior studies (Zhong and Chen, 351

2021; Wan et al., 2023), we use SciBERT (Beltagy 352

et al., 2019) as the encoder for the AI abstract RE 353

dataset SciERC. SciBERT has been pre-trained on 354

a corpus of computer science and biomedical full 355

text articles, which makes SciBERT well-suited for 356

the SciERC dataset. For BioRED and ChemProt, 357

we use PubMedBERT as the encoder. In all our 358

experiments, the encoders are all the same size 359

as BERT-base, which contains approximately 110 360

million parameters. 361

All of our experiments were conducted using a 362

consistent training regimen across different models. 363

We arrived at α = 0.5 with experiments on the 364

development datasets for weighting the two losses 365

in Equation (3) (more in Section 4.3). Each model 366

was trained for 10 epochs, a batch size of 4 with 367

a single run. We experimented with learning rates 368

1e-5 and 2e-5, to optimize performance and adapt- 369

ability across various tasks and datasets. We used 370

one NVIDIA V100 GPU trained for roughly 10 371

hours per experiment. 372

4 Results and Discussion 373

4.1 Main results 374

The main results in Table 2 show our method (last 375

row) leads to performance enhancements ranging 376

from 1% to 2.1% in micro F-score over prior meth- 377

ods. Since BioRED was introduced after papers 378

from the first three rows were published, we trained 379

and ran their code on it; this was also done for the 380

13-class version of ChemProt. Since the paradigm 381

used by Su et al. (2021) (augmentation) and Wan 382

et al. (2023) (GPT-3 calls) were quite different 383

from ours, we did not run new experiments with 384

them and simply reported the results from their 385

papers, when available. In the penultimate row, 386

we show the scores from a standard dual-encoder 387

model without instance-adaptation. That is, we 388

simply used the static predicate definitions with- 389

out instantiating them with the entities from the 390

input. The instance specific version shows nontriv- 391

ial gains of 2.5% on the SciERC dataset and 3.6% 392

on the BioRED dataset. This shows that instance- 393

adaptation features are crucial for this method. 394

Additionally, our experiments with the BioRED 395
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Methods Encoder SciERC ChemProt13 ChemProt5 BioRED

Devlin et al. (Devlin et al., 2019) BERTBASE 65.2 68.2 73.7 34.7
Lee et al. (Lee et al., 2019) BioBERT - 71.8 76.5 38.7
Gu et al. (Gu et al., 2021) PubMedBERT - 72.3 77.2 48.3
Su et al. (Su et al., 2021) PubMedBERT - - 78.7 -
GPT-RE (Wan et al., 2023) SciBERT 69.0 - - -

PURE (Zhong and Chen, 2021)
SciBERT/

68.5 72.5 78.7 51.4
PubMedBERT

Dual-Encoder (Ours) SciBERT/ 68.6 72.6 79.5 48.9
Dual-Encoder+Adapt. (Ours) PubMedBERT 71.1 73.5 79.8 52.5

Table 2: We compare the micro-F1 score, a common metric for evaluating the accuracy of classification models.
Dual-Encoder+Adapt refers to our full model with instance-adaptation. The ChemProt13 and ChemProt5 columns
refer to the 13-class and 5-class variants of the dataset, respectively. Pretrained biomedical encoders (BioBERT and
PubMedBERT) are not used for the AI dataset (SciERC).

dataset were conducted at the mention-level, rather396

than at the entity identifier level. This evaluation397

choice was driven by our focus on the granularity of398

mention-specific data rather than on broader entity399

identifiers, dealing with which is an orthogonal400

issue of entity linking.401

4.2 Ablation of the [CLS] component402

Recall that the first input encoder’s [CLS] token403

output was included as part of the predicate de-404

scription representation (Section 2.2) to enhance405

its instance specific aspects. In the 2nd row of Ta-406

ble 3, we see that removing this component dips407

the performance by 0.7 points in F-score for the408

ChemProt dataset indicating a modest influence on409

eventual performance.410

Model ChemProt5 F1

Full dual-encoder model 79.8
w/o. [CLS] concatenation 79.1
w/o. cross-entropy loss 78.7
w/o. dual-encoder 78.5

Table 3: ChemProt (5-class) ablated F1 scores on
the test set.

4.3 Ablation of cross-entropy loss411

Integrating cross-entropy loss alongside our con-412

trastive loss proved helpful for enhancing the413

model’s ability to establish more effective relation414

representations. Traditional approaches in RE have 415

relied on cross-entropy loss due to its effectiveness 416

in clustering input embeddings of the same class 417

closely together, thereby improving overall model 418

performance. From row 3 of Table 3, we see that 419

dropping it leads to a 1.1% dip in performance. 420

Lce weight P R F1

α = 0.1 76.1 87.1 81.3
α = 0.3 81.2 82.8 81.9
α = 0.5 82.9 81.8 82.3
α = 0.7 80.9 83.2 82.1

Table 4: Different proportions of cross-entropy loss on
ChemProt (5-class) development set.

We examined the impact of cross-entropy loss on 421

overall model performance by varying its weight 422

in the combined loss function (Equation (3)) to de- 423

termine and fix its value for final training as part 424

of hyperparameter optimization. The results are 425

presented in Table 4 for the ChemProt develop- 426

ment dataset. Assigning a small weight to this loss 427

(α = 0.1) and hence using more of the contrastive 428

component leads to the highest recall; but the high- 429

est F-score is reached when α = 0.5 (equal weight- 430

ing), with some compromise in recall but with a 431

better jump in precision sufficient enough to lead 432

to an overall F1 gain of 1%. 433
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4.4 Ablation of the dual encoder434

Instead of the two separate encoders for input text435

and predicate description representation, we used436

the same encoder (hence shared parameters). Row437

4 of Table 3 shows that this results in a 1.3% dip in438

performance. This maybe due to potential trade-off439

between system efficiency and performance. The440

dual-encoder configuration seems to provide supe-441

rior performance by leveraging specialized process-442

ing streams for input and description texts.443

4.5 Assessing different description texts444

Although we used predicate definitions created445

by RE dataset creators, they are the nevertheless446

a single symbolic and discrete form. We won-447

dered about how the scores would change if we448

rephrased them by prompting GPT-4 to “rewrite”449

them without any special instructions. We also450

tested a simple baseline that literally has the pred-451

icate name and entity spans fill the slots in this452

template: @predicate@: @subject@, @object@.453

Versions ChemProt13 F1

ORIGINAL 73.5
REWRITE 73.4
SIMPLE 72.9

Table 5: ChemProt (13-class) scores with different
description texts.

As the associated scores in Table 5 show, there is454

not much difference in performance with rewrites.455

However, surprisingly, the simple baseline is worse456

than the original definition by only 0.6%. This457

small dip highlights the effectiveness of even using458

templated forms with the tokens indicating the pred-459

icate name. But it is important to note that predi-460

cate names in ChemProt dataset are highly specific461

with unambiguous meanings such as UPREGULATOR462

and ANTAGONIST. Pretrained encoders such as Pub-463

MedBERT might already have decent representa-464

tions for them that carry substantial semantic signal.465

However, it is not clear if the simple baseline holds466

as well with predicate names that have a broader467

meaning, where explicit detailed definitions might468

be needed for more gains.469

5 Error Analysis470

Although our approach does not incorporate the471

NER step, there are some notable errors purely472

for the RE component. One issue is the model’s 473

failure to accurately infer the meaning from com- 474

plex or ambiguous contexts. Consider this example 475

from the SciERC dataset: “The proposed detec- 476

tors are able to capture large-scale structures and 477

distinctive textured patterns, and exhibit strong in- 478

variance to rotation, illumination variation, and 479

blur.” While our model successfully identified the 480

USED-FOR relation between detectors (subject) and 481

entities large-scale structures and distinctive tex- 482

tured patterns (object), it was not able to predict the 483

same gold USED-FOR relation with object entities 484

rotation, illumination variation and blur. Since the 485

sentence does not explicitly state that the detectors 486

are used for rotation, illumination variation and 487

blur, it might have missed potential implied links. 488

On the other hand, one could argue from the orig- 489

inal input that maybe the ground truth detectors 490

USED-FOR relations with these entities may not be 491

entirely accurate — detectors are overcoming the 492

barriers of blur and rotation to excel at capturing 493

large-scale structures and distinctive textured pat- 494

terns and not necessarily being used to detect or 495

capture blur/rotation. 496

Next, consider this input from the ChemProt 497

dataset: “Down-regulation of prostate-specific anti- 498

gen (PSA) expression, an AR-target gene, by es- 499

tramustine and bicalutamide was accompanied 500

by the blockade of the mutated androgen re- 501

ceptor.” The model was able to identify the 502

INDIRECT-DOWNREGULATOR relation between drugs 503

estramustine and bicalutamide (subjects) and the 504

protein PSA (object). But it failed to spot the same 505

relation of those drugs with the object protein AR, 506

which appears to be implicitly stated. Considering 507

ChemProt extraction sometimes invovles the full 508

abstract, other sentences surrounding this may offer 509

indirect clues about the relation. However, upon 510

examining the full abstract, we are not able to see 511

stronger evidence than what is already present in 512

the sentence shown here. 513

Another common error pattern is due to the 514

model’s lack of grasp of deep domain knowledge, 515

particularly in biomedical datasets when informa- 516

tion is densely packed. For example, consider this 517

pithy ChemProt input: “In vivo, agonist actions of 518

yohimbine at 5-HT(1A) sites are revealed by WAY 519

100,635-reversible induction of hypothermia in the 520

rat.” Here the gold relation is the ANTAGONIST link 521

between subject WAY 100,635 and object 5-HT(1A). 522

The agonist actions of the chemical yohimbine on 523

5-HT(1A) result in hypothermia and the fact that 524
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this hypothermia can be reversed by WAY 100,635525

indicates that it is playing an antagonist role for526

5-HT(1A). This a complex expression involving the527

intermediate entity yohimbine and an unusual look-528

ing phrase WAY 100,635-reversible that densely529

packs meaning that typically needs a new sentence530

to convey explicitly. This may simply be a case of531

a highly complex example needing multi-hop rea-532

soning that needed to be carried out with a compact533

input text.534

A significant challenge in the BioRED dataset535

arises from the hierarchical nature of predi-536

cates where a more general ASSOCIATION rela-537

tion is confused with specific POSITIVE/NEGATIVE538

CORRELATION relations. If the model fails to latch539

on to specific relations, it may default to the gen-540

eral predicate. Consider the input: “The 2:1 atri-541

oventricular block improved to 1:1 conduction only542

after intravenous lidocaine infusion or a high dose543

of mexiletine, which also controlled the ventricular544

tachycardia. A novel, spontaneous LQTS-3 muta-545

tion was identified in the transmembrane segment546

6 of domain IV of the Na(v)1.5 cardiac sodium547

channel, with a G–>A substitution at codon 1763,548

which changed a valine (GTG) to a methionine549

(ATG). . . . .” Here the text mentions that the ad-550

ministration of the drug lidocaine improved the551

patient’s condition, and separately, a novel muta-552

tion (LQTS-3) was identified in patients suffering553

from arrhythmias. The gold relation is NEGATIVE554

CORRELATION of lidocaine with LQTS-3 mutation555

but the model predicted ASSOCIATION, the generic556

predicate, which is only supposed to be used when557

the correlation type cannot be discerned from the558

input. However, although lidocaine and LQTS-3559

are never mentioned in the same sentence, through560

the full abstract that has over 250 words, one can561

see the lidocaine is blocking the function of this562

mutation in causing arrhythmias and as such has a563

negative correlation with it.564

6 Conclusion565

In this paper, we introduce a new approach to RE566

that uses a dual-encoder architecture that compares567

input text to instance-adapted canonical descrip-568

tions of the predicates. Experiments with a equally569

weighted joint contrastive and cross entropy loss570

show that this approach improves over prior meth-571

ods for three scientific RE datasets including AI572

and biomedical abstract inputs. Ablation experi-573

ments also reveal that each component of the model574

plays a nontrivial role in the overall performance. 575

We conclude with a few future research directions. 576

• As discussed in Section 2.3, we only use the 577

cosine scores of the two encoder representa- 578

tions to pick the right predicate at test time. 579

Since the cross entropy loss helped during 580

training, a better way to integrate output soft- 581

max probability estimates with normalized 582

cosine scores could lead to more performance 583

improvements. 584

• Many RE use-cases have hierarchical predi- 585

cate structures which were also observed in 586

ChemProt and BioRED datasets in our paper. 587

More involved learning strategies that lever- 588

age label hierarchies, potentially with graph 589

convolutional nets, may be needed. Another 590

training loss term that imposes penalties for 591

violating hierarchical constraints could lead to 592

better regularization and fewer errors arising 593

from distant predicates from the hierarchy. 594

Limitations 595

Despite the overall positive results, our model has 596

some limitations. Although the description texts 597

are derived from the annotation guidelines, they 598

require an additional step to make them compatible 599

with our model, such as manually inserting place- 600

holders for the subject and object entities. The in- 601

stance adaptation provided by our current approach 602

is limited to canonical definitions. This issue could 603

be mitigated by using LLMs to produce more re- 604

fined descriptions. 605
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