
Code Agents are State of The Art Software Testers

Niels Mündler 1 Mark Niklas Müller 1 2 Jingxuan He 1 Martin Vechev 1

Abstract
Rigorous software testing is crucial for develop-
ing and maintaining high-quality code, making
automated test generation a promising avenue for
both improving software quality and boosting the
effectiveness of code generation methods. How-
ever, while code generation with Large Language
Models (LLMs) is an extraordinarily active re-
search area, test generation remains relatively un-
explored. We address this gap and investigate the
capability of LLM-based Code Agents for for-
malizing user issues into test cases. To this end,
we propose a novel benchmark based on pop-
ular GitHub repositories, containing real-world
issues, ground-truth patches, and golden tests.
We find that LLMs generally perform surpris-
ingly well at generating relevant test cases with
Code Agents designed for code repair, exceeding
the performance of systems designed specifically
for test generation. Finally, we find that gener-
ated tests are an effective filter for proposed code
fixes, doubling the precision of SWE-AGENT.

1. Introduction
As the complexity of software systems increases, rigorous
testing is becoming more important than ever. However,
manually writing high-quality tests is a time-consuming
and cumbersome process. Therefore, automatic test case
generation from informal natural language descriptions is
not only a particularly interesting path toward improv-
ing both code quality and developer productivity but also
promises to boost the effectiveness of automatic code repair
tools which can leverage generated tests as specifications.

However, while automatic code generation is an extremely
active research area (Bouzenia et al., 2024a;b; OpenDevin,
2024; Tao et al., 2024; Yang et al., 2024; Zhang et al.,
2024), there is comparatively little work investigating au-

1Department of Computer Science, ETH Zurich, Switzer-
land 2LogicStar.ai. Correspondence to: Niels Mündler
<nmuendler@ethz.ch>.

Published at ICML 2024 Workshop on LLMs and Cognition.
Copyright 2024 by the author(s).

tomatic test generation (Kang et al., 2023; 2024; Li et al.,
2023; Lukasczyk and Fraser, 2022). In particular Code
Agents, successful at code generation, are not being con-
sidered for test generation. For evaluation, large-scale, di-
verse test-generation datasets for Python are lacking.

This Work: A Benchmark for Test Generation In this
work, we propose the SoftWare Testing benchmark, SWT-
BENCH, a novel and comprehensive dataset for test gener-
ation in Python, containing over 1 700 samples, each con-
sisting of a GitHub issue, a golden patch fixing the issue,
and a set of golden reference tests, obtained by transform-
ing the popular SWE-BENCH (Jimenez et al., 2023) from
code repair to test generation. Our key insight is that any
code repair task can be transformed into a test generation
task, by leveraging the golden patch for evaluation. Con-
cretely, for every generated test, we determine whether it
reproduces the described issue, by checking whether it fails
on the original repository but passes after the golden patch
is applied. We illustrate this evaluation process in Fig. 1
and combine it with a coverage-based evaluation metric.

Benchmarking Test Generation Methods We evaluate
a variety of test generation approaches on SWT-BENCH,
including directly prompting strong LLMs, the test genera-
tion method LIBRO (Kang et al., 2023), and different Code
Agents adapted to test generation (Yang et al., 2024; Zhang
et al., 2024). Interestingly, we find that the Code Agent
SWE-AGENT outperforms all other methods at test gener-
ation, both reproducing more issues and achieving higher
coverage. Surprisingly, code repair and test generation suc-
cess are not correlated on a per-sample basis, indicating
that generating a test for and fixing a given issue are dis-
tinct tasks of different difficulty. Finally, we find that gen-
erated tests can serve as a strong signal for the correctness
of proposed code fixes, with SWE-AGENT achieving twice
the precision on fixes that pass self-generated tests.

Key Contributions Our key contributions are:
• We introduce SWT-BENCH, a new benchmark for test

generation based on real-world GitHub issues (§2).

• We propose to adapt Code Agents for code repair to the
task of software test generation (§3).

• We provide an extensive evaluation of SWT-BENCH,
and demonstrate that Code Agents excel at test genera-
tion, outperforming all prior methods (§4).

1

Code Agents are State of The Art Software Testers

Fail Pass

Pass Pass

Fail Fail

Pre PR Post PR

isValid currently allows
trailing newlines but only
alphanumeric characters
should be accepted.

Codebase (Pre PR)

Task inputs Generated Tests

isValid("name") == False

isValid("name") == True

isValid("name\n") == False

Figure 1: An overview of SWT-BENCH. Given a codebase and issue description, the task is to generate tests that reproduce
the issue. A generated test is considered to successfully reproduce the issue if it fails on the codebase before the pull request
(PR) is accepted, i.e., before the golden patch is applied, but passes after (F→P).

2. Benchmarking Test Generation
The objective in SWT-BENCH is to generate a set T of
tests, each of which can pass (P) or fail (F) when executed
on a codebase. We consider a test to successfully repro-
duce a described issue if it fails on the original codebase
but passes after applying the golden patch to the codebase.
We denote these tests with F → P . Further, we consider
the set of proposed tests T to be successful if it contains at
least one F → P test and no test that fails on the patched
codebase. A more formal definition is provided in App. B.

2.1. Benchmark Overview

To construct SWT-BENCH, we leverage the same underly-
ing data as SWE-BENCH (Jimenez et al., 2023), yielding
2 294 select instances (see App. A for details). However,
we exclude 532 of these instances, for which the golden
patch induces errors or does not fix the described issue
(345) or coverage can not be measured (187). This leaves a
total of 1 762 instances in SWT-BENCH, whose character-
istics we describe in App. A. To enable cheaper evaluation,
we create SWT-BENCH-LITE, a subset of 253 issues, cor-
responding to SWE-BENCH-LITE.

2.2. Evaluation Metrics

Fail-to-Pass Rate The Fail-to-Pass rate (F → P) mea-
sures the portion of instances where the generated tests re-
produced the issue, i.e., at least one test fails on the original
codebase and all pass on the fixed version. This is the most
important performance measure as F →P tests are key for
test-driven development and automatic code generation.

Change Coverage Coverage measures what portion of a
codebase is tested. As we aim to test the bug described
in the issue text, we consider only the line coverage of the
changes made by the golden patch. Further, we exclude
non-executable lines, e.g., documentation or configuration
files, from our analysis. Finally, we consider both the cov-
erage of removed (including modified) lines in the origi-
nal codebase and added (including modified) lines in the
patched codebase. We call this change coverage ∆C and
refer to App. B for a formal definition.

Patch Applicability Many LLMs struggle to generate
valid code patch files (Jimenez et al., 2023) and the meth-
ods we investigate employ different approaches to mitigate
this issue. To assess them, we additionally measure the
patch applicability A as the portion of instances for which
a valid patch was generated.

3. Automatic Test Generation
We first discuss how the test generation task differs from
code repair, before introducing a novel code diff format
optimized for fault tolerance and outlining a range of test
generation methods based on directly querying LLMs and
leveraging Code Agents.

3.1. Test Generation vs Code Repair

Automatic test generation is closely related to code repair:
Instead of predicting a patch P that fixes the described is-
sue and is then evaluated using a golden test T ∗, we aim
to predict one or multiple reproducing tests T which are
then evaluated on the codebase before and after applying
the golden patch P ∗. However, there are some key differ-
ences between the two tasks: First, adapting an existing test
suite to reproduce an issue typically only requires adding
new tests (71% of golden tests). Second, testing permits
and requires a more granular analysis. While fixed code
is either correct and passes all test cases or incorrect when
failing any of them, generated tests can fail in diverse ways
(× → F), not fail but be irrelevant to the issue (P → P ,
same ∆C), call relevant code but fail to expose the precise
bug (increase in ∆C) or reproduce different aspects of the
issue (F→P , with varying ∆C).

3.2. A Code Diff Format for Automatic Test Generation

Code changes are typically represented in the unified diff
format, i.e. in the git patch and diff format. While this for-
mat is both precise and human-readable, it is susceptible to
misspecifications, with many LLMs struggling to produce
valid patch files (Jimenez et al., 2023) and, e.g., GPT-4
only succeeding in 16.2% of cases.

2

Code Agents are State of The Art Software Testers

To alleviate this issue, we propose a patch format optimized
for LLM generation that is easier to adhere to and more
robust. Specifically, our custom diff format allows entire
functions or classes to be inserted, replaced, or deleted,
given the full new function or class definition and (fault-
tolerant) location in the code, making it particularly well
suited for test generation. We provide a more formal de-
scription and illustration of this format in App. C and
demonstrate its effectiveness in §4.1.

3.3. Direct LLM Generation of Tests

We consider four baselines for test generation: Di-
rect zero-shot prompting with the unified patch format
(ZEROSHOT), zero-shot prompting with our novel patch
format (ZEROSHOTPLUS), using an oracle to determine
the best of 5 generations (PASS@5), and LIBRO (Kang
et al., 2023), which uses a range of heuristics to pick the
most promising among a set of 5 generated tests. All meth-
ods use BM25-retrieved codebase subsets for context to fit
within LLM context windows, following the implementa-
tion for SWE-BENCH. The LLM is instructed to add tests
reproducing the described issue. We describe these meth-
ods in detail and provide full prompts in App. D.

3.4. Code Agents for Test Generation

Code Agents are systems that interact with code, steered by
LLM-generated commands. Typically they provide a range
of tools that allow searching, reading, and editing code
through an agent computer interface (Yang et al., 2024).
Recent work has shown that such Code Agents are particu-
larly effective for complex repository-level code synthesis
and repair tasks (Bouzenia et al., 2024b; OpenDevin, 2024;
Tao et al., 2024; Yang et al., 2024; Zhang et al., 2024). In
this work, we leverage Code Agents for automatic test gen-
eration by adapting the instructions of AUTOCODEROVER
(Zhang et al., 2024) and SWE-AGENT (Yang et al., 2024).

AUTOCODEROVER (Zhang et al., 2024) separates the code
repair task into a context gathering and code generation
stage. While it provides a range of advanced code search
and navigation tools for context gathering, code repair is
done in a single generation step, retrying invalid patches.

AIDER (Aider, 2024) performs a repository indexing step
to guide file selection. Selected files are fully included
in the prompt, along with a model-generated conversation
summary. Suggested edits undergo validation via static
analysis and repository test cases. Since the agent is de-
signed for interactive use, a project-specific evaluation har-
ness is used for evaluation. It exploits so-called reflection
steps, where the agent follows up on its own outputs.

SWE-AGENT (Yang et al., 2024) provides the LLM with
initial instructions, direct access to (augmented) command

line tools and pre-processes their output to be more easily
LLM parseable, but does not enforce any further structure.

Adapting Code Agents for Test Generation As all
Code Agents were designed for program repair, we adapt
their system and instruction prompts to focus on creating
high-quality test cases (see App. D for a detailed descrip-
tion). Typically, the adjustments simply replaced "solve
this issue" with "create unit tests that cover the issue". We
find that further explicitly instructing SWE-AGENT to al-
ways execute generated tests improves performance (see
§4.1) and call this variant SWE-AGENT+.

4. Experimental Evaluation
We compare the performance of test generation methods
in §4.1 and analyze how they interact with the code repair
setting in §4.2, discussing further results in App. E.

Experimental Setup We use GPT-4 (gpt-4-1106-
preview, OpenAI (2023)) as the underlying LLM and
consider alternatives in App. E. We sample at temperature
t = 0 for all zero-shot methods and at t = 0.7 for LIBRO
and PASS@5. For SWE-AGENT, AUTOCODEROVER,
and AIDER, we use their default settings, restricting the
number of API calls to 20, interaction rounds to 10 and re-
flection steps to 4, respectively. Due to budget constraints,
we focus our evaluation on SWT-BENCH-LITE.

4.1. Automatic Test Generation
Comparing Test Generation Methods We compare test
generation performance in Table 1 and observe that using
the original git code-diff format, ZEROSHOT only gener-
ates valid patches for 16.2% of issues. Using our novel test-
specific code-diff format (ZEROSHOTPLUS) boosts this
rate to 77.1% yielding a 15x increase in F → P rate to
6.3%. While picking the best among five generated tests
(PASS@5) even yields 11.5%, the heuristics employed by
LIBRO can only convert about half of this gap into an F →
P rate of 9.1%. This beats AUTOCODEROVER (7.5%),
but not AIDER (10.3%). SWE-AGENT also outperforms

Table 1: Rate of valid patches (A), fail-to-any tests (F →
×), reproducing fail-to-pass tests (F →P), and correct but
unhelpful pass-to-pass tests (P →P), all in %.

Method A (↑) F→× (↑) F→P (↑) P→P

PASS@5 85.4 32.0 11.5 53.4

ZEROSHOT 16.2 6.7 0.4 9.5
ZEROSHOTPLUS 77.1 32.0 6.3 45.1
LIBRO 79.4 36.8 9.1 42.7
AUTOCODEROVER 77.1 38.3 7.5 38.7
AIDER 75.5 42.3 10.3 33.2
SWE-AGENT 96.4 36.4 9.9 60.1
SWE-AGENT+ 94.9 34.0 11.1 60.9

3

Code Agents are State of The Art Software Testers

Table 2: Change Coverage ∆C [%] as defined in §2.2 ag-
gregated over F →P , none-F→P , and all instances.

Method ∆Call ∆CF→P ∆C¬(F→P)

GOLDEN 45.1 45.1 -
PASS@5 7.3 38.2 3.6

ZEROSHOTPLUS 8.5 48.9 6.1
LIBRO 10.8 33.8 8.6
AUTOCODEROVER 12.3 51.9 8.6
AIDER 16.9 38.0 14.3
SWE-AGENT 15.5 56.8 8.9
SWE-AGENT+ 14.4 47.2 8.7

LIBRO at 9.9% F → P rate, increased to 11.1%, when
instructed to check its generated tests (SWE-AGENT+).
SWE-AGENT and SWE-AGENT+ both produce fewer ini-
tially failing tests (F → ×) than AUTOCODEROVER and
AIDER despite having almost perfect applicability A.

Coverage of Generated Tests We analyze the change
coverage ∆C of the generated tests, in Table 2 and ob-
serve significantly higher coverage on F → P instances,
indicating that coverage is indeed a good but more granu-
lar measure of test quality. Interestingly, as a consequence
of preferring shorter tests, LIBRO achieves substantially
lower coverage than comparable methods. We observe
that AIDER, employing additional static analysis after ed-
its, achieves the highest overall highest coverage.

Impact of Context on Generated Tests In Table 3, we
investigate the importance of provided context for test gen-
eration. In particular, we explore the effect of providing
a proposed (possibly incorrect) patch, the files it changed,
and the test file to be modified instead of the files retrieved
with BM25. We use ZEROSHOTPLUS to generate incor-
rect patches, resampling up to 5 times and excluding in-
stances where we could not generate an incorrect but ap-
plicable patch, reducing the sample size to n = 136. We
observe that, while providing the correct test files to edit
almost triples F → P from 4.4% to 15.4%, exceeding the
best Code Agents, providing a code patch and the files it
changed has a much smaller impact, increasing F → P
only to 10.3% for the golden patch and 6.6% for an incor-
rect patch. This highlights the importance of retrieving the
correct context for generating relevant tests.

Model Complimentarity We consider three diverse
models from §4.1 and analyze the overlap in the instances
for which they are able to generate successful tests. We
show the results in Fig. 2. While the best-performing ap-
proach, SWE-AGENT+, alone is only able to solve 28 in-
stances, the combination of all three approaches is able to
solve 49 instances, highlighting the benefit of employing
diverse approaches.

Table 3: ZEROSHOTPLUS, provided with the Test files to
edit (✓), the Files modified by the golden (✓) or incorrect
patch (✗) and the golden (✓) or an incorrect Patch (✗).

Test Files Patch A F→× F→P P→P

- - - 80.1 36.0 4.4 44.1
- ✓ ✓ 97.1 73.5 10.3 23.5
- ✗ ✗ 77.9 39.7 6.6 38.2
✓ - - 94.1 80.9 15.4 13.2
✓ ✓ ✓ 96.3 75.7 16.9 20.6
✓ ✗ ✗ 96.3 81.6 13.2 14.7

4.2. Code Repair and Test Generation
Correlation of Test and Fix Generation We analyze
the overlap between solved instances of SWE- and SWT-
BENCH, showing results in Table 4. We observe that the
overlap is small for both methods, with no statistical ev-
idence of correlation, indicating that generating tests and
fixes are distinct tasks of different difficulties. We further
observe that, while general-purpose LLMs solve the same
number of instances in both tasks, code agents solve only
half as many SWT as SWE-BENCH instances, highlight-
ing the potential for the development of test-specific agents.

Table 4: Overlap in solved SWE- and SWT-BENCH in-
stances and p-value for instance-level correlation.

SWT SWE Overlap p-Value [%]

ZEROSHOTPLUS 16 16 1 65.6
SWE-AGENT 25 48 5 53.4

Filtering Code Fixes with Generated Tests State-of-
the-art code generation methods only resolve around 20%
of cases on SWE-BENCH-LITE (OpenDevin, 2024; Yang
et al., 2024). Without suitable tests to distinguish correct
from incorrect patches, the overhead from manually testing
these changes would outweigh any benefits from automatic
code generation (Yang et al., 2008). To address this issue,
we use SWE-AGENT to generate both patches and tests.
We then filter the generated patches, retaining only those
with generated F→P tests. While only achieving 10% re-
call, this more than doubles the precision of SWE-AGENT
to 45%, making it significantly more practically useful and
highlighting the importance of test generation.

Figure 2: Overlap in instances solved by the three best per-
forming methods.

10
68

8

3
5

7

SWE-Agent+ Aider

LIBRO

4

Code Agents are State of The Art Software Testers

5. Related Work
Below, we discuss related work on code datasets, auto-
mated test generation, and code agents.

Code Datasets While many code generation datasets
have been proposed over the last years, most focus on
function-level synthesis (Austin et al., 2021; Chen et al.,
2021; Hendrycks et al., 2021) and often include insuffi-
cient test cases to assess the correctness of the generated
code (Liu et al., 2023). Recently, a range of repository-
level code-generation benchmarks (Jain et al., 2024; Liu
et al., 2024) including the popular SWE-BENCH (Jimenez
et al., 2023) have emerged, as modern LLMs began to satu-
rate the simpler function-level benchmarks. However, none
of these benchmarks were designed to assess test gener-
ation. The most prominent bug localization and program
repair dataset, Defects4J (Just et al., 2014), focuses on
Java, is limited in size, and contains only short bug descrip-
tions rather than detailed issue reports. In contrast, SWT-
BENCH is based on Python, which is better supported by
modern Code Agents, contains detailed issue reports, and
is significantly larger.

Automated Unit Test Generation Many approaches to
unit test generation have been suggested, leveraging sym-
bolic execution (Lukasczyk and Fraser, 2022), specialized
transformers (Tufano et al., 2020), and general purpose
LLMs (Alshahwan et al., 2024; Kang et al., 2023; 2024; Li
et al., 2023; Tufano et al., 2020). Much work in this domain
has been concerned with raising general coverage of a code
base, among them the work by Alshahwan et al. (2024);
Schäfer et al. (2024); Xie et al. (2023). In contrast, we aim
at generating unit tests that reproduce reported user issues
by targeting specific execution paths. We evaluate the most
recent work applicable to our setting, LIBRO (Kang et al.,
2023) and a range of other LLM-based approaches adapted
from Jimenez et al. (2023) on SWT-BENCH.

6. Limitations
While our novel SWT-BENCH covers a wide range of real-
world issues, it has several limitations: It focuses on Python
and does not consider other widespread programming lan-
guages like JavaScript or Java. Second, the dataset is based
on popular GitHub repositories, which may not be repre-
sentative of common software development practices. Fi-
nally, the dataset is limited to issues resolved with the
golden patch where coverage could be measured, which
may induce selection biases.

Further our findings are restricted to the three tested Code
Agents; SWE-AGENT, AUTOCODEROVER (academic),
and AIDER (open-source). The field of Code Agents is
rapidly evolving, with numerous agents that have not been

evaluated, including commercial offerings (Amazon, 2024;
Bytedance, 2024), open-source (Aorwall, 2024; Open-
Devin, 2024) and academic projects (Bairi et al., 2023;
Chen et al., 2024; Hong et al., 2023; Qiao et al., 2024).

Finally, while our adapted Code Agents outperform meth-
ods designed for test generation, they are still notably less
effective at generating tests than repairing code. This may
be overcome by specifically developing Code Agents for
software testing. Therefore, our work should be understood
as highlighting the potential of Code Agents for test gener-
ation. Further research is required to assess the generaliz-
ability of our findings across programming languages, code
bases and Code Agents.

7. Conclusion
We proposed SWT-BENCH, a novel benchmark for test
generation from GitHub issue descriptions and the corre-
sponding code bases. We determine whether a generated
test reproduces the described issue by checking whether the
test fails before applying a golden patch fixing the issue and
succeeds afterward. We measure both the rate of such fail-
to-pass tests and the coverage of the test on lines changed
in the golden patch. We evaluated a variety of LLM-based
test-generation methods and found that Code Agents out-
perform other approaches with only minor adaptations for
the test-generation task, thus highlighting their extraordi-
nary potential for this task. Finally, we demonstrated the
ability of generated tests to serve as a strong signal for the
correctness of code patches, further highlighting the impor-
tance of the test generation task.

5

Code Agents are State of The Art Software Testers

References
Aider. Main swe bench. https://aider.chat/2024/06/

02/main-swe-bench.html, 2024.

Nadia Alshahwan, Jubin Chheda, Anastasia Finegenova,
Beliz Gokkaya, Mark Harman, Inna Harper, Alexandru
Marginean, Shubho Sengupta, and Eddy Wang. Auto-
mated unit test improvement using large language mod-
els at meta. CoRR, abs/2402.09171, 2024. URL https:

//doi.org/10.48550/arXiv.2402.09171.

Amazon. Aws developer center. https://aws.amazon.

com/q/developer/, 2024.

Anthropic. Introducing Claude, 2023. URL https://www.

anthropic.com/index/introducing-claude.

Aorwall. Moatless tools. https://github.com/aorwall/

moatless-tools, 2024. Accessed on 2024-07-01.

Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen Jiang,
Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles
Sutton. Program synthesis with large language models.
CoRR, abs/2108.07732, 2021. URL https://arxiv.

org/abs/2108.07732.

Ramakrishna Bairi, Atharv Sonwane, Aditya Kanade,
Arun Iyer, Suresh Parthasarathy, Sriram Rajamani,
B Ashok, Shashank Shet, et al. Codeplan: Repository-
level coding using llms and planning. arXiv preprint
arXiv:2309.12499, 2023.

Islem Bouzenia, Premkumar T. Devanbu, and Michael
Pradel. Repairagent: An autonomous, llm-based agent
for program repair. CoRR, abs/2403.17134, 2024a. URL
https://doi.org/10.48550/arXiv.2403.17134.

Islem Bouzenia, Premkumar T. Devanbu, and Michael
Pradel. Repairagent: An autonomous, llm-based agent
for program repair. CoRR, 2024b.

Bytedance. Marscode. https://www.marscode.com/,
2024.

Dong Chen, Shaoxin Lin, Muhan Zeng, Daoguang Zan,
Jian-Gang Wang, Anton Cheshkov, Jun Sun, Hao Yu,
Guoliang Dong, Artem Aliev, et al. Coder: Issue re-
solving with multi-agent and task graphs. arXiv preprint
arXiv:2406.01304, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Pondé de Oliveira Pinto, Jared Kaplan, Harri-
son Edwards, Yuri Burda, Nicholas Joseph, Greg Brock-
man, Alex Ray, Raul Puri, Gretchen Krueger, Michael
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin,
Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov,

Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such,
Dave Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang,
Igor Babuschkin, Suchir Balaji, Shantanu Jain, William
Saunders, Christopher Hesse, Andrew N. Carr, Jan
Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira
Murati, Katie Mayer, Peter Welinder, Bob McGrew,
Dario Amodei, Sam McCandlish, Ilya Sutskever, and
Wojciech Zaremba. Evaluating large language models
trained on code. CoRR, 2021.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas
Mazeika, Akul Arora, Ethan Guo, Collin Burns, Samir
Puranik, Horace He, Dawn Song, and Jacob Steinhardt.
Measuring coding challenge competence with APPS. In
NeurIPS Datasets and Benchmarks, 2021.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng,
Jinlin Wang, Ceyao Zhang, Zili Wang, Steven Ka Shing
Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta
programming for multi-agent collaborative framework.
arXiv preprint arXiv:2308.00352, 2023.

Naman Jain, Manish Shetty, Tianjun Zhang, King Han,
Koushik Sen, and Ion Stoica. R2e: Turning any github
repository into a programming agent test environment.
In ICLR 2024, 2024. URL https://openreview.net/

forum?id=xsytkViOsd.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu
Yao, Kexin Pei, Ofir Press, and Karthik Narasimhan.
Swe-bench: Can language models resolve real-world
github issues? arXiv preprint arXiv:2310.06770, 2023.

René Just, Darioush Jalali, and Michael D. Ernst. De-
fects4j: a database of existing faults to enable controlled
testing studies for java programs. In Corina S. Pasare-
anu and Darko Marinov, editors, International Sym-
posium on Software Testing and Analysis, ISSTA ’14,
San Jose, CA, USA - July 21 - 26, 2014, pages 437–
440. ACM, 2014. URL https://doi.org/10.1145/

2610384.2628055.

Sungmin Kang, Juyeon Yoon, and Shin Yoo. Large lan-
guage models are few-shot testers: Exploring llm-based
general bug reproduction. In 45th IEEE/ACM Interna-
tional Conference on Software Engineering, ICSE 2023,
Melbourne, Australia, May 14-20, 2023, pages 2312–
2323. IEEE, 2023. URL https://doi.org/10.1109/

ICSE48619.2023.00194.

Sungmin Kang, Juyeon Yoon, and Shin Yoo. LLM-
powered test case generation for detecting tricky bugs.

6

https://aider.chat/2024/06/02/main-swe-bench.html
https://aider.chat/2024/06/02/main-swe-bench.html
https://doi.org/10.48550/arXiv.2402.09171
https://doi.org/10.48550/arXiv.2402.09171
https://aws.amazon.com/q/developer/
https://aws.amazon.com/q/developer/
https://www.anthropic.com/index/introducing-claude
https://www.anthropic.com/index/introducing-claude
https://github.com/aorwall/moatless-tools
https://github.com/aorwall/moatless-tools
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://doi.org/10.48550/arXiv.2403.17134
https://www.marscode.com/
https://openreview.net/forum?id=xsytkViOsd
https://openreview.net/forum?id=xsytkViOsd
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1109/ICSE48619.2023.00194
https://doi.org/10.1109/ICSE48619.2023.00194

Code Agents are State of The Art Software Testers

CoRR, abs/2404.10304, 2024. URL https://arxiv.

org/abs/2404.10304.

Tsz On Li, Wenxi Zong, Yibo Wang, Haoye Tian, Ying
Wang, Shing-Chi Cheung, and Jeff Kramer. Nuances are
the key: Unlocking chatgpt to find failure-inducing tests
with differential prompting. In 38th IEEE/ACM Interna-
tional Conference on Automated Software Engineering,
ASE 2023, Luxembourg, September 11-15, 2023, pages
14–26. IEEE, 2023. URL https://doi.org/10.1109/

ASE56229.2023.00089.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and
Lingming Zhang. Is your code generated by chatgpt
really correct? rigorous evaluation of large lan-
guage models for code generation. In Alice Oh,
Tristan Naumann, Amir Globerson, Kate Saenko,
Moritz Hardt, and Sergey Levine, editors, Advances
in Neural Information Processing Systems 36: An-
nual Conference on Neural Information Processing
Systems 2023, NeurIPS 2023, New Orleans, LA,
USA, December 10 - 16, 2023, 2023. URL http://

papers.nips.cc/paper%5Ffiles/paper/2023/hash/

43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.

html.

Tianyang Liu, Canwen Xu, and Julian McAuley. Re-
pobench: Benchmarking repository-level code auto-
completion systems, 2024. URL https://arxiv.org/

abs/2306.03091.

Stephan Lukasczyk and Gordon Fraser. Pynguin: Au-
tomated unit test generation for python. In 44th
IEEE/ACM International Conference on Software En-
gineering: Companion Proceedings, ICSE Companion
2022, Pittsburgh, PA, USA, May 22-24, 2022, pages
168–172. ACM/IEEE, 2022. URL https://doi.org/

10.1145/3510454.3516829.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774,
2023. URL https://arxiv.org/abs/2303.08774.

OpenDevin. Opendevin: Code less, make more, 2024.
URL https://github.com/OpenDevin/OpenDevin.

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo,
Wangchunshu Zhou, Yuchen Eleanor Jiang, Chengfei
Lv, and Huajun Chen. AUTOACT: automatic agent
learning from scratch via self-planning. CoRR,
abs/2401.05268, 2024. URL https://doi.org/10.

48550/arXiv.2401.05268.

Stephen E. Robertson and Hugo Zaragoza. The probabilis-
tic relevance framework: BM25 and beyond. Found.
Trends Inf. Retr., 3(4):333–389, 2009. URL https:

//doi.org/10.1561/1500000019.

Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank Tip.
An empirical evaluation of using large language models
for automated unit test generation. IEEE Trans. Software
Eng., 50(1):85–105, 2024.

Wei Tao, Yucheng Zhou, Wenqiang Zhang, and Yu Cheng.
MAGIS: llm-based multi-agent framework for github is-
sue resolution. CoRR, abs/2403.17927, 2024. URL
https://doi.org/10.48550/arXiv.2403.17927.

MistralAI Team. Cheaper, better, faster, stronger - con-
tinuing to push the frontier of ai and making it acces-
sible to all., 2024. URL https://mistral.ai/news/

mixtral-8x22b/.

TogetherAI. Together AI API, 2023. URL https://docs.

together.ai/docs/models-inference.

Michele Tufano, Dawn Drain, Alexey Svyatkovskiy,
Shao Kun Deng, and Neel Sundaresan. Unit test case
generation with transformers. CoRR, abs/2009.05617,
2020. URL https://arxiv.org/abs/2009.05617.

Zhuokui Xie, Yinghao Chen, Chen Zhi, Shuiguang Deng,
and Jianwei Yin. Chatunitest: a chatgpt-based automated
unit test generation tool. CoRR, abs/2305.04764, 2023.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian
Lieret, Shunyu Yao, Karthik Narasimhan, and Ofir Press.
Swe-agent: Agent computer interfaces enable software
engineering language models, 2024.

Ye Yang, Mei He, Mingshu Li, Qing Wang, and Barry W.
Boehm. Phase distribution of software development ef-
fort. In H. Dieter Rombach, Sebastian G. Elbaum, and
Jürgen Münch, editors, Proceedings of the Second In-
ternational Symposium on Empirical Software Engineer-
ing and Measurement, ESEM 2008, October 9-10, 2008,
Kaiserslautern, Germany, pages 61–69. ACM, 2008.
URL https://doi.org/10.1145/1414004.1414016.

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roy-
choudhury. Autocoderover: Autonomous program im-
provement, 2024.

7

https://arxiv.org/abs/2404.10304
https://arxiv.org/abs/2404.10304
https://doi.org/10.1109/ASE56229.2023.00089
https://doi.org/10.1109/ASE56229.2023.00089
http://papers.nips.cc/paper%5Ffiles/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper%5Ffiles/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper%5Ffiles/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper%5Ffiles/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
https://arxiv.org/abs/2306.03091
https://arxiv.org/abs/2306.03091
https://doi.org/10.1145/3510454.3516829
https://doi.org/10.1145/3510454.3516829
https://arxiv.org/abs/2303.08774
https://github.com/OpenDevin/OpenDevin
https://doi.org/10.48550/arXiv.2401.05268
https://doi.org/10.48550/arXiv.2401.05268
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.48550/arXiv.2403.17927
https://mistral.ai/news/mixtral-8x22b/
https://mistral.ai/news/mixtral-8x22b/
https://docs.together.ai/docs/models-inference
https://docs.together.ai/docs/models-inference
https://arxiv.org/abs/2009.05617
https://doi.org/10.1145/1414004.1414016

Code Agents are State of The Art Software Testers

A. Benchmark Construction
To construct SWT-BENCH, we leverage the same underlying data as SWE-BENCH (Jimenez et al., 2023) and summarize
its three-stage construction process here for completeness’ sake.

1. Scrape a total of ∼90 000 pull requests (PRs) from 12 popular open-source Python repositories from GitHub.

2. Filter PRs to only include those that were merged, resolved a GitHub issue, and made changes to a test file.

3. Filter PRs to feature at least one F→P test, removing PRs that result in installation or runtime errors.

This results in 2 294 task instances, each consisting of a GitHub issue, a golden patch fixing the issue, and a set of golden
reference tests.

Table 5: Average and maximum numbers characterizing different attributes of SWT-BENCH instance.

Mean Max

Issue Text # Words 315.1 8756

Codebase # Files 210.1 384
Lines 52330.8 122605

Existing Tests

F→P 0.05 55
F→F 1.5 98
P →P 91.4 4837
P →F 0.3 40
total 105.1 4842
Coverage 32.3% 67.7%

Golden Tests

F→P 1.5 952
F→F 0.0 5
P →P 1.6 766
P →F 0.0 0
added 2.8 750
removed 0.3 104

scikit-learn

psf
pallets

sympy

astropy

pydata
mwaskom

pytest-dev

matplotlib

django

pylint-dev

Figure 3: Distribution of SWT-BENCH instances over repositories.

We summarize key statistics of SWT-BENCH in Table 5 and show its repository composition in Fig. 3. While issue
descriptions are on average only 315 words long, the longest one reaches 8756 words. Generally, repository complexity is
high with on average 210 files and over 50 000 lines of code. Many repositories feature large test suites of > 90 and up
to 4800 tests, covering a third of the entire code base. Most of these existing tests are unaffected by the golden patch with
only 0.05 F →P and 0.3 P →F tests on average. The golden tests add on average 2.8 new test cases, of which roughly
half are F→P and P→P each, and remove another 0.3.

8

Code Agents are State of The Art Software Testers

1 -- demo/file.py
2 +++ demo/file.py
3 @@-4,5 +4,5 @@
4 def test_euclidean(a, b):
5 - assert euclidean(1, 0) == 1
6 + assert euclidean(100, 10) == 10
7 assert euclidean(1, 1) == 1

1 demo/file.py
2 rewrite
3 1
4 def test_euclidean(a, b):
5 assert euclidean(100, 10) == 10
6 assert euclidean(1, 1) == 1
7 end diff

Figure 5: Comparison of the default unified diff format (left) and our fault-tolerant version (right).

B. Change Coverage
To formalize our definition of Change Coverage ∆C, outlined in §2.2, we first introduce some notation.

Nomenclature We first introduce the notation to describe codebases, their test suites, and changes to these codebases in
the form of patches. We denote a codebase R after applying patch X as R◦X . Several patches can be applied sequentially,
i.e. R ◦X ◦ Y is a codebase R after applying a first patch X and then a second one Y . Initially, the codebase R contains
a possibly empty test suite SR. When a new patch is introduced to R, a set of new tests T is usually added to check the
correctness of the introduced patch and prevent regression.

A test s can either pass (P) or fail (F) after we execute it within the context of R. We consider a test to fail if an error
is thrown after execution, e.g., an AssertionError or ValueError. Such test errors frequently occur if R lacks or mis-
implements the functionality captured by the test. They can also occur due to other reasons, such as incorrect syntax or
formatting of the added test. Conversely, a test passes when we get no error after running the test. We define this process
as an execution function: exec(s,R) ∈ {P, F}.

def isValid(name):
 """ check digit """
 digitInFront = match(
 r"\d+.*",
 name
)
 if digitInFront:
 print("has digit")
 return False
 return True

def isValid(name):
 """ check d & n """
 digitInFront = match(
 r"\d+.*",
 name
)
 trailNewl = newl(name)
 if trailNewl:
 print("trail newl")
 if digitInFront:
 print("has digit")
 return digitInFront
 return trailNewl

+

+

Figure 4: Illustration of change coverage ∆C of the generated
tests T , given the original code base R, the golden patch X ,
and the golden tests T ∗.

We consider a test s to successfully reproduce a de-
scribed issue of R if it fails on the original codebase
(i.e. exec(s,R) = F) but passes on the patched code-
base R ◦X (i.e. exec(s,R ◦X)). We denote these tests,
by slight abuse of notation, with F → P . Further, we
consider the set of new tests T to be successful if it con-
tains at least one F →P test and no test that fails on the
patched codebase, or formally (∃s ∈ T, exec(s,R) =
F) ∧ (∀s ∈ T, exec(s,R ◦X) = P).

Change Coverage Formally, given the number of
times CSR

(l) ∈ Z≥0 a specific line of code l was exe-
cuted when running the test suite S on the codebase R,
we define the executable lines of the patch X as

X ∗
r = {l ∈ Xr | CSR

(l) + CS◦T∗
R
(l) > 1}

X ∗
a = {l ∈ Xa | CSR◦X (l) + CS◦T∗

R◦X
(l) > 1},

where Xr and Xa are the lines added and removed by patch X , respectively, and T ∗ is the golden tests. Finally, we obtain
the change coverage of generated tests T as

∆CX(T) =

∑
(d,P)∈M

∑
l∈X∗

d
1CS◦TR◦P (l)>CSR◦P (l)

|X ∗
r |+ |X ∗

a |
.

where M = {(r, ∅), (a,X)}. Where X and T are clear from context, we drop them for notational clarity. If none of the
lines modified by the golden patch X are executed by any test, i.e., |X ∗

r | + |X ∗
a | = 0, we exclude this instance from our

coverage analysis (43.1% of the cases).

C. A Custom Prompt Format for ZEROSHOTPLUS

Code changes are typically represented in the unified diff format, i.e. in the git patch and diff format. While this format
is both precise and human-readable, it is susceptible to misspecifications, requiring, e.g., the exact line numbers of code

9

Code Agents are State of The Art Software Testers

1 diff
2 < path or filename >
3 < "rewrite" or "insert" >
4 < line number / EOF / BOF >
5 < function to rewrite or insert >
6 end diff
7 < repeat as necessary >

Figure 6: The Custom Diff format for ZEROSHOTPLUS

changes to be specified and contextual and to-be-changed code to be repeated verbatim. As a result, many LLMs struggle
to produce valid patch files (Jimenez et al., 2023) with, e.g., GPT-4 only succeeding in 17.4% of cases, resulting in 0
correctly reproduced issues.

To alleviate this issue, we propose an adjusted patch format (illustrated in Fig. 6) optimized for LLM generation that is
easier to adhere to and more robust. Specifically, our custom diff format allows entire functions or classes to be inserted,
replaced, or deleted, given the full function or class definition and (fault-tolerant) location in the code. We show an example
in Fig. 5, comparing it to the unified diff format. Based on whether the model wants to rewrite an existing function or insert
a new function, the provided code is then substituted or inserted at the code location. This format is particularly well suited
for test generation which usually only requires adding one or multiple test functions.

More formally, a diff block must start and end with diff and end diff respectively. The first line inside the block must
specify an existing file for rewrites and may point to a new file in the case of insertion. The next line must contain either the
specifier rewrite to modify an existing function or insert to add a new function. The line number or EOF/BOF indicators
are used as a guide to search for existing functions to replace in the case of rewrite, but an exact match of the function
name takes precedence. EOF and BOF are convenient for inserting, e.g., functions at the end of a file and imports at the
beginning. Every patch can contain arbitrarily many such diff blocks.

A full example of applying the format on two files is part of the full prompt of ZEROSHOTPLUS in Figs. 10 and 11.

D. Methods and Prompts for Test Generation
Below, we describe our baselines in greater detail including their full prompts.

ZEROSHOT prompts the model with the issue description, a subset of the codebase retrieved using BM25 (Robertson
and Zaragoza, 2009), and instructions to generate a patch file in unified diff format. BM25 is employed following the
implementation in Jimenez et al. (2023), since the entire codebase does not fit into the model context window. The
retrieval method ranks the files in the codebase by relevance, using user issue as search query. The top k ranking files are
included in full in the prompt, where k is chosen such that the concatenation of included files does not exceed 27k tokens.
We provide the full prompt in Figs. 9 and 10.

ZEROSHOTPLUS is similar to ZEROSHOT but leverages our custom diff format, discussed in §3.2, which is optimized for
LLMs and robustness to minor specification errors. We provide the full prompt in Figs. 11 and 12.

PASS@5 uses our ZEROSHOTPLUS prompting scheme to generate 5 proposal tests and then uses an oracle to pick the best
one. While this is of course not practical in a real-world setting, it allows us to assess the potential of the LLM to generate
good test cases given an effective selection mechanism.

LIBRO (Kang et al., 2023), is the current state-of-the-art for LLM-based test generation. Similar to PASS@5 it generates
multiple proposal tests using the ZEROSHOTPLUS prompting scheme. However, instead of using an oracle, it combines
multiple heuristics to select the best test cases. In particular, it runs all generated tests and then selects the one inducing
an error that is most similar to the problem description. This permits not only checking whether a generated diff is valid
and the proposed test fails on the original codebase but also selecting the most relevant test case. As Libro was originally
proposed for Java, we adapt it to our Python setting.

10

Code Agents are State of The Art Software Testers

D.1. Adapting LIBRO to our Setting

Kang et al. (2023) originally proposed LIBRO for an evaluation in a pass@k setting. There, it is useful to rank all generated
tests to improve performance at k > 1. As we only consider pass@1, we drop ranking components irrelevant for the top-1
test in our reimplementation. Further, LIBRO includes heuristics for importing missing dependencies and inserting tests
into the correct classes. While effective in Java, this is superfluous for Python, where tests can be added outside classes
and dependency imports are (empirically) correctly generated by the LLM. We thus also drop these components.

LIBRO clusters test cases based on whether the generated execution trace matches the issue description. To measure the
similarity between the error message and the issue description, we extract the execution trace of the generated test cases
and use the same LLM as for test generation to judge whether they relate to the same issue. Depending on its answer, we
obtain two clusters and choose the shortest result of the preferred cluster.

D.2. Full Prompts

ZEROSHOT, ZEROSHOTPLUS and LIBRO We show the full prompt for ZEROSHOT in Figs. 9 and 10 and for ZE-
ROSHOTPLUS and LIBRO in Figs. 11 and 12. We note that these prompts are inspired by those for SWE-BENCH (Jimenez
et al., 2023) but rewritten from scratch to fit the test generation setting. We highlight the lines corresponding to the data
provided for the results in Table 3 in boldface.

SWE-AGENT and SWE-AGENT+ We show the full prompts for SWE-AGENT and SWE-AGENT+ in Fig. 13 and
highlight changes compared to Yang et al. (2024) in boldface. The additional modifications for SWE-AGENT+ are high-
lighted in green.

AIDER We only minimally adapt the provided evaluation harness for AIDER on SWE-BENCH1. In this harness, AIDER
is provided with a single initial user prompt based on the user issue, while the entire agent workflow remains unchanged.
We provide the entire prompt in Fig. 14 and highlight our change in boldface.

AUTOCODEROVER The structure of AUTOCODEROVER (Zhang et al., 2024) contains a number of prompts that are
provided in different locations to the model. We adapt the main prompts and display them in Fig. 15, highlighting changes
in boldface. Further, we change every occurrence of "bug location" in the original prompts to "relevant location". We
further add a function to the ACI that allows inserting code in new files and fetching the entire code (capped at the first 100
lines) of any file.

E. Extended Evaluation
In this section, we provide additional results and analysis for the experimental evaluation presented in §4.

E.1. Automatic Test Generation

Table 6: Comparison of different underlying LLMs for SWE-AGENT.

Model A (↑) F →× (↑) F→P (↑) P →P

GPT-4 96.0 36.4 9.9 59.7
Haiku 42.7 12.6 0.8 30.0
Mixtral 10.3 3.2 0.0 7.1

Model Effect We compare the effect of different underlying LLMs from GPT-4 (gpt-4-1106-preview)(OpenAI, 2023),
Claude 3 Haiku (Anthropic, 2023), and Mixtral 7x22b (Team, 2024) (served by TogetherAI (2023)) for SWE-AGENT in
Table 6. We observe that not only F→P rate but even applicability (A) is sensitive to the underlying LLM’s performance,
with both Haiku and Mixtral achieving significantly lower performance than GPT-4. Nonetheless, we observe that even
weak models are capable of leveraging ACIs to produce relevant test cases.

1https://github.com/paul-gauthier/aider-swe-bench

11

Code Agents are State of The Art Software Testers

We use SWT-BENCH to compare the performance of test generation methods (§4.1), their interaction with the code repair
setting (§4.2), and the impact of different instance characteristics (App. E.2).

E.2. Test Generation and Instance Characteristics

as
tr

op
y

dj
an

go

m
at

pl
ot

lib

m
was

ko
m

pa
lle

ts ps
f

py
da

ta

py
lin

t-d
ev

py
te

st
-d

ev

sc
ik

it-
lea

rn

sy
m

py
0

5

10

15

20

25

30

35

% Resolved

SWE Bench

SWT Bench

Figure 7: Distribution of F→P rates across repositories for different test generation methods.

Distribution over Repositories We compare the success rate of SWE-AGENT for test and fix generation across reposi-
tories in Fig. 7. Despite a significantly lower overall success rate, we observe that test generation is not uniformly harder
than fix generation. Instead, it obtains similar success rates across four repositories, and higher success rates across an ad-
ditional two. However, there are significantly more (five) repositories where test generation fails entirely while code repair
only fails on two. Manually inspecting instances from the repositories where test generation fails, we find pydata has a
particularly complex codebase and makes heavy use of parameterization and fixtures in their testing, pytest-dev, a testing
tool, naturally has a highly unusual testing setup as it aims to test other tests making it difficult to extend, and pallets has
extremely long golden test lengths indicating particularly challenging testing problems. For pylint-dev generated tests
are all P →P making them correct but unhelpful.

≤ 10
0

≤ 20
0

≤ 50
0

>
50

0
0

2

4

6

8

10

12

% Resolved

ZeroShotPlus

LIBRO

AutoCodeRover

Aider

SWE-Agent

Figure 8: Distribution of F→P rates across issue description lengths in # tokens

Effect of Issue Description Length We investigate the relationship between issue description length and test generation
performance in Fig. 8. We observe a general trend that very short issues are difficult to create unit tests for, likely due to a
lack of information in the provided description. Moreover AUTOCODEROVER seems to be able to leverage excessive infor-
mation provided in longer issues, likely to include error logs or detailed configurations, with a steadily rising performance
per issue length, where other methods like ZEROSHOTPLUS, LIBRO and AIDER seem to decline in performance.

F. Licenses
We adapt code from the following projects in our work and include the respective licenses:

• SWE-BENCH (Jimenez et al., 2023): MIT License

• SWE-AGENT (Yang et al., 2024): MIT License

• AIDER (Aider, 2024): Apache License 2.0

• AUTOCODEROVER (Zhang et al., 2024): GNU General Public License

For all licenses of the repositories used in SWT-BENCH, we refer to Jimenez et al. (2023), which contains a detailed list
of licenses for each repository.

12

Code Agents are State of The Art Software Testers

G. Computational Cost
Both running inference on LLMs and evaluating their predictions incur costs. However, since the evaluation can be per-
formed on consumer-grade hardware in reasonable time, we focus only on cost inferred from LLM inference. We report
the cost for each setting in Tables 7 and 8, displaying the average cost of a full inference on SWT-BENCH Lite for each
model and method. The difference between the cost of PASS@5 and LIBRO is just the additional filtering step incurred
by LIBRO. We note that there is no additional cost incurred from evaluating both PASS@5 and LIBRO, since the sampled
tests are shared between both approaches.

Model GPT-4 Haiku Mixtral
Cost 290.71 10.28 67.90

Table 7: Cost of different LLMs running SWE-AGENT on SWT-BENCH Lite in USD

Method (One Shot) ZEROSHOT ZEROSHOTPLUS PASS@5 LIBRO
Cost 82.13 80.70 403.65 420.14

Method (Interaction) AIDER AUTOCODEROVER SWE-AGENT SWE-AGENT+
Cost 256.10 368.40 290.71 478.21

Table 8: Cost of running different methods on SWT-BENCH Lite using GPT-4 in USD

13

Code Agents are State of The Art Software Testers

1 The following text contains a user issue (in <issue/> brackets) posted at a repository. Further, you are
provided with file contents of several files in the repository that contain relevant code (in <code>
brackets). It may be necessary to use code from third party dependencies or files not contained in the
attached documents however. Your task is to identify the issue and implement a test case that verifies a
proposed solution to this issue. More details at the end of this text.

2

3 <issue>
4 user issue comes here
5 </issue>
6

7 retrieval results or oracle files come here
8

9 Please generate test cases that check whether an implemented solution
10 resolves the issue of the user (at the top, within <issue/> brackets).
11 Present the test cases in unified diff formatting.
12

13 The general format of a diff is the unified output format, described as follows.
14 The unified output format starts with a two-line header, which looks like this:
15

16 --- from-file
17 +++ to-file
18

19 Next come one or more hunks of differences; each hunk shows one area where the files differ. Unified format
hunks look like this:

20

21 @@ from-file-line-numbers to-file-line-numbers @@
22 line-from-either-file
23 line-from-either-file
24

25 If a hunk contains just one line, only its start line number appears. Otherwise its line numbers look like '
start,count'. An empty hunk is considered to start at the line that follows the hunk.

26

27 If a hunk and its context contain two or more lines, its line numbers look like 'start,count'. Otherwise only
its end line number appears. An empty hunk is considered to end at the line that precedes the hunk.

28

29 The lines common to both files begin with a space character. The lines that actually differ between the two
files have one of the following indicator characters in the left print column:

30

31 '+' A line was added here to the first file.
32 '-' A line was removed here from the first file.
33

34 Insertion can only be done at the end or beginning of the file, indicated by EOF or BOF respectively.
35

36 As an example for a diff, consider the following two versions of the same file, once before and once after a
change.

37 The original version of the file was as follows.
38 [start of demo/test_file.py]
39 1 def test_euclidean(a, b):
40 2 assert euclidean(0, 0) == 0
41 3 assert euclidean(0, 1) == 1
42 4 assert euclidean(1, 0) == 1
43 5 assert euclidean(1, 1) == 1
44 6
45 7 @pytest.mark.parametrize("a, b, expected", [(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1)])
46 8 def test_gcd(a, b):
47 9 assert gcd(a, b) == expected
48 10
49 [end of demo/file.py]

Figure 9: Part 1 of the Prompt for ZEROSHOT on SWT-BENCH

14

Code Agents are State of The Art Software Testers

1

2 The diff for fix in function euclidean and adds the function gcd is as follows.
3 This diff changes the first file into the second file.
4 ```diff
5 --- a/demo/file.py
6 +++ a/demo/file.py
7 @@ -4,4 +4,5 @@
8 assert euclidean(1, 0) == 1
9 assert euclidean(1, 1) == 1

10 + assert euclidean(100, 10) == 10
11

12 @pytest.mark.parametrize("a, b, expected", [(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1)])
13 @@ -9,2 +10,6 @@
14 assert gcd(a, b) == expected
15

16 +@pytest.mark.parametrize("a, b, expected", [(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1), (100, 10, 10)])
17 +def test_lcm(a, b):
18 + assert lcm(a, b) == expected
19 +
20 ```
21

22 The new version of the file is as follows.
23 [start of demo/file.py]
24 1 def test_euclidean(a, b):
25 2 assert euclidean(0, 0) == 0
26 3 assert euclidean(0, 1) == 1
27 4 assert euclidean(1, 0) == 1
28 5 assert euclidean(1, 1) == 1
29 6 assert euclidean(100, 10) == 10
30 7
31 8 @pytest.mark.parametrize("a, b, expected", [(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1)])
32 9 def test_gcd(a, b):
33 10 assert gcd(a, b) == expected
34 11
35 12 @pytest.mark.parametrize("a, b, expected", [(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1), (100, 10, 10)])
36 13 def test_lcm(a, b):
37 14 assert lcm(a, b) == expected
38 15
39 [end of demo/file.py]
40

41 As you can see, you need to indicate the approximate line numbers, function name and the path and file name
you want to change,

42 but there can be as many independent blocks of changes as you need. You may also apply changes to several
files.

43 Apply as much reasoning as you please and see necessary. The format of the solution is fixed and has to
follow the custom diff format.

44 Make sure to implement only test cases and don't try to fix the issue itself.

Figure 10: Part 2 of the Prompt for ZEROSHOT on SWT-BENCH

15

Code Agents are State of The Art Software Testers

1 The following text contains a user issue (in <issue/> brackets) posted at a repository. Further, you are
provided with file contents of several files in the repository that contain relevant code (in <code>
brackets). It may be necessary to use code from third party dependencies or files not contained in the
attached documents however. Your task is to identify the issue and implement a test case that verifies a
proposed solution to this issue. More details at the end of this text.

2

3 <issue>
4 user issue comes here
5 </issue>
6

7 The following patch has been proposed to fix the issue described in the user issue (in <issue/> brackets).The
patch might give you a hint on how to write a covering test for the issue, but you should not assume
that the patch is correct.It might be that the provided patch is not correct, so your test should check
whether the patch resolves the issue.<patch>proposed patch</patch>

8

9 retrieval results or oracle files come here
10

11 Please generate test cases that check whether an implemented solution
12 resolves the issue of the user (at the top, within <issue/> brackets).
13 Present the test cases as a diff (custom format, explained below).
14

15 The general format of a diff is as follows.
16 ```custom-diff
17 diff
18 <path/filename>
19 < "rewrite" or "insert" >
20 < rough line number / EOF / BOF >
21 < insert function that should be added or rewritten >
22 end diff
23 < repeat blocks of diff as necessary >
24 ```
25 Insertion can only be done at the end or beginning of the file, indicated by EOF or BOF respectively.
26

27 As an example for a diff, consider the following two versions of the same file, once before and once after a
change.

28 The original version of the file was as follows.
29 [start of demo/test_file.py]
30 1 def test_euclidean(a, b):
31 2 assert euclidean(0, 0) == 0
32 3 assert euclidean(0, 1) == 1
33 4 assert euclidean(1, 0) == 1
34 5 assert euclidean(1, 1) == 1
35 6
36 7 @pytest.mark.parametrize("a, b, expected", [(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1)])
37 8 def test_gcd(a, b):
38 9 assert gcd(a, b) == expected
39 10
40 [end of demo/file.py]
41 ```

Figure 11: Part 1 of the Prompt for ZEROSHOTPLUS on SWT-BENCH

16

Code Agents are State of The Art Software Testers

1 The diff for fix in function euclidean and adds the function gcd is as follows.
2 This diff changes the first file into the second file.
3 ```custom-diff
4 diff
5 demo/file.py
6 rewrite
7 1
8 def test_euclidean(a, b):
9 assert euclidean(0, 0) == 0

10 assert euclidean(0, 1) == 1
11 assert euclidean(1, 0) == 1
12 assert euclidean(1, 1) == 1
13 assert euclidean(100, 10) == 10
14 end diff
15 diff
16 demo/file.py
17 insert
18 EOF
19 @ pytest.mark.parametrize("a, b, expected", [(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1), (100, 10, 10)])
20 def test_lcm(a, b):
21 assert lcm(a, b) == expected
22 end diff
23

24 The new version of the file is as follows.
25 [start of demo/file.py]
26 1 def test_euclidean(a, b):
27 2 assert euclidean(0, 0) == 0
28 3 assert euclidean(0, 1) == 1
29 4 assert euclidean(1, 0) == 1
30 5 assert euclidean(1, 1) == 1
31 6 assert euclidean(100, 10) == 10
32 7
33 8 @pytest.mark.parametrize("a, b, expected", [(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1)])
34 9 def test_gcd(a, b):
35 10 assert gcd(a, b) == expected
36 11
37 12 @pytest.mark.parametrize("a, b, expected", [(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1), (100, 10, 10)])
38 13 def test_lcm(a, b):
39 14 assert lcm(a, b) == expected
40 15
41 [end of demo/file.py]
42

43 As you can see, you need to indicate the approximate line numbers, function name and the path and file name
you want to change,

44 but there can be as many independent blocks of changes as you need. You may also apply changes to several
files.

45 Apply as much reasoning as you please and see necessary. The format of the solution is fixed and has to
follow the custom diff format.

46 Make sure to implement only test cases and don't try to fix the issue itself.

Figure 12: Part 2 of the Prompt for ZEROSHOTPLUS on SWT-BENCH

17

Code Agents are State of The Art Software Testers

1 We have received following issue within our repository. Here's the issue text:
2 ISSUE:
3 {issue}
4

5 INSTRUCTIONS:
6 Now, you’re going to create unit tests that cover the issue. In other words, you should write unit tests

that fail in the current state of the repositorybut will pass when the issue has been resolved.
Essentially, you’ll want to write a unit test that reproduces the described issue.

7 Your terminal session has started and you're in the repository's root directory. You can use any bash
commands or the special interface to help you. Edit all the files you need to and run any checks or
tests that you want.

8 Remember, YOU CAN ONLY ENTER ONE COMMAND AT A TIME. You should always wait for feedback after every command.
9 When you're satisfied with all of the changes you've made, you can submit your changes to the code base by

simply running the submit command.
10 Note however that you cannot use any interactive session commands (e.g. python, vim) in this environment, but

you can write scripts and run them. E.g. you can write a python script and then run it with `python <
script_name>.py`.

11

12 NOTE ABOUT THE EDIT COMMAND: Indentation really matters! When editing a file, make sure to insert appropriate
indentation before each line!

13

14 IMPORTANT TIPS:
15 1. Always start by trying to replicate the bug that the issues discusses.
16 If the issue includes code for reproducing the bug, we recommend that you re-implement that in your

environment, and run it to make sure you can reproduce the bug.
17 Then start trying to fix it.
18 When you think you've fixed the bug, re-run the bug reproduction script to make sure that the bug has

indeed been fixed.
19

20 If the bug reproduction script does not print anything when it successfully runs, we recommend adding a
print("Script completed successfully, no errors.") command at the end of the file,

21 so that you can be sure that the script indeed ran fine all the way through.
22

23 2. If you run a command and it doesn't work, try running a different command. A command that did not work
once will not work the second time unless you modify it!

24

25 3. If you open a file and need to get to an area around a specific line that is not in the first 100 lines,
say line 583, don't just use the scroll_down command multiple times. Instead, use the goto 583 command.
It's much quicker.

26

27 4. If the bug reproduction script requires inputting/reading a specific file, such as buggy-input.png, and
you'd like to understand how to input that file, conduct a search in the existing repo code, to see
whether someone else has already done that. Do this by running the command: find_file "buggy-input.png"
If that doesn't work, use the linux 'find' command.

28

29 5. Always make sure to look at the currently open file and the current working directory (which appears right
after the currently open file). The currently open file might be in a different directory than the
working directory! Note that some commands, such as 'create', open files, so they might change the
current open file.

30

31 6. When editing files, it is easy to accidentally specify a wrong line number or to write code with incorrect
indentation. Always check the code after you issue an edit to make sure that it reflects what you
wanted to accomplish. If it didn't, issue another command to fix it.

32

33 7. After having applied your changes and before submitting, make sure to run pytest and check if the code
fails as expected due to the issue description. If it doesn’t, revisit your code changes and adapt
them accordingly.

Figure 13: The Prompt for SWE-AGENT on SWT-BENCH

18

Code Agents are State of The Art Software Testers

1 Below is a real GitHub issue from a popular GitHub repository.
2 The issue was filed some time ago.
3 The repo has been checked out at the commit that existed at the moment the issue was filed.
4 If you are already familiar with this repo, be cautious!
5 You are working with an old version of the repo!
6 Filenames, directory names, file contents, etc may be different than what you're used to.
7

8 Propose changes to update the repo to reproduce the problem below.
9 You’re going to create unit tests that cover the issue. In other words, you should write unit tests that

fail in the current state of the repository
10 but will pass when the issue has been resolved. Essentially, you’ll want to write a unit test that

reproduces the described issue.
11

12

13 {issue}

Figure 14: The Prompt for AIDER on SWT-BENCH

19

Code Agents are State of The Art Software Testers

1 You are a software developer maintaining a large project.
2 You are working on an issue submitted to your project.
3 The issue contains a description marked between <issue> and </issue>.
4 Your task is to invoke a few search API calls to gather information about relevant code lines, then write

unit tests to capture the described behaviour in the issue.Ideally, the unit tests should fail before
the bug is fixed or the requested feature is added, and pass after.Note you are not trying to solve the
bug itself, but just capture the behaviour described in the issue by creating appropriate test cases.

1 You are a software developer maintaining a large project.
2 You are working on an issue submitted to your project.
3 The issue contains a description marked between <issue> and </issue>.
4 You ultimate goal is to write one or more unit tests that capture this issue.Ideally, the unit tests should

fail before the bug is fixed or the requested feature is added, and pass after.Note you are not trying
to solve the bug itself, but just capture the behaviour described in the issue by creating appropriate
test cases.

1 Write one or more unit tests for the issue, based on the retrieved context.
2

3 You can import necessary libraries.
4

5

6 Return the tests as patch in the format below.
7

8 Within `<file></file>`, replace `...` with actual file path.
9

10 Within `<original></original>`, replace `...` with the original code snippet from the program.
11

12 Within `<patched></patched>`, replace `...` with the fixed version of the original code. When adding orignal
code and updated code, pay attention to indentation, as the code is in Python.

13 You can write multiple modifications if needed.
14

15 ```
16 # modification 1
17 <file>...</file>
18 <original>...</original>
19 <patched>...</patched>
20

21 # modification 2
22 <file>...</file>
23 <original>...</original>
24 <patched>...</patched>
25

26 # modification 3
27 ...
28 ```

Figure 15: The Prompt for AUTOCODEROVER on SWT-BENCH

20

	Introduction
	Benchmarking Test Generation
	Benchmark Overview
	Evaluation Metrics

	Automatic Test Generation
	Test Generation vs Code Repair
	A Code Diff Format for Automatic Test Generation
	Direct LLM Generation of Tests
	Code Agents for Test Generation

	Experimental Evaluation
	Automatic Test Generation
	Code Repair and Test Generation

	Related Work
	Limitations
	Conclusion
	Benchmark Construction
	Change Coverage
	A Custom Prompt Format for ZeroShotPlus
	Methods and Prompts for Test Generation
	Adapting LIBRO to our Setting
	Full Prompts

	Extended Evaluation
	Automatic Test Generation
	Test Generation and Instance Characteristics

	Licenses
	Computational Cost

