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Abstract

This paper takes an initial step to systematically investigate the generalization bounds of algorithms for

solving nonconvex-(strongly)-concave (NC-SC/NC-C) stochastic minimax optimization measured by the

stationarity of primal functions. We first establish algorithm-agnostic generalization bounds via uniform

convergence between the empirical minimax problem and the population minimax problem. The sample

complexities for achieving ǫ-generalization are Õ
(

dκ2ǫ−2
)

and Õ
(

dǫ−4
)

for NC-SC and NC-C settings, re-

spectively, where d is the dimension and κ is the condition number. We further study the algorithm-dependent

generalization bounds via stability arguments of algorithms. In particular, we introduce a novel stability no-

tion for minimax problems and build a connection between generalization bounds and the stability notion.

As a result, we establish algorithm-dependent generalization bounds for stochastic gradient descent ascent

(SGDA) algorithm and the more general sampling-determined algorithms.

1 Introduction

In this paper, we consider stochastic minimax problems:

min
x∈X

max
y∈Y

F (x, y) , Eξ [f(x, y; ξ)], (1)

where X ⊆ R
d and Y ⊆ R

d′

(d, d′ ∈ N+) are two nonempty closed convex sets, ξ ∈ Ξ is a random variable follow-

ing an unknown distribution D, and f : X×Y×Ξ → R is continuously differentiable and Lipschitz smooth jointly

in x and y for any ξ. We denote the objective (1) as the population minimax problem. Throughout the paper,

we focus on the case where F is nonconvex in x and (strongly)-concave in y, i.e., nonconvex-(strongly)-concave

(NC-SC / NC-C). Such minimax problems appear ubiquitously in practical applications, including adversar-

ial training [Madry et al., 2018, Wang et al., 2019], generative adversarial networks (GANs) [Goodfellow et al.,

2014, Sanjabi et al., 2018, Lei et al., 2020], reinforcement learning [Dai et al., 2017, 2018, Huang and Jiang,

2020] and robust training [Sinha et al., 2018].

Although the distribution D often remains unknown, one generally has access to a dataset S = {ξ1, · · · , ξn}
consisting of n independently and identical distributed (i.i.d.) samples from D. Correspondingly, researchers

resort to solving an empirical minimax problem:

min
x∈X

max
y∈Y

FS(x, y) ,
1

n

n∑

i=1

f(x, y; ξi). (2)

A natural question arises:

∗Equal contribution.
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How does the output of an algorithm A for solving the empirical minimax problem

generalizes on the population minimax problem?

We first specify the measurement. Since functions F and FS are nonconvex in x, finding their global optimal

solutions is generally intractable. Instead, one aims to design an algorithm A that finds an ǫ-stationary point

Lin et al. [2020a], i.e.,

‖∇Φ(Ax(S))‖ ≤ ǫ or dist (0, ∂Φ(Ax(S))) ≤ ǫ,

where Φ(x) , maxy∈Y F (x, y) and ΦS(x) , maxy∈Y FS(x, y) are primal functions, Ax(S) is the x-component

of the output of any algorithm A for solving (2), dist (y,X) , infx∈X ‖y − x‖ and ∂Φ is the (Fréchet) subdif-

ferential of Φ. When Φ is nonsmooth, we resort to the gradient norm of its Moreau envelope to measure the

first-order stationarity as it provides an upper bound on dist (0, ∂Φ(·)) [Davis and Drusvyatskiy, 2019].

Taking the gradient norm as an example, the error for solving the population minimax problem (1) via

solving its empirical counterpart (2) consists of two terms1:

E ‖∇Φ(Ax(S))‖ ≤ E ‖∇ΦS(Ax(S))‖︸ ︷︷ ︸
optimization error

+E ‖∇Φ(Ax(S))−∇ΦS(Ax(S))‖︸ ︷︷ ︸
generalization error

.
(3)

Such decomposition on the gradient norm also appears in nonconvex minimization, e.g., Foster et al. [2018],

Mei et al. [2018], Davis and Drusvyatskiy [2022], Lei [2022]. The optimization error corresponds to the error

of solving the empirical minimax problem (2) and has been widely studied [Luo et al., 2020, Yang et al.,

2020b]. On the other hand, the generalization error for minimax problems remains largely unexplored. A few

recent works [Farnia and Ozdaglar, 2021, Zhang et al., 2021a, Lei et al., 2021, Ozdaglar et al., 2022] studied

the generalization performances in minimax optimization measured by the function value-based gap. However,

these do not fit well in the nonconvex setting since the optimization part remains intractable.

The goal of our paper is to characterize the generalization error

E ‖∇Φ(Ax(S))−∇ΦS(Ax(S))‖.

It is not easy as both ΦS(·) and Ax(S) depend on the dataset S, which induces correlation issues when taking

expectation. To address such dependence issue, one may use uniform convergence or stability arguments.

Uniform convergence characterizes the difference between the empirical minimax optimization and the pop-

ulation minimax problem on worst x ∈ X , i.e.,

E sup
x∈X

‖∇Φ(x) −∇ΦS(x)‖.

Although uniform convergence has been extensively studied in stochastic optimization [Kleywegt et al., 2002,

Mei et al., 2018, Davis and Drusvyatskiy, 2022], a key difference for stochastic minimax optimization is that the

primal function is the average over n i.i.d. random functions. Thus existing techniques in uniform convergence

for classical stochastic optimization are not directly applicable here. One needs to additionally characterize the

differences between maximizers

argmax
y∈Y

FS(x, y) and argmax
y∈Y

F (x, y).

Note that uniform convergence is invariant to the choice of algorithms and provides an upper bound on the

generalization error for any Ax(S) ∈ X . Thus the derived generalization bound is algorithm-agnostic that

applies to any algorithms. Since it is the worst case over all x ∈ X , the derived bounds generally involve the

dimension of x.

We further investigate generalization bounds via stability arguments. This approach analyzes the stabil-

ity of specific algorithms and builds a connection between stability and generalization. It has been extensively

1 For the simplicity of demonstration, here we assume there is no constraint, and primal functions are differentiable. We will
formally introduce the detailed settings in Section 2.

2



Setting1

Approach
Uniform Convergence

Stability Argument

SGDA Sampling-determined

Alg.

NC-SC
Õ

(

κ

√

d
n

)

Theorem 3.1

O

(

κ1+ζ1
(

T1−ζ1

n
+ 1√

n

))

Corollary 4.1

O

(

κ

(

√

T
n
+ 1√

n

))

Corollary 4.3

NC-C
Õ

(

(

d
n

)1/4
)

Theorem 3.2

O

(

(

T1−ζ2

n

)1/6

+
(

1

n

)1/8
)

Corollary 4.2

O

(

(

T
n

)1/12
+

(

1

n

)1/8
)

Corollary 4.4

1 Õ(·) hides logarithmic factors, d: the dimension of X , n: sample size, κ: condition number L
µ

L: Lipschitz smoothness parameter, µ: strong concavity parameter, T : iteration number of algorithms
ζ1, ζ2 ∈ (0, 1): constants depending on stepsizes, refer to Corollary 4.1 and 4.2 for details. SGDA has specific require-
ments on stepsize, while sampling-determined algorithms do not have restrictions on stepsize.

Table 1: Summary of Generalization Bounds for Nonconvex Stochastic Minimax Optimization

studied in stochastic minimization [Bousquet and Elisseeff, 2002, Shalev-Shwartz et al., 2010, Hardt et al., 2016,

Klochkov and Zhivotovskiy, 2021] and minimax problems recently [Farnia and Ozdaglar, 2021, Lei et al., 2021,

Boob and Guzmán, 2021, Yang et al., 2022c]. Most of these work focuses on the measurement of the function-

value gap. Under such measurement, generalization follows directly from stability. However, for the measure-

ment of stationarity for nonconvex problems, building up a link between stability and generalization becomes

significantly more challenging. Compared to uniform convergence, the stability-based generalization bound

is generally independent of the dimension d. As it requires a case-by-case analysis of stability for different

algorithms, it is algorithm-dependent. We particularly study the generalization of the widely used stochastic

gradient descent ascent (SGDA) [Farnia and Ozdaglar, 2021] and a class of algorithms that extends SGDA called

sampling-determined algorithms (see Definition 4.3) [Lei, 2022].

1.1 Contributions

In this paper, we initiate a systematic study on the generalization bounds (see Table 1) for nonconvex stochastic

minimax problems from both uniform convergence and stability argument perspectives. Our contributions are

two-fold:

• We establish the first uniform convergence results between the population and the empirical nonconvex

minimax optimization in NC-SC and NC-C settings, measured by stationarity. Our results provide an

algorithm-agnostic generalization bound for any algorithms that solve empirical nonconvex minimax prob-

lems. Specifically, the sample complexities to achieve an ǫ-uniform convergence or an ǫ-generalization error

are Õ
(
dκ2ǫ−2

)
and Õ

(
dǫ−4

)
for the NC-SC and NC-C settings, respectively.

• From the stability argument perspective, we first introduce a novel stability measurement based on station-

arity; then, we establish the connection between the stability and the generalization error of an algorithm in

both NC-SC and NC-C settings. We further provide the algorithm-dependent generalization error measured

by the stationarity for the classical SGDA algorithm and sampling-determined algorithms utilizing their

stability.

1.2 Literature Review

Nonconvex Minimax Optimization Various algorithms have been proposed to solve NC-SC minimax

optimization [Nouiehed et al., 2019, Lin et al., 2020a,b, Luo et al., 2020, Yang et al., 2020a, Boţ and Böhm,

2020, Xu et al., 2020, Lu et al., 2020, Yan et al., 2020, Guo et al., 2021, Sharma et al., 2022, Zhang et al., 2022].

For stochastic NC-SC minimax problems, Zhang et al. [2022] achieves the best-known complexity of O(κǫ−4),

3



and O(κ2ǫ−3) result with additional individual smoothness assumption. Also, Yang et al. [2022b] introduced a

stochastic smoothed-AGDA algorithm which achieves the best-known O(κ2ǫ−4) for single-loop algorithms. The

lower bounds of NC-SC problems are extensively studied in several recent works [Zhang et al., 2021b, Han et al.,

2021, Li et al., 2021].

The primal function for NC-SC problems is generally smooth, while the primal functions can be nons-

mooth for NC-C problems [Thekumparampil et al., 2019, Lin et al., 2020a]. Recent years witnessed a surge of

algorithms for NC-C problems in deterministic, finite-sum, and stochastic settings, e.g., [Zhang et al., 2020,

Ostrovskii et al., 2021, Thekumparampil et al., 2019, Zhao, 2020, Nouiehed et al., 2019, Yang et al., 2020b,

Lin et al., 2020a, Boţ and Böhm, 2020, Rafique et al., 2021], to name a few. To the best of our knowledge,

Thekumparampil et al. [2019], Yang et al. [2020b], Lin et al. [2020b] achieved the best known Õ(ǫ−3) complex-

ity in the deterministic case, while Yang et al. [2020b] achieved the best known Õ(n3/4ǫ−3) complexity in the

finite-sum case, and Zhang et al. [2022] provided the best known O(ǫ−6) complexity in the stochastic case.

These works differ from our paper in that we aim to characterize the generalization error of algorithms while

they focus mainly on the optimization error of the algorithms.

Uniform Convergence A series of works from stochastic optimization and statistical learning theory stud-

ied uniform convergence on the worst-case differences between the population objective L(x) and its empirical

objective LS(x) constructed via sample average approximation (SAA, also known as empirical risk minimiza-

tion). Interested readers may refer to prominent results in statistical learning [Fisher, 1922, Vapnik, 1999,

Van der Vaart, 2000]. For finite-dimensional problem, Kleywegt et al. [2002] showed that the sample complex-

ity is O(dǫ−2) to achieve an ǫ-uniform convergence in high probability, i.e., P(supx∈X |L(x) − LS(x)| ≥ ǫ). For

nonconvex empirical objectives, Mei et al. [2018] and Davis and Drusvyatskiy [2022] established Õ(dǫ−2) sam-

ple complexity of uniform convergence measured by the stationarity for nonconvex smooth and weakly convex

functions, respectively. In addition, Wang et al. [2017] used uniform convergence to demonstrate the general-

ization and the gradient complexity of differentially private algorithms for stochastic optimization. Recently,

Amir et al. [2022] demonstrated the generalization error of gradient descent on a generalized linear model using

uniform convergence and showed that the stability argument is insufficient to achieve generalization. To the

best of our knowledge, our paper is the first to study uniform convergence for nonconvex minimax optimization.

Stability-Based Generalization Bounds This line of research focuses on analyzing generalization bounds of

stochastic optimization via the uniform stability property of specific algorithms, including SAA [Bousquet and Elisseeff,

2002, Shalev-Shwartz et al., 2009], stochastic gradient descent [Hardt et al., 2016, Bassily et al., 2020, Lei, 2022],

and uniformly stable algorithms [Klochkov and Zhivotovskiy, 2021]. Recently, a series of works further studied

the generalization performances measured by the function-value gap of various algorithms in minimax problems.

Farnia and Ozdaglar [2021] gave the generalization bound for the outputs of gradient-descent-ascent (GDA)

and proximal-point algorithm (PPA) in both (strongly)-convex-(strongly)-concave and nonconvex-nonconcave

smooth minimax problems. Lei et al. [2021] focused on GDA and provided a comprehensive study for different

settings of minimax problems with generalization measured by function-value gaps. Boob and Guzmán [2021]

provided stability and generalization results of extragradient algorithm (EG) in the smooth convex-concave

setting. On the other hand, Zhang et al. [2021a] studied stability and generalization of the empirical minimax

problem under the (strongly)-convex-(strongly)-concave setting, assuming that one can find the optimal solution

of the empirical minimax problem. Our work differs from those in that we propose a novel stability notion for

minimax optimization measured by stationarity and build up the link between such stability and generalization

error.

2 Problem Setting

Notations Throughout the paper, we use ‖·‖ as the ℓ2-norm, ∇f = (∇xf,∇yf) as the gradient of a function

f , for nonnegative functions f and g, we say f = O(g) if f(x) ≤ cg(x) for some c > 0. We denote projX (x′) ,

argminx∈X ‖x− x′‖2 as the projection operator. Let A(S) , (Ax(S),Ay(S)) denote the output of an algorithm

4



A on the empirical minimax problem (2) with dataset S. Given µ ≥ 0, we say a function g : X → R is µ-strongly

convex if g(x)− µ
2 ‖x‖

2
is convex, and it is µ-strongly concave if −g is µ-strongly convex. Function g is µ-weakly

convex if g(x) + µ
2 ‖x‖

2
is convex (see more notations and standard definitions in Appendix A).

Definition 2.1 (Smooth Function) We say a function f : X × Y → R is L-smooth jointly in (x, y) if the

function is continuously differentiable, and there exists a constant L > 0 such that for any (x1, y1), (x2, y2) ∈
X × Y, we have

‖∇xf(x1, y1)−∇xf(x2, y2)‖ ≤ L(‖x1 − x2‖+ ‖y1 − y2‖),
‖∇yf(x1, y1)−∇yf(x2, y2)‖ ≤ L(‖x1 − x2‖+ ‖y1 − y2‖).

By definition, it is easy to find that an L-smooth function is also L-weakly convex. Next, we introduce the

main assumptions used throughout the paper.

Assumption 2.1 (Main Settings) We assume the following:

• The function f(x, y; ξ) is L-smooth jointly in (x, y) ∈ X × Y for any ξ.

• The function f(x, y; ξ) is µ-strongly concave in y ∈ Y for any x ∈ X and any ξ where µ ≥ 0.

• The gradient norms of f(·, ·; ξ) are bounded by G respectively for any ξ.

• The domains X and Y are compact convex sets, i.e., there exists constants DX , DY > 0 such that for any

x ∈ X , ‖x‖2 ≤ DX and for any y ∈ Y, ‖y‖2 ≤ DY , respectively.

Note that compact domain assumption appears widely in uniform convergence literature [Kleywegt et al., 2002,

Davis and Drusvyatskiy, 2022]. Under Assumption 2.1, the objective function F is L-smooth in (x, y) and

µ-strongly concave for any ξ. When µ > 0, we call the population minimax problem (1) a nonconvex-strongly-

concave (NC-SC) minimax problem; when µ = 0, we call it a nonconvex-concave (NC-C) minimax problem.

Definition 2.2 (Moreau Envelope) For an L-weakly convex function Φ and 0 < λ < 1/L, we use Φλ(x) and

proxλΦ(x) to denote the the Moreau envelope of Φ and the proximal point of Φ for a given point x, defined as

following:

Φλ(x) , min
z∈X

{
Φ(z) +

1

2λ
‖z − x‖2

}
, proxλΦ(x) , argmin

z∈X

{
Φ(z) +

1

2λ
‖z − x‖2

}
. (4)

Below we recall some important properties on the primal function Φ and its Moreau envelope Φλ(x) presented

in the literature [Davis and Drusvyatskiy, 2019, Thekumparampil et al., 2019, Lin et al., 2020a,b].

Lemma 2.1 (Properties of Φ and Φλ) In the NC-SC setting (µ > 0), both Φ(x) and ΦS(x) are L̃ , L(1+κ)-

smooth with the condition number κ , L/µ, In the NC-C setting (µ = 0), the primal function Φ is L-weakly

convex, its Moreau envelope Φλ(x) is Lipschitz smooth, also ∇Φλ(x) = λ−1(x− x̂),
∥∥∇Φλ(x)

∥∥ ≥ dist (0, ∂Φ(x̂)),

where x̂ = proxλΦ(x) and 0 < λ < 1/L.

Performance Measurement In the NC-SC setting, the primal functions Φ and ΦS are both L̃-smooth. Re-

garding the constraint, we measure the difference between the population and empirical minimax problems using

the generalized gradient of the population and the empirical primal functions, i.e., E ‖GΦ(Ax(S))− GΦS
(Ax(S))‖,

where GΦ(x) , L̃(x − projX (x− (1/L̃)∇Φ(x))). The following inequality summarized the relationship of mea-

surements in terms of generalized gradient and in terms of gradient used in Section 1.

E ‖GΦ(Ax(S))− GΦS
(Ax(S))‖︸ ︷︷ ︸

generalization error of Algorithm A

≤ E ‖∇Φ(Ax(S))−∇ΦS(Ax(S))‖ ≤ E

[
max
x∈X

‖∇Φ(x) −∇ΦS(x)‖
]
,

︸ ︷︷ ︸
algorithm-agnostic uniform convergence

(5)

5



where the first inequality holds as projection is a non-expansive operator. The term in the left-hand side (LHS)

above is the generalization error of an algorithm A we desire in the NC-SC case.

For the NC-C case, the primal function Φ(x) is L-weakly convex, we use the gradient of its Moreau Envelope

to characterize the (near)-stationarity [Davis and Drusvyatskiy, 2019]. We measure the difference between

the population and empirical problems using the difference between the gradients of their respective Moreau

envelopes.

The generalization error and the uniform convergence in the NC-C case should be given as follows:

E

∥∥∥∇Φ1/(2L)(Ax(S))−∇Φ
1/(2L)
S (Ax(S))

∥∥∥
︸ ︷︷ ︸

generalization error of Algorithm A

≤ E

[
max
x∈X

∥∥∥∇Φ1/(2L)(x) −∇Φ
1/(2L)
S (x)

∥∥∥
]

︸ ︷︷ ︸
algorithm-agnostic uniform convergence

.
(6)

The term in the LHS above is the generalization error of an algorithm A we desire in the NC-C case.

3 Uniform Convergence and Generalization

In this section, we discuss the sample complexity for achieving ǫ-uniform convergence and ǫ-generalization error

for NC-SC and NC-C stochastic minimax optimization.

3.1 NC-SC Stochastic Minimax Optimization

Under the NC-SC setting, the next theorem demonstrates the uniform convergence between gradients of primal

functions of the population and empirical minimax problem, which is a structural property of the empirical and

population minimax problem. We defer the proof to Appendix B.

Theorem 3.1 (Uniform Convergence, NC-SC) Under Assumption 2.1 with µ > 0, we have

E

[
max
x∈X

‖∇Φ(x) −∇ΦS(x)‖
]
= Õ

(
d1/2κn−1/2

)
. (7)

Furthermore, to achieve ǫ-uniform convergence and ǫ-generalization error for any algorithm A such that E ‖GΦ(Ax(S))− GΦS
(Ax(S))‖ ≤

ǫ, it suffices to have

n = n∗
NCSC , Õ

(
dκ2ǫ−2

)
. (8)

To the best of our knowledge, it is the first uniform convergence and algorithm-agnostic generalization error

bound result for NC-SC stochastic minimax problem. In comparison, existing works on generalization error anal-

ysis of minimax problems [Farnia and Ozdaglar, 2021, Lei et al., 2021] using stability arguments are algorithm-

specific and can only handle function-value gap measurement. Zhang et al. [2021a] establish algorithm-agnostic

stability and generalization in the strongly-convex-strongly-concave regime, yet their analysis does not extend

to the nonconvex regime.

Error decomposition (3) and Theorem 3.1 imply that for any algorithm that achieves an ǫ-stationarity point

of the empirical minimax problem, its sample complexity for finding an ǫ-stationary point of the population

minimax problem is at most Õ
(
dκ2ǫ−2

)
. Such an observation provides generalization guarantees for any algo-

rithms that solve finite-sum (empirical) minimax problems. It is especially useful for some SOTA algorithms

like Catalyst-SVRG [Zhang et al., 2021b] and finite-sum version SREDA [Luo et al., 2020] that are complicated

and thus there lack stability analysis and generalization bounds for them.

Proof Sketch We briefly discuss the proof of Theorem 3.1.

Step 1: First, we use a υ-net {xk}Qk=1 [Vapnik, 1999] to decompose the error and handle the dependence issue

between argmaxx∈X ‖∇ΦS(x)−∇Φ(x)‖ and ΦS(x).

Step 2: For any xk within the υ-net, we have the error following decomposition

‖∇ΦS(xk)−∇Φ(xk)‖ ≤ (‖∇ΦS(xk)−∇Φ(xk)‖ − E ‖∇ΦS(x)−∇Φ(xk)‖) + E ‖∇ΦS(xk)−∇Φ(xk)‖.

6



When bounding E ‖∇ΦS(xk) − ∇Φ(xk)‖ in the right-hand side (RHS), we need to characterize the difference

between argmaxy∈Y FS(x, y) and argmaxy∈Y F (x, y) using the stability argument of sample average approxi-

mation [Shalev-Shwartz et al., 2009]. This step appears uniquely for minimax optimization due to the special

structure of the primal function ΦS(x) = maxy
1
n

∑n
i=1 f(x, y; ξi), which is not the average over n random func-

tions. Then we utilize the established stability argument to show that the first term in the RHS is sub-Gaussian

and apply the concentration inequality, which leads to the result. �

3.2 NC-C Stochastic Minimax Optimization

In this subsection, we derive the uniform convergence and algorithm-agnostic generalization bounds for NC-C

stochastic minimax problems. Recall that the primal function Φ is L-weakly convex [Thekumparampil et al.,

2019], and thus that ∇Φ is not well-defined. We use the gradient norm of the Moreau envelope of the primal

function as the measurement [Davis and Drusvyatskiy, 2019].

Theorem 3.2 (Uniform Convergence, NC-C) Under Assumption 2.1 with µ = 0, we have

E

[
max
x∈X

∥∥∥∇Φ
1/(2L)
S (x) −∇Φ1/(2L)(x)

∥∥∥
]
= Õ

(
d1/4n−1/4

)
. (9)

Furthermore, to achieve ǫ-uniform convergence and ǫ-generalization error for any algorithm A such that E
[∥∥∥∇Φ1/(2L)(Ax(S))−∇Φ

1/(2L)
S (Ax(S))

∥∥∥
]
≤

ǫ, it suffices to have

n = n∗
NCC , Õ

(
dǫ−4

)
. (10)

We defer the detailed proof to Appendix C. To the best of our knowledge, this is the first algorithm-agnostic

generalization error result in NC-C stochastic minimax optimization. Similar to the NC-SC setting, Theorem 3.2

with error decomposition (3) provides generalization guarantees for any algorithms that solve the NC-C empirical

minimax problem, including the best-known Catalyst algorithm [Yang et al., 2020b]. More specifically, if an

algorithm finds an ǫ-stationarity point of the empirical minimax problem, with sample size n = Õ
(
dǫ−4

)
, the

point is also an O(ǫ)-stationarity point of the population minimax problem.

Proof Sketch The analysis of Theorem 3.2 builds up a link between NC-C and NC-SC settings and consists

of three parts.

Step 1: By definition of the gradient of the Moreau envelope, it holds that

‖∇Φλ
S(x)−∇Φλ(x)‖ ≤ 1

λ
‖proxλΦ(x)− proxλΦS

(x)‖.

We first use a υ-net {xk}Qk=1 [Vapnik, 1999] to handle the dependence issue between x̃∗ ∈ argmaxx∈X ‖proxλΦ(x)−
proxλΦS

(x)‖ and ΦS .

Step 2: We introduce the following ℓ2-regularized minimax problem:

min
x∈X

max
y∈Y

F (x, y)− ν

2
‖y‖2.

Notice that this problem is NC-SC. We further build a connection between NC-C stochastic minimax optimiza-

tion problems and the corresponding regularized NC-SC stochastic minimax optimization problems. Then we

carefully choose the regularization parameter ν to derive the uniform convergence.

The following lemma characterizes the distance between the proximal points of the primal function from

the original NC-C problem and its regularized NC-SC problem. Note that the lemma may be of independent

interest for the design and the analysis of gradient-based methods for NC-C problems.

7



Lemma 3.1 For ν > 0, denote Φ̂(x) = maxy∈Y F (x, y)− ν
2‖y‖2 as the primal function of the regularized NC-C

problem. It holds for λ ∈ (0, (L+ ν)−1) that

‖proxλΦ(x)− proxλΦ̂(x)‖2 ≤ νDYλ

1− λ(L + ν)
.

The above lemma implies that for small regularization parameter ν, the difference between the proximal point

of the primal function Φ of the NC-C problem and the primal function Φ̂ of the regularized NC-SC problem is

small.

Step 3: It remains to characterize the distance between proxλΦ̂(x) and proxλΦ̂S
(x), where Φ̂S is the primal

function of the regularized empirical minimax problem. By definition of proxλΦ̂(x) and proxλΦ̂S
(x), the

distance is equivalent to the difference between the optimal solutions on x of a strongly-convex strongly-concave

(SC-SC) population minimax problem and the counterpart empirical minimax problem. We utilize the existing

stability-based results for SC-SC minimax optimization Zhang et al. [2021a] to the upper bound such a distance.

We further show that ‖proxλΦ̂S
(x) − proxλΦ̂(x)‖ − E ‖proxλΦ̂S

(x) − proxλΦ̂(x)‖ is a sub-Gaussian random

variable and apply concentration inequality. �

3.3 Comparing Uniform Convergence for Minimization, NC-SC, and NC-C Min-

imax Problems

For general stochastic nonconvex optimization minx∈X E[f(x; ξ)], the sample complexity of achieving ǫ-uniform

convergence,

Emax
x∈X

∥∥∥ 1
n

n∑

i=1

∇f(x; ξi)− E∇f(x; ξ)
∥∥∥ ≤ ǫ,

between the gradient of the population problem and the empirical problem is Õ(dǫ−2) [Davis and Drusvyatskiy,

2022, Mei et al., 2018]. For nonconvex minimax optimization, if we care about the uniform convergence in terms

of the gradient of F , i.e.,

E max
x∈X ,y∈Y

∥∥∥∥∥
1

n

n∑

i=1

∇f(x, y; ξi)− E∇f(x, y; ξ)

∥∥∥∥∥,

where ∇f denotes the full gradient with respect to x and y, existing analysis in Mei et al. [2018] directly gives

a Õ(dǫ−2) sample complexity. However, since we care about the gradient of the primal function, the analysis

becomes more complicated, which we detail in the following.

1. In the NC-SC setting, to establish uniform convergence, we bound

Emax
x∈X

‖∇ΦS(x) −∇Φ(x)‖ = Emax
x∈X

∥∥∥ 1
n

n∑

i=1

∇xf(x, y
∗
S(x); ξi)− E∇xf(x, y

∗(x); ξi)
∥∥∥

where

y∗S(x) , argmax
y∈Y

FS(x, y), y∗(x) , argmax
y∈Y

F (x, y) (11)

The primal function ΦS is not in the form of averaging over n samples, and thus existing analysis for the

minimization problem is not directly applicable. In addition, as the optimal point y∗S(x) differs from y∗(x),

such difference brings in an additional error term. In the NC-SC case, the error is upper bounded by

O(n−1/2), which is the same scale as the error from establishing uniform convergence on x. Thus, the final

uniform convergence bound established in Theorem 3.1 is of the same order as that for minimization prob-

lem [Mei et al., 2018, Davis and Drusvyatskiy, 2022] except for an additional dependence on the condition

number κ.
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2. In the NC-C case, since there may exist multiple maximizers, we have

y∗ ∈ Y∗ = argmaxy∈YEf(x, y; ξ), y∗S ∈ Y∗
S = argmaxy∈Y

1

n

n∑

i=1

f(x, y; ξi). (12)

Thus, the distance between y∗ and y∗S may not be well-defined. Instead, we bound the distance between

ŷ∗S(x) , argmaxy∈Y FS(x, y) − ν
2‖y‖2 and ŷ∗(x) , argmaxy∈Y F (x, y) − ν

2‖y‖2 for a small regularization

parameter ν = O(n−1/2). The distance can be controlled by O(n−1/4). Thus, the sample complexity for

achieving ǫ-uniform convergence for the NC-C case is large than that of the NC-SC case. We leave it for

future investigation to see if one could achieve smaller sample complexity in the NC-C case via a better

characterization of the extra error brought in by y in the NC-C setting.

4 Algorithmic Stability and Generalization Bounds

Notice that the uniform convergence in Theorems 3.1 and 3.2 has a dependence on the dimension d. It becomes

less meaningful for high-dimensional problems [Lei, 2022, Feldman and Vondrak, 2019]. It remains interesting

to build dimension-independent generalization results utilizing the special structure of the algorithms. In this

section, we investigate the generalization performance of specific algorithms for nonconvex stochastic minimax

optimization problems utilizing stability arguments.

4.1 Stability and Generalization

Existing literature on stability arguments in minimax optimization often rely on stability notions based on

function values [Farnia and Ozdaglar, 2021, Lei et al., 2021, Zhang et al., 2021a]. In order to derive bounds on

the generalization in terms of primal stationarity, we introduce the following novel notions of uniform stability

on gradients of the primal function, called uniform primal stability.

Definition 4.1 (Uniform Primal Stability) A randomized algorithm A is δ-uniformly primal stable if for

every two neighboring dataset S, S′ which differ in only one sample, for every ξ ∈ Ξ we have

sup
ξ

EA‖∇f(Ax(S), y
∗(Ax(S)); ξ)−∇f(Ax(S

′), y∗(Ax(S
′)); ξ)‖2 ≤ δ2, (13)

where ∇f = (∇xf,∇yf)
⊤ denotes the full gradient.

The following theorem connects stability and generalization in minimax optimization problems. We defer

the proof to Appendix D.

Theorem 4.1 (Stability and Generalization, NC-SC) Let A be a δ-uniformly primal stable algorithm.

For any function f satisfying Assumption 2.1 with µ > 0, we have

EA,S‖∇Φ(Ax(S))−∇ΦS(Ax(S))‖ ≤ (1 + κ)

(
4δ +

G√
n

)
. (14)

To the best of our knowledge, this is the first result that connects uniformly stable algorithms and generalization

errors in minimax optimization measured by primal stationarity. As a comparison, in the minimization case,

Lei [2022, Theorem 2] proved that the gap between the empirical and population gradients is O
(
δ + 1√

n

)
, while

Theorem 4.1 has an additional dependence on the condition number κ that comes from the minimax structure.

In the NC-C case, the uniform primal stability is less meaningful as y∗(·) is not well-defined. Instead, we

use the following notion of uniform primal argument stability.

Definition 4.2 (Uniform Primal Argument Stability) A randomized algorithm A is δ-uniformly primal

9



argument stable if for every two dataset S, S′ which differ in only one sample,

EA‖Ax(S)−Ax(S
′)‖2 ≤ δ2.

The following theorem connects argument stability and generalization in NC-C case, measured by primal

Moreau envelope stationarity.

Theorem 4.2 (Stability and Generalization, NC-C) Let A be a δ-uniformly primal argument stable algo-

rithm. For any function f satisfying Assumption 2.1 with µ = 0, we have

EA,S

∥∥∥∇Φ1/(2L)(Ax(S))−∇Φ
1/(2L)
S (Ax(S))

∥∥∥ ≤ O
(
δ1/6 + n−1/8

)
. (15)

We defer the proof to Appendix E. Note that the analysis also leverages the idea of adding regularization to

create a surrogate NC-SC problem, as we did in Section 3.2. This result yields the relationship between stability

and generalization in NC-C problems measured by primal stationarity. Different from the minimization case,

the perturbation on the dataset incurs errors on both the function gradients and the dual maximizers, which

requires more careful analysis to derive the final generalization bound. With Theorems 4.1 and 4.2, to obtain the

generalization bounds of algorithms designed for NC-SC and NC-C minimax optimization problems, it suffices

to derive the stability of specific algorithms.

4.2 Generalization of SGDA

In this subsection, we study the generalization bounds of the classical stochastic gradient descent ascent (SGDA)

for minimax optimization problems in both NC-SC and NC-C cases. Recall the procedures of SGDA: in each

iteration t, {
xt+1 = projX (xt − αx

t ∇xf(xt, yt; ξt)),

yt+1 = projY(yt + αy
t∇yf(xt, yt; ξt)),

(16)

where (αx
t , α

y
t ) are the stepsizes. Farnia and Ozdaglar [2021] investigated the δ-stability of SGDA. Together

with Theorems 4.1 and 4.2, we have the following generalization errors in NC-SC and NC-C cases, respectively.

Corollary 4.1 (Generalization of SGDA, NC-SC) Assume the function f is NC-SC as defined in Assump-

tion 2.1 with µ > 0, then if we run SGDA for T iterations with stepsize (αx
t , α

y
t ) =

(
c
t ,

cr2

t

)
for some constant

c > 0 and 1 ≤ r < κ, let ζ1 = (cL(r + 1) + 1)−1, we have

ES,A ‖∇Φ(Ax(S))−∇ΦS(Ax(S))‖ ≤ O
(
κ1+ζ1

(
T 1−ζ1

n
+

1√
n

))
, (17)

where (Ax(S),Ay(S)) = (xT , yT ) is the output of SGDA.

Corollary 4.2 (Generalization of SGDA, NC-C) Assume the function f is NC-C as defined in Assump-

tion 2.1 with µ = 0, then if we run SGDA for T iterations with stepsize max{αx
t , α

y
t } ≤ c

t for some constant

c > 0, let ζ2 = (cL+ 1)−1 then we have

ES,A

∥∥∥∇Φ1/(2L)(Ax(S))−∇Φ
1/(2L)
S (Ax(S))

∥∥∥ ≤ O
((

T 1−ζ2

n

)1/6

+

(
1

n

)1/8
)
, (18)

where (Ax(S),Ay(S)) = (xT , yT ) is the output of SGDA.

The proof relies on the stability results in Farnia and Ozdaglar [2021], which we defer to Appendix F.

Compared to the generalization bounds in Theorems 3.1 and 3.2 that use uniform convergence, the generalization

bounds of SGDA avoid the dependence on the dimension d. However, the dependence on n of generalization

bounds of SGDA becomes worse compared to uniform convergence in the NC-C setting.
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4.3 Generalization of Sampling-determined Algorithms

In this subsection, we consider an extension of sampling-determined algorithm (SDA) class proposed in Lei

[2022]. For completeness, we present its definition below.

Definition 4.3 (Sampling-determined Algorithm) Let A be an algorithm that randomly chooses an index

sequence I(A) = {it} from the dataset to build stochastic gradients. We say A is sampling-determined if its

output is independent of the sample ξi for any i /∈ I(A).

SDA covers a wide range of algorithms, including classical SGDA, stochastic extragradient, and some adap-

tive variants of SGDA [Yang et al., 2022a] in minimax optimization literature. Lei [2022] derives δ-stability of

SDA leveraging its sampling-determined property. Following their techniques and combining with Theorems 4.1

and 4.2, we obtain the following generalization bounds for SDA in both NC-SC and NC-C scenarios.

Corollary 4.3 (Generalization of SDA, NC-SC) Assume the function f is NC-SC as defined in Assump-

tion 2.1 with µ > 0. If we run a SDA algorithm A for T iterations, we have

ES,A ‖∇Φ(Ax(S))−∇ΦS(Ax(S))‖ ≤ O
(
κ

(√
T

n
+

1√
n

))
(19)

Compared with Corollary 4.1, the generalization bound of SDA does not require specific stepsizes and applies

to a wider class of algorithms.

Corollary 4.4 (Generalization of SDA, NC-C) Assume the function f is NC-C as defined in Assumption

2.1 with µ = 0. If we run a SDA algorithm A for T iterations, we have

ES,A

∥∥∥∇Φ1/(2L)(Ax(S))−∇Φ
1/(2L)
S (Ax(S))

∥∥∥ ≤ O
((

T

n

)1/12

+

(
1

n

)1/8
)
. (20)

Compared with Corollary 4.2, the generalization bound of SDA algorithm has a worse dependence on sample

size n. Due to the T/n term in Corollaries 4.3 and 4.4, to achieve good generalization, SDA should have less

than one pass of the dataset. On the other hand, SGDA may use the stepsize to control ζ and can do multiple

pass over the dataset.

5 Conclusion and Future Directions

We take an initial step toward understanding the generalization performances of NC-SC and NC-C minimax

problems measured by the first-order stationarity from both uniform convergence and stability argument per-

spectives. Several future directions are worth further investigation. It remains interesting to see whether we

can improve the uniform convergence and stability results under the NC-C setting, particularly the dependence

on sample size n. Another possible direction is to investigate the generalization performances for specific appli-

cations. Some studies in stochastic minimization show that specific machine learning models (e.g., generalized

linear models) enjoy dimension-free uniform convergence bounds [Amir et al., 2022, Davis and Drusvyatskiy,

2022]. It would be interesting to see if such dimension-free uniform convergence property also holds for some

minimax applications.
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A Additional Definitions and Tools

For convenience, we summarize the notations commonly used throughout the paper.

• Population minimax problem and its primal function2

F (x, y) , Eξ f(x, y; ξ), Φ(x) , max
y∈Y

F (x, y), y∗(x) , argmax
y∈Y

F (x, y).

• Empirical minimax problem and its primal function

FS(x, y) ,
1

n

n∑

i=1

f(x, y; ξi), ΦS(x) , max
y∈Y

FS(x, y), y∗S(x) , argmax
y∈Y

FS(x, y).

• Moreau envelope and corresponding proximal point:

Φλ(x) , min
z∈X

{
Φ(z) +

1

2λ
‖z − x‖2

}
, proxλΦ(x) , argmin

z∈X

{
Φ(z) +

1

2λ
‖z − x‖2

}
,

Φλ
S(x) , min

z∈X

{
ΦS(z) +

1

2λ
‖z − x‖2

}
, proxλΦS

(x) , argmin
z∈X

{
ΦS(z) +

1

2λ
‖z − x‖2

}
.

• GΦ(x): gradient mapping (generalized gradient) of a function Φ.

• ‖·‖: ℓ2-norm.

• ∇f = (∇xf,∇yf): the gradient of a function f .

• projX (x′): the projection operator.

• A(S) , (Ax(S),Ay(S)): the output of an algorithm A on the empirical minimax problem (2) with dataset

S.

• NC / WC: nonconvex, weakly convex.

• NC-SC / NC-C: nonconvex-(strongly)-concave.

• SOTA: state-of-the-art.

• d: dimension number of X .

• κ: condition number L
µ , L: Lipschitz smoothness parameter, µ: strong concavity parameter.

• Õ(·) hides poly-logarithmic factors.

• f = Ω(g) if f(x) ≥ cg(x) for some c > 0 and nonnegative functions f and g.

• We say a function g : X → R is convex if ∀ x1, x2 ∈ X and p ∈ [0, 1], we have g(px1 + (1 − p)x2) ≥
pg(x1) + (1− p)g(x2).

• A function h : X → R is L-smooth3 if h is continuously differentiable in X and there exists a constant

L > 0 such that ‖∇h(x1)−∇h(x2)‖ ≤ L‖x1 − x2‖ holds for any x1, x2.

2 Another commonly used convergence criterion in minimax optimization is the first-order stationarity of F , i.e., ‖∇xF‖ ≤ ǫ

and ‖∇yF‖ ≤ ǫ (or its corresponding gradient mapping) [Lin et al., 2020a, Xu et al., 2020]. We refer readers to Lin et al. [2020a],
Yang et al. [2022b] for a thorough comparison of these two measurements. In this paper, we always stick to the convergence
measured by the stationarity of the primal function.

3 Here the smoothness definition for single-variable functions is subtly different from that of two-variable functions in Definition
2.1, so we list it here for completeness.
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For completeness, we introduce the definition of a sub-Gaussian random variable and related lemma, which

are important tools in the analysis.

Definition A.1 (Sub-Gaussian Random Variable) A random variable η is a zero-mean sub-Gaussian ran-

dom variable with variance proxy σ2
η if E η = 0 and either of the following two conditions hold:

(a) E [exp(sη)] ≤ exp

(
σ2
ηs

2

2

)
for any s ∈ R; (b) P(|η| ≥ t) ≤ 2 exp

(
− t2

2σ2
η

)
for any t > 0.

We use the following McDiarmid’s inequality to show that a random variable is sub-Gaussian.

Lemma A.1 (McDiarmid’s inequality) Let η1, . . . , ηn ∈ R be independent random variables. Let h : Rn →
R be any function with the (c1, . . . , cn)-bounded differences property: for every i = 1, . . . , n and every (η1, . . . , ηn),

and (η′1, . . . , η
′
n) that differ only in the i-th coordinate (ηj = η′j for all j 6= i), we have

|h(η1, . . . , ηn)− h(η′1, . . . , η
′
n)| ≤ ci.

For any t > 0, it holds that

P(|h(η1, . . . , ηn)− Eh(η1, . . . , ηn)| ≥ t) ≤ 2 exp

(
− 2t2∑n

i=1 c
2
i

)
.

Lemma A.2 (Properties of Φ and Φλ, Full Version) In the NC-SC setting (µ > 0), both Φ(x) and ΦS(x)

are L̃ , L(1 + κ)-smooth with the condition number κ , L/µ, both y∗(x) and y∗S(x) are κ-Lipschitz continuous

and ∇Φ(x) = ∇xF (x, y∗(x)),∇ΦS(x) = ∇xFS(x, y
∗
S(x)). In the NC-C setting (µ = 0), the primal function Φ

is L-weakly convex, and its its Moreau envelope Φλ(x) is differentiable, Lipschitz smooth, also

∇Φλ(x) = λ−1(x− x̂),
∥∥∇Φλ(x)

∥∥ ≥ dist (0, ∂Φ(x̂)), (21)

where x̂ = proxλΦ(x) and 0 < λ < 1/L.

For completeness, we formally define the stationary point here. Note that the generalized gradient is defined

on X while the Moreau envelope is defined on the whole domain R
d.

Definition A.2 (Stationary Point) Let ǫ > 0, for an L̃-smooth function Φ : X → R, we call a point x an

ǫ-stationary point of Φ if ‖GΦ(x)‖ ≤ ǫ, where GΦ is the gradient mapping (or generalized gradient) defined as

GΦ(x) , L̃
(
x− projX

(
x− (1/L̃)∇Φ(x)

))
; for an L-weakly convex function Φ, we say a point x an ǫ-(nearly)-

stationary point of Φ if
∥∥∇Φ1/(2L)(x)

∥∥ ≤ ǫ.

B Proof of Theorem 3.1

Proof To derive the desired generalization bounds, we take an υ-net {xk}Qk=1 on X so that there exists a

k ∈ {1, · · · , Q} for any x ∈ X such that ‖x−xk‖ ≤ υ. Note that such υ-net exists with Q = O(υ−d) for compact

X [Kleywegt et al., 2002]. Utilizing the definition of the υ-net, we have

Emax
x∈X

‖∇ΦS(x)−∇Φ(x)‖

≤ Emax
x∈X

[‖∇ΦS(x)−∇ΦS(xk)‖ + ‖∇ΦS(xk)−∇Φ(xk)‖ + ‖∇Φ(xk)−∇Φ(x)‖]

≤ E max
k∈[Q]

‖∇ΦS(xk)−∇Φ(xk)‖+ 2L(1 + κ)υ,

(22)
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where the last inequality holds as Φ and ΦS are L(1 + κ)-smooth following Lemma 2.1. For any s > 0, we have

exp
(
sEmax

x∈X
‖∇ΦS(x) −∇Φ(x)‖

)

≤ exp
(
s
[
E max

k∈[Q]
‖∇ΦS(xk)−∇Φ(xk)‖ + 2L(1 + κ)υ

])

≤ E max
k∈[Q]

exp
(
s
[
‖∇ΦS(xk)−∇Φ(xk)‖+ 2L(1 + κ)υ

])

≤ E

∑

k∈[Q]

exp
(
s
[
‖∇ΦS(xk)−∇Φ(xk)‖+ 2L(1 + κ)υ

])

=
∑

k∈[Q]

E exp
(
s
[
‖∇ΦS(xk)−∇Φ(xk)‖+ 2L(1 + κ)υ

])
,

(23)

where the second inequality uses Jensen’s inequality and monotonicity of exponential function, and the third

inequality uses summation over k ∈ [Q] to handle the dependence issue, i.e., the xk in the last line is independent

of S. We use the exponential function as an intermediate step so that the final sample complexity depends on

log(Q) rather than Q, which is of order O(υ−d). Without loss of generality, selecting υ such that 2L(1+κ)υ = ǫ
2 ,

we have
Emax

x∈X
‖∇ΦS(x)−∇Φ(x)‖

≤ 1

s
log

(
∑

k∈[Q]

E exp (s[‖∇Φ(xk)−∇ΦS(xk)‖ − E ‖∇Φ(xk)−∇ΦS(xk)‖])

· exp (sE ‖∇Φ(xk)−∇ΦS(xk)‖) exp
(sǫ
2

))
.

(24)

To upper bound E ‖∇Φ(xk)−∇ΦS(xk)‖, we use the following observation. Define y∗
S(i)(x) , argmaxy∈Y FS(i)(x, y)

where S = {ξi}ni=1, S
(i) = {ξ1, . . . , ξi−1, ξ

′
i, ξi+1, . . . , ξn} and ξ′i is i.i.d. from ξi. Since x is independent of S or

S(i) for any i, by Danskin’s theorem, we have

E‖∇Φ(x)−∇ΦS(x)‖ = E

∥∥∥∥∥Eξ ∇xf(x, y
∗(x); ξ)− 1

n

n∑

i=1

∇xf(x, y
∗
S(x); ξi)

∥∥∥∥∥

= E

∥∥∥∥∥Eξ ∇xf(x, y
∗(x); ξ)− 1

n

n∑

i=1

∇xf(x, y
∗(x); ξi)

+
1

n

n∑

i=1

∇xf(x, y
∗(x); ξi)−

1

n

n∑

i=1

∇xf(x, y
∗
S(x); ξi)

∥∥∥∥∥

≤ E

∥∥∥∥∥Eξ ∇xf(x, y
∗(x); ξ) − 1

n

n∑

i=1

∇xf(x, y
∗(x); ξi)

∥∥∥∥∥

+ E

∥∥∥∥∥
1

n

n∑

i=1

∇xf(x, y
∗(x); ξi)−

1

n

n∑

i=1

∇xf(x, y
∗
S(x); ξi)

∥∥∥∥∥

≤ E

∥∥∥∥∥Eξ ∇xf(x, y
∗(x); ξ) − 1

n

n∑

i=1

∇xf(x, y
∗(x); ξi)

∥∥∥∥∥+ L‖y∗(x)− y∗S(x)‖

≤
√

Var(∇xf)

n
+ L‖y∗(x)− y∗S(x)‖,

(25)

where Var(∇xf) is the variance of ∇xf(·, ·; ξ) and the second inequality holds by smoothness of f . Since the

variance is upper bounded by the second moment:

Var(∇xf) ≤ E‖∇xf(x, y
∗(x); ξ)‖2 ≤ G2, (26)
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it further holds that

E‖∇Φ(x)−∇ΦS(x)‖ ≤ G√
n
+ L‖y∗(x) − y∗S(x)‖. (27)

To derive an upper bound on ‖y∗(x)− y∗S(x)‖, we first bound
∥∥y∗

S(i)(x)− y∗S(x)
∥∥ and utilize the stability argu-

ment. Since f(x, y; ξ) is µ-strongly concave in y for any x and ξ and y∗S(x) is the maximizer of FS(x, ·), we
have (

−FS

(
x, y∗S(i)(x)

))
− (−FS(x, y

∗
S(x))) ≥

µ

2

∥∥∥y∗S(i)(x) − y∗S(x)
∥∥∥
2

, (28)

On the other hand, we have

FS(x, y
∗
S(x)) − FS(x, y

∗
S(i)(x))

=FS(i)(x, y∗S(x)) − FS(i)(x, y∗S(i)(x))

+
1

n

[
f(x, y∗S(x); ξi)− f(x, y∗S(i)(x); ξi) + f(x, y∗S(i)(x); ξ

′
i)− f(x, y∗S(x); ξ

′
i)
]

≤FS(i)(x, y∗S(x)) − FS(i)(x, y∗S(i)(x))

+
1

n

∣∣∣f(x, y∗S(i)(x); ξi)− f(x, y∗S(x); ξi)|+
1

n
|f(x, y∗S(i)(x); ξ

′
i)− f(x, y∗S(x); ξ

′
i)
∣∣∣

≤2G

n

∥∥y∗S(i)(x) − y∗S(x)
∥∥,

where the last inequality holds by Lipschitz continuity and the optimality of y∗
S(i)(x). Combined with (28), it

holds that ∥∥∥y∗S(i)(x)− y∗S(x)
∥∥∥ ≤ 4G

µn
.

In addition, we have

E[F (x, y∗(x))− F (x, y∗S(x))]

= E [F (x, y∗(x)) − FS(x, y
∗(x))] + E [FS(x, y

∗(x)) − FS(x, y
∗
S(x))]

+ E [FS(x, y
∗
S(x))− F (x, y∗S(x))]

≤E [FS(x, y
∗
S(x)) − F (x, y∗S(x))]

= E

[
1

n

n∑

i=1

f(x, y∗S(x); ξi)−
1

n

n∑

i=1

Eξ f(x, y
∗
S(x); ξ)

]

= E

[
1

n

n∑

i=1

f(x, y∗S(x); ξi)−
1

n

n∑

i=1

Eξi f(x, y
∗
S(i)(x); ξi)

]

= E

[
1

n

n∑

i=1

f(x, y∗S(x); ξi)−
1

n

n∑

i=1

f(x, y∗S(i)(x); ξi)

]

≤ GE
∥∥y∗S(x) − y∗S(i)(x)

∥∥

≤ 4G2

µn

(29)

where the first inequality holds as y∗S(x) = argmaxy∈Y FS(x, y
∗
S(x)) and E[F (x, y∗(x)) − FS(x, y

∗(x))] = 0,

the third equality holds as y∗S(x) and y∗
S(i)(x) are identical distributed and y∗

S(i)(x) is independent of ξ by

definition, the second inequality holds by Lipschitz continuity of f on y, and the last inequality holds by

plugging the upper bound on ‖y∗S(x)− y∗
S(i)(x)‖. On the other hand, since F (x, y) is strongly concave in y and

y∗(x) = argmaxy∈Y F (x, y), it holds that

F (x, y∗(x)) − F (x, y∗S(x)) ≥
µ

2
‖y∗(x)− y∗S(x)‖2.
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Therefore, we have

E ‖y∗(x)− y∗S(x)‖ ≤
√

8G2

µ2n
.

Plugging into (27), it holds that

E ‖∇Φ(xk)−∇ΦS(xk)‖ ≤ L

√
8G2

µ2n
+

G√
n
. (30)

Next we show that ‖∇Φ(x)−∇ΦS(x)‖ −E ‖∇Φ(x)−∇ΦS(x)‖ is zero-mean sub-Gaussian. Notice that for any

ξ′i, we have

‖∇Φ(x) −∇ΦS(x)‖ − ‖∇Φ(x)−∇ΦS(i)(x)‖
≤ ‖∇ΦS(x) −∇ΦS(i)(x)‖

=

∥∥∥∥∥∥
1

n

n∑

j=1

∇xf(x, y
∗
S(x), ξj)−

1

n

n∑

j 6=i

∇xf
(
x, y∗S(i)(x), ξj

)
− 1

n
∇xf

(
x, y∗S(i)(x), ξ

′
i

)
∥∥∥∥∥∥

≤ L
∥∥y∗S(i)(x) − y∗S(x)

∥∥ + 1

n

∥∥∇xf(x, y
∗
S(i)(x); ξ

′
i)−∇xf(x, y

∗
S(i)(x); ξi)

∥∥

≤ 4LG/µ+ 2G

n
,

(31)

where the first inequality uses triangle inequality, the first equality uses the definition of ΦS and ΦS(i) , the

third inequality uses the assumption that G is the uniform upper bound of ∇f(x, y; ξ) on X × Y for any ξ.

By McDiarmid’s inequality (Lemma A.1) and the definition of sub-Gaussian random variables, it holds that

‖∇Φ(xk) − ∇ΦS(xk)‖ − E ‖∇Φ(xk) − ∇ΦS(xk)‖ is a zero-mean sub-Gaussian random variable with variance

proxy σ2 , (2LG/µ+G)
2
/n. By the definition of zero-mean sub-Gaussian random variables, it holds that

E exp(s[‖∇Φ(xk)−∇ΦS(xk)‖ − E ‖∇Φ(xk)−∇ΦS(xk)‖]) ≤ exp

(
s2σ2

2

)
. (32)

Plugging (30) and (32) into (24), we have

E ‖∇ΦS(x)−∇Φ(x)‖ ≤ log(Q)

s
+

sσ2

2
+ L

√
8G2

µ2n
+

G√
n
+

ǫ

2
(33)

Minimizing the right-hand side over s, we have

E ‖∇ΦS(x)−∇Φ(x)‖ ≤ 2

√
log(Q)σ2

2
+ L

√
8G2

µ2n
+

G√
n
+

ǫ

2

=

√
2log(Q)(2LG/µ+G)

2

n
+ L

√
8G2

µ2n
+

G√
n
+

ǫ

2
.

(34)

Recall that Q = O(υ−d) with υ = ǫ/(4L(1 + κ)), thus log(Q) = O(d log(4L(1 + κ)ǫ−1)), which verifies the first

statement in the theorem. For the sample complexity, following the discussion on the performance measurement

in Section 2, it is easy to derive that it requires

n = O
(
2dǫ−2(2LG/µ+G)2 log(4L(1 + κ)ǫ−1)

)
= Õ(dκ2ǫ−2) (35)

to guarantee that E ‖∇ΦS(x) −∇Φ(x)‖ ≤ ǫ for any x ∈ X , which concludes the proof. �
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C Proof of Theorem 3.2

We first provide the proof of Lemma 3.1.

Proof Since F (x, y) is L-smooth, it is obvious that F (x, y)− ν
2‖y‖2 is (L+ν)-smooth. By Thekumparampil et al.

[2019, Lemma 3], Φ̂(x) is (L+ ν)-weakly convex in x. Therefore, Φ̂(x) + 1
2λ‖x− x′‖2 is

(
1
λ − (L+ ν)

)
-strongly

convex in x for any fixed x′. Denote ŷ(x) , argmaxy∈Y F (x, y) − ν
2 ‖y‖2, y∗(x) , argmaxy∈Y F (x, y). It holds

that
1

2
(1/λ− (L+ ν))‖proxλΦ(x)− proxλΦ̂(x)‖2

≤ Φ̂(proxλΦ(x)) +
1

2λ
‖proxλΦ(x)− x‖2 − Φ̂(proxλΦ̂(x)) −

1

2λ
‖proxλΦ̂(x)− x‖2

= F (proxλΦ(x), ŷ(proxλΦ(x))) −
ν

2
‖ŷ(proxλΦ(x))‖2 +

1

2λ
‖proxλΦ(x)− x‖2

− F (proxλΦ̂(x), ŷ(proxλΦ̂(x))) +
ν

2
‖ŷ(proxλΦ̂(x))‖2 −

1

2λ
‖proxλΦ̂(x) − x‖2

≤ F (proxλΦ(x), y
∗(proxλΦ(x))) +

1

2λ
‖proxλΦ(x)− x‖2 − ν

2
‖ŷ(proxλΦ(x))‖2

− F (proxλΦ̂(x), ŷ(proxλΦ̂(x))) −
1

2λ
‖proxλΦ̂(x) − x‖2 + ν

2
‖ŷ(proxλΦ̂(x))‖2

≤ F (proxλΦ(x), y
∗(proxλΦ(x))) +

1

2λ
‖proxλΦ(x)− x‖2 − ν

2
‖ŷ(proxλΦ(x))‖2

− F (proxλΦ̂(x), y
∗(proxλΦ̂(x))) −

1

2λ
‖proxλΦ̂(x) − x‖2 + ν

2
‖y∗(proxλΦ̂(x))‖2

= Φ(proxλΦ(x)) +
1

2λ
‖proxλΦ(x)− x‖2 − Φ(proxλΦ̂(x)) −

1

2λ
‖proxλΦ̂(x)− x‖2

+
ν

2
‖y∗(proxλΦ̂(x))‖2 −

ν

2
‖ŷ(proxλΦ(x))‖2

≤ ν

2
‖y∗(proxλΦ̂(x))‖2 −

ν

2
‖ŷ(proxλΦ(x))‖2

≤ νDY
2

,

(36)

where the first inequality holds by strong convexity of Φ̂(z) + 1
2λ‖z − x‖2 and optimality of proxλΦ̂(x) for

minz∈X Φ̂(z) + 1
2λ‖z − x‖2, the first equality holds by definition of Φ̂, the second inequality holds by optimality

of y∗(proxλΦ(x))) = argmaxy∈Y F (proxλΦ(x), y), the third inequality holds by optimality of ŷ(proxλΦ(x))) =

argmaxy∈Y F (proxλΦ(x), y) − ν
2‖y‖2, the second equality holds by definition of Φ, the fourth inequality holds

by optimality of proxλΦ(x) = argminx∈X {Φ(z) + 1
2λ‖z − x‖2}, the last inequality holds by the compactness of

domain Y. �

Next, we demonstrate the proof of Theorem 3.2.

Proof By Lemma 3.1, we have

‖proxλΦ(x)− proxλΦ̂(x)‖ ≤
√

λνDY
1− λ(L + ν)

;

‖proxλΦS
(x)− proxλΦ̂S

(x)‖ ≤
√

λνDY
1− λ(L + ν)

.

To derive the desired uniform convergence, similar to the proof of Theorem 3.1, we take an υ-net {xk}Qk=1 on X
so that there exists a k ∈ {1, · · · , Q} for any x ∈ X such that ‖x− xk‖ ≤ υ. Note that such υ-net exists with

Q = O(υ−d) for compact X . We first decompose the error as the approximation error from NC-SC minimax

problems to NC-C minimax problems. Then we utilize the υ-net to address the dependence between S and

argmaxx∈X ‖∇Φλ
S(x) −∇Φλ(x)‖. First, note that
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Emax
x∈X

‖∇Φλ
S(x) −∇Φλ(x)‖

=
1

λ
Emax

x∈X
‖proxλΦS

(x) − proxλΦ(x)‖

≤ 1

λ
Emax

x∈X
‖proxλΦS

(x) − proxλΦ̂S
(x)‖ + ‖proxλΦ̂S

(x) − proxλΦ̂(x)‖

+ ‖proxλΦ̂(x) − proxλΦ(x)‖

≤ 2

λ

√
λνDY

1− λ(L+ ν)
+

1

λ
Emax

x∈X
‖proxλΦ̂S

(x) − proxλΦ̂(x)‖

≤ 2

λ

√
λνDY

1− λ(L+ ν)
+

1

λ
Emax

x∈X

[
‖proxλΦ̂S

(x)− proxλΦ̂S
(xk)‖

+ ‖proxλΦ̂S
(xk)− proxλΦ̂(xk)‖ + ‖proxλΦ̂(xk)− proxλΦ̂(x)‖

]

≤2

√
νDY

λ(1 − λ(L+ ν))
+

1

λ
E max

k∈[Q]
‖proxλΦ̂S

(xk)− proxλΦ̂(xk)‖+
2υ

λ(1 − λ(L+ ν))

≤2

√
νDY

λ(1 − λ(L+ ν))
+

1

λs
log



∑

k∈[Q]

E exp
(
s
∥∥∥proxλΦ̂S

(xk)− proxλΦ̂(xk)
∥∥∥
)



+
2υ

λ(1 − λ(L+ ν))
,

(37)

where the first and the third inequality use the triangle inequality, the second inequality uses Lemma 3.1 for

Φ and ΦS , xk is the closest point to x in the υ-net, the fourth inequality holds by (1 − λ(L + ν))−1-Lipschitz

continuity of proximal operator [Davis and Drusvyatskiy, 2022, Lemma 4.3] since F (x, y)− ν
2‖y‖2 is a (L+ ν)-

smooth function, and the last inequality follows a similar argument in (23). All that remains is to bounding

E exp
(
s
∥∥∥proxλΦ̂S

(x) − proxλΦ̂(x)
∥∥∥
)
for x ∈ X that is independent of S. Notice that

E exp
(
s
∥∥∥proxλΦ̂S

(xk)− proxλΦ̂(xk)
∥∥∥
)

= E exp
(
s
[∥∥∥proxλΦ̂S

(xk)− proxλΦ̂(xk)
∥∥∥− E

∥∥∥proxλΦ̂S
(xk)− proxλΦ̂(xk)

∥∥∥
])

· exp
(
sE
∥∥∥proxλΦ̂S

(xk)− proxλΦ̂(xk)
∥∥∥
)

Next, we show that
∥∥∥proxλΦ̂S

(xk)− proxλΦ̂(xk)
∥∥∥−E

∥∥∥proxλΦ̂S
(xk)− proxλΦ̂(xk)

∥∥∥ is a zero-mean sub-Guassian

random variable and E

∥∥∥proxλΦ̂S
(xk)− proxλΦ̂(xk)

∥∥∥ is bounded. Since xk is independent of S, it is sufficient

to show an upper bound of the following term where x ∈ X is independent of S.

E ‖proxλΦ̂S
(x) − proxλΦ̂(x)‖.

Recall the definition that

proxλΦ̂(x) = argmin
z∈X

{
max
y∈Y

Eξ f(z, y; ξ)−
ν

2
‖y‖2 + 1

2λ
‖z − x‖2

}
, (38)

proxλΦ̂S
(x) = argmin

z∈X

{
max
y∈Y

1

n

n∑

i=1

[
f(z, y; ξi)−

ν

2
‖y‖2 + 1

2λ
‖z − x‖2

]}
. (39)

Denote the solution of (38) as (z∗(x), y∗(x)) and the solution of (39) as (zS(x), yS(x)). We need to bound the

distance between z∗(x) and zS(x), note that this (z∗(x), y∗(x)) comes from a strongly-convex-strongly-concave

stochastic minimax problem, where the modulus is 1−λL
λ and ν, respectively; while the other comes from the
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sample average approximation counterpart. By Zhang et al. [2021a, Theorem 1 and Appendix A.1], we have

the following results:

1− λL

2λ
E ‖zS(x) − z∗(x)‖2 + ν

2
E ‖yS(x)− y∗(x)‖2 ≤ 2

√
2

n

(
L̂2
xλ

1− λL
+

L̂2
y

ν

)
,

where L̂x is the Lipschitz continuity parameter of f(z, y; ξ) + 1
2λ‖z − x‖2 in z ∈ X for any given y ∈ Y and ξ,

and L̂y is the Lipschitz continuity parameter of f(z, y; ξ) − ν
2‖y‖2 in y ∈ Y for any given z ∈ X and ξ. More

specifically, since f(·, ·; ξ) is G-Lipschitz continuous for any ξ, we have

L̂x ≤ G+
2
√
DX
λ

, L̂y ≤ G+ ν
√

DY .

Therefore, we have

E ‖proxλΦ̂S
(x) − proxλΦ̂(x)‖ = E ‖zS(x)− z∗(x)‖

≤
√
E ‖zS(x)− z∗(x)‖2 ≤

√√√√ 2λ

1− λL

2
√
2

n

(
L̂2
xλ

1− λL
+

L̂2
y

ν

)
.

(40)

Next, we show that ‖zS(x)−z∗(x)‖−E ‖zS(x)−z∗(x)‖ is a zero-mean sub-Gaussian random variable. Replacing

one sample ξi in S with an i.i.d. sample ξ′i and denote the new dataset as S(i), by Zhang et al. [2021a, Lemma

2], it holds that

‖zS(x) − z∗(x)‖ − ‖zS(i)(x) − z∗(x)‖ ≤ ‖zS(x)− zS(i)(x)‖ ≤ 2

n

√
L̂2
xλ

2

(1− λL)2
+

L̂2
yλ

ν(1 − λL)
,

where zS(i) follows a similar definition of zS but with a different dataset S(i). By McDiarmid’s inequality (Lemma

A.1) and the definition of sub-Gaussian random variables, it holds that ‖zS(x) − z∗(x)‖ − E ‖zS(x)− z∗(x)‖ is

a zero-mean sub-Gaussian random variable with variance proxy 1
n

(
L̂2

xλ
2

(1−λL)2 +
L̂2

yλ

ν(1−λL)

)
. By the definition of

sub-Gaussian random variable and (40), it holds that

E exp
(
s
∥∥∥proxλΦ̂S

(xk)− proxλΦ̂(xk)
∥∥∥
)

= E exp
(
s
[∥∥∥proxλΦ̂S

(xk)− proxλΦ̂(xk)
∥∥∥− E

∥∥∥proxλΦ̂S
(xk)− proxλΦ̂(xk)

∥∥∥
])

· exp
(
sE
∥∥∥proxλΦ̂S

(xk)− proxλΦ̂(xk)
∥∥∥
)

≤ E exp
(
s
[∥∥∥proxλΦ̂S

(xk)− proxλΦ̂(xk)
∥∥∥− E

∥∥∥proxλΦ̂S
(xk)− proxλΦ̂(xk)

∥∥∥
])

· exp


s

√√√√ 2λ

1− λL

2
√
2

n

(
L̂2
xλ

1− λL
+

L̂2
y

ν

)


≤ exp

(
s2

2n

(
L̂2
xλ

2

(1− λL)2
+

L̂2
yλ

ν(1− λL)

))
exp


s

√√√√ 2λ

1− λL

2
√
2

n

(
L̂2
xλ

1− λL
+

L̂2
y

ν

)
,

(41)

where the second inequality uses definition of zero-mean sub-Gaussian random variable. Combining (41) with

(37), for

λ =
1

2L
, υ =

ǫλ(1− λL)

8
=

ǫ

32L
, s =

√√√√2n log(Q)

(
L̂2
xλ

2

(1− λL)2
+

L̂2
yλ

ν(1 − λL)

)−1

, (42)
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it holds that
Emax

x∈X
‖∇Φλ

S(x)−∇Φλ(x)‖

≤ 2

√
νDY

λ(1 − λ(L + ν))
+

2υ

λ(1 − λ(L+ ν))

+
1

λs
log

(
Q exp

(
s2

2n

(
L̂2
xλ

2

(1− λL)2
+

L̂2
yλ

ν(1 − λL)

)))

+
1

λs
log


exp


s

√√√√ 2λ

1− λL

2
√
2

n

(
L̂2
xλ

1− λL
+

L̂2
y

ν

)




≤ 2

√
νDY

λ(1 − λL)
+

1

λs
log(Q) +

1

λs

s2

2n

(
L̂2
xλ

2

(1− λL)2
+

L̂2
yλ

ν(1 − λL)

)

+
1

λs
s

√
2λ

1− λL

2
√
2

n

( L̂2
xλ

1− λL
+

L̂2
y

ν

)
+

2υ

λ(1− λL)

= 2

√
νDY

λ(1 − λL)
+

log(Q)

λs
+

1

λ

s

2n

(
L̂2
xλ

2

(1− λL)2
+

L̂2
yλ

ν(1− λL)

)

+
1

λ

√√√√ 2λ

1− λL

2
√
2

n

(
L̂2
xλ

1− λL
+

L̂2
y

ν

)
+

ǫ

4

= 2
√
4LνDY + 4L

√√√√ log(Q)

2n

(
L̂2
x

L2
+

L̂2
y

νL

)
+ 2L

√√√√4
√
2

Ln

(
L̂2
x

L
+

L̂2
y

ν

)
+

ǫ

4

= 2
√
4LνDY + 4L

√√√√ log(Q)

2n

(
L̂2
x

L2
+

L̂2
y

νL

)

+ 2L

√
4
√
2

Ln

(
(G+ 4L

√
DX )2

L
+

(G+ ν
√
DY)2

ν

)
+

ǫ

4
.

(43)

Here the first equality holds by the selection of υ, the second equality holds by the selection of λ and s, and

the last equality holds by plugging in L̂x and L̂y. Note that υ, s, and ν are only used for analysis purposes,

and λ is only used in the definition of gradient mapping. Thus one has free choices on these parameters. Since

Q = O
((

DX

υ

)d)
, then we choose υ = Õ

(√
d
n

)
in the right-hand side above, which verifies the first statement.

For the sample complexity result, to make sure that the right-hand side of (43) of order O(ǫ), it suffices to have

ν = O(ǫ2), n = O
(
log(Q)

ν
ǫ−2

)
= O

(
dǫ−4 log

(
ǫ−1
))
, (44)

which concludes the proof. �

D Proof of Theorem 4.1

For simplicity we define the following notations:

F (x, y) ,Eξ [f(x, y; ξ)], Φ(x) , max
y

F (x, y), FS(x, y) ,
1

n

n∑

i=1

[f(x, y; ξi)], ΦS(x) , max
y

FS(x, y),

y∗(x) , argmax
y

F (x, y), y∗S(x) , argmax
y

FS(x, y), Φ(x; ξ) , max
y

f(x, y; ξ),

(45)
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and the Moreau envelope of a function Φ:

Φλ(x) , min
z∈X

{
Φ(x) +

1

2λ
‖z − x‖22

}
, proxλΦ(x) , argmin

z∈X

{
Φ(x) +

1

2λ
‖z − x‖22

}
, (46)

similar notations can be defined for ΦS , which we do not repeat here.

Definition D.1 (Uniform Stability) We say a randomized algorithm A is δ-uniformly stable in x-gradients

if for every two dataset S, S′ which differ in only one sample, for every ξ ∈ Ξ we have

sup
ξ

EA‖∇xf(Ax(S),Ay(S); ξ)−∇xf(Ax(S
′),Ay(S

′); ξ)‖2 ≤ δ2. (47)

Lemma D.1 (Concentration of Optimizers) For y∗ and y∗S defined above, with Assumption 2.1, we have

for any x ∈ X ,

‖y∗(x)− y∗S(x)‖ ≤ 1

µ
‖∇yFS(x, y

∗(x))−∇yF (x, y∗(x))‖. (48)

Proof By the optimality of y∗(x) and y∗S(x), we have for any y ∈ Y

〈y − y∗(x),∇yF (x, y∗(x))〉 ≤ 0

〈y − y∗S(x),∇yFS(x, y
∗
S(x))〉 ≤ 0.

(49)

Setting y = y∗S(x) and y = y∗(x) in the above inequalities respectively, we have

〈y∗S(x) − y∗(x),∇yF (x, y∗(x)) −∇yFS(x, y
∗
S(x))〉 ≤ 0. (50)

In addition, by strong concavity of FS(x, ·), we have

〈y∗S(x) − y∗(x),∇yFS(x, y
∗
S(x)) −∇yFS(x, y

∗(x))〉 + µ‖y∗S(x)− y∗(x)‖2 ≤ 0. (51)

Combining (50) and (51), we have

〈y∗S(x)− y∗(x),∇yF (x, y∗(x))−∇yFS(x, y
∗(x))〉 + µ‖y∗S(x)− y∗(x)‖2 ≤ 0. (52)

Rearranging terms, it holds that

µ‖y∗S(x)− y∗(x)‖2 ≤ 〈y∗S(x)− y∗(x),∇yFS(x, y
∗(x)) −∇yF (x, y∗(x))〉

≤ ‖y∗S(x)− y∗(x)‖ · ‖∇yFS(x, y
∗(x)) −∇yF (x, y∗(x))‖,

(53)

which implies

‖y∗S(x) − y∗(x)‖ ≤ 1

µ
‖∇yFS(x, y

∗(x)) −∇yF (x, y∗(x))‖. (54)

It concludes the proof. �

Lemma D.2 (Stability of Optimizers) For y∗S and y∗S′ defined above where S and S′ are two dataset differ-

ing in only one sample (ξi and ξ′i), with Assumption 2.1 while µ > 0, we have for any x ∈ X ,

‖y∗S(x) − y∗S′(x)‖ ≤ 1

µ
‖∇yFS(x, y

∗
S′(x)) −∇yFS′(x, y∗S′(x))‖ ≤ 2G

nµ
. (55)

Proof The proof is similar to that of Lemma D.1. By the optimality of y∗S(x) and y∗S′(x), we have for any
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y ∈ Y

〈y − y∗S(x),∇yFS(x, y
∗
S(x))〉 ≤ 0

〈y − y∗S′(x),∇yFS′(x, y∗S′(x))〉 ≤ 0.
(56)

Setting y = y∗S′(x) and y = y∗S(x) in the above inequalities respectively, we have

〈y∗S(x) − y∗S′(x),∇yFS′(x, y∗S′(x)) −∇yFS(x, y
∗
S(x))〉 ≤ 0. (57)

In addition, by strong concavity of FS(x, ·), we have

〈y∗S(x)− y∗S′(x),∇yFS(x, y
∗
S(x))−∇yFS(x, y

∗
S′(x))〉 + µ‖y∗S(x) − y∗S′(x)‖2 ≤ 0. (58)

Combining (57) and (58), we have

〈y∗S(x)− y∗S′(x),∇yFS(x, y
∗
S′(x)) −∇yFS(x, y

∗
S′(x))〉 + µ‖y∗S(x)− y∗S′(x)‖2 ≤ 0. (59)

Rearranging terms, it holds that

µ‖y∗S(x)− y∗S′(x)‖2 ≤ 〈y∗S(x)− y∗S′(x),∇yFS(x, y
∗
S′(x)) −∇yFS′(x, y∗S′(x))〉

≤ ‖y∗S(x)− y∗S′(x)‖ · ‖∇yFS(x, y
∗
S′(x)) −∇yFS′(x, y∗S′(x))‖,

(60)

which implies

‖y∗S(x) − y∗S′(x)‖ ≤ 1

µ
‖∇yFS(x, y

∗
S′(x)) −∇yFS′(x, y∗S′(x))‖

=
1

µ

∥∥∥∥
1

n
(∇yf(x, y

∗
S′(x); ξi)−∇yf(x, y

∗
S′(x); ξ′i))

∥∥∥∥ ≤ 2G

nµ
,

(61)

which concludes the proof. Here the equality above is due to the variables being the same (x, y∗S′(x)), while S

and S′ differ in only one sample. �

Theorem D.1 (Stability and Generalization, NC-SC) Let A be an δ-uniformly primal stable algorithm,

for any function f satisfying Assumption 2.1 with µ > 0, we have

EA,S‖∇Φ(Ax(S))−∇ΦS(Ax(S))‖ ≤ (1 + κ)

(
4δ +

G√
n

)
. (62)

Proof Following the definition, we have

∇Φ(Ax(S))−∇ΦS(Ax(S))

= ∇xF (Ax(S), y
∗(Ax(S)))−∇xFS(Ax(S), y

∗
S(Ax(S)))

= ∇xF (Ax(S), y
∗(Ax(S)))−∇xFS(Ax(S), y

∗(Ax(S))) +∇xFS(Ax(S), y
∗(Ax(S)))−∇xFS(Ax(S), y

∗
S(Ax(S))),

(63)

so we know that

‖∇Φ(Ax(S))−∇ΦS(Ax(S))‖
≤ ‖∇xF (Ax(S), y

∗(Ax(S)))−∇xFS(Ax(S), y
∗(Ax(S)))‖

+ ‖∇xFS(Ax(S), y
∗(Ax(S))) −∇xFS(Ax(S), y

∗
S(Ax(S)))‖,

(64)

for the first term above, by Lei [2022, Theorem 2] (i.e., regarding (Ax(S), y
∗(Ax(S))) as one single variable to
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recover their conclusion), we have

EA,S‖∇xF (Ax(S), y
∗(Ax(S)))−∇xFS(Ax(S), y

∗(Ax(S)))‖ ≤ 4δ +

√
Var(∇xf)

n
≤ 4δ +

G√
n
, (65)

for the second term above, by Lemma D.1, we have

EA,S ‖∇xFS(Ax(S), y
∗(Ax(S)))−∇xFS(Ax(S), y

∗
S(Ax(S)))‖

≤ LEA,S ‖y∗(Ax(S))− y∗S(Ax(S))‖
≤ κEA,S ‖∇yFS(Ax(S), y

∗(Ax(S)))−∇yF (Ax(S), y
∗(Ax(S)))‖

≤ κ

(
4δ +

√
Var(∇yf)

n

)

≤ κ

(
4δ +

G√
n

)
,

(66)

where the third inequality applies the same argument as that in (65). We conclude the proof by combining the

two bounds above together. �

E Proof of Theorem 4.2

The proof uses the idea from Lei [2022, Theorem 3] and our proof of Theorem 3.2. Unlike Lei [2022] which

considers the minimization case, with Φ(x) 6= E[Φ(x; ξ)], we need some modification in the proof. To address

the non-uniqueness of y∗(x) in the NC-C case, similar to the uniform convergence analysis in the NC-C case

(Theorem 3.2), we resort to the regularized objective in the proof to characterize corresponding distances.

For convenience, we recall the definition of regularized objective functions here.

Φ̂(x) = max
y∈Y

F (x, y)− ν

2
‖y‖2, Φ̂S(x) = max

y∈Y
FS(x, y)−

ν

2
‖y‖2,

ŷ∗(x) = argmax
y∈Y

F (x, y)− ν

2
‖y‖2, ŷ∗S(x) = argmax

y∈Y
FS(x, y)−

ν

2
‖y‖2.

(67)

In addition, following the notation in Lei [2022], we define

w̃S = prox Φ̂
2L

(Ax(S)) = argmin
x∈X

{
Φ̂(x) + L‖x−Ax(S)‖2

}
,

wS = prox Φ̂S
2L

(Ax(S)) = argmin
x∈X

{
Φ̂S(x) + L‖x−Ax(S)‖2

}
.

(68)

As discussed in Appendix C, the function F (x, y)− ν
2‖y‖

2
is (L+ ν)-smooth, and the function Φ̂(x) is (L+ ν)-

weakly-convex (the same hold for FS(x, y)− ν
2‖y‖

2
and Φ̂S(x)).

First, we build up a connection between algorithm stability and proximal operators to facilitate the analysis.

Lemma E.1 (Algorithm Stability and Proximal Operators) Let A be an algorithm. For any function f

satisfying Assumption 2.1 with µ = 0, we have the following inequalities for any two neighboring dataset S and

S′, we have

‖w̃S − w̃S′‖ ≤ 2L

L− ν
‖A(S)−A(S′)‖

‖wS − wS′‖ ≤ 2L

L− ν
‖A(S)−A(S′)‖+ 2G

n(L− ν)
+

2L(G+ ν
√
DY)

nν(L− ν)
,

(69)

where Φ̂ and Φ̂S follows the definitions in (67) and (68).
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The proof basically follows the proof of Lei [2022, Lemma 15 and 16] with some differences in detailed

parameters.

Proof For the first result, note that Φ̂(x) is (L+ ν)-weakly-convex and differentiable, so we have

〈
w̃S − w̃S′ ,∇Φ̂(w̃S)−∇Φ̂(w̃S′ )

〉
≥ −(L+ ν)‖w̃S − w̃S′‖2. (70)

On the other hand, by the optimality of w̃S , we have

− 2L(w̃S −Ax(S))−∇Φ̂w̃S) ∈ ∂IX (w̃S), −2L(w̃S′ −Ax(S
′))−∇Φ̂(w̃S′ ) ∈ ∂IX (w̃S′ ), (71)

where IX (x) is the indicator function of the set X , i.e., IX (x) = 0 if x ∈ X and IX (x) = ∞ otherwise. Since X
is convex, the subgradient ∂IX is monotone, and thus

〈
w̃S − w̃S′ , 2L(w̃S′ −Ax(S

′))− 2L(w̃S −Ax(S)) +∇Φ̂(w̃S′ )−∇Φ̂(w̃S)
〉
= 〈w̃S − w̃S′ , ∂IX (w̃S)− ∂IX (w̃S′)〉

≥ 0.

(72)

Combining (70) and (72), it follows that

〈w̃S − w̃S′ , 2L(w̃S′ −Ax(S
′))− 2L(w̃S −Ax(S))〉 ≥ −(L+ ν)‖w̃S − w̃S′‖2. (73)

Rearranging the terms, we have

(L − ν)‖w̃S − w̃S′‖2 ≤ 2L〈w̃S − w̃S′ ,Ax(S)−Ax(S
′)〉 ≤ 2L‖w̃S − w̃S′‖‖Ax(S)−Ax(S

′)‖. (74)

We obtain the first result by dividing both sides by (L− ν)‖w̃S − w̃S′‖.
For the second statement, applying the fact that Φ̂S is weakly-convex and differentiable,

〈
wS − wS′ ,∇Φ̂S(wS)−∇Φ̂S(wS′ )

〉
≥ −(L+ ν)‖wS − wS′‖2. (75)

Similar as (72), by the optimality condition of wS and wS′ ,

〈
wS − wS′ , 2L(wS′ −Ax(S

′))− 2L(wS −Ax(S)) +∇Φ̂S′(wS′)−∇Φ̂S(wS)
〉
≥ 0. (76)

Therefore, by the above two equations, we obtain that

− (L + ν)‖wS − wS′‖2 ≤
〈
wS − wS′ , 2L(wS′ −Ax(S

′))− 2L(wS −Ax(S)) +∇Φ̂S′(wS′)−∇Φ̂S(wS′ )
〉
. (77)

By the definition of Φ̂S and wS , we rewrite the additional term ∇Φ̂S′(wS′)−∇Φ̂S(wS′) as

∇Φ̂S′(wS′)−∇Φ̂S(wS′ )

=∇x

(
FS′(wS′ ; ŷ∗S′(wS′ ))− ν

2
‖ŷ∗S′(wS′)‖2

)
−∇Φ̂S(wS′ )

=∇xFS′(wS′ ; ŷ∗S′(wS′))−∇Φ̂S(wS′ )

=∇xFS′(wS′ ; ŷ∗S′(wS′))−∇xFS(wS′ ; ŷ∗S′(wS′)) +∇xFS(wS′ ; ŷ∗S′(wS′ ))−∇xFS(wS′ ; ŷ∗S(wS′))

=
1

n
∇xf(wS′ , ŷ∗S′(wS′); ξ′i)−

1

n
∇xf(wS′ , ŷ∗S′(wS′); ξi)

︸ ︷︷ ︸
E1

+∇xFS(wS′ ; ŷ∗S′(wS′))−∇xFS(wS′ ; ŷ∗S(wS′))︸ ︷︷ ︸
E2

,

(78)
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where the third equation holds since ∇Φ̂S(wS′) = ∇xFS(wS′ ; ŷ∗S(wS′ )). Thus it holds that

−(L+ ν)‖wS − wS′‖2 ≤ 〈wS − wS′ ,−2L(wS −Ax(S)) + 2L(wS′ −Ax(S
′)) + E1 + E2〉. (79)

Rearranging terms, we have

(L− ν)‖wS − wS′‖2

≤ 〈wS − wS′ , 2L(Ax(S)−Ax(S
′)) + E1 + E2〉

≤ ‖wS − wS′‖‖2L(Ax(S)−Ax(S
′)) + E1 + E2‖

≤ ‖wS − wS′‖(2L‖(Ax(S)−Ax(S
′))‖+ ‖E1‖+ ‖E2‖)

≤ ‖wS − wS′‖
(
2L‖(Ax(S)−Ax(S

′))‖+ 2G

n
+

2L(G+ ν
√
DY)

nν

)
,

(80)

where the last inequality uses the fact that that ‖E1‖ ≤ 2G/n via Lipschitz continuity, and

‖E2‖ ≤ L‖ŷ∗S′(wS′)− ŷ∗S(wS′)‖
Lemma D.2

≤ 2L(G+ ν
√
DY)

nν
.

It concludes the proof by diving (L− ν)‖wS − wS′‖ on both sides of (80). �

Lemma E.2 Let A be an δ-uniformly primal argument stable algorithm. For any function f satisfying Assump-

tion 2.1 with µ = 0, we have

E

[
Φ̂S(w̃S)− Φ̂(w̃S)

]
≤ 2GL(L+ 2ν)

ν(L− ν)
δ +

G

ν

(
4

√
8L4(L + 2ν)2

ν2(L − ν)2
δ +

G√
n

)
+

ν

2
DY . (81)

Proof Note that

E

[
Φ̂S(w̃S)− Φ̂(w̃S)

]

= E

[
FS(w̃S , ŷ

∗
S(w̃S))− F (w̃S , ŷ

∗(w̃S))−
ν

2
‖ŷ∗S(w̃S)‖2 +

ν

2
‖ŷ∗(w̃S)‖2

]

≤ E


FS(w̃S , ŷ

∗
S(w̃S))− FS(w̃S , ŷ

∗(w̃S))︸ ︷︷ ︸
H1

+FS(w̃S , ŷ
∗(w̃S))− F (w̃S , ŷ

∗(w̃S))︸ ︷︷ ︸
H2


+

ν

2
DY .

(82)

We bound H2 via the stability argument of f(w̃S , ŷ
∗(w̃S); ξ), i.e., regarding (w̃S , ŷ

∗
S(w̃S)) as one single variable.

E [f(w̃S , ŷ
∗(w̃S); ξ)]− E [f(w̃S′ , ŷ∗(w̃S′); ξ)]

≤ GE [‖w̃S − w̃S′‖+ ‖ŷ∗(w̃S)− ŷ∗(w̃S′)‖]

≤ GE

[
‖w̃S − w̃S′‖+ L+ ν

ν
‖w̃S − w̃S′‖

]

≤ GE

[(
1 +

L+ ν

ν

)
· 2L

L− ν
‖Ax(S)−Ax(S

′)‖
]

≤ L+ 2ν

ν
· 2GL

L− ν
E [‖Ax(S)−Ax(S

′)‖]

≤ 2GL(L+ 2ν)

ν(L − ν)
δ,

(83)

where the second inequality uses Lin et al. [2020a, Lemma 4.3], and the fact that ŷ∗ is the optimal solution of

a (L + ν)-smooth and ν-strongly concave maximization problem defined in (67); the third inequality is due to

Lemma E.1, and the last inequality follows the definition of δ-uniform primal argument stability. So we have
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the “composed algorithm” w̃S is stable4 in function values, which implies [Hardt et al., 2016]

E [FS(w̃S , ŷ
∗(w̃S))− F (w̃S , ŷ

∗(w̃S))] ≤
2GL(L+ 2ν)

ν(L − ν)
δ. (84)

For the term H1 above, we have

E [FS(w̃S , ŷ
∗
S(w̃S))− FS(w̃S , ŷ

∗(w̃S))]

≤ GE ‖ŷ∗S(w̃S)− ŷ∗(w̃S)‖

≤ G

ν
E ‖∇yFS(w̃S , ŷ

∗(w̃S)) − νŷ∗(w̃S)−∇yF (w̃S , ŷ
∗(w̃S)) + νŷ∗(w̃S)‖

=
G

ν
E ‖∇yFS(w̃S , ŷ

∗(w̃S)) −∇yF (w̃S , ŷ
∗(w̃S))‖,

(85)

where the second inequality applies Lemma D.1. We further upper bound the RHS above using the stability

argument. For ∇yf(w̃S , ŷ
∗(w̃S); ξ), similar to the same argument as in (83), we have

E ‖∇yf(w̃S , ŷ
∗(w̃S); ξ)−∇yf(w̃S′ , ŷ∗(w̃S′ ); ξ)‖2

≤ 2L2
E

[
‖w̃S − w̃S′‖2 + ‖ŷ∗(w̃S)− ŷ∗(w̃S′)‖2

]

≤ 2L2
E

[(
1 +

(
L+ ν

ν

)2
)
‖w̃S − w̃S′‖2

]

≤ 2L2

(
1 +

(
L+ ν

ν

)2
)

·
(

2L

L− ν

)2

E

[
‖Ax(S)−Ax(S

′)‖2
]

≤ 8L4(L + 2ν)2

ν2(L− ν)2
δ2,

(86)

where the second inequality comes from Lin et al. [2020a, Lemma 4.3]. It concludes that algorithm A is δ-

uniformly primal stable. Applying Lei [2022, Theorem 2] to (85), we have

E [FS(w̃S , ŷ
∗
S(w̃S)) − FS(w̃S , ŷ

∗(w̃S))] ≤
G

ν
E ‖∇yFS(w̃S , ŷ

∗(w̃S))−∇yF (w̃S , ŷ
∗(w̃S))‖

≤ G

ν

(
4

√
8L4(L+ 2ν)2

ν2(L− ν)2
δ +

√
Var(∇yf)

n

)

≤ G

ν

(
4

√
8L4(L+ 2ν)2

ν2(L− ν)2
δ +

G√
n

)
,

(87)

which concludes the proof. �

Lemma E.3 Let A be an δ-uniformly primal argument stable algorithm. For any function f satisfying Assump-

tion 2.1 with µ = 0, we have

E

[
Φ̂(wS)− Φ̂S(wS)

]
≤ G

ν

(
4

√
8L2(L+ 2ν)2

ν2

(
4L2

(L− ν)2
δ2 +

4G2

n2(L− ν)2
+

2L2(G+ ν
√
DY)2

n2ν2(L− ν)2

)
+

G√
n

)

+
G(L+ 2ν)

ν

(
2L

L− ν
δ +

2G

n(L− ν)
+

2L(G+ ν
√
DY)

nν(L − ν)

)
+

2G(G+ ν
√
DY)

nν
+

ν

2
DY .

(88)

4 Here we call the iteration w̃S = prox Φ̂
2L

(Ax(S)) = argminx∈X

{
Φ̂(x) + L‖x−Ax(S)‖

2
}

as an algorithm regarding that it is

a composition of the algorithm A and the proximal operator.
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Proof Note that

E

[
Φ̂(wS)− Φ̂S(wS)

]

= E

[
F (wS , ŷ

∗(wS))− FS(wS , ŷ
∗
S(wS))−

ν

2
‖ŷ∗(wS)‖2 +

ν

2
‖ŷ∗S(wS)‖2

]

≤ E


F (wS , ŷ

∗(wS))− F (wS , ŷ
∗
S(wS))︸ ︷︷ ︸

J1

+F (wS , ŷ
∗
S(wS))− FS(wS , ŷ

∗
S(wS))︸ ︷︷ ︸

J2


+

ν

2
DY .

(89)

For J2, by Lemma E.1, similar to the analysis of H2 in the proof of Lemma E.2, we have

E [f(wS , ŷ
∗
S(wS); ξ)− E [f(wS′ , ŷ∗S′(wS′ ); ξ)]]

≤ GE [‖wS − wS′‖+ ‖ŷ∗S(wS)− ŷ∗S′(wS)‖+ ‖ŷ∗S′(wS)− ŷ∗S′(wS′)‖]

≤ GE

[
‖wS − wS′‖+ L+ ν

ν
‖wS − wS′‖

]
+

2G(G+ ν
√
DY)

nν

≤ GE

[(
1 +

L+ ν

ν

)
·
(

2L

L− ν
‖Ax(S)−Ax(S

′)‖ + 2G

n(L− ν)
+

2L(G+ νDY)

nν(L − ν)

)]
+

2G(G+ ν
√
DY)

nν

≤ G(L+ 2ν)

ν
·
(

2L

L− ν
E [‖Ax(S)−Ax(S

′)‖] + 2G

n(L− ν)
+

2L(G+ νDY)

nν(L − ν)

)
+

2G(G+ ν
√
DY)

nν

≤ G(L+ 2ν)

ν

(
2L

L− ν
δ +

2G

n(L− ν)
+

2L(G+ νDY)

nν(L− ν)

)
+

2G(G+ ν
√
DY)

nν
.

(90)

It further holds that

E [F (wS , ŷ
∗
S(wS))− FS(wS , ŷ

∗
S(wS))] ≤

G(L + 2ν)

ν

(
2L

L− ν
δ +

2G

n(L− ν)
+

2L(G+ ν
√
DY)

nν(L− ν)

)
+
2G(G+ ν

√
DY)

nν
.

(91)

For J1, similar to the analysis of H1 in the proof of Lemma E.2, we have

E ‖∇yf(wS , ŷ
∗(wS); ξ)−∇yf(wS′ , ŷ∗(wS′ ); ξ)‖2

≤ 2L2
E

[
‖wS − wS′‖2 + ‖ŷ∗(wS)− ŷ∗(wS′)‖2

]

≤ 2L2
E

[(
1 +

(
L+ ν

ν

)2
)
‖wS − wS′‖2

]

≤ 2L2

(
1 +

(
L+ ν

ν

)2
)

· E
[
4

(
2L

L− ν

)2

‖Ax(S)−Ax(S
′)‖2 + 4

4G2

n2(L− ν)2
+ 2

4L2(G+ ν
√
DY)2

n2ν2(L− ν)2

]

≤ 8L2(L+ 2ν)2

ν2

(
4L2

(L− ν)2
δ2 +

4G2

n2(L− ν)2
+

2L2(G+ ν
√
DY)2

n2ν2(L− ν)2

)
.

(92)

Combined with Lei [2022, Theorem 2], we have

E [F (wS , ŷ
∗
S(wS)) − F (wS , ŷ

∗(wS))]

≤ G

ν
E ‖∇yFS(wS , ŷ

∗(wS))−∇yF (wS , ŷ
∗(wS))‖

≤ G

ν

(
4

√
8L2(L+ 2ν)2

ν2

(
4L2

(L − ν)2
δ2 +

4G2

n2(L − ν)2
+

2L2(G+ ν
√
DY)2

n2ν2(L− ν)2

)
+

√
Var(∇yf)

n

)

≤ G

ν

(
4

√
8L2(L+ 2ν)2

ν2

(
4L2

(L − ν)2
δ2 +

4G2

n2(L − ν)2
+

2L2(G+ ν
√
DY)2

n2ν2(L− ν)2

)
+

G√
n

)
,

(93)
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which concludes the proof. �

Next, we formally demonstrate the proof for the generalization bounds in the NC-C setting.

Theorem E.1 (Stability and Generalization, NC-C, repeat Theorem 4.2) Let A be an δ-uniformly pri-

mal argument stable algorithm, for any function f satisfying Assumption 2.1 with µ = 0, we have

EA,S

∥∥∥∇Φ1/(2L)(Ax(S))−∇Φ
1/(2L)
S (Ax(S))

∥∥∥ ≤ O
(
δ

1
6 +

(
1

n

) 1
12

)
. (94)

Proof Recall that

∇Φ1/(2L)(Ax(S)) = 2L
(
Ax(S)− prox Φ

2L
(A(S))

)
, ∇Φ

1/(2L)
S (Ax(S)) = 2L

(
Ax(S)− proxΦS

2L

(A(S))
)
. (95)

Since Φ is L-weakly-convex and G-Lipschitz [Lin et al., 2020a, Lemma 4.7], it holds that

∥∥∥∇Φ1/(2L)(Ax(S))−∇Φ
1/(2L)
S (Ax(S))

∥∥∥ = 2L
∥∥∥prox Φ

2L
(A(S))− proxΦS

2L

(A(S))
∥∥∥. (96)

Utilizing the regularized objective function, we have

∥∥∥prox Φ
2L
(A(S)) − proxΦS

2L

(A(S))
∥∥∥

≤
∥∥∥prox Φ

2L
(A(S)) − prox Φ̂

2L

(A(S))
∥∥∥+

∥∥∥∥prox Φ̂
2L

(A(S)) − prox Φ̂S
2L

(A(S))

∥∥∥∥ +
∥∥∥∥prox Φ̂S

2L

(A(S))− proxΦS
2L

(A(S))

∥∥∥∥

≤ 2

√
νDY
L− ν

+ ‖w̃S − wS‖,
(97)

where the second inequality comes from Lemma 3.1 with λ = 1
2L . So now the problem is transformed to

characterizing the distance between w̃S and wS coming from the regularized surrogate objective which is NC-

SC.

Since the function Φ̂(x) + L‖x−A(S)‖2 is (L − ν)-strongly convex, and by the definition of w̃S , we have

L− ν

2
E ‖wS − w̃S‖2

≤ E Φ̂(wS) + L‖wS −A(S)‖2 −
(
Φ̂(w̃S) + L‖w̃S −A(S)‖2

)

= E Φ̂S(wS) + L‖wS −A(S)‖2 −
(
Φ̂S(w̃S) + L‖w̃S −A(S)‖2

)
+
(
Φ̂(wS)− Φ̂S(wS)

)
+
(
Φ̂S(w̃S)− Φ̂(w̃S)

)

≤ E

(
Φ̂(wS)− Φ̂S(wS)

)
+
(
Φ̂S(w̃S)− Φ̂(w̃S)

)

≤ G

ν

(
4

√
8L2(L+ 2ν)2

ν2

(
4L2

(L − ν)2
δ2 +

4G2

n2(L− ν)2
+

2L2(G+ ν
√
DY)2

n2ν2(L− ν)2

)
+

G√
n

)

+
G(L+ 2ν)

ν

(
2L

L− ν
δ +

2G

n(L− ν)
+

2L(G+ ν
√
DY)

nν(L− ν)

)
+

2G(G+ ν
√
DY)

nν

+
2GL(L+ 2ν)

ν(L− ν)
δ +

G

ν

(
4

√
8L4(L + 2ν)2

ν2(L− ν)2
δ +

G√
n

)
+ νDY ,

(98)

where the second inequality uses the optimality of wS and ŵS , the last inequality is due to Lemma E.2 and E.3.

Now we choose ν to simplify the RHS above. For simplicity, first we set ν ≤ L
2 , so L − ν ≥ L

2 , L + 2ν ≤ 2L.
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The RHS above simplifies to

L− ν

2
E ‖wS − w̃S‖2

≤ G

ν

(
4

√
32L4

ν2

(
16δ2 +

16G2

n2L2
+

16(G+ ν
√
DY)2

n2ν2

)
+

G√
n

)
+

2GL

ν

(
4δ +

4G

nL
+

4(G+ ν
√
DY)

nν

)

+
2G(G+ ν

√
DY)

nν
+

8GL

ν
δ +

G

ν

(
4

√
128L4

ν2
δ +

G√
n

)
+ νDY

≤ G

ν

(
128L2

ν

√
δ2 +

G2

n2L2
+

(G+ ν
√
DY)2

n2ν2
+

G√
n

)
+

8GL

ν

(
2δ +

G

nL
+

G+ ν
√
DY

nν

)

+
G

ν

(
64L2

ν
δ +

2(G+ ν
√
DY)

n
+

G√
n

)
+ νDY

≤ G

ν

(
128L2

ν

(
δ +

G

nL
+

G+ ν
√
DY

nν

)
+

G√
n

)
+

8GL

ν

(
2δ +

G

nL
+

G+ ν
√
DY

nν

)

+
G

ν

(
64L2

ν
δ +

2(G+ ν
√
DY)

n
+

G√
n

)
+ νDY

= 64G

(
3δ +

2G

nL
+

2G+ 2ν
√
DY

nν

)
L2

ν2
+ 2G

(
8δ +

G√
nL

+
4G

nL
+

G+ ν
√
DY

n

(
4

ν
+

1

L

))
L

ν
+ νDY

= O
(
1

n

)
· O
(

1

ν3
+

1

ν2
+

1

ν
+ 1

)
+O

(
1√
n

)
· O
(
1

ν

)
+O(δ) · O

(
1

ν2
+

1

ν

)
+O(1)ν,

(99)

where the last step hides all other dependence on parameters except δ and n. Let

1

ν
= O

(
min

(
δ−

1
3 , n

1
4

))
, (100)

with δ and 1/n small enough such that ν ≤ L/2 holds. The setting of ν implies that

E ‖wS − w̃S‖2 ≤ O
(
1

n

)
· O
(

1

ν3

)
+O

(
1√
n

)
· O
(
1

ν

)
+O(δ) · O

(
1

ν2

)
+O(1)ν

≤ O
(
1

n

)
· O
(
n

3
4

)
+O

(
1√
n

)
· O
(
n

1
4

)
+O(δ) · O

(
δ−

2
3

)
+O

(
δ

1
3 + n− 1

4

)

= O
(
δ

1
3 + n− 1

4

)
.

(101)

As a result, we have

E ‖wS − w̃S‖ ≤ O
(
δ

1
6 + n− 1

8

)
. (102)

Further incorporating (97), we have

EA,S

∥∥∥∇Φ1/(2L)(Ax(S))−∇Φ
1/(2L)
S (Ax(S))

∥∥∥

≤ 2

√
νDY
L− ν

+ E ‖w̃S − wS‖

≤ O
(√

ν
)
+ E ‖w̃S − wS‖

= O
(
δ

1
6 + n− 1

8

)
,

(103)

which concludes the proof. �
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F Proof of Corollary 4.1 and 4.2

Corollary F.1 Assume the function f is NC-SC as defined in Assumption 2.1, then if we run SGDA for T

iterations with stepsize (αx, αy) =
(

c
t ,

cr2

t

)
for some constant c > 0 and 1 ≤ r < κ, we have

ES,A ‖∇Φ(Ax(S))−∇ΦS(Ax(S))‖ ≤ (1 + κ)



8G
(
1 + 1

cL(r+1)

)

n
(24κcL(r + 1))

1
cL(r+1)+1 T

cL(r+1)
cL(r+1)+1 +

G√
n


.

(104)

Proof Denote ∆t ,

√
‖xt − x′

t‖2 + ‖yt − y′t‖2, and the event Et0 = 1(∆t0 = 0), we have for the full gradient

∇f = (∇xf,∇yf)
⊤,

E‖∇f(xt, y
∗(xt); ξ)−∇f(x′

t, y
∗(x′

t); ξ)‖
= P(Et0)E[‖∇f(xt, y

∗(xt); ξ)−∇f(x′
t, y

∗(x′
t); ξ)‖|Et0 ]

+ P(EC
t0)E

[
‖∇f(xt, y

∗(xt); ξ)−∇f(x′
t, y

∗(x′
t); ξ)‖|EC

t0

]

≤ E[‖∇f(xt, y
∗(xt); ξ) −∇f(x′

t, y
∗(x′

t); ξ)‖|Et0 ] + 2GP(EC
t0)

≤ E[‖∇xf(xt, y
∗(xt); ξ)−∇xf(x

′
t, y

∗(x′
t); ξ)‖+ ‖∇yf(xt, y

∗(xt); ξ)−∇yf(x
′
t, y

∗(x′
t); ξ)‖|Et0 ] + 2GP(EC

t0)

≤ 2LE[‖xt − x′
t‖+ ‖y∗(xt)− y∗(x′

t)‖|Et0 ] + 2GP(EC
t0)

≤ 2(1 + κ)LE[‖xt − x′
t‖|Et0 ] + 2G

t0
n

≤ 4κLE[∆t|∆t0 = 0] + 2G
t0
n
,

(105)

the remaining steps aims to bound E[∆t|∆t0 = 0], which are the same as those in [Farnia and Ozdaglar, 2021,

Appendix B.8], with that we will get

E‖∇f(xT , y
∗(xT ); ξ)−∇f(x′

T , y
∗(x′

T ); ξ)‖ ≤ 4κL · 12G
nL

(
T

t0

)cL(r+1)

+
2G

n
t0, (106)

to minimize the RHS above over t0, we set

t0 =

(
4κL·12G

nL · cL(r + 1)
2G
n

) 1
cL(r+1)+1

· T
cL(r+1)

cL(r+1)+1 = (24κcL(r + 1))
1

cL(r+1)+1 T
cL(r+1)

cL(r+1)+1 (107)

and we get

E‖∇f(xT , y
∗(xT ); ξ)−∇f(x′

T , y
∗(x′

T ); ξ)‖ ≤
2G
(
1 + 1

cL(r+1)

)

n
(24κcL(r+ 1))

1
cL(r+1)+1 T

cL(r+1)
cL(r+1)+1 . (108)

We conclude the proof by incorporating the above bound with Theorem 4.1. �

Corollary F.2 Assume the function f is NC-C as defined in Assumption 2.1 with µ = 0, then if we run SGDA

for T iterations with stepsize max{αx, αy} ≤ c
t for some constant c > 0, we have

ES,A

∥∥∥∇Φ1/(2L)(Ax(S))−∇Φ
1/(2L)
S (Ax(S))

∥∥∥ ≤ O



(
T

cL
cL+1

n

)1/6

+

(
1

n

)1/8

. (109)
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Proof Denote ∆t ,

√
‖xt − x′

t‖2 + ‖yt − y′t‖2, and the event Et0 = 1(∆t0 = 0), we have that

E‖xt − x′
t‖ ≤ E∆t

= P(Et0)E[∆t|Et0 ] + P(EC
t0)E

[
∆t|EC

t0

]

≤ E[∆t|Et0 ] + 2
√
DX +DYP(E

C
t0)

≤ E[∆t|∆t0 = 0] + 2
√
DX +DY

t0
n
,

(110)

the remaining steps aims to bound E[∆t|∆t0 = 0], with the results in [Farnia and Ozdaglar, 2021, Appendix

B.9], we get

E‖xT − x′
T ‖ ≤ 2G

nL

(
T

t0

)cL

+ 2
√
D
t0
n
, (111)

where we let D = DX +DY . To minimize the RHS above over t0, we set

t0 =

(
cG√
D

)1/(cL+1)

T
cL

cL+1 , (112)

and we get

E‖xT − x′
T ‖ ≤ 2

(
G

L

(
1

cG

) cL
cL+1

+ (cG)
1

cL+1

)
D

cL
2(cL+1)

T
cL

cL+1

n
. (113)

The proof is complete by incorporating the above bound with Theorem 4.2. �

G Proof of Corollary 4.3 and 4.4

Proof For the NC-SC case, by Lei [2022, Corollary 6], we know the algorithm is δ uniformly primal stable in

gradients with δ = 2G
√
T/n, the proof is complete by Theorem 4.1.

For the NC-C case, we want to derive the uniform primal argument stability, the flow here is almost the

same as the proof of Lei [2022, Corollary 6], let Ωt = ‖xt − x′
t‖2, define the event EΩ as that the only different

data point ξi is selected by the algorithm A, so we have

E [Ωt] ≤ E [Ωt | EΩ]P (EΩ) + E
[
Ωt | EC

Ω

]
P(EC

Ω ) ≤ E
[
Ωt | EC

Ω

]T
n

≤ 4DXT

n
, (114)

so the algorithm is
√
4DXT/n-uniformly primal argument stable. Then we conclude the proof by substituting

the above stability results into Theorem 4.2, i.e.,

ES,A

∥∥∥∇Φ1/(2L)(Ax(S))−∇Φ
1/(2L)
S (Ax(S))

∥∥∥

= O
(
δ

1
6 + n− 1

8

)
= O

((
T

n

) 1
12

+

(
1

n

) 1
8

)
= O

((
T

n

) 1
12

+

(
1

n

) 1
8

)
.

(115)
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