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Abstract

Relation extraction (RE) is a standard infor-
mation extraction task playing a major role in
downstream applications such as knowledge
discovery and question answering. Although
decoder-only large language models are ex-
celling in generative tasks, smaller encoder
models are still the go to architecture for RE. In
this paper, we revisit fine-tuning such smaller
models using a novel dual-encoder architecture
with a joint contrastive and cross-entropy loss.
Unlike previous methods that employ a fixed
linear layer for predicate representations, our
approach uses a second encoder to compute
instance-specific predicate representations by
infusing them with real entity spans from corre-
sponding input instances. We conducted exper-
iments on three different RE datasets from both
general and biomedical domains. Our approach
achieved F1 score improvements ranging from
1% to 2% over state-of-the-art methods with a
simple but elegant formulation. Ablation stud-
ies justify the importance of various compo-
nents built into the proposed architecture.

1 Introduction

Relation extraction (RE) is a basic task in natural
language processing (NLP), especially in applied
domains such as biomedicine and healthcare where
relations among biomedical entities drive disease
and treatment processes. A relation typically con-
nects a subject entity and an object entity via a pred-
icate (or relation type) as in (famoxifen, treats,
breast cancer). The goal is to extract such rela-
tions from natural language inputs, with at times
the added goal of normalizing the entity spans to
standardized vocabularies. Having a database of re-
lations pertinent to a domain of interest can enable
knowledge discovery and question answering.

1.1 Relation extraction trends

Early RE efforts focused on rule-based sys-
tems, kernel methods, and shortest path algo-
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Figure 1: We employ a dual-encoder architecture with
instance adapted predicate descriptions for relation ex-
traction tasks.

rithms (Riloff et al., 1993; Zelenko et al., 2002;
Bunescu and Mooney, 2005). As the field evolved,
methods shifted to purely supervised models with
labeled data. An initial approach was to use n-
gram features leveraging dependency paths be-
tween the subject and object entity spans (Kamb-
hatla, 2004). Subsequently neural embeddings,
convolutional (Nguyen and Grishman, 2015) and
recurrent architectures (Miwa and Bansal, 2016)
and their combinations (Vu et al., 2016) enhanced
with attention mechanisms (Guo et al., 2019) be-
came popular. Since transformers were invented,
the BERT architecture and its variants became pop-
ular for named entity recognition (NER) and RE
efforts (Lin et al., 2019; Joshi et al., 2020).

There was a general consensus that joint end-
to-end modeling (where entities and relations are
extracted together in a single model) was better
over pipeline based approaches (where an NER
model and a separate RE model are stitched to form
a pipeline). However, Zhong and Chen (Zhong
and Chen, 2021) challenged that paradigm and
showed that pipelines can still be superior with
a clever marker based representation for entities.
So pipelines are going through a revival and it is
still worthwhile to build separate high quality mod-



els for NER and RE and join them in the end. Here,
the RE component assumes the entities are already
spotted. In this paper, we focus on this RE compo-
nent that identifies relations between pre-spotted
entities provided as part of the input.

We realize that decoder-only (autoregressive)
large language models (LLMs) have become quite
popular for general NLP tasks. While they clearly
excel at generative tasks (e.g., summarization) and
zero and few-shot situations for RE (Li et al., 2023),
there is scarce evidence (if any) that they perform
on par with encoder models when ample training
data is available; their use has been mostly limited
to data augmentation to enhance training dataset
with synthetic examples while the eventual model
to be trained is still a BERT variant or a encoder-
decoder model such as TS5 (Wadhwa et al., 2023).

1.2 High level idea of our method

Here we set out to improve relation classification
abilities of encoder models. The default approach
to RE once the entities are spotted is to derive en-
tity (span) representations using the encoder and
merging them in some way (typically, via concate-
nation) to derive softmax probability estimates for
all predicates including the NULL (no relation) label.
This corresponds to the left block of Figure 1 (note
that softmax layer is not shown in the figure).

We propose to use predicate descriptions or
definitions as an auxiliary signal. Most RE
datasets/tasks have definitions of what a predicate
is supposed to encode in relations that use it. For
example, the US National Library of Medicine’s
semantic network! has the following official defini-
tion for the TREATS predicate: “Applies a remedy
with the object of effecting a cure or managing
a condition.” This could be seen as a canonical
way of describing a treatment relation although
people could discuss it in myriad ways in natu-
ral language. The high level idea is to first derive
an instance-adapted predicate description by in-
stantiating the canonical predicate definition with
entity spans from input text. Next, compare this
description with the input text and pick the predi-
cate whose instance-adapted description matches
the most with the input. For example, consider
the input sentence with italicized entity spans: “Ta-
moxifen is the most common endocrine therapy
administered worldwide to women with hormone
receptor-positive metastatic breast cancer.” The
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treats predicate associated description for this in-
stance is: “Applies a tamoxifen remedy with the
object of effecting a cure or managing a breast
cancer condition.” It is straightforward to see this
description semantically matches better with the
input sentence compared with descriptions of other
predicates (e.g., CAUSES). We carry this out using
a dual encoder architecture as shown in Figure 1
where the left block encodes the input instance
and the right block encodes the instance-specific
predicate descriptions. In the rest of the paper, we
formalize this intuition and evaluate the resulting
method with three different datasets. We show F1
score improvements ranging from 1% to 2.1% com-
pared to prior best methods. The datasets we used
are all public and our code is attached for review
and will be made available on GitHub if accepted.

2 Dual Encoder Architecture Details

Formally, for any input text containing mentions
of entity spans say constituting set F, the goal is
to determine a predicate » € R for each possible
pair (es, e,) € E x E, where R includes the gen-
erally most frequent NULL predicate. As indicated
in Section 1.2, we have two encoders, one for the
original input text and one for the input adapted
predicate descriptions. We first discuss the input
text encoder.

2.1 Input representation

It is important to note we are representing the input
text along with an entity pair (es,¢e,) € E x E
to classify if they participate in a relation as as-
serted in the input. Since the eventual classification
is dependent on the particular pair of entities, the
representation is a linear projection of the entity
embeddings from the first encoder model. Since
we know the spans of e; and e;, it is customary to
encapsulate these spans with special tokens (Zhong
and Chen, 2021; Ai and Kavuluru, 2023). Specif-
ically subject e; is placed between entity marker
tokens [SUB:t.] and [/SUB:%s] to denote the be-
gin and end of the subject entity e; with entity type
ts. Likewise, object ¢, is placed between markers
[0BJ:t,] and [/OBJ:%,]. The original input along
with these demarcated spans is input to the encoder
and the output embeddings of the start tokens of
es and e, are concatenated to represent the candi-
date pair. With &7 denoting the input encoder, the
associated input representation is

pr(es,eo) = Wrp(Ep[SUB:ts1 || ErLOBI:t,]),
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where the concatenated embedding is subjected to a
linear transformation W. The entity markers are
crucial given it is important to capture the roles of
subjects and objects and their types in determining
viable predicates informed by contextual cues.

2.2 Predicate description representations

We recall that predicates in scientific areas have of-
ficial descriptions of what they are expected to cap-
ture. For example, in BioRED dataset (Luo et al.,
2022), the POSITIVE CORRELATION relation be-
tween Chemical and Disease entities is described
as: “The drug A may induce the disease B, increase
its risk, or the levels may correlate with disease
risk.” For the NULL predicate, we simply describe
it as: “There are no relations between the drug
A and disease B.” When we find that the original
definitions are overly simplistic or not sufficiently
informative, we make necessary modifications to
enhance clarity by prompting GPT-4. For example,
in the SciERC dataset (Luan et al., 2018), the origi-
nal definition provided for the predicate PART-OF
reads: “B is a part of A.” This definition, while
broad, lacks sufficient elaboration and specificity
needed for model training. To address this, we re-
vise the definition to better capture the essence of
the relationship, making it more informative and
directly applicable for our purposes. Our revised
definition, crafted to enhance clarity, is: “B is a
component or segment that is integral to the struc-
ture or composition of A.”

Instance adaption is accomplished by inserting
the entity spans from the input into natural place
holders for each predicate description. The main ra-
tionale for adaptation is to encode the entity spans
in the context of the language used in the canonical
definitions rather than simply using the definition
without grounding in specific entities used. Since
identifying subject/object placeholder slots in def-
initions is a one-time task for each predicate, this
is done manually. Entity spans from the input are
directly inserted into the chosen placeholder slots
to create instance specific predicate descriptions,
as shown for the TREATS predicate in Section 1.2.
Though incorporating entity spans in the descrip-
tion texts grounds their representation, it primarily
focuses on the “hard tokens”, which may not cap-
ture the full essence of contextual nuances present
in the input text. To address this potential limita-
tion, we also incorporate the [CLS] representation
from the first encoder £ into the predicate de-
scription representation. Thus the instance-adapted

representation for a specific r € R is

pp(es,eo0) = Wp(Ep[CLS] || EHLSUB:ts]
H SE[OBJto])7

where &p is description encoder, &7, is the rep-
resentation derived for description of predicate r
grounded with entity spans from the input, and
W is a linear transformation. By matching pro-
jection dimensions for W and Wp, pr and p’,
lend themselves to similarity comparisons.

2.3 Contrastive and cross entropy objectives

Although two entities can be linked via multiple
predicates in the real world, for a specific input
textual instance, it is generally safe to assume only
one predicate is at play. Using this multiclass (and
not multilabel) assumption, we formulate a con-
trastive objective to push the representations of pr
and p}"; (r™ € R, the correct predicate) closer to
each other while pushing p}, away from p for all
r~ € R\ {r*}, the incorrect predicates. We rep-
resent this closeness/farness via vector similarity
sim(pr, plp) = cos(pr, p,). We chose the cosine
distance which is naturally in the [0, 1] range as
it was better than the dot product, which produced
suboptimal performance due to scaling issues in
initial experiments. (Note that we still use the nor-
malized dot product formulation for cosine imple-
mentation instead of calling Python’s math.cos().)
With this setup, the contrastive loss function for a
given input using the instance adapted predicate
descriptions is

Lct((65760)ar+arl_a---ar‘;ﬂ,l) (D

. +
esim(pr07 )

= —log

. —+ . .
esim(pr.pp ) Zj esSim(pr.pp )

During our implementation, though contrastive
training (from Equation (1)) was effective in push-
ing the input and positive predicate representations
closer, we observed it does not learn robust relation
representations of the input (the prs). To address
this, we propose to add a new linear layer and si-
multaneously optimize the cross-entropy loss

Lce(657 60) = - Z Yr IOg(pr) )

reR

where g, is a binary indicator of whether class
label r is the correct classification for the instance
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Figure 2: Our model architecture in detail with a 3-class example: we incorporate instance information by inserting
entity spans from the input text and concatenate the [CLS] embedding or the input encoder to the description encoder
representations. (Note that the linear and softmax layers used during training for equation (2) are not shown here.)

and p, is the predicted probability of the instance
belonging to class . We use the unified loss

Ly, =ale~+ (1 —a)Ly 3)

during training, where the 0 < o < 1 serves as a
hyper-parameter that determines the influence of
the contrastive loss component in the overall loss.
Although training is done via Equation (3), our
model exclusively relies on the contrastive scores
to make predictions at inference time as

Tpred = argmax sim(pr, pp).
reR
The full architecture is shown in Figure 2 with
the two encoders handling the input and instance-
specific label descriptions separately.

3 Experimental Setup

3.1 Datasets

We looked for public RE datasets that encompass a
variety of relation types with apt predicate defini-
tions and landed on three: SciERC, ChemProt, and
BioRED with stats as shown in Table 1.

¢ SciERC (Luan et al., 2018): This dataset is
created from Al conference or workshop pa-
per abstracts and includes annotations for both

Dataset # Predicates # Train #Dev  # Test
SciERC 7 350 50 100
ChemProt 5/13 1020 612 800
BioRED 8 400 100 100

Table 1: Statistics of datasets used (columns 3-5 are
numbers of abstracts, not relations).

entities and relationships offering predicates
common in scientific discourse.

* ChemProt (Krallinger et al., 2017): This
dataset is designed for chemical-protein inter-
action detection in biomedical literature and
was created as part of the BioCreative shared
task series. Although entities were annotated
with the potential to be connected by one of
ten predicates, only five are consistently used
for evaluation following the shared task con-
ventions, due to their relative importance and
relevance in the context of chemical-protein
interactions. These five predicates were fur-
ther subdivided into a total of 13 fine-grained
predicates, which characterize further nuances
in interaction types (such as distinguishing be-
tween different kinds of upregulators or activa-
tors.) We test our methods with both schemes



(the five and 13 predicate variations).

¢ BioRED (Luo et al., 2022): This is a more re-
cent and broad scoped biomedical RE dataset
that includes four distinct entity types and
eight different predicates. In its original form,
entity normalization to standardized vocabu-
laries is also expected. We adapt the dataset
to fit our needs by treating it as a conventional
RE task. In this adaptation, we address the
issue of multiple entity mentions associated
with a single entity ID by splitting these men-
tions into separate relations. This modifica-
tion ensures that each entity mention is treated
independently, simplifying the RE process un-
der our current system capabilities. However,
it does not reduce task difficulty because it
is evaluated based on obtaining relations be-
tween all spans corresponding to both subject
and object entities.

SciERC and ChemProt deal with sentence-level
relations (the participating entities are within the
same sentence) but the surrounding context of the
full abstract maybe needed to extract the relations.
BioRED is a more general document level dataset
and includes cross-sentence relations.

3.2 Baseline methods and prior efforts

We used the basic Google BERT model (De-
vlin et al.,, 2019) and its biomedical variants
BioBERT (Lee et al., 2019) and PubMedBERT (Gu
et al., 2021) (trained on PubMed corpora) as our
baselines. While BioBERT uses the original BERT
tokenizer, PubMedBERT’s vocabulary is built from
scratch and has shown improvements in the past
over BERT and BioBERT. Another recent pop-
ular method that revived pipelines by using en-
tity role and type specific markers is the Prince-
ton University Relation Extraction (PURE) frame-
work (Zhong and Chen, 2021). PURE uses a BERT
model as its base and builds on it with special to-
kens for entity boundaries. We also compare with
two other prior efforts. The first by Su et al. (2021)
introduced a novel method that enhances RE capa-
bilities with contrastive learning for data augmen-
tation. This approach refines text representations
derived from the BERT model specifically for RE
tasks. Wan et al. (2023) developed GPT-RE, a new
RE system that integrates GPT-3, using an LLM
as an instance-aware retrieval mechanism to obtain
relevant demonstrations from the training dataset.

The demonstrations are then used for in-context
learning to predict outputs with GPT-3.

3.3 Base encoder choices and settings

Our method relies on two encoder models working
together. Following prior studies (Zhong and Chen,
2021; Wan et al., 2023), we use SciBERT (Beltagy
et al., 2019) as the encoder for the Al abstract RE
dataset SCiERC. SciBERT has been pre-trained on
a corpus of computer science and biomedical full
text articles, which makes SciBERT well-suited for
the SciERC dataset. For BioRED and ChemProt,
we use PubMedBERT as the encoder. In all our
experiments, the encoders are all the same size
as BERT-base, which contains approximately 110
million parameters.

All of our experiments were conducted using a
consistent training regimen across different models.
We arrived at @ = 0.5 with experiments on the
development datasets for weighting the two losses
in Equation (3) (more in Section 4.3). Each model
was trained for 10 epochs, a batch size of 4 with
a single run. We experimented with learning rates
le-5 and 2e-5, to optimize performance and adapt-
ability across various tasks and datasets. We used
one NVIDIA V100 GPU trained for roughly 10
hours per experiment.

4 Results and Discussion

4.1 Main results

The main results in Table 2 show our method (last
row) leads to performance enhancements ranging
from 1% to 2.1% in micro F-score over prior meth-
ods. Since BioRED was introduced after papers
from the first three rows were published, we trained
and ran their code on it; this was also done for the
13-class version of ChemProt. Since the paradigm
used by Su et al. (2021) (augmentation) and Wan
et al. (2023) (GPT-3 calls) were quite different
from ours, we did not run new experiments with
them and simply reported the results from their
papers, when available. In the penultimate row,
we show the scores from a standard dual-encoder
model without instance-adaptation. That is, we
simply used the static predicate definitions with-
out instantiating them with the entities from the
input. The instance specific version shows nontriv-
ial gains of 2.5% on the SciERC dataset and 3.6%
on the BioRED dataset. This shows that instance-
adaptation features are crucial for this method.
Additionally, our experiments with the BioRED



Methods Encoder SciERC  ChemProt!®> ChemProt°® BioRED
Devlin et al. (Devlin et al., 2019)  BERTBASE 65.2 68.2 73.7 34.7
Lee et al. (Lee et al., 2019) BioBERT - 71.8 76.5 38.7
Guetal. (Guetal., 2021) PubMedBERT - 72.3 77.2 48.3
Su et al. (Suetal., 2021) PubMedBERT - - 78.7 -
GPT-RE (Wan et al., 2023) SciBERT 69.0 - - -
SciBERT/
PURE (Zhong and Chen, 2021) 68.5 72.5 78.7 51.4
PubMedBERT

Dual-Encoder (Ours) SciBERT/ 68.6 72.6 79.5 48.9
Dual-Encoder+Adapt. (Ours) PubMedBERT 71.1 73.5 79.8 52.5

Table 2: We compare the micro-F1 score, a common metric for evaluating the accuracy of classification models.
Dual-Encoder+Adapt refers to our full model with instance-adaptation. The ChemProt'® and ChemProt® columns
refer to the 13-class and 5-class variants of the dataset, respectively. Pretrained biomedical encoders (BioBERT and

PubMedBERT) are not used for the Al dataset (SCiERC).

dataset were conducted at the mention-level, rather
than at the entity identifier level. This evaluation
choice was driven by our focus on the granularity of
mention-specific data rather than on broader entity
identifiers, dealing with which is an orthogonal
issue of entity linking.

4.2 Ablation of the [CLS] component

Recall that the first input encoder’s [CLS] token
output was included as part of the predicate de-
scription representation (Section 2.2) to enhance
its instance specific aspects. In the 2nd row of Ta-
ble 3, we see that removing this component dips
the performance by 0.7 points in F-score for the
ChemProt dataset indicating a modest influence on
eventual performance.

Model ChemProt® F}
Full dual-encoder model 79.8

w/o. [CLS] concatenation 79.1

w/0. cross-entropy loss 78.7

w/o. dual-encoder 78.5

Table 3: ChemProt (5-class) ablated F scores on
the test set.

4.3 Ablation of cross-entropy loss

Integrating cross-entropy loss alongside our con-
trastive loss proved helpful for enhancing the
model’s ability to establish more effective relation

representations. Traditional approaches in RE have
relied on cross-entropy loss due to its effectiveness
in clustering input embeddings of the same class
closely together, thereby improving overall model
performance. From row 3 of Table 3, we see that
dropping it leads to a 1.1% dip in performance.

L. weight P R F

a=01 761 87.1 813
a=03 812 828 819
a=05 829 81.8 823
a=07 809 832 821

Table 4: Different proportions of cross-entropy loss on
ChemProt (5-class) development set.

We examined the impact of cross-entropy loss on
overall model performance by varying its weight
in the combined loss function (Equation (3)) to de-
termine and fix its value for final training as part
of hyperparameter optimization. The results are
presented in Table 4 for the ChemProt develop-
ment dataset. Assigning a small weight to this loss
(o = 0.1) and hence using more of the contrastive
component leads to the highest recall; but the high-
est F-score is reached when o = 0.5 (equal weight-
ing), with some compromise in recall but with a
better jump in precision sufficient enough to lead
to an overall F1 gain of 1%.



4.4 Ablation of the dual encoder

Instead of the two separate encoders for input text
and predicate description representation, we used
the same encoder (hence shared parameters). Row
4 of Table 3 shows that this results in a 1.3% dip in
performance. This maybe due to potential trade-off
between system efficiency and performance. The
dual-encoder configuration seems to provide supe-
rior performance by leveraging specialized process-
ing streams for input and description texts.

4.5 Assessing different description texts

Although we used predicate definitions created
by RE dataset creators, they are the nevertheless
a single symbolic and discrete form. We won-
dered about how the scores would change if we
rephrased them by prompting GPT-4 to “rewrite”
them without any special instructions. We also
tested a simple baseline that literally has the pred-
icate name and entity spans fill the slots in this
template: @predicate@: @subject@, @objecte.

Versions  ChemProt!® F)
ORIGINAL 73.5
REWRITE 73.4
SIMPLE 72.9

Table 5: ChemProt (13-class) scores with different
description texts.

As the associated scores in Table 5 show, there is
not much difference in performance with rewrites.
However, surprisingly, the simple baseline is worse
than the original definition by only 0.6%. This
small dip highlights the effectiveness of even using
templated forms with the tokens indicating the pred-
icate name. But it is important to note that predi-
cate names in ChemProt dataset are highly specific
with unambiguous meanings such as UPREGULATOR
and ANTAGONIST. Pretrained encoders such as Pub-
MedBERT might already have decent representa-
tions for them that carry substantial semantic signal.
However, it is not clear if the simple baseline holds
as well with predicate names that have a broader
meaning, where explicit detailed definitions might
be needed for more gains.

5 Error Analysis

Although our approach does not incorporate the
NER step, there are some notable errors purely

for the RE component. One issue is the model’s
failure to accurately infer the meaning from com-
plex or ambiguous contexts. Consider this example
from the SciERC dataset: “The proposed detec-
tors are able to capture large-scale structures and
distinctive textured patterns, and exhibit strong in-
variance to rotation, illumination variation, and
blur” While our model successfully identified the
USED-FOR relation between detectors (subject) and
entities large-scale structures and distinctive tex-
tured patterns (object), it was not able to predict the
same gold USED-FOR relation with object entities
rotation, illumination variation and blur. Since the
sentence does not explicitly state that the detectors
are used for rotation, illumination variation and
blur, it might have missed potential implied links.
On the other hand, one could argue from the orig-
inal input that maybe the ground truth detectors
USED-FOR relations with these entities may not be
entirely accurate — detectors are overcoming the
barriers of blur and rotation to excel at capturing
large-scale structures and distinctive textured pat-
terns and not necessarily being used to detect or
capture blur/rotation.

Next, consider this input from the ChemProt
dataset: “Down-regulation of prostate-specific anti-
gen (PSA) expression, an AR-target gene, by es-
tramustine and bicalutamide was accompanied
by the blockade of the mutated androgen re-
ceptor” The model was able to identify the
INDIRECT-DOWNREGULATOR relation between drugs
estramustine and bicalutamide (subjects) and the
protein PSA (object). But it failed to spot the same
relation of those drugs with the object protein AR,
which appears to be implicitly stated. Considering
ChemProt extraction sometimes invovles the full
abstract, other sentences surrounding this may offer
indirect clues about the relation. However, upon
examining the full abstract, we are not able to see
stronger evidence than what is already present in
the sentence shown here.

Another common error pattern is due to the
model’s lack of grasp of deep domain knowledge,
particularly in biomedical datasets when informa-
tion is densely packed. For example, consider this
pithy ChemProt input: “In vivo, agonist actions of
yohimbine at 5-HT(1A) sites are revealed by WAY
100,635-reversible induction of hypothermia in the
rat.” Here the gold relation is the ANTAGONIST link
between subject WAY 100,635 and object 5-HT(1A).
The agonist actions of the chemical yohimbine on
5-HT(1A) result in hypothermia and the fact that



this hypothermia can be reversed by WAY 100,635
indicates that it is playing an antagonist role for
5-HT(1A). This a complex expression involving the
intermediate entity yohimbine and an unusual look-
ing phrase WAY 100,635-reversible that densely
packs meaning that typically needs a new sentence
to convey explicitly. This may simply be a case of
a highly complex example needing multi-hop rea-
soning that needed to be carried out with a compact
input text.

A significant challenge in the BioRED dataset
arises from the hierarchical nature of predi-
cates where a more general ASSOCIATION rela-
tion is confused with specific POSITIVE/NEGATIVE
CORRELATION relations. If the model fails to latch
on to specific relations, it may default to the gen-
eral predicate. Consider the input: “The 2:1 atri-
oventricular block improved to 1:1 conduction only
after intravenous lidocaine infusion or a high dose
of mexiletine, which also controlled the ventricular
tachycardia. A novel, spontaneous LQTS-3 muta-
tion was identified in the transmembrane segment
6 of domain IV of the Na(v)1.5 cardiac sodium
channel, with a G—>A substitution at codon 1763,
which changed a valine (GTG) to a methionine
(ATG). ....” Here the text mentions that the ad-
ministration of the drug lidocaine improved the
patient’s condition, and separately, a novel muta-
tion (LQTS-3) was identified in patients suffering
from arrhythmias. The gold relation is NEGATIVE
CORRELATION of lidocaine with LQTS-3 mutation
but the model predicted ASSOCIATION, the generic
predicate, which is only supposed to be used when
the correlation type cannot be discerned from the
input. However, although lidocaine and LQOTS-3
are never mentioned in the same sentence, through
the full abstract that has over 250 words, one can
see the lidocaine is blocking the function of this
mutation in causing arrhythmias and as such has a
negative correlation with it.

6 Conclusion

In this paper, we introduce a new approach to RE
that uses a dual-encoder architecture that compares
input text to instance-adapted canonical descrip-
tions of the predicates. Experiments with a equally
weighted joint contrastive and cross entropy loss
show that this approach improves over prior meth-
ods for three scientific RE datasets including Al
and biomedical abstract inputs. Ablation experi-
ments also reveal that each component of the model

plays a nontrivial role in the overall performance.
We conclude with a few future research directions.

* As discussed in Section 2.3, we only use the
cosine scores of the two encoder representa-
tions to pick the right predicate at test time.
Since the cross entropy loss helped during
training, a better way to integrate output soft-
max probability estimates with normalized
cosine scores could lead to more performance
improvements.

* Many RE use-cases have hierarchical predi-
cate structures which were also observed in
ChemProt and BioRED datasets in our paper.
More involved learning strategies that lever-
age label hierarchies, potentially with graph
convolutional nets, may be needed. Another
training loss term that imposes penalties for
violating hierarchical constraints could lead to
better regularization and fewer errors arising
from distant predicates from the hierarchy.

Limitations

Despite the overall positive results, our model has
some limitations. Although the description texts
are derived from the annotation guidelines, they
require an additional step to make them compatible
with our model, such as manually inserting place-
holders for the subject and object entities. The in-
stance adaptation provided by our current approach
is limited to canonical definitions. This issue could
be mitigated by using LLMs to produce more re-
fined descriptions.
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