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Abstract
In the field of graph machine learning, graph neural networks (GNNs) are promis-
ing models for learning graph representations and node representations. However,
many GNNs perform poorly on learning higher-order representations such as
links due to their limited expressive power. Zhang et al. [42] summarize recent
advances in link prediction and propose labeling trick as a common framework
for learning node set representations with GNNs. However, their theory is limited
to employing an ideally expressive GNN as the backbone, and can only justify
a limited series of link prediction models. In this paper, we take a further step
to study the expressive power of various higher-order representation learning
methods. Our analysis begins with showing the inherent symmetry between
node labeling and higher-order GNNs, which directly justifies node labeling
methods and higher-order GNNs through a unified framework. Then, we study
the utilization of MPNNs for computing representations in these methods, and
show the expressive power upper bounds under these situations. After that, we
provide a comprehensive analysis about how these previous methods surpass
plain GNNs by showing their ability to capture path information. Finally, using
the intuitions provided by the analysis, we propose an extremely simple method
for link prediction tasks, which we believe could bring insights for designing
more complicated and powerful models in the future.

1 Introduction
Graph neural networks (GNNs) are the dominant approaches for learning graph representations,
and most of them follow the message passing mechanism, thus are also called message passing
neural networks (MPNNs). MPNNs perform especially well for node classification tasks and graph
classification tasks, but are less suitable for jointly predicting the properties of node tuples such as
links, which is known as the problem of higher-order representation learning [26, 27]. Theoretically,
MPNNs cannot express the complex dependencies between nodes and fail to capture simple patterns
such as common neighbors or counting triangles [7, 21, 8].

There are three main classes of GNNs extensions designed for learning higher-order representations
to overcome the deficiency of plain GNNs: higher-order GNNs, GNNs with node labeling, and
heuristics-enhanced GNNs. Higher-order GNNs [26, 27, 3, 25, 30] match the higher-order WL
(FWL) variants [34, 5, 9, 23]. Their architectures still follow the message passing paradigm, except
that each message passing unit in k-order GNNs is a k-node tuple. While k-GNNs are highly
expressive as k-WL (k-FWL) tests, they suffer from severe computation costs. For GNNs with node
labeling [40, 42, 46, 37, 32, 19, 41, 33], there are two major variants focusing on link prediction,
and representative methods are SEAL [40] and NBFNet [46]. Given the target link (u, v), SEAL
adds additional labels to tag u and v differently from the other nodes. Then, SEAL runs a GNN on
the induced graph to collect the node representations of u and v to obtain the link representation
of (u, v). It is proved by [42] that this approach actually enables SEAL to learn structural link
representations with an ideally expressive GNN, i.e., SEAL can output different representations for
any two links that are not topologically identical in the graphs. However, we are still unclear about
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what patterns SEAL can capture when using a MPNN as its backbone GNN model, which is a more
practical problem. Different from SEAL, NBFNet only adds additional labels to tag the source node
u differently from the other nodes. Then, NBFNet runs a GNN on the induced graph and collects
node representations for every node. NBFNet assumes that the node representation for a node w now
represents the link (u,w). Although NBFNet is well-motivated by the Bellman-Ford algorithm, there
is no theoretical justification for this specific class of node labeling techniques. Heuristics-enhanced
MPNNs [18, 38, 6] combine MPNNs with heuristics methods such as Common Neighbors, Adamic-
Adar [1], Resource Allocation [45], etc. Since there are plenty of choices, it is hard to provide a
common and general analysis to the expressive power of heuristics-enhanced MPNNs. Overall, we
find that only the labeling trick [42] in SEAL [40] was partly justified for its expressive power, and
this motivates us to study the properties of the various higher-order representation learning methods.

In this paper, we systematically study the problem of designing expressive GNN extensions for
learning higher-order representations, and propose a unified framework to explain the above classes
of GNN extensions. Our theory mainly considers the connection between the first two GNN classes,
i.e. higher-order GNNs and node labeling. First, we study the properties of node labeling methods
and show their inherent symmetry with higher-order GNNs from a graph isomorphism perspective.
Second, we take MPNNs into consideration and study the expressive power of the different node
labeling / higher-order GNNs when we apply MPNNs as the backbone GNN models. Third, based on
our findings, we further study the common advantages of various higher-order representation learning
methods compared with the 1-WL test, and explain their strengths from a novel perspective of paths.
This explanation also provides strong justification for various heuristics-enhanced models. With this
observation we try to derive the simplest model that reserves the core components for link prediction,
a common 2-order representation learning problem [43]. Our method shares similar spirits with
SGC [35], and is realized with a pre-propagation procedure and a non-GNN predictor which can be
implemented as a logistic regression or a MLP. The performance is comparable with state-of-the-art
models. We believe our finding may provide intuitions for designing more efficient higher-order
representation learning methods in the future.

2 Preliminary
In this section we describe the notations and some background of this paper. Note that the introduction
of some definitions, such as k-WL tests and labeling trick, are slightly tuned to better fit in our theory
framework.

2.1 Basic Concepts

Notations. We use {} to denote sets and {{}} to denote multisets. The cardinality of a (multi)set S is
denoted as |S|. The index set is denoted as [n] = {1, ..., n}. In the main body of this paper we consider
simple undirected graphs G = (V, E) with node features xu for each u ∈ V for clarity, but the theory
can be equivalently applied to directed heterogeneous graphs (e.g., knowledge graphs). The nodes in a
graph are indexed by [|V|]. We denote the neighbors of a node u ∈ V asN (u) = {v ∈ V | (v, u) ∈ E}
and denote its degree as deg(u) = |N (u)|. A node tuple is denoted as u = (u1, u2, ..., uk) where
u1, ..., uk ∈ V . We express slices of u as ui:j = (ui, ..., uj),ui: = (ui, ..., uk),u:i = (u1, ..., ui).
A path P = (u0, u1, u2, ..., ud) of G is a special node tuple where (ui−1, ui) ∈ E for all i ∈ [d]
and its length is |P | = d. P is simple if its nodes are distinct. We use hu to represent the vector
representation of some node u computed by GNNs. We denote the concatenation of vectors as
h = [h1 ∥ h2 ∥ ...].

Isomorphism. An isomorphism is a structure-preserving mapping between two structures. We
focus on graph isomorphism. Given two graphs G = (VG, EG) and H = (VH , EH), a permutation
π : VG → VH is an isomorphism from G to H if and only if ∀u, v ∈ VG, (u, v) ∈ EG ⇐⇒
(π(u), π(v)) ∈ EH . In this case we also say G and H are isomorphic, denoted as G ≃ H . We
define two nodes u ∈ VG, v ∈ VH are isomorphic, denoted as (u,G) ≃ (v,H), if and only if
there is an isomorphism π such that π(u) = v. Extending the idea, we further define higher-order
isomorphism, and denote two node tuples u = (u1, ..., uk) and v = (v1, ..., vk) being isomorphic as
(u, G) ≃ (v, H), if and only if there is an isomorphism π such that π(ui) = vi for i ∈ [k].

Message passing neural networks and Weisfeiler-Lehman tests. Message passing neural net-
works (MPNNs) are graph neural networks for learning node representations. Generally, they take

2



Rethinking Higher-order Representation Learning with Graph Neural Networks

node features as inputs h(0)
u = xu and execute

h(l+1)
u = ϕ

(
h(l)
u , ψ

(
{h(l)

v | v ∈ N (u)}
))

at iteration l + 1, where ϕ is a combine function, and ψ is a message function that takes multisets as
inputs. MPNNs implement ϕ and ψ as trainable functions. In the output iteration L, the representation
h
(L)
u naturally expresses the node u, and we can obtain the representation for the entire graph by

aggregating the node representations: hG = Readout
({{

h
(L)
u | u ∈ V

}})
.

The 1-Weisfeiler-Lehman (1-WL) [34] test, also known as the color refinement algorithm, is a
principled algorithm for detecting graph isomorphism. It is exactly a MPNN as introduced above, but
with infinite layers and all functions ϕ, ψ,Readout are injective. The iterations of the WL test end
where the partition of the nodes no longer changes. MPNNs are at most as expressive as the WL test.

2.2 Learning higher-order representations

Node representations cannot express higher-order representations. GNNs are expert in learning
graph and node representations. When learning representations for node tuples such as links,
it might be intuitive to just aggregate the corresponding node representations [12, 16, 14]: for
example in Graph Auto Encoders (GAE) [16], to predict the link (u, v), they first run a GNN to
collect node representations hu,hv for the nodes and compute the link representation as huv =
f(hu,hv). However, just like we cannot obtain the joint distribution of two random variables by
simply multiplying their marginal distributions, we cannot obtain feasible link representations in this
way: GAE neglects the correlation between the nodes u, v in the target tuple (u, v) [42]. Consider
the graph (a) in Figure 1, where all nodes are isomorphic with each other. Even if we apply a most
powerful GNN model (which outputs different representations for non-isomorphic nodes) to (a), each
node gets the same representation. Therefore, any two pairs of nodes also get the same representation
and thus are indistinguishable. This is because when predicting a link (u, v), the node representations
of u and v contain no information about the relative position between each other. Therefore, it’s
necessary to study how to design new models for learning higher-order representations. Note that the
problem of learning higher-order representations for predicting node-tuple properties is different
from designing higher-order GNNs for learning graph representations, which is also a widely studied
problem. See Appendix G for more comparison.

Higher-order GNNs. A series of works [26, 27, 3, 22] improve the expressiveness of MPNNs by
directly learning node tuple representations. These models generally follow the k-WL or k-Folklore
WL (k-FWL) tests [5]. We focus on k-FWL here due to its superior expressiveness and efficiency, and
the full discussion of k-WL and k-FWL is in Appendix D. Given a graph G = (V, E), a k-FWL test
uses k-node tuples as update units, and its update procedure is exactly the same as 1-WL, except that
we define the neighbor of a k-node tuple u = (u1, ..., uk) ∈ Vk to be N (u) = {{Nv(u) | v ∈ V}}
where Nv(u) = (u1/v,u2/v, ...,uk/v) and ui/v = (u1, ..., ui−1, v, ui+1, ..., uk) for i ∈ [k]. We
can see that k-FWL is essentially a graph rewriting procedure: it sets up a new structure Gk

induced by G, which is called a k-order super-graph, whose super-nodes correspond to k-tuples in
G and has a separate definition of neighbors [44]. It is straightforward to apply plain GNNs on Gk

without heavy modification [26, 27, 44]: we only need to encode the representations of neighbors as
hNv(u) = [hu1/v

∥ ... ∥ huk/v
]. For example, a MPNN on Gk is implemented as

h(l+1)
u = ϕ

(
h(l)
u , ψ

({{[
h(l)
u1/v
∥ ... ∥ h(l)

uk/v

]
| v ∈ V

}}))
.

Node labeling GNNs. Zhang et al. [42] summarize the previous link prediction approaches and
propose a general framework for learning higher-order representations with node labeling. We restate
the ordered node tuple version of the labeling trick here [32, 20]. Given a graph G = (VG, EG) and
the target tuple v = (v1, v2, ..., vk), we stack a labeling vector lu in the first dimensions of xu to
obtain x̂u = [lu ∥ xu] for each u ∈ V using some predefined mechanism lu = L(u | v, G). L should
satisfy these properties: ∀G,H,v ∈ Vk

G,w ∈ Vk
H , π : VG → VH ,

1. L(u | v, G) = L(π(u) | w, H) holds for all u ∈ VG ⇒ π(v) = w,

2. π is an isomorphism from (v, G) to (w, H)⇒ ∀u ∈ Vu, L(u | v, G) = L(π(u) | w, H).
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We can see that the labeling trick aims to tag the target nodes differently from the rest of the nodes,
and is also a graph rewriting method. With the augmented node features, we obtain the node labeling
induced graphs G(v), H(w). Then, we have

for i = 1, ..., k,
(
vi, G(v)

)
≃

(
wi, H(w)

)
⇐⇒ (v, G) ≃ (w, H). (1)

The theory adequately justifies previous subgraph based link prediction methods including [40, 32]
and provide a new method for learning higher-order representations with plain GNNs. However, it
doesn’t justify other link prediction methods that only partly use additional node labels including
[37, 46]. Also, we find that the result in Eq. 1 rather redundant. In this paper, we refer to these
label augmentation methods (including labeling trick and other labeling methods in [37, 46]) as node
labeling methods.

Heuristic-enhanced GNNs. Recent methods [18, 6, 38] apply a different strategy for learning
link representations. Given a graph G = (V, E) and the target link (u, v), they first run GNNs
to collect node representations hu,hv. Then, they incorporate various heuristic methods such as
Common Neighbor, Adamic-Adar [1], Resource Allocation [45], etc., into the decision process:
p(u, v) = ϕ (hu,hv,Heuristic(u, v,G)), where Heuristic is some pre-defined heuristic method.
Despite the concise design of these methods, it is hard to provide a strict theoretical description for
the expressiveness of these methods due to the various choices of the heuristic methods.

Problem setup. Our analysis contains three parts. In Section 3, we first introduce a series of models,
namely i-j-NLs, to summarize various higher-order representation learning methods such as labeling
trick [42, 40, 32], variants of node labeling methods [46, 37, 20], k-IGN [26], Edge Transformer
[3], etc., into a unified framework. We first assume an imaginary expressive GNN as the backbone
for these methods to purely study the properties of these methods themselves from an isomorphism
perspective without being affected by the limited expressiveness of MPNNs. In Section 4, we plug in
MPNNs as the backbone GNN models and study the properties of i-j-NLs under such situations. In
Section 5, based on the previous analysis we try to dissect out the core factor that extends MPNNs to
surpass 1-WL for higher-order prediction tasks, which is the awareness of paths between the nodes
within the target node tuple. This finding is consistent with the various designs of heuristic-enhanced
GNNs [38, 18, 6]. Based on the findings we further demonstrate that with a simple modification we
can improve the link prediction power of MPNNs, which we believe might bring inspirations for
future studies.

3 On the symmetry between node labeling and higher-order GNNs
In this section, we focus on the relation between node labeling and higher-order GNNs. Given a graph
G = (V, E), suppose we want to learn the tuple representation of a k-node tuple u = (u1, ..., uk).
We already know that by applying labeling trick, we can first assign additional labels to u1, ..., uk to
obtain the induced graphG(u), then learn the node representations u1, ..., uk separately and aggregate
these representations as a surrogate of the target tuple representation. In this section, we tend to
answer the following questions: Is there a more simple and general mechanism that underlies the
labeling trick? Can higher-order GNNs also learn the structural information and distinguish all
non-isomorphic k-node tuples? Can other node labeling variants such as the partial node labeling in
NBFNet [46] also distinguish all non-isomorphic tuples? Answering the above questions is non-trivial
if we treat them separately. In fact, they can be answered in a single, unified theoretical framework
which reflects the symmetry between node labeling and higher-order GNNs.

3.1 A general unification of higher-order representation learning methods

In the following, we extensively employ a hybrid representation learning method to summarize both
node labeling and higher-order GNNs, which is defined below.
Definition 1. (i-j-NLs.) Given a graph G = (V, E) and the target node tuple u = (u1, ..., uk). We
define a method that hybridizes i-order node labeling and j-order GNNs for u, denoted as i-j-NL
(i-order Node Labeling and j-order GNNs) where i + j = k, to be the following procedure for
computing the representation of u. This includes two steps.

• In the first step, we use the first i nodes of u, i.e. u:i = (u1, ..., ui), to label the nodes of the
graph, leading to the induced graph G(u:i) with additional node labels.
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• In the second step, we apply a j-order GNN on G(u:i): that is, if j > 1 we construct Gj
(u:i)

as
the j-order induced super-graph of G(u:i), and then apply a GNN to learn the representations of
super-nodes in Gj

(u:i)
.

The representation of the corresponding super-node u(i+1): in Gj
(u:i)

is the final representation for
the tuple u.

We can now describe various higher-order representation learning method in a unified framework. For
example, suppose we want to learn the link representation of (u, v). Partial node labeling methods
(NBFNet [46], ID-GNN [37], PGNN [36], etc.) assign labels to the source node u and then learn
the representation of the tail node v, thus are corresponded to 1-1-NLs. Higher-order GNNs (Edge
Transformers [3], etc.) directly utilize GNNs to learn the higher-order representations and thus are
corresponded to 0-2-NLs (or 0-k-NLs). Variants of the subgraph GNNs [4, 30] are corresponded
to k-1-NLs or k-2-NLs. The ordered labeling trick methods (SEAL [40], GraIL [32], etc.) assign
labels to both u and v and then apply a GNN to learn node representations. They can be regarded as a
2-1-NL. Although 2-1-NL actually learns 3-tuple representations, we can obtain the corresponding 2-
tuple representations by simply pooling the 3-tuple representations: the representation of u = (u, v)
is obtained by aggregating all representations of {{(u, v, w) | w ∈ V}}. Therefore, to study the
properties of various different higher-order representation learning methods, we can instead only
focus on the i-j-NLs with varying i and j. More importantly, with i-j-NLs we can go beyond
previous higher-order representation learning methods: We can not only unify them into a single
framework, but also study more general and flexible situations by simply varying i and j.

The base GNN model in i-j-NLs for computing representations is of vital importance for discussing
their expressiveness. In this paper we consider two situations: a most-expressive GNN and a MPNN. A
most-expressive GNN always maps non-isomorphic nodes (super-nodes) to different representations,
therefore we can purely focus on the functionalities of i-j-NLs themselves from an isomorphism
perspective. 1 We denote i-j-NLs with most-expressive GNNs as i-j-NLE (i-order Node Labeling
and j-order Expressive GNNs), and denote i-j-NLs with MPNNs as i-j-NLMP (i-order Node
Labeling and j-order Message Passing neural networks) for notation clarity.

3.2 The properties of i-j-NLE

We begin with assuming k = i+ j to be a fixed value, which gives a consistent analysis of different
i-j-NLEs that learn the tuples of the same order k. All proofs are provided in the Appendix A.
Theorem 2. (The symmetry of i-j-NLE.) Given two graphs G = (VG, EG), H = (VH , EH), and
let u = (u1, ..., uk) ∈ Vk

G,v = (v1, ..., vk) ∈ Vk
H where k is a fixed value to be the target tuples we

want to learn from G and H respectively. Then, the following statements are equivalent for any i, j
satisfying i ≥ 0, j > 02,i+ j = k:

• A i-j-NLE model gives u and v the same representation.

• (u, G) ≃ (v, H).

Theorem 2 directly points out the invariant property of i-j-NLE: they are all able to distinguish any
non-isomorphic (i + j)-order tuples. Moreover, it states that all i-j-NLE satisfying i + j = k are
equivalent in expressive power, which implies the symmetry between node labeling (corresponding
to i) and higher-order GNNs (corresponding to j). Continuing from Theorem 2, we can deduce more
general results about i-j-NLE.
Proposition 3. Suppose i, p ≥ 0, j, q > 0 are integers. A p-q-NLE can distinguish any non-
isomorphic node tuples that a i-j-NLE can distinguish, if and only if p+ q ≥ i+ j.

Recall that if p+ q > i+ j, we can always pool the (p+ q)-order representations learnt by a p-q-NLE

to obtain the corresponding (i+ j)-order representations learnt by a i-j-NLE. With Theorem 2 and
Corollary 3 we establish a general connection between all previous node labeling / higher-order

1Even a most-expressive GNN cannot learn higher-order representations for node tuples. Since we view
node labeling and k-GNNs as graph rewriting techniques, using a most-expressive GNN is equivalent to
asking the question: Whether the nodes in the induced super-graphs contain enough information for identifying
higher-order graph patterns.

2We limit j to be strictly larger than 0 only because there are no “0-order” GNNs.
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GNNs that can be expressed as i-j-NLE. It is now straightforward to answer the above questions
at the beginning of Section 3: with a most-expressive GNN, a k-order GNN distinguishes all non-
isomorphic k-order tuples; NBFNet distinguishes all non-isomorphic links. We can also deduce a
more concise result for the labeling trick:
Corollary 4. (Labeling trick.) Given the conditions in Theorem 2 hold. Then, we have

G(u) ≃ H(v) ⇐⇒ (u, G) ≃ (v, H),

where G(u), H(v) are node labeling induced graphs by labeling u and v respectively.

The above theories provide strong justifications for previous node labeling and higher-order GNNs.
Corollary 4 also provides a more concise version of the labeling trick. Together, we establish a clear
picture describing the capabilities and limitations of general higher-order representation learning
methods when equipped with most-expressive GNNs.

4 Message passing breaks the symmetry
In this section, we investigate the expressiveness of i-j-NLs from a more practical view, i.e., when
we apply MPNNs as the backbone GNN models. As we shall see later, the incorporation of MPNNs
actually breaks the symmetry between node labeling and higher-order GNNs. Without loss of
generality, we assume the node labeling mechanism we applied to be zero-one node labeling and its
extensions [40, 19, 42], and the full discussion about different labeling methods is in Appendix E.

4.1 The monotonicity of i-j-NLMP

With the results in Section 3 one may assume that all i-j-NLMP with the same k = i + j are still
equivalent in their expressive power. However, this is not the case. In fact, although it’s obvious
that the expressive power upper bound of 0-k-NLMP is the k-FWL test, this by no means tells that
(k− 1)-1-NLMP can also reach the k-FWL expressive power. We still begin with assuming k = i+ j
to be a fixed value, and summarize the expressive power of i-j-NLMP as follows. All proofs are in
Appendix B.
Theorem 5. Given two graphs G = (VG, EG), H = (VH , EH), and let u = (u1, ..., uk) ∈ Vk

G,v =
(v1, ..., vk) ∈ Vk

H where k is a fixed value to be the target tuples we want to learn from G and
H respectively. Then, for any i, j satisfying i > 0, j > 0, i + j = k, the expressive power of
(i− 1)-(j + 1)-NLMP is strictly higher than i-j-NLMP, that is:

• There is a i-j-NLMP that distinguishes u and v =⇒ There is a (i − 1)-(j + 1)-NLMP that
distinguishes u and v.

• There exists G,H,u,v such that a (i− 1)-(j + 1)-NLMP distinguishes u and v but i-j-NLMP

cannot.

Theorem 5 establishes a strict order of the expressive powers of different i-j-NLMP given fixed
k = i+ j: The expressive power grows monotonically w.r.t. j, and is bounded by the k-FWL test.
Continuing from Theorem 5, we can obtain the following more general results.
Proposition 6. Suppose i, p ≥ 0, j, q > 0 are integers. There is a p-q-NLMP that distinguishes
any non-isomorphic node tuples that a i-j-NLMP can distinguish if and only if p+ q ≥ i+ j and
q ≥ j. Otherwise, there exists non-isomorphic node tuples that a p-q-NLMP cannot distinguish but a
i-j-NLMP can distinguish.

Theorem 5 together with Proposition 6 establishes a general connection between i-j-NLMP. This
also implies that with MPNNs as the backbone GNN models, SEAL [40] is actually more expressive
than NBFNet [46]. Edge Transformers [3] are also more expressive than NBFNet. However, when it
comes to comparing SEAL and Edge Transformers, Proposition 6 indicates that each model has its
advantages: examples are provided in Appendix B.

No free lunch: The principle behind the expressive powers. A more interesting phenomenon is
revealed when we check the algorithm complexities of i-j-NLMP. Suppose we are given a graph G
with N nodes. Then, using a i-j-NLMP to evaluate every node tuple of G takes O

(
N i+j+1

)
time

and O
(
N j

)
space. (We assume j > 1 for simplicity. The complexities are w.r.t. N . See Appendix C

for more discussion.) Theorem 5 and Proposition 6 can be explained with the no free lunch theorem:
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Figure 1: An illustration of how MPNNs with node labeling surpass vanilla 1-WL. (a) is the original
graph with nodes colored by 1-WL. (b) indicates that the correlation of two nodes in Cartesian
coordinate can be expressed by the paths between them. (c) contains (part of) the paths from v2 to v1
with lengths less than 4. (d) contains the paths from v3 to v1 with lengths less than 4.

Figure 2: An illustration of what logical patterns 1-1-NLMP can and cannot capture. (a) cannot
be captured by 1-1-NLMP. More generally, logical patterns in the forms of (c) cannot be captured
by 1-1-NLMP. (b) can be captured by 1-1-NLMP. The reason is that logical patterns in (a) or more
generally (c) are defined in the form of φ(x, y) := ∃z1, z2(E(x, z1) ∧ φ′(z1, z2) ∧ E(z2, y)). 1-1-
NLMP can only capture single-source logical patterns defined by φ(x, y) := ∃z(φ′(x, z)∧E(z, y))).

if a p-q-NLMP takes either less time or space complexity compared with another one i-j-NLMP,
this is not free: it must also lose some distinguishing power. In turn, if both the time and the space
complexities of p-q-NLMP are larger than that of i-j-NLMP, then the p-q-NLMP is strictly more
expressive than i-j-NLMP.

4.2 The logical expressiveness of i-j-NLMP

After discussing the limitations of NLMP, here we prove a better understanding about what patterns i-
j-NLMP can and cannot learn. Our description is closely connected with FOCk, a special fragment of
the First-Order Logic. Each formula in FOCk contains at most k variables. In addition, FOCk allows
the use of counting quantifier ∃N , which expresses at least N different nodes, with arbitrary positive
integer N . An example of the FOC2 formulas would be: φ(x) := ∃y(E(x, y) ∧ φ′(y)),φ′(x) :=
∃y(E(x, y) ∧ Red(y)). φ(x) expresses that x has a 2-hop Red neighbor, and it is proved [2, 10] that
a MPNN with global readout can capture such FOC2 formulas. Similarly, we define FOCk+1,i to be
a fragment of FOCk+1, where we further restrict that the first i variables of all predicates in the same
formula to be the same. For example, φ(x, y, z) := ∃u, v(P1(x, u, v) ∧ P2(x, u, v, z)) is a FOC4,1

but not FOC4,2 because only the first variable x is the same. The relation between FOCk+1,i and
i-j-NLMP is summarized below. (Assume j > 1 for simplicity. More discussion at Appendix H.)
Proposition 7. For any k-tuples u,v and i+ j = k: There is a i-j-NLMP that distinguishes u and
v ⇐⇒ There is a FOCk+1,i formula that distinguishes u and v.

A direct result is that the i-j-NLMP can no longer model complex correlations between any k-
tuples in G. More specifically, we illustrate our ideas with 1-1-MPNL. Consider the logic formula
φ(x, y) := ∃z1, z2(E(x, z1) ∧ E(z2, y) ∧ ∃2z3(E(z1, z3) ∧ E(z3, z2)), which can be expressed as
Figure 2 (a). φ is expressible in FOC3, and thus can be captured by 0-2-NLMP or 2-FWL. However,
it cannot be captured by 1-1-NLMP, because to express φ(x, y), one need to first define the correlation
between z1, z2 with another logic classifier which is complex. In turn, 1-1-NLMP can capture Figure
2 (b), since it can be expressed in a single-source manner φ(x, y) := ∃z2(E(z2, y)∧(∃z1(E(z1, z2)∧
∃x(E(x, z1))))), where the correlations between any intermediate node pairs are simple: only edges
E. In general, we summarize that all logical patterns captured by 1-1-NLMP must can be described
in a single-source manner, and logical patterns like Figure 2 (c) cannot be captured by 1-1-NLMP.
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5 How do NLMPs surpass 1-WL?
From the discussions in Sections 3 and 4, it is evident that designing more expressive GNNs for
learning higher-order representations can be achieved by setting large values for i and j in i-j-NLMP.
However, this approach also results in higher space and time complexities. In this section, we take
the opposite direction and attempt to identify the core property that enables GNNs to perform well
on higher-order representation problems without being overly burdensome. Having observed that
plain MPNNs, whose expressive power is limited by the 1-WL test, perform poorly on higher-order
representation learning tasks, but even the relatively weak 1-1-MPNL variants [46, 37] perform well
on link prediction tasks, we try to find out the common properties that i-j-NLMP methods possess
while the 1-WL test lacks.

5.1 i-j-NLMP encodes path information

In Section 2 we showed that the plain GNNs cannot learn higher-order representations because it
cannot capture the correlation between the nodes in the target node tuple. For example in the graph (a)
of Figure 1, where all nodes are isomorphic. Plain GNNs fail to distinguish (v1, v2) between (v1, v3)
because all nodes share the same representation, and therefore aggregating two nodes’ representations
always produces the same result. This indicates that when predicting different links (v1, v2), (v1, v3),
plain GNNs do not capture the correlations between (v1, v2) and (v1, v3) respectively. So how do
we model the correlations between the target nodes? Intuitively, in Euclidean Space the correlations
can be expressed by relative positions: consider Figure 1 (b). The correlation between the adjacent
nodes v1, v2 can be expressed with e12 = [0,−1] which is the vector from v1 to v2. Similarly, the
correlation between v1, v3 is expressed with e12 + e23 = [1,−1] which is the concatenation of two
edges. Thus we distinguish (v1, v2) from (v1, v3) in this way. Following this intuition, in graphs,
edges express the relation between two adjacent nodes. Can we assume that the correlation between
two arbitrary nodes can also be expressed by the concatenation of edges, i.e. paths? In Figure 1 (c)
we list all paths from v1 to v2 with lengths less than 4. Figure 1 (d) lists all paths from v1 to v3 with
lengths less than 4. We can also distinguish (v1, v2) from (v1, v3) in this way. A following question
is, do i-j-NLMP methods also distinguish paths and surpass the 1-WL in this way? The question is
answered in the proposition below.
Proposition 8. Given a graph G = (VG,VE), we run 1-WL to assign node colors for G, denoted as
Col(·). The color of a path P = (w1, ..., wd) is obtained by hashing the corresponding node color
sequence Col(P ) = Hash(Col(w1), ...,Col(wd)). Then, the correlation between two nodes (u, v),
as discussed above, is expressed by all paths between u, v,

Corr(u, v) = Hash ({{Col(P ) | P ∈ Paths(u, v)}}) .

Given two graphsG = (VG, EG) andH = (VH , EH). Let u = (u1, ..., uk) ∈ Vk
G,v = (v1, ..., vk) ∈

Vk
H be the target node tuples. If there exists 1 ≤ p, q ≤ k such that Corr(up, uq) ̸= Corr(vp, vq),

then any i-j-NLMP with i+ j ≥ k with sufficient injective layers always distinguishes u and v.

With Proposition 8 it is straightforward to see that i-j-NLMP methods can capture path information
between target nodes. More interestingly, various heuristic-enhanced GNNs also encodes path
information. For example, traditional link prediction methods CN, AA [1], and RA [45] utilize 2-hop
path information between two nodes. More recently, Neo-GNN [38], ELPH and BUDDY [6] count
the number of multi-hop common neighbors of target nodes, and thus are corresponded to encoding
multi-hop path information between target nodes; GDGNN [18] obtain the link representations by
encoding the shortest path between the target nodes. This inspires us to design a simple method to
test whether simply incorporating path information between target nodes can help MPNNs to learn
higher-order representation.

5.2 Implementation for link prediction

We aim to derive the simplest model for link prediction without unnecessary components. Our
method is partly inspired by SGC [35], an extremely concise and elegant GNN model whose predictor
function is Y = softmax(AkXΘ) where Θ is a trainable weight matrix. Our model contains two
steps, one corresponds to computing the 1-WL color and the other corresponds to hashing path
information in Proposition 8. We name our methods Simplified Link Prediction neural networks
(SLP).
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Table 1: Results on link prediction tasks. All baseline results are taken from [6]. Best results are
bold, and secondary results are underlined.

Model Method Cora Citeseer Pubmed
CN Heuristic 33.92±0.46 29.79±0.90 23.13±0.15
AA Heuristic 39.85±1.34 35.19±1.33 27.38±0.11
RA Heuristic 41.07±0.48 33.56±0.17 27.03±0.35

GCN MPNN 66.79±1.65 67.08±2.94 53.02±1.39
SAGE MPNN 55.02±4.03 57.01±3.74 39.66±0.72

SEAL 2-1-NLMP 81.71±1.30 83.89±2.15 75.54±1.32
NBFNet 1-1-NLMP 71.65±2.27 74.07±1.75 58.73±1.99

Neo-GNN Heuristic-enhanced MPNN 80.42±1.31 84.67±2.16 73.93±1.19
ELPH Heuristic-enhanced MPNN 87.72±2.13 93.44±0.53 72.99±1.43

BUDDY Heuristic-enhanced MPNN 88.00±0.44 92.93±0.27 74.10±0.78

SLP Heuristic-enhanced MPNN 89.83±1.09 93.61±1.10 74.94±0.93

Step 1: Node feature propagation. Suppose X ∈ RN×d is the input node feature matrix where N
is the number of nodes, d is the feature dimension. Let S ∈ RN×N be the (normalized) adjacency
matrix. In the first step, we propagate node features and obtain Z = SkX , where k is the number of
propagation steps.

Step 2: Path feature propagation. We assume the sequence (S,S2, ...,Sk) already contains enough
information for identifying path information. Therefore, we can compute the path representation of
(u, v) within one step: huv = [Suv,S

2
uv, ..,S

k
uv]. Note that Sk can be evaluated efficiently using

sparse matrix multiplication.

Step 3: Compute predictions. The final prediction for the link (u, v) is directly realized by
p(u, v) = ψ (zu, zv,huv). Since in step 1, 2 there is no trainable parameters, the prediction model ψ
is realized as a logistic regression or a MLP.

6 Empirical Evaluation
We conduct synthetic experiments with variants of i-j-NLMP to verify the theoretical expressiveness
results in this paper. Due to space limits the results are in Appendix F. We also apply SLP on
widely used Planetoid citation network Cora [24], Citeseer [31] and Pubmed [28]. We report results
for traditional heuristic methods including Common Neighbors (CN), Adamic-Adar (AA) [1] and
Resource Allocation (RA) [45]. We report results for MPNNs including Graph Convolutional
Networks (GCN) [16] and GraphSAGE [14]. We report results for 1-1-NLMP NBFNet [46] and
2-1-NLMP for undirected graphs SEAL [40]. We also report results for heuristic-enhanced MPNNs
Neo-GNN [38], ELPH and BUDDY [6].

The main results are in Table 1, with all metrics being H@100. Additional details are in Appendix F.
From the results we can see that even with simple model design, SLP is able to reach competitive
results. On the one hand, SLP surpasses plain MPNNs such as GCN [17] and SAGE [14] by a large
margin. This indicates the important of capturing path information for link prediction. On the other
hand, although SLP is not as expressive as SEAL [40], NBFNet [46], etc., it still reaches competitive
results. We believe the reason is that SLP captures the necessary features for link prediction.

7 Conclusion
In this paper, we developed theoretical foundations for higher-order representation learning methods
with GNNs, and provide a better understanding of the expressive power and the connection within
them, and point out the common properties of popular GNN variants and design a simple link
prediction method based on our findings. We only focus on most-expressive GNNs and MPNNs as
the backbone model respectively. Recently, people have developed many advanced GNN models that
surpass the 1-WL test, but discussing them is out of the scope of this paper.
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A Proof of Theorem 2, Proposition 3 and Corollary 4
A.1 Proof of Theorem 2

We first restate Theorem 2 here.

Theorem 2. Given two graphs G = (VG, EG), H = (VH , EH), and let u = (u1, ..., uk) ∈
Vk
G,v = (v1, ..., vk) ∈ Vk

H where k is a fixed value to be the target tuples we want to learn
from G and H respectively. Then, the following statements are equivalent for any i, j satisfying
i ≥ 0, j > 0,i+ j = k:

• A i-j-NLE model gives u and v the same representation.

• (u, G) ≃ (v, H).

Proof. To prove the theorem, we need to first use the following fact about higher-order GNNs:

Lemma 9. A k-GNN with most expressive GNNs distinguishes any non-isomorphic k-tuples, and
assigns isomorphic k-tuples with the same representation.

With Lemma A.1 we are now able to prove Theorem 2.

1→ 2: Suppose a i-j-NLE gives u and v the same representation. From Lemma A.1 it is obvious
that we have (

u(i+1):, G(u:i)

)
≃

(
v(i+1):, H(v:j)

)
.

From the definition of node labeling, we know that there exists an isomorphism π from G to H
satisfying

π(ui) = vi for all i ∈ {i+ 1, ..., k}, L(w | u:i, G) = L(π(w) | v:i, H) for all w ∈ VG.

Since L(π(w) | v:i, H) for all w ∈ VG ⇒ π(u:i) = v:i, we have(
u(i+1):, G(u:i)

)
≃

(
v(i+1):, H(v:j)

)
⇒ ∃ an isomorphism π : VG → VH , π(u:i) = (v:i), π(u(i+1):) = (v(i+1):)

⇒ ∃ an isomorphism π : VG → VH , π(u) = (v)

⇒ (u, G) ≃ (v, H).

2→ 1: With Lemma A.1 we can deduce

(u, G) ≃ (v, H)

=⇒ ∃ an isomorphism π : VG → VH , π(u:i) = v:i

=⇒ ∀w ∈ VG, L(w | u:i, G) = L(w | v:i, H)

=⇒
(
u(i+1):, G(u:i)

)
≃

(
v(i+1):, H(v:j)

)
=⇒ i-j-NLE gives u and v the same representation.

Since the above equations hold for all i ≥ 0, j > 0, i+ j = k, Theorem 2 is proved.

A.2 Proof of Proposition 3

We first restate Proposition 3 here.

Proposition 3. Suppose i, p ≥ 0, j, q > 0 are integers. A p-q-NLE can distinguish any non-
isomorphic node tuples that a i-j-NLE can distinguish, if and only if p+ q ≥ i+ j.

Proof. The proof is straightforward. Since the discriminative power of i-j-NLE is strictly captured
by the (i+ j)-order isomorphism, the proof is also built on this fact.

2→1: We first prove that p+ q ≥ i+ j ⇒ p-q-NLE distinguishes any non-isomorphic node tuples
that a i-j-NLE distinguishes. Given G = (VG, EG), H = (VH , EH) and u = (u1, ..., uk) ∈ Vk

G,v =
(v1, ..., vk) ∈ Vk

H), we first prove the situation where p+ q = i+ j + 1.
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Figure 3: Example of non-isomorphic tuples.

• if k = i + j: Suppose u and v get different representations by i-j-NLE. By pooling the
representations, p-q-NLE computes the representation of u as

{{
h(u1,...,uk,w) | w ∈ V

}}
G

.
Then,

u and v get different representations by i-j-NLE

=⇒ (u, G) ≇ (v, H)

=⇒ ∀w1 ∈ VG, w2 ∈ VH , ((u1, ..., uk, w1), G ≇ (v1, ..., vk, w2))

=⇒ ∀w1 ∈ VG, w2 ∈ VH ,h(u1,...,uk,w1) ̸= h(u1,...,uk,w2)

=⇒
{{
h(u1,...,uk,w) | w ∈ VG

}}
̸=

{{
h(v1,...,vk,w) | w ∈ VH

}}
=⇒ p-q-NLE distinguishes u,v.

• if k ̸= i+ j: From the above deduction we can see that for any pair of (i+ j)-tuples, if i-j-NLE

assigns different representations for them, then so does p-q-NLE. Obviously, this leads to the
fact that p-q-NLE is always more expressive than i-j-NLE.

Note that when p+ q = i+ j the result naturally holds. Then by proof by induction we have proved
all situations for p+ q ≥ i+ j.

¬2→ ¬1: Similar as before, we first assume p+ q = i+ j−1. We build graphs G = (VG, EG), H =
(VH , EH) and u ∈ Vk

G,v ∈ Vk
H such that i-j-NLE assigns different representations for u,v. p-

q-NLE also computes the representation of u by aggregation as
(
h(u1,...,uk−1),h(u2,...,uk)

)
. The

graphs are constructed as in Figure 3. It is easy to see that ((u1, ..., uk−1), G) ≃ ((v1, ..., vk−1), H)
and ((u2, ..., uk), G) ≃ ((v2, ..., vk), H) but clearly (u, G) and (v, H) are not isomorphic.

With proof by induction, the direction ¬2→ ¬1 is proved.

A.3 Proof of Corollary 4

We first restate Corollary 4 here.

Corollary 4. Given the conditions in Theorem 2 hold. Then, we have

G(u) ≃ H(v) ⇐⇒ (u, G) ≃ (v, H),

where G(u), H(v) are node labeling induced graphs by labeling u and v respectively.

Proof. Corollary 4 is a special situation of the proof step 1→2 in the proof of Theorem 2.

G(u) ≃ H(v)

⇐⇒ ∃ isomorphism π,∀w ∈ VG : L(w | u, G) = L(π(w) | v, H)

⇐⇒ ∃ isomorphism π(u) = v

⇐⇒ (u, G) ≃ (v, H).
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A.4 Proof of Lemma A.1

Proof. Proving Lemma A.1 is equivalent to showing that for any graphs G,H , the target tuples u,v
and Gk, Hk, (u, G) ≃ (v, H) ⇐⇒ (u, Gk) ≃ (v, Hk).

1→2: There exists an isomorphism π from G to H , such that π(u) = v. We assume a k-order
permutation πk which satisfies πk(w1, ..., wk) = (π(w1), ..., π(wk)). Then we prove that πk is a
valid isomorphism from Gk to Hk. For all w ∈ Vk

G, we have

πk(N (w))

=
{{
(πk(i, ..., wk), ..., π

k(w1, ..., i)) | i ∈ VG
}}

= {{((π(i), ..., π(wk)), ..., (π(w1), ..., π(i))) | i ∈ VG}}
=N (π(w)).

Note that π is structure-preserving: this indicates that for all (w1, ..., wk), the label of the cor-
responding (π(w1), ..., π(wk)) must also be the same. Since we also have π(u) = v, we have
(u, Gk) ≃ (v, Hk).

2→1:
(u, Gk) ≃ (v, Hk)

=⇒ ∃πk : Vk
G → Vk

H ,∀w ∈ Vk
G : πk(u) = v, πk(N (w)) = N (πk(w)).

From πk(N (w)) = N (πk(w)) we can further deduce

πk(N (w)) = N (πk(w))

=⇒
{{
(πk(i, ..., wk), ..., π

k(w1, ..., i)) | i ∈ VG
}}

={{(
(j, πk(w)2, ..., π

k(w)k), ..., (π
k(w)1, ...j)

)
| j ∈ VH

}}
.

Now we show that πk must can be expressed by another π : VG → VH such that
πk(w1, ..., wk) = (π(w1), ..., π(wk)). First from the above equation we can directly
observe that πk(w1, ..., wk−1, i):k−1 = πk(w1, ..., wk−1, wk):k−1 for all w1, ..., wk, i ∈
VG. This directly indicates that we can break πk into two parts: πk(w1, ..., wk) =
(πk−1(w1, ..., wk−1), πk(wk)) where πk : VG → VH . The same way, by substituting the re-
sult into πk(w1, ..., i, wk):k−2 = πk(w1, ..., wk−1, wk):k−2 and continuing we can finally obtain
πk(w1, ..., wk) = (π1(w1), ..., πk(wk)). Next, we need to show that π1, ..., πk are all equivalent. By
substituting into πk(N (w)) = N (πk(w)) we have{{

(πk(i, ..., wk), ..., π
k(w1, ..., i)) | i ∈ VG

}}
={{(

(j, πk(w)2, ..., π
k(w)k), ..., (π

k(w)1, ...j)
)
| j ∈ VH

}}
=⇒ {{((π1(i), ..., πk(wk)), ..., (π1(w1), ..., πk(i))) | i ∈ VG}} =

{{((j, ..., πk(wk)), ..., (π1(w1), ..., j)) | j ∈ VH}} .

Therefore, for all i ∈ VG, there must exists a corresponding j ∈ VH such that π1(i) = π2(i) =
... = πk(i) = j. As a result, we proved that there exists π : VG → VH such that πk(w1, ..., wk) =
(π(w1), ..., π(wk)). Next we need to show that π is an isomorphism from G to H . This is easily done
by noticing that for allw1, ..., wk ∈ VG, the structures betweenw1, ..., wk and π(w1), ..., π(wk) must
be the same, otherwise (w1, ..., wk) and (π(w1), ..., π(wk)) would have different labels. Therefore,
for any w1, w2 we have (w1, w2) ∈ EG ⇐⇒ (π(w1), π(w2)) ∈ EH , and π is an isomorphism from
G to H . Together, we have (u, G) ≃ (v, H).

B Proof of Theorem 5 and Proposition 6, 7, 8

B.1 Proof of Theorem 5

We first restate Theorem 5 here.
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Theorem 5. Given two graphs G = (VG, EG), H = (VH , EH), and let u = (u1, ..., uk) ∈
Vk
G,v = (v1, ..., vk) ∈ Vk

H where k is a fixed value to be the target tuples we want to learn from G
and H respectively. Then, for any i, j satisfying i > 0, j > 0, i + j = k, the expressive power of
(i− 1)-(j + 1)-NLMP is strictly higher than i-j-NLMP, that is:

• There is a i-j-NLMP that distinguishes u and v =⇒ There is a (i − 1)-(j + 1)-NLMP that
distinguishes u and v.

• There exists G,H,u,v such that a (i− 1)-(j + 1)-NLMP distinguishes u and v but i-j-NLMP

cannot.

Proof. We prove the two results separately. To prove the first result, we first recall the procedure of
0-k-NLMP (or k-FWL). Given G = (V, E), at each layer it evaluates

Col(l+1)(u1, ..., uk) = Hash
(
Col(l)(u1, ..., uk),{{(

Col(l)(v, u2, ..., uk),Col
(l)(u1, v, ..., uk), ...,Col

(l)(u1, ..., uk−1, v)
)
| v ∈ V

}})
.

If we consider a fragment of the above procedure where we replace the first i colors in each neighbor
with the initial colors

Col(l+1)(u1, ..., uk) = Hash
(
Col(l)(u1, ..., uk),{{(

Col(0)(v, u2, ..., uk), ...,Col
(0)(u1, ..., ui−1, v, ui+1, ..., uk),

Col(l)(u1, ..., ui, v, ui+2, ..., uk), ...,Col
(l)(u1, ..., uk−1, v)

)
| v ∈ VG

}})
.

Clearly, this variant is less expressive than the original one. We can rewrite this variant to make it
strictly corresponded to i-(k − i)-NLMP. First, note that the first i variables in Col(l) and Col(l+1)

are the same. This inspires that we can rewrite the equations when we fix the first i variables u1, ..., ui
as

f (l+1)(ui+1, ..., uk) = ϕ
(
f (l)(ui+1, ..., uk),

{{(
f (l)(v, ..., uk), ..., f

(l)(ui+1, ..., v)
)
| v ∈ V

}})
,

where we initialize f (0) as f (0)(ui+1, ..., uk) = Col(0)(u1, ..., uk). The computation of f (l) is
exactly the same as i-(k − i)-NLMP when we apply node labeling on u1, ..., uk. Since i-j-NLMP

is clearly corresponded to a more “small” fragment of the above equations compared with (i− 1)-
(j + 1)-NLMP, we have proved the first result.

To prove the second result, we need to utilize the results from Grohe and Otto [11]. Cai et al. [5]
designed a construction of a series of pairs of non-isomorphic graph CFI(k) such that (k − 1)-FWL
fails to distinguish them. Further more, Grohe and Otto [11] proposed a variant of CFI graphs and
showed that there are graphs such that (k − 1)-FWL cannot distinguish them but k-FWL can. Our
proof is based on this result. Suppose G,H are non-isomorphic graphs than cannot by distinguished
by j-FWL but are distinguished by (j + 1)-FWL. We first obtain the following property of FWL

Lemma 10. If two graphs G1 = (VG1
, EG1

), H1 = (VH1
, EH1

) are not distinguished by k-FWL,
G2 = (VG2

, EG2
), H2 = (VH2

, EH2
) are also not distinguished by k-FWL, then we letG = (VG, EG)

where VG = VG1
∪ VG2

, EG = EG1
∪ EG2

and H = (VH , EH) where VH = VH1
∪ VH2

, EH =
EH1
∪ EH2

. G and H are still not distinguished by k-FWL.

It is easy to prove Lemma 10 by induction. Suppose φ is a FOCk+1 formula. Then,

• If φ is of the form φ := C, i.e. node colors or edges, then obviously φ produces the same results
on G,H .

• If φ := φ′ ∧ φ′′ and φ′, φ′′ produce the same results on G,H , then obviously φ also produces
the same results on G,H .

• if φ := ¬φ′, the situation is the same as before.
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• if φ := ∃N φ′, and φ′ produces the same results on G,H . We let m,n to be the number of
distinct groundings of φ′ on G1, G2 respectively. Then, the number of distinct groundings of φ′

on H1, H2 are also m,n. (otherwise a formula φ′′ = (∃mφ′) ∧ ¬(∃m+1φ′) differs on G1, H1

or φ′′ = (∃nφ′) ∧ ¬(∃n+1φ′) differs on G2, H2.) Therefore, on both G,H φ still produces the
same results.

Therefore, any FOCk+1 formula, if produces the same results on G1, H1 and G2, H2, also produces
the same results on G,H . As a result k-FWL cannot distinguishes G,H .

With Lemma 10 we can construct counterexamples for i-j-NLMP and (i−1)-(j+1)-NLMP. Suppose
G,H cannot be distinguished by j-FWL but are distinguished by (j + 1)-FWL. We add k isolated
nodes u1, ...uk to G and v1, ...vk to H , obtaining G′, H ′. Furthermore, the labels of u1, ..., uk are
distinct and different from the rest of the nodes, and we let the label of vl to be the same with ul
for l ∈ [k]. We then apply i-j-NLMP and (i − 1)-(j + 1)-NLMP to learn the representation of
u = (u1, ..., uk) ∈ Vk

G and v = (v1, ..., vk) ∈ Vk
H . Apparently from Lemma 10 we know that i-j-

NLMP cannot distinguish them. Since a (j + 1)-FWL can distinguish G and H , it also distinguishes
G′ and H ′. This indicates that there is a FOCj+1 formula φ such that G′ ⊨ φ and H ′ ⊭ φ. By letting
ψ(x1, ..., xj) := φ() we can see that ψ(ui+1, ..., uk) ̸= ψ(vi+1, ..., vk). Therefore, the j + 1-FWL
also assign different colors to (ui+1, ..., uk) and (vi+1, ..., vk). As a result (i − 1)-(j + 1)-NLMP

distinguishes them.

B.2 Proof of Proposition 6

To prove Proposition 6 is to construct a counterexample for i-j-NLMP and p-q-NLMP. Specially,
from the proof of Theorem 5 we know that we only need to construct a counterexample for k-1-NLMP

and 0-k-NLMP for any k. We first introduce a series of graph pairs proposed by Grohe and Otto [11].

Let K = (V, E) be the complete graph on k nodes. We further assume the nodes in K are v1, ..., vk.
We define the construction of a structure X (K), which is the CFI-companions of K, as follows. It is
convenient to call the nodes from X (K) vertices, to distinguish them from the nodes of K.

For every v ∈ V , the graph X (K) has a vertex vS , where S is a subset of E(v) of even cardinality. We
use E(v) to denote the edges connected with v. For every edge e ∈ E , the graph X has two vertices
e0, e1. Vertices of the form vS are called node vertices and vertices ei edge vertices. Formally, the
set of vertices in X (K) is

{vS | v ∈ V, S ⊆ E(v) such that |S| ≡ 0 mod 2} ∪ {e0, e1 | e ∈ E}. (2)

The edges of X (K) link node vertices and edge vertices according to

(vS , ei) is an edge if
{
i = 1 and e ∈ S
i = 0 and e /∈ S (3)

In X (K), the vertices of the form vS are colored Cv, and the vertices of the form ei are colored
Ce. After defining X (K), we also define its variant X̂ (K) whose node set and edge set are the same
except that for the node v1 we take nodes vS1 from the subsets of E(v1) of odd cardinality. It is proved
by Grohe and Otto [11] that X (K), X̂ (K) are distinguished by (k − 1)-FWL but not (k − 2)-FWL.

Before we proceed, we would like to provide a k = 3 example to illustrate X (K) and X̂ (K) in Figure
4. The graphs X (K) and X̂ (K) are distinguished by 2-FWL but not 1-WL.

Now we proceed to prove Proposition 6. We first restate it here.

Proposition 6. Suppose i, p ≥ 0, j, q > 0 are integers. There is a p-q-NLMP that distinguishes
any non-isomorphic node tuples that a i-j-NLMP can distinguish if and only if p+ q ≥ i+ j and
q ≥ j. Otherwise, there exists non-isomorphic node tuples that a p-q-NLMP cannot distinguish but a
i-j-NLMP can distinguish.

Proof. We first show that there are graphs distinguished by (k−2)-1-NLMP but not 0-(k−2)-NLMP.
We construct CFI graphs X (K) and X̂ (K). From Grohe and Otto [11] we know that X (K) and X̂ (K)
cannot be distinguished by 0-(k − 2)-NLMP, whose expressive power is bounded by (k − 2)-FWL.
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Next we show that X (K) and X̂ (K) can be distinguished by a (k − 2)-1-NLMP. To do so we need
to introduce the concept of pebble games[11, 5]. The readers are welcome to check [11] for a more
detailed introduction. Given two structuresA,B, the bijective k-pebble game is played by two players
by placing k pairs of pebbles on a pair of structures A,B. The rounds of the game are as follows.
Player I picks up one of his pebbles, and player II picks up her corresponding pebble. Then player
II chooses a bijection f between A and B (if no such bijection exists player II immediately loses).
Then player I places his pebble on an element a of A, and player II places her pebble on f(a). After
each round there is a subset p ⊆ A× B consisting of the at most k pairs of elements corresponding
to the pebbles placed. Player II wins a play if every position p is a local isomorphism.

Theorem 11. (Cai et al. [5]) A ≡k
C B if and only if player II has a winning strategy for the bijective

k-pebble game on A,B.

Theorem 11 indicates that (k − 1)-FWL can distinguish A,B if and only if player II has a winning
strategy for the bijective k-pebble game on A,B. However, although it justifies (k − 1)-FWL, it has
nothing to do with the (k − 2)-1-NLMP here. We propose a variant of the bijective k-pebble game,
namely restricted bijective k-i-pebble game, described as follows. Given two structures A,B, the
restricted bijective k-i-pebble game is also played by two players by placing k pairs of pebbles on a
pair of structures A,B. The rounds of the game are as follows. Player I picks up one of his pebbles,
and player II picks up her corresponding pebble. Then player II chooses a bijection f between A
and B (if no such bijection exists player II immediately loses). Then player I places his pebble on an
element a of A, and player II places her pebble on f(a). The difference is, i pairs of the pebbles are
static, as when the players place these pebbles on the elements of A,B, they can no longer pick and
replace them on other elements. Then, we have

Theorem 12. There is a (k− 2)-1-NLMP that distinguishes the (k− 2)-tuples u,v from A,B if and
only if player II has a winning strategy for the restricted bijective k-(k-2)-pebble game onA,B which
initially places (k − 2) static pebbles on u,v, if A,B are connected graphs.

Theorem 12 is proved in the next section. With Theorem 12 we can now prove that the graphs X (K)
and X̂ (K) can be distinguished by (k − 2)-1-NLMP. The prove steps are exactly the same as in [11],
as the steps in [11] naturally follow the constraints of the bijective k-(k − 2)-pebble game.

We give a winning strategy for player I in the bijective k-(k − 2)-pebble game. In the first k − 1

rounds of the game, player I picks his k − 1 pebbles on v∅2 , ..., v
∅
k and suppose p(v∅i ) = vSi

i is the
corresponding position for some sets Si. That is,

p = {v∅2v
S2
2 , ..., v∅kv

Sk

k }.

We now assume that the pebbles at v∅3 , ..., v
∅
k are static. Therefore v∅3 , ..., v

∅
k compose all k − 2 static

pebbles and the pebble at v∅2 is still movable. In the next round of the game player I starts by selecting
this pebble, and places it on e012. In the next round, player I starts by selecting the pebble on e012 and
places it on v∅1 . It is proved by Grohe and Otto [11] that player I wins at this time.

B.3 Proof of Proposition 7

We first restate Proposition 7 here.

Proposition 7. For any k-tuples u,v and i + j = k: There is a i-j-NLMP that distinguishes u
and v ⇐⇒ There is a FOCk+1,i formula that distinguishes u and v.

Proof. To prove Proposition 7 we can first use the results from [5].

Theorem 13. (Cai et al. [5]) Let G,H be a pair of colored graphs and let u ∈ Vk
G,v ∈ Vk

H be
k-tuples. The following are equivalent:

• k-FWL assigns the same color for u,v.

• All FOCk+1 produce the same result for u,v.
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Figure 4: Example of non-isomorphic graphs.

The above equivalence can be extend to node labeling situations. Formally, given G = (V, E) and
u = (u1, ..., u+ k) ∈ Vk, and let i+ j = k. Then, applying a i-j-NLMP is essentially first assigning
additional predicates IsTargetl(·) for l ∈ [i]. Further more, we have IsTargetl(v) = 1v=ul

. Then, it
applies a j-MPNN on the augmented graph G(u:i) whose expressive power is bounded by j-FWL,
and thus is be described by FOCj+1.

Now we need to prove the equivalence between FOCj+1 on the augment graphsG(u:i) and FOCk+1,i

on the original graph G. Specially, we want to prove

1. Given any FOCj+1 formula φ on G(u:i), there is a corresponding FOCk+1,i formula ψ on G
that expresses φ.

2. Given any FOCk+1,i formula ψ on G, there exists u such that a FOCj+1 formula φ on G(u:i)

expresses ψ.

1. It is simple to create the corresponding ψ. We only need to replace all unary predicates C(v) with
an invented one C ′(x1, x2, ..., xi, v), and replace all binary predicates E′(v, w) with an invented one
E′(x1, x2, ..., xi, v, w). We define

C ′(x1, x2, ..., xi, v) :=

{
1xl=v, if C(v) := IsTargetl(v),

C(v), else.

E′(x1, x2, ..., xi, v, w) := E(v, w).

Therefore, we effectively remove all emergence of the additional predicates IsTargetl(·).
2. Suppose the target tuple is fixed u. This indicates that all predicates in ψ share the same first
i variables u:i. The same way, we replace predicates in ψ with our invented ones. Note that a
predicate P (u1, ..., uk) is defined by any permutation-invariant functions over the subgraph induced
by u1, ..., uk. Therefore we initialize P ′(ui+1, ..., uk) = P (u1, ..., uk) for all P . Since all predicates
in ψ share the same first i variables u:i, we can replace all emergence of predicates in ψ and eliminate
the first i variables in this way. We have constructed the corresponding FOCj+1 formula φ on
Gu:i

.

B.4 Proof of Proposition 8

We first restate Proposition 8 here.

Proposition 8. Given a graph G = (VG, EG), we run 1-WL to assign node colors for G, denoted
as Col(·). The color of a path P = (w1, ..., wd) is obtained by hashing the corresponding node color
sequence Col(P ) = Hash(Col(w1), ...,Col(wd)). Then, the correlation between two nodes (u, v),
as discussed above, is expressed by all paths between u, v,

Corr(u, v) = Hash ({{Col(P ) | P ∈ Paths(u, v)}}) .

Given two connected graphs G = (VG, EG) and H = (VH , EH). Let u = (u1, ..., uk) ∈ Vk
G,v =

(v1, ..., vk) ∈ Vk
H be the target node tuples. If there exists 1 ≤ p, q ≤ k such that Corr(up, uq) ̸=
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Corr(vp, vq), then any i-j-NLMP with i+ j ≥ k with sufficient injective layers always distinguishes
u and v.

Proof. Since the weakest i-j-NLMP variant given fixed k = i+ j is the (k − 1)-1-NLMP, we only
prove the result for (k − 1)-1-NLMP.

Suppose Corr(up, uq) ̸= Corr(vp, vq). Without loss of generality we may assume that up, vp are
with node labeling. By the definition of Corr we know that there are at least one type of color of
paths C = Hash(C1, ..., Cd) such that the number of C-colored paths between (up, uq) are different
from that between (vp, vq). We manually construct a i-j-NLMP model that distinguishes uq, vq from
G(u), H(v). First, we add sufficient injective layers to the model, but these layers are not aware of the
additional node labels. In other words, we compute the 1-WL color Col in this way. Then, we let the
next layers to detect the paths as

Layer(1)(x) = (Col(x),1(x is the p-th node labeling) · 1(Col(x) = C1)) ,

where 1 is the indicator function. Similarly, we define the l layer for l ≤ d as

ColLayer(l)(x) = Layer(l−1)(x)[0] = Col(x),

PathLayer(l)(x) = Layer(l−1)(x)[1],

Layer(l)(x) =

ColLayer(l)(x),1
(
ColLayer(l)(x) = Cl

)
·

∑
y∈N (x)

(
PathLayer(l)(x)

) .

Therefore, Layer(d)(x) counts the number of C-colored paths between x and up or vp. Thus
Layer(d)(uq) ̸= Layer(d)(vq). If q = k, then this directly indicates that our (k − 1)-1-NLMP

distinguishes them. If q < k, then we further add sufficient identical layers as follows.

IdLayer(0)(x) = 1(x is the q-th node labeling)⊙ Layer(d)(x)[1],

and
IdLayer(l)(x) = max

y∈V(x)
IdLayer(l−1)(y).

After sufficient layers, IdLayer gives different results on uk and vk.

B.5 Proof of Theorem 12

Proof. Let G,H be a pair of connected graphs and let u,v be the target k-tuples. Let G(u), H(v) be
the corresponding node labeling induced graphs. Since G,H are connected, we need to show the
following statements are equivalent.

1. 1-WL cannot distinguish G(u), H(v)

2. 2-WL cannot distinguish G(u), H(v)

3. No FOC2 formula distinguishes G(u), H(v)

4. Player II has a winning strategy for the (k + 2)-k pebble game on G,H which initially places
the k pairs of static pebbles on u,v.

1 ⇐⇒ 2 ⇐⇒ 3: 2 ⇐⇒ 3 is proved as a special case in Cai et al. [5]. Since G,H are connected,
1⇐⇒ 2 also holds.

2⇒4: Suppose after r iterations the 2-WL still assigns the same color to G(u), H(v). We instead
prove the following statement:

• After r + k iterations 2-WL gives (x1, y1) ∈ V2
G(u)

and (x2, y2) ∈ V2
H(v)

the same color =⇒
Player II has a winning strategy for the (k + 2)-k pebble game on G,H which initially places
the k pairs of static pebbles on u,v and place the other 2 pairs of static pebbles on (x1, y1) and
(x2, y2) in r moves.
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We assume W r to be the color assignment of 2-WL at iteration r + k. Clearly player I can only
chooses one of the pebbles on x1, y1. Without loss of generality suppose he picks up x1. The player
II answers with the bijective mapping that maps node pairs with the same W r−1 color, that is,
f(t1) ∈ {t2 |W r−1(t1, y1) =W r−1(t2, y2)}. Note that such mapping must exist because

W r(x, y) = Hash
(
W r−1(x, y),

{{
W r−1(x, z) | z ∈ VG

}}
,
{{
W r−1(z, y) | z ∈ VG

}})
is the same for (x1, y1) and (x2, y2). No matter which node player I places his pebble on, player II
places her pebble on the corresponding node. Player II has not yet lost: the structure between (t1, y1)
and (t2, y2) must be the same, otherwise they have different W r−1 colors. The structure between
(t1,u) and (t2,v) are also the same: This is because that at the start we added unique labels to the
k-tuples u and v. Therefore, after the first k rounds of 2-WL iterations if the subgraphs induced by
t1, y1,u from G(u) and t2, y2,v from H(v) are different, (t1, y1) and (t2, y2) will also have different
2-WL colors. Now, since (t1, y1) and (t2, y2) have the same W r−1 colors, by induction on r we
proved the above statement.

By further induction on r in the statement, we can prove 2⇒4 because we have showed that for any
node pairs the results of 2-WL and the pebble game are always consistent.

¬3⇒ ¬4: Suppose for some FOC2 formula φ, G(u) ⊨ φ and H(v) ⊭ φ. If φ is a conjunction
then G(u), H(v) must differs on at least one of the conjuncts, so we may assume φ is of the form
∃Nxψ. Without loss of generality we assume the quantifier depth of φ is r. Note that there are total 2
free pairs of pebbles that can be placed to nodes, which exactly corresponds to the number of free
variables in FOC2 formula. Player I takes a pebble, corresponding to the variable x in φ. Player
II must respond with a bijective mapping f . Since G(u) ⊨ φ and H(v) ⊭ φ, we know that there
are at least N nodes satisfying ψ in G(u) but less than N nodes satisfying ψ in H(v). Player I then
picks the node w in G(u) such that ψ(w) is true but ψ(f(w)) is false. By induction we can see that at
quantifier depth 0 player II loses the game.

C The algorithm complexities of i-j-NLMP

In this section we derive the algorithm complexities of i-j-NLMP.

C.1 The case of j ≥ 2

We first study the situation where we assume j ≥ 2. Suppose we are given a graph G = (V, E) with
N nodes and M edges. Our model is a i-j-NLMP, and we let k = i+ j. Suppose we want to evaluate
every k-tuple u ∈ Vk.

Obviously there are total Nk target tuples in the graph. For learning one tuple u ∈ Vk, we need to
first assign node labeling to u:i, then apply a j-MPNN on G(u:i). The numbers of nodes and edges in
G(u:i) are still N,M respectively. Since we assume the j-MPNN simulate the j-FWL, applying the
j-MPNN on G(u:i) and simultaneously learning representations all j-tuples requires O(N j) space
and O(N j+1) time. After this procedure, we actually learns all k-tuples with the same first i nodes
u:i, so we only need to apply this procedure for N i times to learn all representations for all k-tuples.
Therefore, we need O(N j) space and O(N i+j+1) time.

C.2 The case of j = 1

When j = 1 the time and space complexities of MPNN areO(M) andO(N) respectively. Therefore,
the total process for computing all k-tuple takes O(N +M) space and O(MN i) time. As a result,
the conclusion in Section 4.1 still holds.

D The Weisfeiler-Lehman Algorithms

In this section we briefly introduce the k-FWL graph isomorphism tests.
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D.1 1-WL

The 1-WL test is also known as color refinement and shares similar message passing process with
node-level GNNs. To begin with, each node v is assigned with a color cv . The 1-WL test can then be
summarized as follows:

Algorithm 1 1-WL test

Input: G = (V, E): the input graph; cv for v ∈ V: initial colors;
Output: the final colors;

1: c0v ← cv for all v ∈ V;
2: repeat
3: ∀v ∈ V, cl+1

v ← hash(clv,
{{
clw | w ∈ N(v)

}}
);

4: until ∀v ∈ V, cl+1
v = clv;

5: return clv for every v ∈ V;

Here, N(v) is the set of the neighbors of v in G. The critical part is the hash function hash. It needs
to be injective in order to fully express the discriminative power of the 1-WL test.

D.2 k-FWL

The k-FWL test is summarized as follows.

Algorithm 2 k-FWL test

Input: G = (V, E): the input graph; cu for u ∈ Vk: initial colors;
Output: the final colors;

1: c0u ← cu for all u ∈ Vk;
2: repeat
3: ∀u ∈ Vk, cl+1

u ← hash(clu,
{{
clv | v ∈ N(u)

}}
);

4: until ∀u ∈ V, cl+1
u = clv;

5: return clu for every u ∈ Vk;

The difference between the k-FWL test and the 1-WL is that we now assign a color for each node
tuple u instead of a single node. Generally, the k-FWL test follows the same computation procedure
with the 1-WL, but we need to redefine the neighbors, i.e. N(u), of a node tuple u. In the k-FWL
test, we set each node pair u to have |V| neighbors, with the i-th neighbor being

((i, u2, ..., uk), (u1, i, u3, ..., uk), ..., (u1, ..., uk−1, i)).

E Different node labeling methods
In this section we discuss about different node labeling methods. Generally, the methods we discuss
here all follows the constraints in Section 2:

1. L(u | v, G) = L(π(u) | w, H) holds for all u ∈ VG ⇒ π(v) = w,
2. π is an isomorphism from (v, G) to (w, H)⇒ ∀u ∈ VG, L(u | v, G) = L(π(u) | w, H).

E.1 0-1 node labeling

We first introduce the basic 0-1 node labeling method introduced in SEAL. We modify the original
0-1 node labeling for node tuples here.

Given a graph G = (V, E) and suppose u = (u1, ..., uk) ∈ Vk be the target tuple. We define the
node labeling mechanism L to be

L(v | u, G) = Hash(1v=u1 ,1v=u2 , ...,1v=uk
),

where 1 is the indicator function. For example in the graph G in Figure 3, we can assign labels
1, 2, ..., k to the nodes u1, u2, ..., uk respectively and assign label 0 to the rest of the nodes.
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Now we show that the above 0-1 node labeling satisfies the constraints. Given G = (VG, EG), H =
(VH , EH) and v ∈ Vk

G,w ∈ Vk
H ,

1. We have
L(u | v, G) = L(π(u) | w, H) holds for all u ∈ VG

=⇒ L(π(vi) | w, H) = L(π(wi) | w, H) holds for all i ∈ [k]

=⇒ π(v) = w.

2. Suppose π is an isomorphism and π(v) = w, then for any u ∈ VG, if u is not in v, obviously
π(u) is also not in w (because π(v) = w)). Therefore, both u and π(u) are assigned with label
0. If u is in v, without loss of generality we suppose u = vi. Then π(v) = w ⇒ π(vi) = wi.
Note that L(vi | v, G) = L(wi | w, G) for any i ∈ [k], therefore ∀u ∈ VG, L(u | v, G) =
L(π(u) | w, H).

E.2 0-1 induced node labeling

There are also some node labeling method that can be induced by the 0-1 node labeling with message
passing. In this section we take Distance Encoding (DE) [19] and Double Radius Node Labeling
(DRNL) [40] as examples and show how they are induced by 0-1 node labeling with message passing.

A generalized version. We introduce a k-tuple version of DRNL and DE. It’s labeling function is

L(v | u, G) = Hash(d(v, u1), d(v, u2), ..., d(v, uk)),

where d(x, y) is the shortest distance between x and y. Clearly, DRNL can be computed by MPNNs
with 0-1 node labeling. We only need to set h(0)

v = [Ind(v, u1), ..., Ind(v, uk)] where Ind(v, ui) = 0
if v = ui and∞ otherwise. Therefore it a valid 0-1 node labeling. We let

h(l+1)
v = min

(
h(l)
v ,min

{
h(l)
u + 1 | u ∈ N (v)

})
,

where min is element-wise. This corresponds to the multi-source shortest path and directly corre-
sponds to the above labeling function L.

F Additional experimental details
F.1 Verifying the expressive power of i-j-NLMP

We consider popular variants including 1-1-NLMP, 2-1-NLMP and 0-2-NLMP. We test whether they
are able to distinguish:

• Cut edges
• Cut vertices.
• Rook’s 4×4 graph and Shrikhande graph

These tasks are with increasing difficulties. The problems of distinguishing cut edges and cue
vertices are taken from Zhang et al. [39]. Rook’s 4×4 graph and Shrikhande graph are well-known
non-isomorphic graphs that cannot be distinguished by 3-WL. The problem of detecting cut vertices
is shown to be more complex than detecting cut edges [39]. Note that the problem of detecting cut
edges in this paper is more difficult than [39]: they assume that target nodes must be adjacent while
we do not. Distinguishing Rook’s 4×4 graph and Shrikhande graph is even more complex: it cannot
be done by the 2-FWL test. Table 2 lists the results. We can see that the results are consistent with
our theoretical findings.

F.2 Experiment configurations

The experiment configurations follow the settings in Chamberlain et al. [6]. Results are taken from
[6]. For all tasks we use negative sampling to generate negative targets. At training time the message
passing links are equal to the supervision links, while at test time disjoint sets of links are held
out that are never seen at training time. We random generate 70-10-20 percent train-val-test splits
which is the same as [6]. The metrics are H@100, and is computed by ranking the target links with
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Graph type MPNN 1-1-NLMP 0-2-NLMP 2-1-NLMP

Cut edges × ✓ ✓ ✓
Cut vertices × × ✓ ✓

Rook’s vs. Shrikhande × × × ✓

Table 2: Results of detecting different graph patterns.

Figure 5: Logical classifiers over graphs.

randomly sampled negative links by the scores computed by the models. For each target link (s, t)
we compute its rank rankst. We then compute H@100 =

∑
(s,t)∈Dtest

1rankst
. The number of the

max hops of the paths is 5. We search for hyperparameters using the valid dataset and set learning
rate to be 0.0001, dropout 0.5, feature propagation layer 2, weight decay 0. The code is implemented
in PyTorch [29] and based on the implementation of Chamberlain et al. [6]. The predictor of the
model is designed as p(u, v) = MLP(hu ⊙ hv ⊙ huv) where hu,hv are node representations of
u, v respectively and huv is the representations of the paths between u, v.

G The problems related to higher-order representations
The problems of learning higher-order representations with GNNs have been extensively studied.
However, in fact these methods should be divided into two parts: learning higher-order represen-
tations for predicting node-tuple properties and designing higher-order GNNs for learning graph
representations. Although they both learn higher-order representations, they actually study different
problems which requires different techniques and solutions.

The goal of the first approaches is to overcome GNNs’ inherent weakness on predicting node tuples.
This includes the well-known automorphism problem, such as Figure 1. u1, uk, v1, vk always share
the same node representation, so it is impossible to distinguish between them using a vanilla GNN.
Therefore, we need to design more powerful GNN variants to give GNNs new abilities to consider
the correlation between u1, uk and v1, vk.

The goal of the second approaches is to improve GNNs’ expressive power on graph classification
and node classification. Therefore, learning higher-order representations is nothing but a method for
strengthening GNNs. In other words, if there are better methods for learning node-level or graph-level
representations, higher-order GNNs are not required for this goal.

The difference between the two goals is that, suppose we have a powerful GNN that is able to
distinguishes any non-isomorphic nodes (or graphs). Then, the second goal is accomplished: we
already reached the upper bound of the expressive power. However, the first goal is far from being
accomplished: the automorphism problem still remains. As a result, although higher-order GNNs
play an important role in both two problems, the ultimate target and solutions are much different.

H Complete logical description of i-j-NLMP

We first give definition of FOCk,i by restricting the first-order logic formulas step by step. Our results
are similar to [15] in the case of 1-1-NLMP.

First-order logic and graphs. First-order logic is an extension of propositional logic with predi-
cates and quantification, enabling the evaluation over variables. We focus on the logic classifiers that
are expressed in the first-order logic. An example would be:

φ(x) := Green(x) ∧ ∃y (E(x, y) ∧ Blue(y)) .

For more introduction of the first-order logic please refer to textbooks such as Hamilton [13]. The
formula φ(x) contains one free variable x, therefore we can treat φ as a classifier: it takes in one
variable x and output true or false based on its evaluation.
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Figure 6: Example of i-j-NLs.

We can evaluate φ over graphs by instituting the variables with nodes. Consider Figure 5. Each node is
regarded as a constant, therefore we have Green(u) = True,Blue(v) = True,Blue(v) = False, ....
Additionally the edges between (u, v) and (v, w) are expressed as E(u, v) = True,E(v, u) =
True,E(v, w) = True,E(w, v) = True but E(u,w) = False,E(w, u) = False. In this manner we
have φ(u) = True, φ(v) = False, φ(w) = False. Therefore the first-order logic classifiers can be
evaluated over graphs.

Formally, given an attributed graph G = (V, E), we first instantiate the input node labels as unary
logical classifiers Label(x) (e.g., Green(x)). Edges are expressed by a binary logical classifier
E(x, y) where E(x, y) = True ⇐⇒ (x, y) ∈ E . In addition, if there are multiple types of edges we
can simply express them by using different binary predicates E1,E2, ....

FOCk formulas. A well-known restriction of the first-order logic is the FOCk family which shares
a close connection with k-WL tests. In FOCk, each formula contains at most k variables. This
restriction largely reduce the expressive power of the first-order logic. In compensation, FOCk allows
the use of counting quantifiers ∃N , which expresses exists at least N different nodes.

FOCk,i formulas. The FOCk,i formulas only add one restriction over the FOCk: the first i
variables of predicates from each formula must be the same. Obviously each predicate is at least i-ary.
One straight-forward method to initialize them would be:

Labelp(x1, x2, ..., xm) := Label(xp),

Epq(x1, x2, ..., xm) := E(xp, xq),

where m ∈ [i, k], p, q ∈ [1,m]. Other initialization methods are also applicable, as long as they
exclude the usage of quantifiers.

I An illustration of i-j-NLs
We provide an example of the i-j-NL frameworks applied on a simple graph. Consider the graph
(a) in Figure 6, containing three nodes v1, v2 and v3. The node features are represented by colors.
Suppose we want to use 1-2-NL to learn the tuple (v1, v2, v3). In the first step, we apply node labeling
to v1, leading to the graph (b), where only v1 is tagged with a different color. Note that the graph (b)
is nothing but a node-featured graph. In the second step, we apply 2-GNNs on the graph (b). We
then output the representations of (v2, v3) in (c) as the final representation of the target node tuple
(v1, v2, v3).

J Recent GNN variants and i-j-NLs
In this section we show how we describe various GNN variants via i-j-NLs.

J.1 Partial node labeling methods

This includes NBFNet [46], ID-GNN [37], etc. We show that they are 1-1-NLs. To learn the target
link (s, t), NBFNet first initialize node representations h0

u = Indicator(s, u) for u ∈ V , where
Indicator is a learned function. It then updates node representations using a MPNN. ID-GNNs use a
similar strategy method for learning (s, t), which they refer to as conditional node embeddings. Both
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these methods apply node labeling on the source node s [42], and they use the node representation of
t to predict the link (s, t), thus they are 1-1-NLs.

J.2 Node labeling methods

This includes SEAL [40] and its variants GraIL [32], INDIGO [20]. SEAL focuses on undirected
graphs and learns representations for node sets, but we can easily obtain its directed variant by
simply assigning specific orders for the target node tuples, leading to the definition in Section 2,
which are also the labeling methods used in GraIL and INDIGO. To learn the target link (u, v),
these methods apply node labeling on both s and t, and then aggregate the representations of the
nodes or the subgraph as the representation of (u, v). This procedure is equivalent to 2-1-NLs,
where we learn representations for all (u, v, w) for w ∈ V and then aggregate the representations of
{(u, v, w) | w ∈ V} or {(u, v, u), (u, v, v)} to represent (u, v).

J.3 Subgraph GNNs

We mainly considers the subgraph GNN frameworks proposed by [30]. Although Qian et al. [30]
only apply their methods for graph-level tasks, in fact their frameworks are equivalent to k-1-NLs.
Given a graph G, a k-order subgraph GNN first considers Nk different subgraphs, each is tagged by a
special k-tuple of nodes (u1, ..., uk). The k-order subgraph GNN then runs MPNNs parallel on these
subgraphs. Since the subgraph generation methods in [30] can be regarded as special variants of the
node labeling methods, this method is equivalent to applying k-1-NLs to G and learn representations
for all (u1, ..., uk, v) for u1, ..., uk, v ∈ V .

Note that there are also other variants of subgraph GNNs [4]. These variants are slightly more powerful
than the variants in [30], and we leave the discussion of these variants as future work. Bevilacqua
et al. [4] also proposed to use higher-order GNNs to learn representations for the subgraphs, which is
corresponded to general i-j-NLs.
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