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Figure 1: Generated samples from Visual AutoRegressive (VAR) transformers trained on ImageNet. We
show 512×512 samples (top), 256×256 samples (middle), and zero-shot image editing results (bottom).

Abstract
We present Visual AutoRegressive modeling (VAR), a new generation paradigm
that redefines the autoregressive learning on images as coarse-to-fine “next-scale
prediction” or “next-resolution prediction”, diverging from the standard raster-scan
“next-token prediction”. This simple, intuitive methodology allows autoregressive
(AR) transformers to learn visual distributions fast and can generalize well: VAR,
for the first time, makes GPT-style AR models surpass diffusion transformers in
image generation. On ImageNet 256×256 benchmark, VAR significantly improve
AR baseline by improving Fréchet inception distance (FID) from 18.65 to 1.80,
inception score (IS) from 80.4 to 356.4, with 20× faster inference speed. It is
also empirically verified that VAR outperforms the Diffusion Transformer (DiT) in
multiple dimensions including image quality, inference speed, data efficiency, and
scalability. Scaling up VAR models exhibits clear power-law scaling laws similar to
those observed in LLMs, with linear correlation coefficients near −0.998 as solid
evidence. VAR further showcases zero-shot generalization ability in downstream
tasks including image in-painting, out-painting, and editing. These results suggest
VAR has initially emulated the two important properties of LLMs: Scaling Laws
and zero-shot generalization. We have released all models and codes to promote
the exploration of AR/VAR models for visual generation and unified learning.
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Figure 2: Standard autoregressive modeling (AR) vs. our proposed visual autoregressive modeling (VAR).
(a) AR applied to language: sequential text token generation from left to right, word by word; (b) AR applied
to images: sequential visual token generation in a raster-scan order, from left to right, top to bottom; (c) VAR
for images: multi-scale token maps are autoregressively generated from coarse to fine scales (lower to higher
resolutions), with parallel token generation within each scale. VAR requires a multi-scale VQVAE to work.

1 Introduction

The advent of GPT series [48, 49, 9, 45, 1] and other autoregressive (AR) large language models
(LLMs) [13, 3, 27, 63, 64, 70, 60, 4, 61] has heralded a new epoch in the field of artificial intelligence.
These models exhibit promising intelligence in generality and versatility that, despite issues like
hallucinations [28], are still considered to take a solid step toward the general artificial intelligence
(AGI). The crux behind these large models is a self-supervised learning strategy – predicting the next
token in a sequence, a simple yet profound approach. Studies into the success of these large AR
models have highlighted their scalability and generalizabilty: the former, as exemplified by scaling
laws [30, 22], allows us to predict large model’s performance from smaller ones and thus guides
better resource allocation, while the latter, as evidenced by zero-shot and few-shot learning [49, 9],
underscores the unsupervised-trained models’ adaptability to diverse, unseen tasks. These properties
reveal AR models’ potential in learning from vast unlabeled data, encapsulating the essence of “AGI”.

In parallel, the field of computer vision has been striving to develop large autoregressive or world
models [42, 68, 5], aiming to emulate their impressive scalability and generalizability. Trailblazing
efforts like VQGAN and DALL-E [19, 51] along with their successors [52, 71, 37, 77] have showcased
the potential of AR models in image generation. These models utilize a visual tokenizer to discretize
continuous images into grids of 2D tokens, which are then flattened to a 1D sequence for AR learning
(Fig. 2 b), mirroring the process of sequential language modeling (Fig. 2 a). However, the scaling laws
of these models remain underexplored, and more frustratingly, their performance significantly lags
behind diffusion models [46, 2, 38], as shown in Fig. 3. In contrast to the remarkable achievements
of LLMs, the power of autoregressive models in computer vision appears to be somewhat locked.
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Figure 3: Scaling behavior of different models on
ImageNet 256×256 conditional generation benchmark.
The FID of the validation set serves as a reference lower
bound (1.78). VAR with 2B parameters reaches FID
1.80, surpassing L-DiT with 3B or 7B parameters.

Autoregressive modeling requires defining the or-
der of data. Our work reconsiders how to “order”
an image. Humans typically perceive or create
images in a hierachical manner, first capturing
the global structure and then local details. This
multi-scale, coarse-to-fine method naturally sug-
gests an “order” for images. Also inspired by the
widespread multi-scale designs [40, 39, 62, 31,
33], we define autoregressive learning for images
as “next-scale prediction” in Fig. 2 (c), diverg-
ing from the conventional “next-token prediction”
in Fig. 2 (b). Our approach begins by encoding
an image into multi-scale token maps. The au-
toregressive process is then started from the 1×1
token map, and progressively expands in resolu-
tion: at each step, the transformer predicts the
next higher-resolution token map conditioned on
all previous ones. We refer to this methodology
as Visual AutoRegressive (VAR) modeling.
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VAR directly leverages GPT-2-like transformer architecture [49] for visual autoregressive learning.
On the ImageNet 256×256 benchmark, VAR significantly improves its AR baseline, achieving a
Fréchet inception distance (FID) of 1.80 and an inception score (IS) of 356.4, with inference speed
20× faster (see Sec. 4.4 for details). Notably, VAR surpasses the Diffusion Transformer (DiT) – the
foundation of leading diffusion systems like Stable Diffusion 3.0 and SORA [18, 8] – in FID/IS,
data efficiency, inference speed, and scalability. VAR models also exhibit scaling laws akin to those
witnessed in LLMs. Lastly, we showcase VAR’s zero-shot generalization capabilities in tasks like
image in-painting, out-painting, and editing. In summary, our contributions to the community include:

1. A new visual generative framework using a multi-scale autoregressive paradigm with next-scale
prediction, offering new insights in autoregressive algorithm design for computer vision.

2. An empirical validation of VAR models’ Scaling Laws and zero-shot generalization potential,
which initially emulates the appealing properties of large language models (LLMs).

3. A breakthrough in visual autoregressive model performance, making GPT-style autoregressive
methods surpass strong diffusion models in image synthesis for the first time2.

4. A comprehensive open-source code suite, including both VQ tokenizer and autoregressive model
training pipelines, to help propel the advancement of visual autoregressive learning.

2 Related Work

2.1 Properties of large autoregressive language models

Scaling laws. Power-law scaling laws [22, 30] mathematically describe the relationship between
the growth of model parameters, dataset sizes, computational resources, and the performance im-
provements of machine learning models, conferring several distinct benefits. First, they facilitate
the extrapolation of a larger model’s performance through the scaling up of model size, data size,
and computational cost. This helps save unnecessary costs and provides principles to allocate the
training budget. Second, the scaling laws have evidenced a consistent and non-saturating increase
in performance, corroborating their sustained advantage in enhancing model capability. Propelled
by the principles of scaling laws in neural language models [30], several Large Language Mod-
els [9, 76, 70, 27, 63, 64] have been proposed, embodying the principle that increasing the scale of
models tends to yield enhanced performance outcomes. GPT [49, 9], predicated on a transformer
decoder architecture, undergoes generative pre-training and scales the model size to an unprecedented
175B parameters. LLama [63, 64] release a collection of pre-trained and fine-tuned large language
models (LLMs) ranging in scale from 7 billion to 70 billion parameters. The manifest efficacy of
scaling laws applied to language models has proffered a glimpse into the promising potential of
upscale in visual models [5].

Zero-shot generalization. Zero-shot generalization [55] refers to the ability of a model, particularly
a Large Language Model, to perform tasks that it has not been explicitly trained on. Within the
realm of the vision community, there is a burgeoning interest in the zero-shot and in-context learning
abilities of foundation models, CLIP [47], SAM [35], Dinov2 [44]. Innovations like Painter [69] and
LVM [5] have leveraged visual prompts to design in-context learning paradigms, thereby facilitating
the generalization to downstream unseen tasks.

2.2 Visual generation

Image tokenizer and autoregressive models. Language models [15, 49, 63] rely on Byte Pair
Encoding (BPE [20]) or WordPiece algorithms for text tokenization. Visual generation models based
on language models also necessitate the encoding of 2D images into 1D token sequences. Early
endeavors VQVAE [65] have demonstrated the ability to represent images as discrete tokens, although
the reconstruction quality was relatively moderate. VQGAN [19] advances VQVAE by incorporating
adversarial loss and perceptual loss to improve image fidelity, and employs a decoder-only transformer
to generate image tokens in standard raster-scan autoregressive manner. VQVAE-2 [52] and RQ-
Transformer [37] also follow VQGAN’s raster-scan autoregressive method but further improve
VQVAE via extra scales or stacked codes. Parti [72] capitalizes on the foundational architecture of
ViT-VQGAN [71] to scale the transformer model size to 20 billion parameters, achieving remarkable
results in text-to-image synthesis.

2A related work [74] named “language model beats diffusion” belongs to BERT-style masked-prediction model.
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Masked-prediction model. MaskGIT [11] employs a masked prediction framework [15, 6, 21] along-
side a VQ autoencoder to generate image tokens based through a “greedy” algorithm. MagViT [73]
adapts this approach to video data, and MagViT-2 [74] enhances MaskGIT by introducing an im-
proved VQVAE. MUSE [10] scales MaskGIT’s architecture to 3 billion parameters and merges it
with the T5 language model [50], setting new benchmarks in text-to-image synthesis.

Diffusion models [23, 59, 16, 53] are considered the forefront of visual synthesis, given their superior
generation quality and diversity. Progress in diffusion models has centered around improved sampling
techniques[26], faster sampling [58, 41], and architectural enhancements [53, 24, 54, 46]. Imagen [54]
incorporates the T5 language model [50] for text condition and builds an image generation system
through multiple independent diffusion models for cascaded generation and super resolution. Latent
Diffusion Models (LDM)[53] apply diffusion in latent space, improving efficiency in training and
inference. DiT[46] replaces the traditional U-Net with a transformer-based architecture [66, 17], and
is used in recent image or video synthesis systems like Stable Diffusion 3.0 [18] and SORA [8].

3 Method

3.1 Preliminary: autoregressive modeling via next-token prediction

Formulation. Consider a sequence of discrete tokens x = (x1, x2, . . . , xT ), where each token
xt ∈ [V ] is an integer from a vocabulary of size V . The next-token autoregressive model posits that
the probability of observing the current token xt depends only on its prefix (x1, x2, . . . , xt−1). This
assumption of unidirectional token dependency allows us to decompose the likelihood of sequence
x into the product of T conditional probabilities:

p(x1, x2, . . . , xT ) =

T∏
t=1

p(xt | x1, x2, . . . , xt−1). (1)

Training an autoregressive model pθ parameterized by θ involves optimizing the pθ(xt |
x1, x2, . . . , xt−1) across a dataset. This optimization process is known as the “next-token prediction”,
and the trained pθ can generate new sequences.

Tokenization. Images are inherently 2D continuous signals. To apply autoregressive modeling to
images via next-token prediction, we must: 1) tokenize an image into several discrete tokens, and
2) define a 1D order of tokens for unidirectional modeling. For 1), a quantized autoencoder such
as [19] is often used to convert the image feature map f ∈ Rh×w×C to discrete tokens q ∈ [V ]h×w:

f = E(im), q = Q(f), (2)

where im denotes the raw image, E(·) a encoder, and Q(·) a quantizer. The quantizer typically
includes a learnable codebook Z ∈ RV×C containing V vectors. The quantization process q = Q(f)
will map each feature vector f (i,j) to the code index q(i,j) of its nearest code in the Euclidean sense:

q(i,j) =

(
argmin
v∈[V ]

∥lookup(Z, v)− f (i,j)∥2

)
∈ [V ], (3)

where lookup(Z, v) means taking the v-th vector in codebook Z. To train the quantized autoencoder,
Z is looked up by every q(i,j) to get f̂ , the approximation of original f . Then a new image ˆim is
reconstructed using the decoder D(·) given f̂ , and a compound loss L is minimized:

f̂ = lookup(Z, q), ˆim = D(f̂), (4)

L = ∥im− ˆim∥2 + ∥f − f̂∥2 + λPLP( ˆim) + λGLG( ˆim), (5)

where LP(·) is a perceptual loss such as LPIPS [75], LG(·) a discriminative loss like StyleGAN’s
discriminator loss [33], and λP, λG are loss weights. Once the autoencoder {E ,Q,D} is fully trained,
it will be used to tokenize images for subsequent training of a unidirectional autoregressive model.

The image tokens in q ∈ [V ]h×w are arranged in a 2D grid. Unlike natural language sentences with an
inherent left-to-right ordering, the order of image tokens must be explicitly defined for unidirectional
autoregressive learning. Previous AR methods [19, 71, 37] flatten the 2D grid of q into a 1D sequence
x = (x1, . . . , xh×w) using some strategy such as row-major raster scan, spiral, or z-curve order.
Once flattened, they can extract a set of sequences x from the dataset, and then train an autoregressive
model to maximize the likelihood in (1) via next-token prediction.
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Stage 2:  Training VAR transformer on tokens

([S] means a start token w/ or w/o condition information)

Multi-scale quantization  &  EmbeddingVAE encoding Decoding

Stage 1:  Training multi-scale VQVAE on images

( to provide the ground truth for Stage 2’s training )

VAR next-scale prediction from [S]

𝑝 𝑟1, 𝑟2, … 𝑟𝐾 =

ෑ

𝑘=1

𝐾

𝑝 𝑟𝑘 𝑟1, … 𝑟𝑘−1 ,

where 𝑝 𝑟0 = 𝛿  .[S]

Figure 4: VAR involves two separated training stages. Left: a multi-scale quantized autoencoder (VQVAE)
encode an image into K token maps R = (r1, r2, . . . , rK) and is trained by a compound reconstruction loss (5).
“Embedding” in the figure means converting discrete tokens into continuous embedding vectors. Right: a VAR
transformer is trained by maximizing the likelihood or minimizing the cross-entropy loss in (6) via next-scale
prediction. the trained VQVAE is used to produce token map ground truth R = (r1, r2, . . . , rK) for VAR model.

Discussion. The above tokenizing and flattening enable next-token autoregressive learning on images,
but they introduce several issues:

1) Mathematical premise violation. Image encoders typically produce image feature map f
with inter-dependent feature vectors f (i,j) for all i, j. So after quantization and flattening, the
sequence of tokens (x1, x2, . . . , xh×w) exhibits bidirectional correlations. This contradicts the
unidirectional dependency assumption of autoregressive models, which dictates that each token
xt should only depend on its prefix (x1, x2, . . . , xt−1).

2) Structural degradation. The flattening disrupts the spatial locality inherent in image feature
maps. For instance, the token q(i,j) and its 4 immediate neighbors q(i±1,j), q(i,j±1) are closely
correlated due to their proximity. This spatial relationship is compromised in the linear sequence
x, where unidirectional constraints diminish these correlations.

3) Inefficiency. Generating an image token sequence x = (x1, x2, . . . , xn×n) with a conventional
self-attention transformer incurs O(n2) autoregressive steps and O(n6) computational cost.

The disruption of spatial locality (issue 2) is obvious. Regarding issue 1, we present empirical evidence
in the Appendix, analyzing the token dependencies in the popular quantized autoencoder [19] and
revealing significant bidirectional correlations. The proof of computational complexity for issue
3 is detailed in the Appendix. These theoretical and practical limitations call for a rethinking of
autoregressive models in the context of image generation.

3.2 Visual autoregressive modeling via next-scale prediction

Reformulation. We reconceptualize the autoregressive modeling on images by shifting from “next-
token prediction” to “next-scale prediction” strategy. Here, the autoregressive unit is an entire token
map, rather than a single token. We start by quantizing a feature map f ∈ Rh×w×C into K multi-scale
token maps (r1, r2, . . . , rK), each at a increasingly higher resolution hk × wk, culminating in rK
matches the original feature map’s resolution h× w. The autoregressive likelihood is formulated as:

p(r1, r2, . . . , rK) =

K∏
k=1

p(rk | r1, r2, . . . , rk−1), (6)

where each autoregressive unit rk ∈ [V ]hk×wk is the token map at scale k, and the sequence
(r1, r2, . . . , rk−1) serves as the the “prefix” for rk. During the k-th autoregressive step, all distribu-
tions over the hk ×wk tokens in rk are inter-dependent and will be generated in parallel, conditioned
on rk’s prefix and associated k-th position embedding map. This “next-scale prediction” methodology
is what we define as visual autoregressive modeling (VAR), depicted on the right side of Fig. 4.

Discussion. VAR addresses the previously mentioned three issues as follows:

1) The mathematical premise is satisfied if we constrain each rk to depend only on its prefix, that is,
the process of getting rk is solely related to (r1, r2, . . . , rk−1). This constraint is acceptable as
it aligns with the natural, coarse-to-fine progression characteristics like human visual perception
and artistic drawing. Further details are provided in the Tokenization below.
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2) The spatial locality is preserved as (i) there is no flattening operation in VAR, and (ii) tokens in
each rk are fully correlated. The multi-scale design additionally reinforces the spatial structure.

3) The complexity for generating an image with n× n latent is significantly reduced to O(n4), see
Appendix for proof. This efficiency gain arises from the parallel token generation in each rk.

Tokenization. We develope a new multi-scale quantization autoencoder to encode an image to K
multi-scale discrete token maps R = (r1, r2, . . . , rK) necessary for VAR learning (6). We employ
the same architecture as VQGAN [19] but with a modified multi-scale quantization layer. The
encoding and decoding procedures with residual design on f or f̂ are detailed in algorithms 1 and
2. We empirically find this residual-style design, akin to [37], can perform better than independent
interpolation. Algorithm 1 shows that each rk would depend only on its prefix (r1, r2, . . . , rk−1).
Note that a shared codebook Z is utilized across all scales, ensuring that each rk’s tokens belong to
the same vocabulary [V ]. To address the information loss in upscaling zk to hK × wK , we use K
extra convolution layers {ϕk}Kk=1. No convolution is used after downsampling f to hk × wk.

Algorithm 1: Multi-scale VQVAE Encoding

1 Inputs: raw image im;
2 Hyperparameters: steps K, resolutions

(hk, wk)
K
k=1;

3 f = E(im), R = [];
4 for k = 1, · · · ,K do
5 rk = Q(interpolate(f, hk, wk));
6 R = queue_push(R, rk);
7 zk = lookup(Z, rk);
8 zk = interpolate(zk, hK , wK);
9 f = f − ϕk(zk);

10 Return: multi-scale tokens R;

Algorithm 2: Multi-scale VQVAE Reconstruction

1 Inputs: multi-scale token maps R;
2 Hyperparameters: steps K, resolutions

(hk, wk)
K
k=1;

3 f̂ = 0;
4 for k = 1, · · · ,K do
5 rk = queue_pop(R);
6 zk = lookup(Z, rk);
7 zk = interpolate(zk, hK , wK);
8 f̂ = f̂ + ϕk(zk);
9 ˆim = D(f̂);

10 Return: reconstructed image ˆim;

3.3 Implementation details

VAR tokenizer. As aforementioned, we use the vanilla VQVAE architecture [19] with a multi-scale
quantization scheme with K extra convolutions (0.03M extra parameters). We use a shared codebook
for all scales with V = 4096 and a latent dim of 32. Following the baseline [19], our tokenizer is
also trained on OpenImages [36] with the compound loss (5). See the Appendix for more details.

VAR transformer. Our main focus is on VAR algorithm so we keep a simple model architecture
design. We adopt the architecture of standard decoder-only transformers akin to GPT-2 and VQ-
GAN [49, 19], with the only modification of substituting traditional layer normalization for adaptive
normalization (AdaLN) – a choice motivated by its widespread adoption and proven effectiveness in
visual generative models [33, 34, 32, 57, 56, 29, 46, 12]. For class-conditional synthesis, we use the
class embedding as the start token [s] and also the condition of AdaLN. We do not use advanced
techniques in modern large language models, such as rotary position embedding (RoPE), SwiGLU
MLP, or RMS Norm [63, 64]. Our model shape hyperparameter follows a simple rule [30] that the
width w, head counts h, and drop rate dr are linearly scaled with the depth d as follows:

w = 64d, h = d, dr = 0.1 · d/24. (7)

Consequently, the main parameter count N of a VAR transformer with depth d is given by3:

N(d) = d · 4w2︸ ︷︷ ︸
self-attention

+ d · 8w2︸ ︷︷ ︸
feed-forward

+ d · 6w2︸ ︷︷ ︸
adaptive layernorm

= 18 dw2 = 73728 d3. (8)

All models are trained with the similar settings: a base learning rate of 10−4 per 256 batch size, an
AdamW optimizer with β1 = 0.9, β2 = 0.95, decay = 0.05, a batch size from 512 to 1024 and
training epochs from 200 to 350 (depends on model size). Our subsequent evaluations in Sec. 4 will
suggest that such a simple model design are capable of scaling and generalizing well.

3Due to resource limitation, we use a single shared adaptive layernorm (AdaLN) acorss all attention blocks
in 512×512 synthesis. In this case, the parameter count would be reduced to around 12dw2 +6w2 ≈ 49152 d3.
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Table 1: Generative model family comparison on class-conditional ImageNet 256×256. “↓” or “↑” indicate
lower or higher values are better. Metrics include Fréchet inception distance (FID), inception score (IS), precision
(Pre) and recall (rec). “#Step”: the number of model runs needed to generate an image. Wall-clock inference time
relative to VAR is reported. Models with the suffix “-re” used rejection sampling. †: taken from MaskGIT [11].

Type Model FID↓ IS↑ Pre↑ Rec↑ #Para #Step Time

GAN BigGAN [7] 6.95 224.5 0.89 0.38 112M 1 −
GAN GigaGAN [29] 3.45 225.5 0.84 0.61 569M 1 −
GAN StyleGan-XL [57] 2.30 265.1 0.78 0.53 166M 1 0.3 [57]

Diff. ADM [16] 10.94 101.0 0.69 0.63 554M 250 168 [57]
Diff. CDM [25] 4.88 158.7 − − − 8100 −
Diff. LDM-4-G [53] 3.60 247.7 − − 400M 250 −
Diff. DiT-L/2 [46] 5.02 167.2 0.75 0.57 458M 250 31
Diff. DiT-XL/2 [46] 2.27 278.2 0.83 0.57 675M 250 45
Diff. L-DiT-3B [2] 2.10 304.4 0.82 0.60 3.0B 250 >45
Diff. L-DiT-7B [2] 2.28 316.2 0.83 0.58 7.0B 250 >45

Mask. MaskGIT [11] 6.18 182.1 0.80 0.51 227M 8 0.5 [11]
Mask. MaskGIT-re [11] 4.02 355.6 − − 227M 8 0.5 [11]
Mask. RCG (cond.) [38] 3.49 215.5 − − 502M 20 1.9 [38]

AR VQVAE-2† [52] 31.11 ∼45 0.36 0.57 13.5B 5120 −
AR VQGAN† [19] 18.65 80.4 0.78 0.26 227M 256 19 [11]
AR VQGAN [19] 15.78 74.3 − − 1.4B 256 24
AR VQGAN-re [19] 5.20 280.3 − − 1.4B 256 24
AR ViTVQ [71] 4.17 175.1 − − 1.7B 1024 >24
AR ViTVQ-re [71] 3.04 227.4 − − 1.7B 1024 >24
AR RQTran. [37] 7.55 134.0 − − 3.8B 68 21
AR RQTran.-re [37] 3.80 323.7 − − 3.8B 68 21

VAR VAR-d16 3.60 257.5 0.85 0.48 310M 10 0.4
VAR VAR-d20 2.95 306.1 0.84 0.53 600M 10 0.5
VAR VAR-d24 2.33 320.1 0.82 0.57 1.0B 10 0.6
VAR VAR-d30 1.97 334.7 0.81 0.61 2.0B 10 1
VAR VAR-d30-re 1.80 356.4 0.83 0.57 2.0B 10 1

(validation data) 1.78 236.9 0.75 0.67

4 Empirical Results

This section first compares VAR with other image generative model families4 in terms of performance
and and efficiency in Sec. 4.1. Evaluations on the scalability and generalizability of VAR models are
presented in Sec. 4.2 and Sec. 4.3. We do some ablations and visualizations at the end.

4.1 State-of-the-art image generation

Setup. We test VAR models with depths 16, 20, 24, and 30 on ImageNet 256×256 and 512×512
conditional generation benchmarks and compare them with the state-of-the-art image generation
model families. Among all VQVAE-based AR or VAR models, VQGAN [19] and ours use the same
architecture (CNN) and training data (OpenImages [36]) for VQVAE, while ViT-VQGAN [71] uses
a ViT autoencoder, and both it and RQTransformer [37] trains the VQVAE directly on ImageNet.
The results are summaried in Tab. 1 and Tab. 2.

Overall comparison. In comparison with existing generative approaches including generative
adversarial networks (GAN), diffusion models (Diff.), BERT-style masked-prediction models (Mask.),
and GPT-style autoregressive models (AR), our visual autoregressive (VAR) establishes a new model
class. As shown in Tab. 1, VAR not only achieves the best FID/IS but also demonstrates remarkable
speed in image generation. VAR also maintains decent precision and recall, confirming its semantic
consistency. These advantages hold true on the 512×512 synthesis benchmark, as detailed in Tab. 2.
Notably, VAR significantly advances traditional AR capabilities. To our knowledge, this is the first
time of autoregressive models outperforming Diffusion transformers, a milestone made possible by
VAR’s resolution of AR limitations discussed in Section 3.

4For fairness, methods with advanced VQVAE are excluded in this model family comparison, e.g. the
BERT-style masked-pred model MagViT-2 [74]. Practitioners can combine them with VAR for better results.
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Table 2: ImageNet 512×512 conditional generation.
†: quoted from MaskGIT [11]. “-s”: a single shared
AdaLN layer is used due to resource limitation.

Type Model FID↓ IS↑ Time

GAN BigGAN [7] 8.43 177.9 −

Diff. ADM [16] 23.24 101.0 −
Diff. DiT-XL/2 [46] 3.04 240.8 81

Mask. MaskGIT [11] 7.32 156.0 0.5

AR VQGAN† [19] 26.52 66.8 25
VAR VAR-d36-s 2.63 303.2 1

Efficiency comparison. Conventional autore-
gressive (AR) models [19, 52, 71, 37] suffer a
lot from the high computational cost, as the num-
ber of image tokens is quadratic to the image
resolution. A full autoregressive generation of
n2 tokens requires O(n2) decoding iterations
and O(n6) total computations. In contrast, VAR
only requires O(log(n)) iterations and O(n4) to-
tal computations. The wall-clock time reported
in Tab. 1 also provides empirical evidence that
VAR is around 20 times faster than VQGAN
and ViT-VQGAN even with more model parame-
ters, reaching the speed of efficient GAN models
which only require 1 step to generate an image.

Compared with popular diffusion transformer.5 The VAR model surpasses the recently popular
diffusion models Diffusion Transformer (DiT), which serves as the precursor to the latest Stable-
Diffusion 3 [18] and SORA [8], in multiple dimensions: 1) In image generation diversity and quality
(FID and IS), VAR with 2B parameters consistently performs better than DiT-XL/2 [46], L-DiT-3B,
and L-DiT-7B [2]. VAR also maintains comparable precision and recall. 2) For inference speed,
the DiT-XL/2 requires 45× the wall-clock time compared to VAR, while 3B and 7B models [2]
would cost much more. 3) VAR is considered more data-efficient, as it requires only 350 training
epochs compared to DiT-XL/2’s 1400. 4) For scalability, Fig. 3 and Tab. 1 show that DiT only obtains
marginal or even negative gains beyond 675M parameters. In contrast, the FID and IS of VAR are
consistently improved, aligning with the scaling law study in Sec. 4.2. These results establish VAR as
a more efficient and scalable model for image generation than models like DiT.

4.2 Power-law scaling laws

Background. Prior research [30, 22, 27, 1] have established that scaling up autoregressive (AR) large
language models (LLMs) leads to a predictable decrease in test loss L. This trend correlates with
parameter counts N , training tokens T , and optimal training compute Cmin, following a power-law:

L = (β ·X)α, (9)

where X can be any of N , T , or Cmin. The exponent α reflects the smoothness of power-law, and L
denotes the reducible loss normalized by irreducible loss L∞ [22]6. A logarithmic transformation to
L and X will reveal a linear relation between log(L) and log(X):

log(L) = α log(X) + α log β. (10)

These observed scaling laws [30, 22, 27, 1] not only validate the scalability of LLMs but also serve
as a predictive tool for AR modeling, which facilitates the estimation of performance for larger
AR models based on their smaller counterparts, thereby saving resource usage by large model
performance forecasting. Given these appealing properties of scaling laws brought by LLMs, their
replication in computer vision is therefore of significant interest.

Setup of scaling VAR models. Following the protocols from [30, 22, 27, 1], we examine whether
our VAR model complies with similar scaling laws. We trained models across 12 different sizes,
from 18M to 2B parameters, on the ImageNet training set [14] containing 1.28M images (or 870B
image tokens under our VQVAE) per epoch. For models of different sizes, training spanned 200 to
350 epochs, with a maximum number of tokens reaching 305 billion. Below we focus on the scaling
laws with model parameters N and optimal training compute Cmin given sufficient token count T .

Scaling laws with model parameters N . We first investigate the test loss trend as the VAR model
size increases. The number of parameters N(d) = 73728 d3 for a VAR transformer with depth d is
specified in (8). We varied d from 6 to 30, yielding 12 models with 18.5M to 2.0B parameters. We
assessed the final test cross-entropy loss L and token prediction error rates Err on the ImageNet
validation set of 50,000 images [14]. We computed L and Err for both the last scale (at the last next-
scale autoregressive step), as well as the global average. The results are plotted in Fig. 5, where we

5[46] do not report DiT-L/2’s performance with CFG so we use official code to reproduce it.
6See [22] for some theoretical explanation on scaling laws on negative-loglikelihood losses.
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Figure 5: Scaling laws with VAR transformer size N , with power-law fits (dashed) and equations (in legend).
Small, near-zero exponents α suggest a smooth decline in both test loss L and token error rate Err when scaling
up VAR transformer. Axes are all on a logarithmic scale. The Pearson correlation coefficients near −0.998
signify a strong linear relationship between log(N) vs. log(L) or log(N) vs. log(Err).

observed a clear power-law scaling trend for L as a function of N , as consistent with [30, 22, 27, 1].
The power-law scaling laws can be expressed as:

Llast = (2.0 ·N)−0.23 and Lavg = (2.5 ·N)−0.20. (11)

Although the scaling laws are mainly studied on the test loss, we also empirically observed similar
power-law trends for the token error rate Err:

Errlast = (4.9 · 102N)−0.016 and Erravg = (6.5 · 102N)−0.010. (12)

These results verify the strong scalability of VAR, by which scaling up VAR transformers can
continuously improve the model’s test performance.

Scaling laws with optimal training compute Cmin. We then examine the scaling behavior of VAR
transformers when increasing training compute C. For each of the 12 models, we traced the test loss
L and token error rate Err as a function of C during training quoted in PFlops (1015 floating-point
operations per second). The results are plotted in Fig. 6. Here, we draw the Pareto frontier of L and
Err to highlight the optimal training compute Cmin required to reach a certain value of loss or error.

The fitted power-law scaling laws for L and Err as a function of Cmin are:

Llast = (2.2 · 10−5Cmin)
−0.13 and Lavg = (1.5 · 10−5Cmin)

−0.16, (13)

Errlast = (8.1 · 10−2Cmin)
−0.0067 and Erravg = (4.4 · 10−2Cmin)

−0.011. (14)
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Figure 6: Scaling laws with optimal training compute Cmin. Line color denotes different model sizes. Red
dashed lines are power-law fits with equations in legend. Axes are on a logarithmic scale. Pearson coefficients
near −0.99 indicate strong linear relationships between log(Cmin) vs. log(L) or log(Cmin) vs. log(Err).
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These relations (13, 14) hold across 6 orders of magnitude in Cmin, and our findings are consistent
with those in [30, 22]: when trained with sufficient data, larger VAR transformers are more compute-
efficient because they can reach the same level of performance with less computation.

Visualizations. To better understand how VAR models are learning when scaled up, we compare
some generated 256× 256 samples from VAR models of 4 different sizes (depth 6, 16, 26, 30) and 3
different training stages (20%, 60%, 100% of total training tokens) in Fig. 7. To keep the content
consistent, a same random seed and teacher-forced initial tokens are used. The observed improvements
in visual fidelity and soundness are consistent with the scaling laws, as larger transformers are thought
able to learn more complex and fine-grained image distributions.

Figure 7: Scaling model size N and training compute C improves visual fidelity and soundness. Zoom in
for a better view. Samples are drawn from VAR models of 4 different sizes and 3 different training stages. 9
class labels (from left to right, top to bottom) are: flamingo 130, arctic wolf 270, macaw 88, Siamese cat 284,
oscilloscope 688, husky 250, mollymawk 146, volcano 980, and catamaran 484.
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4.3 Zero-shot task generalization

Image in-painting and out-painting. VAR-d30 is tested. For in- and out-painting, we teacher-force
ground truth tokens outside the mask and let the model only generate tokens within the mask. No
class label information is injected into the model. The results are visualized in Fig. 8. Without
modifications to the network architecture or tuning parameters, VAR has achieved decent results on
these downstream tasks, substantiating the generalization ability of VAR.

Class-conditional image editing. Following MaskGIT [11] we also tested VAR on the class-
conditional image editing task. Similar to the case of in-painting, the model is forced to generate
tokens only in the bounding box conditional on some class label. Fig. 8 shows the model can produce
plausible content that fuses well into the surrounding contexts, again verifying the generality of VAR.

In-painting

Out-painting

Class-cond
Editing

original generated

Figure 8: Zero-shot evaluation in downstream tasks containing in-painting, out-painting, and class-
conditional editing. The results show that VAR can generalize to novel downstream tasks without special
design and finetuning. Zoom in for a better view.

4.4 Ablation Study

In this study, we aim to verify the effectiveness and efficiency of our proposed VAR framework.
Results are reported in Tab. 3.

Effectiveness and efficiency of VAR. Starting from the vanilla AR transformer baseline implemented
by [11], we replace its methodology with our VAR and keep other settings unchanged to get row 2.
VAR achieves a way more better FID (18.65 vs. 5.22) with only 0.013× inference wall-clock cost
than the AR model, which demonstrates a leap in visual AR model’s performance and efficiency.

Component-wise ablation. We further test some key components in VAR. By replacing the standard
Layer Normalization (LN) with Adaptive Layer Normalization (AdaLN), VAR starts yielding better
FID than baseline. By using the top-k sampling similar to the baseline, VAR’s FID is further improved.
By using the classifier-free guidance (CFG) with ratio 2.0, we reach the FID of 3.60, which is 15.05
lower to the baseline, and its inference is still 45 times faster. Due to the observed effectiveness, we
equip our final VAR models with AdaLN, top-k sampling, and classifier-free guidance. We finally
scale up VAR size to 2.0B and achieve an FID of 1.80. This is 16.85 better than the baseline FID.

11



Table 3: Ablation study of VAR. The first two rows compare GPT-2-style transformers trained with AR or
VAR algorithm. Subsequent lines show the influence of VAR enhancements. “AdaLN”: adaptive layernorm.
“CFG”: classifier-free guidance. “Cost”: inference cost relative to the baseline. “∆”: reduction in FID.

Description Para. Model AdaLN Top-k CFG Cost FID↓ ∆

1 AR [11] 227M AR ✗ ✗ ✗ 1 18.65 0.00
2 AR to VAR 207M VAR-d16 ✗ ✗ ✗ 0.013 5.22 −13.43

3 +AdaLN 310M VAR-d16 ✓ ✗ ✗ 0.016 4.95 −13.70
4 +Top-k 310M VAR-d16 ✓ 600 ✗ 0.016 4.64 −14.01
5 +CFG 310M VAR-d16 ✓ 600 2.0 0.022 3.60 −15.05
6 +Scale up 2.0B VAR-d30 ✓ 600 2.0 0.052 1.80 −16.85

5 Future Work

In this work, we mainly focus on the design of learning paradigm and keep the VQVAE architecture
and training unchanged from the baseline [19] to better justify VAR framework’s effectiveness. We
expect advancing VQVAE tokenizer [77, 43, 74] as another promising way to enhance autoregressive
generative models, which is orthogonal to our work. We believe iterating VAR by advanced tokenizer
or sampling techniques in these latest work can further improve VAR’s performance or speed.

Text-prompt generation is an ongoing direction of our research. Given that our model is funda-
mentally similar to modern LLMs, it can easily be integrated with them to perform text-to-image
generation through either an encoder-decoder or in-context manner. This is currently in our high
priority for exploration.

Video generation is not implemented in this work, but it can be naturally extended. By considering
multi-scale video features as 3D pyramids, we can formulate a similar “3D next-scale prediction”
to generate videos via VAR. Compared to diffusion-based generators like SORA [8], our method
has inherent advantages in temporal consistency or integration with LLMs, thus can potentially
handle longer temporal dependencies. This makes VAR competitive in the video generation field,
because traditional AR models can be too inefficient for video generation due to their extremely
high computational complexity and slow inference speed: it is becoming prohibitively expensive to
generate high-resolution videos with traditional AR models, while VAR is capable to solve this. We
therefore foresee a promising future for exploiting VAR models in the realm of video generation.

6 Conclusion

We introduced a new visual generative framework named Visual AutoRegressive modeling (VAR) that
1) theoretically addresses some issues inherent in standard image autoregressive (AR) models, and
2) makes language-model-based AR models first surpass strong diffusion models in terms of image
quality, diversity, data efficiency, and inference speed. Upon scaling VAR to 2 billion parameters, we
observed a clear power-law relationship between test performance and model parameters or training
compute, with Pearson coefficients nearing −0.998, indicating a robust framework for performance
prediction. These scaling laws and the possibility for zero-shot task generalization, as hallmarks of
LLMs, have now been initially verified in our VAR transformer models. We hope our findings and
open sources can facilitate a more seamless integration of the substantial successes from the natural
language processing domain into computer vision, ultimately contributing to the advancement of
powerful multi-modal intelligence.

A Token dependency in VQVAE

To examine the token dependency in VQVAE [19], we check the attention scores in the self-attention
layer before the vector quantization module. We randomly sample 4 256×256 images from the
ImageNet validation set for this analysis. Note the self-attention layer in [19] only has 1 head so for
each image we just plot one attention map. The heat map in Fig. 9 shows the attention scores of each
token to all other tokens, which indicate a strong, bidirectional dependency among all tokens. This is
not surprising since the VQVAE model, trained to reconstruct images, leverages self-attention layers
without any attention mask. Some work [67] has used causal attention in self-attention layers of a
video VAE, but we did not find any image VAE work uses causal self-attention.
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Figure 9: Token dependency plotted. The normalized heat map of attention scores in the last self-attention
layer of VQGAN encoder is visualized. 4 random 256×256 images from ImageNet validation set are used.

B Time complexity of AR and VAR generation

We prove the time complexity of AR and VAR generation.
Lemma B.1. For a standard self-attention transformer, the time complexity of AR generation is
O(n6), where h = w = n and h,w are the height and width of the VQ code map, respectively.

Proof. The total number of tokens is h× w = n2. For the i-th (1 ≤ i ≤ n2) autoregressive iteration,
the attention scores between each token and all other tokens need to be computed, which requires
O(i2) time. So the total time complexity would be:

n2∑
i=1

i2 =
1

6
n2(n2 + 1)(2n2 + 1), (15)

Which is equivalent to O(n6) basic computation.

For VAR, it needs us to define the resolution sequense (h1, w1, h2, w2, . . . , hK , wK) for autoregres-
sive generation, where hi, wi are the height and width of the VQ code map at the i-th autoregressive
step, and hK = h,wK = w reaches the final resolution. Suppose nk = hk = wk for all 1 ≤ k ≤ K
and n = h = w, for simplicity. We set the resolutions as nk = a(k−1) where a > 1 is a constant
such that a(K−1) = n.
Lemma B.2. For a standard self-attention transformer and given hyperparameter a > 1, the time
complexity of VAR generation is O(n4), where h = w = n and h,w are the height and width of the
last (largest) VQ code map, respectively.

Proof. Consider the k-th (1 ≤ k ≤ K) autoregressive generation. The total number of tokens of
current all token maps (r1, r2, . . . , rk) is:

k∑
i=1

n2
i =

k∑
i=1

a2·(k−1) =
a2k − 1

a2 − 1
. (16)

So the time complexity of the k-th autoregressive generation would be:(
a2k − 1

a2 − 1

)2

. (17)

By summing up all autoregressive generations, we have:
loga(n)+1∑

k=1

(
a2k − 1

a2 − 1

)2

(18)

=
(a4 − 1) log n+

(
a8n4 − 2a6n2 − 2a4(n2 − 1) + 2a2 − 1

)
log a

(a2 − 1)3(a2 + 1) log a
(19)

∼ O(n4). (20)

This completes the proof.
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Figure 10: Model comparison on ImageNet 256×256 benchmark.
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Figure 11: More ImageNet 256×256 generation samples.
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