
Published as a conference paper at MathAI 2025

TIME-EXACT MULTI-BLOCKCHAIN ARCHITECTURES
FOR TRUSTWORTHY MULTI-AGENT SYSTEMS

Ivan Dorokhov, Janne Ruponen, Roman Shutsky and Andrey Nechesov ∗

Artificial Intelligence Research Center of Novosibirsk State University, Novosibirsk, Russia
{ioandorokhov,ruponez,shutsky.roman,nechesoff}@gmail.com;

ABSTRACT

A hierarchical multi-blockchain architecture for time-exact multi-agent system
(MAS) ensure predictable transaction processing and verifiable smart contract
execution. By leveraging the polynomial hierarchy and polynomial program-
ming methodology, proposed framework integrates a reinforcement learning-
based dual-mode data sharing mechanism tailored for embodied AI swarms that
dynamically adapts communication fidelity from lightweight textual updates to
high-fidelity sensory data sharing based on real-time context and resource con-
straints. Inspired by the Chinese social credit system, a reputation-based social
credit mechanism is introduced to allow continuous assessment and reinforce-
ment for agent reliability, enhancing trust and resilience within decentralized AI
swarms. By combining dynamic stakeholder routing, temporal synchronization
across global, regional, and local blockchain layers, and formal verification tech-
niques, this approach addresses key limitations of conventional blockchains —
including scalability, inter-agent coordination, and timing uncertainties — paving
the way for next-generation, trustworthy MAS in complex domains such as urban
management, supply chain logistics, and emergency response.

1 CHALLENGES AND APPLICATIONS OF MULTI-AGENT BLOCKCHAIN
SYSTEMS

While the rise of powerful large language models (LLMs) has revolutionized approaches to versatile
problem-solving, their adaption to multi-agent planning and coordination remains one of the key
challenges for achieving the necessary reasoning capabilities for multi-agent systems (MAS) Chen
et al. (2024). Traditional approaches to multi-agent coordination often encounter limitations in scal-
ability and adaptability, particularly in complex and dynamic environments. A deployment of MAS
increases complexity of workflows Guo et al. (2024) , where hierarchical task division becomes
convoluted with type-specific agents in distributed network. Consequently, more transactions are
required to facilitate collaboration among agents. Additionally, increased memory storage demands
could create a bottleneck. Han et al. (2024). The use of MAS on the urban context also must comply
with managerial expectations, mainly related to resource management and time allocations, where
disruptions can propagate to all temporally connected processes. Further technical challenges arise
in decentralized governance model, where transactional costs and performance often are unable to
achieve efficiency of centralized alternatives. Time-exact multi-blockchain could provide solution
in distributed system by implementing verification processes based on polynomial hierarchy. When
the processing cycle is time-exact, synchronization between MAS and blockchains can be consistent
and focus on agile approaches to operate within fixed time frames. Time-exact transactions, primary
found in robotics and automation, financial trading, industrial control systems, traffic management
and supply chain, reflect the importance of precision, real-time coordination, and synchronization.

Additionally, prospects of agents that can autonomously transact assets in service-based economy
can establish further possibilities to optimize those application fields. However, as agents gain

∗This work was supported by a grant for research centers, provided by the Analytical Center for the
Government of the Russian Federation in accordance with the subsidy agreement (agreement identifier
000000D730324P540002) and an agreement with the Novosibirsk State University dated 27 December 2023
No. 70-2023-001318.

1

Published as a conference paper at MathAI 2025

ownership of assets, issues arise from temporal ownerships. Agents receiving transactions must be
able to interpret the meaning for receivables and display consistent behavior, while agents sending
should embed additional notations to transactions to provide key instructions for receiving agents.
Papi et al. (2022)

Maintenance and operations of distributed and secure MAS becomes computationally intensive as
more agents are employed, especially when transactions are bind to strict time constraints. Con-
sidering this, integration of MAS within existing blockchains would have to compromise temporal
coordination in effective hierarchical task division. Here, highly deterministic temporal coordi-
nation requires guarantees in precise execution times for allocated transactions across distributed
agents without introducing excessive computational overhead. In addition, consensus mechanisms
in existing blockchain systems introduce variable latencies that can disrupt time-sensitive multi-
agent operations, making it difficult to establish reliable service-level agreements (SLAs). The lack
of axiomatization in the first-order logic previously has limited the deeper understanding about fun-
damental axioms of the blockchain theory to build time-exact applications Goncharov & Nechesov
(2023b). Consequently, this has led to the introduction of blockchain trilemma, highlighting that
blockchains can satisfy only two conditions among scalability, decentralization and security Conti
et al. (2019). Blockchain implementations have prioritized decentralization and security conditions
over scalability Gangwal et al. (2023). As the scalability has been compromised, latencies in trans-
action times and high-volume transactions have failed to achieve performance of traditional systems
- payment systems being perhaps the most concrete example of this Croman et al. (2016).

Reinforcement learning (RL) has emerged as a promising technique, enabling agents to learn effec-
tive strategies through interaction. However, optimizing task allocation and resource management
in large-scale MAS remains an active area of research. Fang et al. propose a genetic algorithm-
enhanced proximal policy optimization (GAPPO) algorithm to address these challenges Fang et al.
(2025). GAPPO combines deep reinforcement learning with genetic algorithms, focusing on both
efficient task allocation and energy optimization. Their results demonstrate GAPPO’s advantages
compared to traditional RL algorithms, achieving reductions in task completion time while maintain-
ing energy efficiency across agent fleets. GAPPO underscores the benefits of hybrid approaches that
integrate RL with other optimization techniques to create robust and efficient multi-agent coordina-
tion frameworks. Future research directions identified by Fang et al. include further optimization
of energy management strategies, validation in real-world applications, and integration of advanced
optimization techniques to enhance adaptability Fang et al. (2025). This highlights the ongoing need
for research into effective and scalable multi-agent coordination frameworks, particularly those that
address resource constraints and dynamic environments.

This paper presents a novel approach to designing time-exact and trustworthy MAS by leveraging
a hierarchical multi-blockchain architecture. The research focused on the detailed design of algo-
rithmic control for MAS hierarchical and time-exact blockchain. Specifically, the key research ob-
jectives and contributions included a) development of RL-based dual-mode data sharing mechanism
in time-exact multi-blockchain for enabling embodied AI agents to dynamically switch between
lightweight textual updates and high-fidelity sensory data sharing, and B) integration of a social
credit mechanism within trusted and resilient decentralized AI swarms into the RL reward function
to promote trustworthy agent behavior and prevention of malicious activities.

2 HIERARCHICAL MULTI-BLOCKCHAIN ARCHITECTURE AND INTEGRATION
WITH P-COMPLETE PROGRAMMING REALIZATION

The proposed solution leverages formal reasoning capabilities described in Nechesov (2024) to en-
able individual agents to provide explanations for their actions, contributing to the overall trustwor-
thiness of the system. The concept of polynomial-time complexity is crucial for the development of
time-exact multi-blockchain architectures for trustworthy MAS Goncharov & Nechesov (2023a). In
such systems, predictable and bounded execution times are essential for both individual agent com-
putations and inter-agent interactions across multiple blockchains. Polynomial complexity provides
a mathematical guarantee of efficiency, ensuring that computations remain tractable even as system
complexity increases. This predictability is vital for achieving time-exactness, as it allows develop-
ers to reason about the system’s behavior and establish timing guarantees. Furthermore, polynomial
complexity contributes to overall system trustworthiness by ensuring that agents and smart contracts

2

Published as a conference paper at MathAI 2025

execute reliably and within predictable time frames (for example, civic participation in city gov-
ernance Nechesov & Ruponen (2024)). These underlying principles were discussed in Goncharov
et al. (2024), main focus being on polynomial complexity Nechesov & Goncharov (2024) within
single programs or computations. Same principles can be applied to the design of efficient agents
and smart contracts within a multi-blockchain environment.

2.1 POLYNOMIAL HIERARCHY AND MULTI-AGENTS

The Polynomial Hierarchy (PH) is a classification of decision problems based on their computa-
tional complexity, extending the concept of NP and co-NP problems by incorporating alternating
quantifiers. When applied to MAS, this model offers a structured approach to categorizing the com-
putational complexity of tasks that agents must perform, both individually and during interactions
with other agents within the system. The polynomial hierarchy can help in defining the complexity
of agent behaviors, ensuring that agents can operate efficiently even as the number of agents and
interactions grows. In a multi-agent environment, agents can be designed to operate at different
levels of the polynomial hierarchy, which reflects the complexity of their decision-making capabil-
ities and the types of tasks they can address. At the lower levels, agents perform computations that
involve straightforward decision processes, such as simple optimization tasks, which can be solved
in polynomial time (P-level problems). This also involves the activation of agents based on their idle
state to ensure higher utilization rate of available agents. These agents are responsible for relatively
basic, predictable behaviors, like collecting data, monitoring environmental conditions, and taking
action based on direct inputs.

In the context of MAS, the polynomial hierarchy provides a structured framework to categorize
agent tasks by complexity. For instance, basic data collection and direct sensor processing tasks fall
within P-level problems, ensuring fast, predictable execution. More complex tasks, such as multi-
agent negotiation or coordinated decision-making, can be modeled at higher levels (NP-level), where
although finding a solution may be challenging, verifying proposed solutions remains efficient. This
classification aids in designing MAS protocols that guarantee bounded execution times and pre-
dictable inter-agent interactions.

The Polynomial Hierarchy (PH), a cornerstone of classical computational complexity, has tradition-
ally been studied in the context of single-machine computation. However, its application to dis-
tributed computing, particularly within the local model, offers new insights and advantages. Reiter
has extended the classical PH to a distributed setting, where networked computers communicate via
synchronous message-passing to collectively solve a decision problem about their network topology
Reiter (2024). Their local view of the PH imposes constraints on both the number of communica-
tion rounds (constant) and the local computation performed by each computer (polynomial in input
and message size). This distributed PH, defined through alternating quantifiers assigned by play-
ers, generalizes the classical PH and complexity classes P and NP. Intriguingly, key results from
classical complexity theory, such as the Cook-Levin theorem and Fagin’s theorem, can be extended
to this distributed setting Reiter (2024). Furthermore, separating complexity classes, a notoriously
difficult problem in the classical case, becomes more tractable in the distributed context. Reiter
demonstrate the infinitude of their distributed PH, a result that remains open for the classical PH
Reiter (2024). This work highlights the potential of the PH as a tool for analyzing the complexity of
distributed problems and introduces quantifier alternation as a novel approach to measuring locality
in distributed computing.

In many real-world MAS applications, actions must occur within strict time windows, and devia-
tions can lead to significant consequences, from missed deadlines to system failures. One of the key
targets is to avoid situations where race conditions would occur, as these can lead to unpredictable
delays or even system failures, thus compromising the timeliness and reliability of time-critical
operations within the MAS. Time-exact processing ensures that transactions, which represent inter-
actions or operations within the MAS, are executed precisely when they are scheduled, respecting
temporal constraints and dependencies. Moreover, integrating P-complete programming languages
Goncharov & Nechesov (2022) within a time-exact MAS offers significant advantages in terms
of predictability and verifiability. P-complete problems, by definition, are solvable in polynomial
time, making them inherently well-suited for time-critical applications. In the context of a MAS,
this means that agents can efficiently compute solutions to complex problems within bounded time-
frames. These solutions can be verified in polynomial time, providing a robust mechanism to ensure

3

Published as a conference paper at MathAI 2025

the correctness of actions and transactions. Combination of the expressive power of P-complete
programming with the time-exactness of the underlying architecture opens up possibilities for inte-
grating formal verification techniques, allowing for even stronger guarantees about the correctness
and timeliness of agent interactions. Using P-complete programming, agents can engage in complex
decision-making processes while still providing verifiable evidence of their actions.

2.2 TIME-EXACT SMART CONTRACT EXECUTION AND COORDINATION

The implementation of time-exact multi-blockchain approach for MAS should focus on formaliz-
ing a smart contract structure to provide base instructions compatible with preferred mechanisms
for consensus, scheduling, agent coordination, and interchain operations. Smart contracts govern
the interactions within the multi-blockchain system. The solution involves the key functions, data
structures, and logic used to manage time-critical transactions, agent interactions, and data sharing,
with a particular focus on how time-exactness is enforced at the smart contract level. This includes
defining how temporal constraints are represented within the contracts and how the contracts interact
with the underlying scheduling mechanisms.

Each smart contract encapsulates the logic for a specific type of agent task or interaction. Contracts
are classified based on their computational complexity, ensuring all contracts remain within P or
NP-complete complexity. This ensures that verification remains feasible within polynomial time
constraints. P-level contracts handle tasks solvable in polynomial time. Examples include simple
data collection, basic sensor processing, or direct responses to inputs. The execution time of these
contracts can be precisely bounded. These contracts are analogous to agents performing simple
optimization or rule-based actions. NP-level contracts address tasks whose solutions can be verified
in polynomial time. These contracts might implement verification logic for proposed solutions to
more complex problems, such as negotiation outcomes or coordination strategies. While finding
the solution might be difficult, verifying its correctness is efficient. These contracts are relevant
to agents evaluating potential plans or strategies. For NP-level contracts, the use of P-complete
verification logic can ensure that any proposed solution can be verified in polynomial time. The
system is restricted to tasks that remain within NP-complete complexity, preventing the need for
verification beyond polynomial constraints. Problems requiring verification beyond P are excluded
to maintain time-bounded execution feasibility.

A conceptual smart contract in this context involves temporal variables for allocation periods, agent
functions for submitting exchange requests, a verification function (P-computable) for validation,
and logic to interact with the transaction scheduler. If an agent submits a conflicting exchange
request that overlaps with an already allocated transactions, the smart contract employs a priority
resolution mechanism. This mechanism may rely on predefined criteria such as agent reputation,
bid value, or a first-come, first-served approach, depending on the logic of the contract. In cases
where multiple agents compete for the same resource, the contract initiates a resolution process, ei-
ther through an automated arbitration function or a time-limited negotiation round where agents can
adjust their bids or requests. To prevent deadlocks, the contract enforces strict time-bounded execu-
tion by integrating with the transaction scheduler. If a resolution is not reached within the allocated
time window, the contract either defaults to a fallback allocation strategy (e.g., random selection or
weighted distribution) or resets the process, allowing agents to resubmit modified requests. This
ensures that execution remains predictable, avoiding indefinite contention and maintaining system
responsiveness.

Optimal consensus protocol for different blockchain levels provides rules for validation contract
state changes. A consensus protocol is responsible for ensuring agreement among agents on the
state of smart contracts and the validity of transactions. Different consensus mechanisms should be
employed at different blockchain levels to optimize for the specific requirements of each layer (local,
regional, global). At the local level, where temporary blockchains are formed for rapid consensus on
time-critical events, speed and efficiency are prioritized. Candidates for local consensus protocols
include Practical Byzantine Fault Tolerance (PBFT) or Raft, as these are known for their relatively
low latency and ability to handle a smaller number of participants Castro et al. (1999); Ongaro
& Ousterhout (2014). The specific choice will depend on the trade-off between fault tolerance
and speed required for the particular application. The regional level requires a balance between
speed and scalability, as it manages interactions among a larger number of agents within a specific
geographic area or functional domain. Potential candidates for regional consensus include variations

4

Published as a conference paper at MathAI 2025

of PBFT or other protocols designed for higher throughput while maintaining reasonable latency.
The global level focuses on long-term consistency and security, managing the overall state of the
system and aggregating information from the regional blockchains. Here, protocols that prioritize
security and decentralization should be considered, even if they might have slightly higher latency,
such as Proof-of-Stake (PoW), Proof-of-Stake (PoS) or variations thereof.

The integration of the consensus protocol with the smart contracts is essential for ensuring that con-
tract execution is both valid and consistent across the network. When a smart contract function is
invoked, the consensus protocol ensures that all participating agents execute the contract logic in a
deterministic manner. The resulting state changes are then recorded on the appropriate blockchain
(local, regional, or global), with the consensus mechanism guaranteeing consistency. Specifically,
for time-critical contracts, the consensus process must complete within the time bounds defined in
the contract itself. For NP-level contracts, the consensus ensures that submitted solutions are ver-
ifiable in polynomial time. The protocol integrates with the verification function in the smart con-
tract, guaranteeing that only valid solutions are accepted. The consensus mechanism must be aware
of the time constraints associated with smart contracts. Achieving time-exactness in a distributed
consensus environment presents several challenges. Network delays can impact the speed of mes-
sage propagation and consensus achievement. The architecture mitigates this by using localized
blockchains for time-critical operations, reducing the number of participants involved in consensus.
Furthermore, the choice of consensus protocol at each level is influenced by its tolerance to network
latency. Multiple agents might attempt to execute the same contract concurrently. The consensus
mechanism must handle this concurrency correctly, ensuring that transactions are processed in a
consistent order and that race conditions are avoided. This may involve techniques like locking or
optimistic concurrency control.

A scheduling protocol defines how transactions are scheduled and prioritized to ensure time-exact
execution. This protocol focuses on prioritizing and executing transactions within strict temporal
constraints. Corresponding approach considers transaction dependencies, resource allocation, and
dynamic system changes to establish time-exact transaction scheduling mechanism. The scheduler
should be able to inform the consensus protocol about time-critical transactions, and the consensus
protocol should be able to prioritize these transactions accordingly. A combination of data structures
and algorithms are used to manage and schedule transactions effectively. A priority queue can be
used to store pending transactions, ordered by their deadlines or priorities. Transactions with earlier
deadlines or higher importance are placed at the front of the queue. This allows the scheduler to
quickly identify and process the most time-critical transactions. A directed graph represents depen-
dencies between transactions. An edge from transaction A to transaction B indicates that B cannot be
executed until A has completed. This graph allows the scheduler to identify and respect transaction
dependencies, ensuring that transactions are executed in the correct order. A scheduling algorithm
that combines priority-based scheduling with dependency analysis is utilized. The scheduler selects
the highest-priority transaction from the queue, checks if all its dependencies have been satisfied,
and if so, schedules it for execution. If dependencies are not yet met, the transaction is kept in the
queue until its dependencies become available. Variations of Earliest Deadline First (EDF) or Least
Laxity First (LLF) scheduling algorithms, adapted for a distributed environment, are considered.

The scheduler is designed to adapt to dynamic changes in the system, such as the arrival of new
transactions, changes in agent states, or unexpected events. If a new, highly time-critical transaction
arrives, the scheduler can preempt a currently executing lower-priority transaction and re-schedule
it to a later time. This allows the system to respond to urgent events and ensure that the most critical
transactions are always executed promptly. The dependency graph can be updated dynamically as
new transactions arrive or existing transactions are modified. The scheduler can then re-evaluate
the transaction schedule based on the updated dependencies. If a node responsible for executing a
transaction fails, the scheduler can re-assign the transaction to another node, ensuring that it is still
executed within its deadline.

Interactions between blockchains is handled by an interchain protocol, providing optimized message
routing between the different blockchains in a hierarchical multi-blockchain architecture. For time-
critical information, the protocol must incorporate mechanisms to prioritize and expedite message
delivery with a dedicated queuing. The protocol should also include mechanisms for handling mes-
sage loss or delays along with automatic retries. Addressing latency and maintaining consistency
across blockchains are key design considerations. For most communication, an asynchronous ap-
proach should be used. This allows blockchains to continue processing transactions without waiting

5

Published as a conference paper at MathAI 2025

for immediate responses, improving overall throughput. For specific time-critical operations syn-
chronous communication can be used with load balancer. Consistency across blockchains can be
retained by including message ordering, timestamping, and verification. Security is a crucial aspect
of the interchain communication protocol. Authentication mechanisms are defined my authorization
rules in control access to specific resources or functionalities. Further, security benefits from encryp-
tion and digital signatures of interchain messages. Smart contracts can initiate interchain communi-
cation to request services or share information with other smart contracts on different blockchains.
The scheduler works with the communication protocol to ensure that time-critical messages are de-
livered and processed in a timely manner. For certain interchain operations that require consensus,
the communication protocol interacts with the consensus mechanism to ensure agreement among
the relevant blockchains.

Once smart contract details and involved protocols are formalized, given rules enable time-exact
communications and synchronizations for agent coordination. The agent coordination framework
orchestrates the interactions of agents within a time-exact multi-blockchain system. This frame-
work integrates the underlying mechanisms (smart contracts, consensus, scheduling, and interchain
communication) to enable agents to effectively coordinate their actions while respecting temporal
constraints. Key components of this framework include the RL-based dual-mode data sharing mech-
anism, the social credit system, and the algorithms for dynamic stakeholder routing and temporary
blockchain formation.

Time constraints are explicitly integrated into the agent coordination process. Time-aware coordi-
nation protocols consider time constraints when scheduling agent actions and message exchanges.
Agents are aware of deadlines associated with their tasks and coordinate their actions to ensure that
deadlines are met. The agent coordination framework works closely with the transaction sched-
uler to ensure that agent actions and inter-agent communication respect the overall system’s time
constraints.

3 TRUST, RESILIENCE, AND ASYNCHRONOUS GLOBAL INTEGRATION IN
DECENTRALIZED MULTI-BLOCKCHAIN SYSTEMS

In this section, advanced mechanisms are consolidated for ensuring robust trust, scalable coordina-
tion, and time-exact data sharing within MAS. The framework combines dynamic local consensus
through temporary blockchain formations, social credit–based trust mechanisms, and reinforcement
learning (RL)–driven dual-mode data sharing. These elements are integrated atop a hierarchical
multi-blockchain architecture, where local, regional, and global layers interact via asynchronous
updates. The following subsections detail each component of this approach.

3.1 TRUST AND RESILIENCE IN SOCIAL SWARM-DECENTRALIZED AI SYSTEMS

Ensuring Trust and Preventing Falsifications: To ensure trust in the system, a comprehensive
approach is employed to combine cross-verification mechanisms, a social rating system, and the
immutability provided by blockchain. When an event (for example, a fallen tree) is detected, sensor
data is transmitted into the regional network, where several independent agents—including nearby
vehicles and specialized cleanup services—participate in verifying the event. If an agent transmits
high-fidelity data that meets expected parameters and this information is corroborated by other par-
ticipants, its social rating is increased. Conversely, if inconsistencies or attempts to inject falsified
information (such as deepfakes) are detected, the agent is penalized by a reduction in its rating. This
socially oriented rating mechanism not only dynamically assesses each participant’s reliability but
also prevents the spread of false data, as a low rating restricts an agent’s participation in critical
processes. Moreover, recording all transactions and events on the blockchain ensures transparency
and provides an immutable audit trail, further reinforcing trust in the system.

Social Swarm-Decentralized AI: Mechanisms of Resilience and Control:

The ‘social swarm’ concept leverages a decentralized social credit system inspired by Chinese social
credit models to dynamically assess and update each agent’s trustworthiness. In our framework,
every agent’s social credit score is continuously refined through peer verification—quantitatively
measured via metrics such as trust convergence rate and credit score stability (see Section 3.4 and
Table 1). This distributed mechanism enables dynamic role allocation, where agents with higher

6

Published as a conference paper at MathAI 2025

reliability are given precedence in critical operations, thereby ensuring high system resilience and
mitigating risks of collusion or misinformation.

A key feature of the proposed system is the concept of social swarm-decentralized artificial intelli-
gence. In this approach, a multitude of autonomous agents—each assigned a social rating (inspired
by Chinese social credit systems applied to AI swarms)—work together in a decentralized man-
ner. Each agent’s rating is based on the quality of the information it disseminates and the results
of cross-verification with other network participants. This distributed structure reduces the risk of
power concentration and ensures high system resilience: if an agent behaves maliciously or transmits
falsified data, its social rating rapidly declines, limiting its role in critical processes. The “divide and
conquer” strategy is implemented through dynamic role allocation and continuous inter-agent ver-
ification, making collective subversion nearly impossible. Should any agent attempt to disrupt the
system, other agents—relying on their verification algorithms and social rating mechanism—will
promptly isolate it. This approach not only enhances the reliability of information exchange but also
fosters a robust decentralized environment where decisions are made collectively by all participants.
As a result, the system exhibits high efficiency and stability even under highly dynamic conditions
and in the face of potential external threats.

3.2 ALGORITHMIC CONTROL OF DUAL-MODE DATA SHARING IN EMBODIED AI
NETWORKS

In urban environments populated by diverse embodied AI—ranging from autonomous vehicles and
drones to humanoid androids—precise coordination is paramount. A time-exact multi-blockchain
framework is extended with a context-aware data sharing strategy that combines dual-mode com-
munication with reinforcement learning (RL)–based dynamic mode switching. This integration not
only creates a decentralized “blockchain memory” for persistent environmental records but also op-
timizes network resource usage by ensuring that only the necessary level of detail is transmitted in
a given context.

Each agent continuously monitors its surroundings via onboard sensors. Transmitting all raw sensor
data would overwhelm the network; therefore, this approach supports two complementary commu-
nication modes:

1. Lightweight Updates: Agents broadcast concise, textual summaries (e.g., “Tree blocking
road at (x, y, z)”) over the global and regional blockchain layers, creating a low-overhead,
persistent record of environmental conditions.

2. High-Fidelity Sensory Sharing: In critical scenarios—such as collision avoidance
or emergency maneuvers—agents switch to transmitting rich sensory data (e.g., high-
resolution images, LIDAR scans, audio recordings) to enable immediate response.

Furthermore, the decision to switch between lightweight and high-fidelity data sharing is directly
influenced by the agent’s social credit score. As detailed in Section 3.5, agents with higher trust
levels are prioritized for high-fidelity transmission, ensuring that critical data is disseminated only
by reliable entities and thereby enhancing overall system integrity.

3.2.1 DYNAMIC MODE SWITCHING VIA REINFORCEMENT LEARNING

A central challenge is determining, in real time, which communication mode to use based on local
context. This is addressed by equipping each agent with an RL module that evaluates its state and
selects the optimal mode. The agent’s state at time t is represented as:

st = {p(t), T (t), E(t), L(t)},

where:

• p(t) is the agent’s position and proximity to others,

• T (t) denotes the current operational task,

• E(t) is an event indicator (e.g., detection of hazards),

• L(t) represents the current network and computational load.

7

Published as a conference paper at MathAI 2025

Based on st, the agent selects an action from:

at ∈ {Lightweight Sharing, High-Fidelity Sharing}.
The RL policy π(a|s) (with exploration, e.g., ϵ-greedy) is trained to maximize the expected cumu-
lative reward:

J(π) = E

[∞∑
t=0

γt
RL r(st, at)

]
,

with the reward function defined as:

r(st, at) = α Safety(st, at) + β Efficiency(st, at)− γ ResourceCost(at).

Here, γ (in the reward function) is a weighting parameter for cost, while γRL is the RL discount
factor.

Pseudocode: The following pseudocode outlines the integrated RL-enhanced dual-mode data shar-
ing process, including dynamic stakeholder routing and fidelity function generation for high-fidelity
actions.

Algorithm 1 Integrated RL-Enhanced Dual-Mode Data Sharing with Dynamic Fidelity Generation
1: Input: Set of agents A, initial RL policy π, reward parameters α, β, γ, RL discount factor γRL,

learning rate η
2: for each time step t do
3: for each agent i ∈ A do
4: State Acquisition:

si(t)← {pi(t), Ti(t), Ei(t), Li(t)}

5: Action Selection: ai(t) ∼ π(a|si(t)) ▷ Use ϵ-greedy exploration
6: if ai(t) = High-Fidelity Sharing then
7: Initiate detailed sensory sharing.
8: Stakeholder Routing:

Hi = R(Ei(t), pi(t), r)

9: for each stakeholder h ∈ Hi do
10: Generate dynamic fidelity function:

fh = F(Ei(t), pi(t), h)

11: end for
12: else
13: Broadcast lightweight textual update.
14: end if
15: Reward Computation:

ri(t) = α Safety(si(t), ai(t)) + β Efficiency(si(t), ai(t))− γ ResourceCost(ai(t))

16: Policy Update: Update Q-value using:

Q(si(t), ai(t))← Q(si(t), ai(t)) + η
[
ri(t) + γRL max

a
Q(si(t+ 1), a)−Q(si(t), ai(t))

]
▷ Standard Q-learning update; update π accordingly

17: end for
18: end for

3.2.2 INTEGRATION WITH HIERARCHICAL BLOCKCHAIN ARCHITECTURE

The RL-controlled dual-mode sharing is embedded within the hierarchical multi-blockchain frame-
work to guarantee both scalability and time-exact data dissemination:

• Global Layer: Routine, lightweight updates are posted here, building a long-term ledger
of environmental conditions and trends.

8

Published as a conference paper at MathAI 2025

• Regional Layer: Dynamically formed blockchains (using clustering techniques such as
DBSCAN Ester et al. (1996)) ensure that agents in high-density areas exchange context-
relevant updates without rigid geographic boundaries.

• Local Layer: In safety-critical scenarios, agents employ high-fidelity sharing over local
channels (blockchain-based or otherwise) to enable immediate coordination.

3.2.3 DYNAMIC STAKEHOLDER-DRIVEN EVENT RESOLUTION

For instance, when an autonomous vehicle detects a fallen tree:

1. Sensory Data Interpretation: An onboard LLM processes raw sensor data D to generate
an event descriptor:

E =M(D),

where E includes the event type, location ℓ, and road identifier r.

2. Stakeholder Routing: The agent queries the regional blockchain:

H = R(E, ℓ, r) = {h ∈ A : ∥ph − ℓ∥ ≤ δ ∧ h.road = r ∧M(h)},

selecting only relevant stakeholders.

3. Dynamic Fidelity Generation: The onboard LLM (using RAG Lewis et al. (2020)) pro-
duces a tailored fidelity function:

fh = F(E, ℓ, h),

so that nearby vehicles receive high-fidelity data while distant agents receive succinct up-
dates.

4. Temporary Event Blockchain Formation: A localized blockchain network is instantiated
among these stakeholders for rapid, high-fidelity data exchange and consensus on event
resolution. Once resolved, the event record is archived for future reference and training
Brown et al. (2020).

Example: Consider an autonomous vehicle approaching an urban core along a forest road. Ini-
tially, it transmits lightweight updates to the global ledger. Upon detecting a fallen tree, the RL
module—assessing the heightened risk and increased local density—triggers high-fidelity sharing.
The vehicle’s LLM processes the event, routes relevant stakeholders via the regional blockchain,
and dynamically sets fidelity functions so that nearby vehicles and service providers receive detailed
sensory data. A temporary blockchain is then formed for real-time coordination until the obstacle is
cleared.

3.2.4 SUMMARY

By combining dual-mode data sharing with an RL-based dynamic mode switching module, the
framework ensures that embodied AI agents communicate contextually and efficiently within a hi-
erarchical multi-blockchain environment. The unified RL mechanism governs decisions across both
routine and emergency scenarios, while integration with blockchain layers guarantees time-exact,
scalable, and verifiable data dissemination. This cohesive design underpins a decentralized, dis-
tributed intelligence that meets the rigorous demands of urban MAS. Before deploying such system
into the real world, time-accelerated virtual city simulation can serve as a testing ground Nechesov
et al. (2025)

3.3 SYNCHRONOUS LOCAL CONSENSUS VIA DYNAMIC TEMPORARY BLOCKCHAINS

Traditional synchronous updates across an entire MAS can overload the network and induce latency.
Instead, the system partitions agents into localized clusters that form temporary blockchains on
demand to ensure rapid and reliable local decision-making when a critical event occurs. This is
achieved through the following steps:

• Dynamic Clustering: Agents identify relevant stakeholders using a routing function R(·)
based on context (e.g., proximity, event type, network load).

9

Published as a conference paper at MathAI 2025

• Temporary Blockchain Formation: The selected agents form a temporary, localized
blockchain. Within this network, they execute a synchronous consensus protocol (e.g.,
PBFT or Raft) that ensures all participating agents share a consistent state and decision.
This is particularly important for decisions regarding high-fidelity data sharing.

• Decoupled Global Integration: The locally reached consensus (and any policy or state
updates) is then integrated asynchronously into the global blockchain. This decoupling
allows local decisions to be rapid and robust while preventing global network congestion.

3.4 SOCIAL SWARM-DECENTRALIZED AI: TRUST AND RESILIENCE MECHANISMS

Ensuring data integrity and trust is critical in a decentralized environment. The framework imple-
ments a social credit system inspired by Chinese social credit models, which evaluates the reliability
of all transmitted updates—whether high-fidelity sensory data or low-fidelity textual updates.

• Peer Verification: Each agent i is associated with a set of neighboring agents Ni that
assess the quality and contextual appropriateness of its transmitted updates. Let vij(t) be
an indicator function defined as:

vij(t) =

{
1, if agent j confirms that agent i transmitted accurate and context-appropriate data,
0, otherwise.

This verification process applies to both high-fidelity data and low-fidelity textual updates.
If an agent unnecessarily spams low-fidelity updates into the global or regional network,
or uses low fidelity when high fidelity is required, these misbehaviors will be penalized
through a lower verification score.
The aggregated verification score is computed as:

Vi(t) =
1

|Ni|
∑
j∈Ni

vij(t).

• Social Credit Update: An agent’s social credit score Si(t) is updated using an exponential
moving average:

Si(t+ 1) = Si(t) + ηS

(
Vi(t)− Si(t)

)
,

where ηS is the learning rate. This mechanism rewards agents that transmit accurate and
context-appropriate updates, while penalizing those that frequently send inappropriate or
spammy updates, regardless of whether the update is high- or low-fidelity.

• Integration with RL: The updated social credit Si(t) is incorporated into the RL reward
function. Consequently, an agent’s decision-making is directly influenced by its reliability:

r′(si, ai) = α Safety(si, ai) + β Efficiency(si, ai)− γ ResourceCost(ai) + δ Si(t),

where α, β, γ, and δ are weighting parameters that balance operational safety, efficiency,
resource cost, and trust. This formulation ensures that any misbehavior (e.g., spamming
low-fidelity updates when inappropriate) adversely affects the agent’s overall reward.

3.5 INTEGRATED RL-BASED DUAL-MODE DATA SHARING WITH SOCIAL CREDIT

This approach leverages an RL module to dynamically choose between two data-sharing modes:

• Lightweight Sharing: Under normal conditions, agents broadcast concise textual updates
to conserve bandwidth.

• High-Fidelity Sharing: In high-risk or emergency scenarios, agents switch to transmitting
rich sensory data (e.g., high-resolution images, LIDAR scans) and trigger the formation of
a temporary blockchain for synchronous consensus.

Each agent’s state is defined as:

si(t) = {pi(t), Ti(t), Ei(t), Li(t), Si(t)},
where:

10

Published as a conference paper at MathAI 2025

• pi(t) is the spatial position,
• Ti(t) denotes the current task,
• Ei(t) is an event indicator,
• Li(t) represents local network and computational load,
• Si(t) is the agent’s social credit.

The RL policy π(a|s) selects an action ai(t) from the set
{Lightweight Sharing, High-Fidelity Sharing}. The modified reward func-
tion is:

r′(si, ai) = α Safety(si, ai) + β Efficiency(si, ai)− γ ResourceCost(ai) + δ Si(t),

where α, β, γ, and δ are weighting parameters that balance operational safety, efficiency, resource
cost, and trust.

In the system, each agent decides whether to share high-fidelity data or only lightweight updates
based on its local context. This decision is governed by a reinforcement learning (RL) module.
In addition, to promote trustworthiness in the decentralized AI swarm, a social credit mechanism
is designed to adjusts each agent’s reward based on peer verification. This subsection outlines the
integrated approach.

3.5.1 AGENT STATE AND ACTION SPACE

At each time step t, an agent i observes a state vector:
si(t) = {pi(t), Ti(t), Ei(t), Li(t), Si(t)},

where:

• pi(t) is the agent’s position and proximity to others,
• Ti(t) represents its current operational task,
• Ei(t) is an event indicator (e.g., detection of hazards),
• Li(t) denotes the current network and computational load,
• Si(t) is the agent’s current social credit score.

Based on si(t), the agent selects an action:
ai(t) ∈ {Lightweight Sharing, High-Fidelity Sharing},

using an RL policy π(a|s) (with, for example, ϵ-greedy exploration).

3.5.2 SOCIAL CREDIT UPDATE MECHANISM

When an agent shares high-fidelity data, its output is verified by a set of neighboring agents Ni. For
each event, define the peer verification score as:

Vi(t) =
1

|Ni|
∑
j∈Ni

vij(t),

where vij(t) ∈ {0, 1} is an indicator function (1 if agent j confirms the accuracy of i’s data, 0
otherwise). The social credit score is then updated using an exponential moving average:

Si(t+ 1) = Si(t) + ηS

(
Vi(t)− Si(t)

)
,

with ηS ∈ (0, 1) as the social credit learning rate.

3.5.3 MODIFIED RL REWARD FUNCTION

The base RL reward function for an agent’s decision is defined as:
r(st, at) = α Safety(st, at) + β Efficiency(st, at)− γ ResourceCost(at).

This reward is extended to include the social credit score:
r′(st, at) = α Safety(st, at) + β Efficiency(st, at)− γ ResourceCost(at) + δ Si(t),

where δ is a weighting parameter that controls the influence of the social credit on the overall reward.

11

Published as a conference paper at MathAI 2025

3.5.4 INTEGRATED RL UPDATE AND PSEUDO-CODE

The RL policy is updated using the modified reward r′ in a standard Q-learning framework:

Q(si(t), ai(t))← Q(si(t), ai(t)) + η
[
r′i(t) + γRL max

a′
Q(si(t+ 1), a′)−Q(si(t), ai(t))

]
,

where η is the learning rate and γRL is the RL discount factor.

The following pseudo-code integrates the dual-mode sharing decision, dynamic stakeholder routing
for high-fidelity data, and social credit update, encapsulating the entire process from state acquisition
and action selection through local consensus and social credit updates to achieve asynchronous
global integration.

Algorithm 2 Integrated RL-Enhanced Dual-Mode Data Sharing with Social Credit
1: Input: Set of agents A, initial RL policy π, reward parameters α, β, γ, δ, RL discount factor

γRL, learning rates ν, νS
2: for each time step t do
3: for each agent i ∈ A: do
4: si(t)← {pi(t), Ti(t), Ei(t), Li(t), Si(t)} ▷ State Acquisition
5: ai(t) ∼ π(a|si(t)) ▷ Action Selection (e. g., via ϵ-greedy exploration)
6: if ai(t) = ′High− FidelitySharing′ then ▷ Initiate high-fidelity data transmission.
7: Hi = R(Ei(t), pi(t), r) ▷ Dynamic Stakeholder Routing
8: for each stakeholder h ∈ Hi do
9: fh = F (Ei(t), pi(t), h) ▷ Generate dynamic fidelity function

10: Form Temporary Blockchain: Agents in Hi reach synchronous consensus.
11: end for
12: else
13: Broadcast lightweight textual update.
14: end if
15: Vi(t) =

1
|Ni|

∑
j∈Ni

vij(t) ▷ Social Credit Update
16: Si(t+ 1) = Si(t) + νS(Vi(t)− Si(t))
17: r′i(t) = α·Safety(si(t), ai(t))+β ·Efficiency(si(t), ai(t))−γ ·ResourceCost(ai(t))+

δ · Si(t) ▷ Reward Computation
18: Q(si(t), ai(t))← Q(si(t), ai(t))+ν [r′i(t) + γRL ·maxa′ Q(si(t+ 1), a′)−Q(si(t), ai(t))]

▷ RL Update
19: Local consensus outcomes and policy updates are transmitted
20: asynchronously to the global blockchain. ▷
21: end for
22: end for

3.6 BENEFITS AND IMPACT ON REAL-WORLD APPLICATIONS

By combining synchronous local consensus, a trust-enhancing social credit system, and RL-based
dual-mode data sharing, the framework offers several key benefits. Firstly, it provides an approach
for improved scalability and reduced latency as localized temporary blockchains enable fast and
synchronized decisions among agents, while avoiding network load with asynchronous global inter-
actions. Secondly, the social credit mechanism provides incentives for accurate and context-sensitive
data-sharing, where trust and resilience are not compromised. Thirdly, RL-driven mode switching
allows agents to dynamically adjust communication fidelity based on real-time environmental and
operational contexts. Consequently, impact on real-world applications should particularly bene-
fit complex, time-sensitive scenarios such as urban management, emergency response, and supply
chain logistics.

These benefits are achieved through an integrated approach combining multiple mechanisms. A
dual-mode sharing system, governed by a reinforcement learning (RL) module, dynamically selects
between high-fidelity and lightweight data based on local context. A social credit system ensures
trust by incorporating peer verification, which updates each agent’s credit score and influences its
RL reward. Finally, RL integration modifies the reward function to guide Q-learning updates, incen-
tivizing both efficient information sharing and reliable agent behavior.

12

Published as a conference paper at MathAI 2025

By aligning individual agent incentives with overall system integrity, this framework promotes a
trustworthy, resilient, and efficient decentralized AI swarm. In summary, this unified section in-
tegrates applicable concepts into a comprehensive approach that ensures both the precision and
reliability required for next-generation MAS. This cohesive design not only addresses the limita-
tions of traditional blockchains but also paves the way for scalable, trustworthy, and context-aware
decentralized networks.

4 EVALUATION SYSTEM

The evaluation of proposed system focuses on theoretical analysis and scenario-based assessment, as
specified in research objectives. Comprehensive set of performance vectors and evaluation criteria
are introduced to assess the system’s feasibility, potential performance, and theoretical bounds.

4.1 PERFORMANCE QUADRANT

A performance quadrant system is proposed as a structured approach to categorizing key perfor-
mance dynamics in distributed and adaptive systems by evaluating them across two critical dimen-
sions: temporal efficiency and system adaptability. The X-axis, representing temporal efficiency,
distinguishes between vectors that have an immediate impact on system behavior and those whose
influence accumulates over time. Vectors positioned on the left side of the quadrant exhibit short-
term impact, meaning their effects are observable almost instantaneously, often in real-time oper-
ations. Conversely, vectors on the right side are associated with long-term impact, emerging as
a result of system learning, adaptation, or large-scale structural evolution. The Y-axis measures
system adaptability, differentiating between vectors that require dynamic, real-time responsiveness
(high adaptability) and those that reflect more static, infrastructure-dependent behaviors (low adapt-
ability). High-adaptability vectors typically involve machine learning, real-time consensus mech-
anisms, or system optimizations, while low-adaptability vectors are tied to foundational properties
that evolve slowly over time. Fig. 1 provides visual presentation to demonstrate quadrants.

Figure 1: Performance Vectors Quadrant.

By distinguishing between short-term and long-term impact while considering the degree of adapt-
ability required, this classification helps in understanding the trade-offs between real-time respon-
siveness, learning-based optimizations, trust stability, and scalability in adaptive and distributed

13

Published as a conference paper at MathAI 2025

environments. It serves as a foundation for evaluating system efficiency and designing architectures
that balance immediate operational needs with sustainable long-term growth.

Each quadrant of the performance evaluation framework corresponds to distinct aspects of the pro-
posed architecture. Specifically, the Time-Exactness quadrant reflects the efficiency of smart con-
tract scheduling and consensus protocols across the local, regional, and global blockchain layers.
The RL-Based Data Sharing quadrant quantifies the adaptability of the dual-mode communication
mechanism driven by reinforcement learning. Social Credit Efficacy directly measures the reliability
of the peer verification and social credit system, while Scalability assesses the system’s capacity to
maintain performance as the number of agents increases. These connections are further detailed in
Table 1, which defines specific measurement methodologies, success criteria, and comparative base-
lines, thereby ensuring that the theoretical performance metrics are directly linked to operational
outcomes. However, it should be noted that vectors introduced in this paper were limited to narrow
scope - in real-time environment it is anticipated that the number of vectors will be significantly
higher.

Time-Exactness Vectors consists of highly adaptable vectors with immediate impact. These indica-
tors are crucial for systems that require fast response times, predictable latency, and rapid consensus
mechanisms. The system must be capable of adjusting in real time to meet stringent performance
constraints, making adaptability a key factor in ensuring stability. For example, response time pre-
dictability ensures that operations remain within expected latency bounds, preventing performance
degradation. Similarly, consensus time measures how quickly agents or nodes reach agreement, a
critical factor in distributed networks where delays can cause inconsistencies. These vectors are
particularly relevant in applications such as blockchain validation, real-time bidding systems, and
mission-critical control systems, where fast reaction times are paramount.

To assess time-critical aspects, transaction latency bounds are measured by timestamping transac-
tion lifecycle events, using network monitoring and blockchain logs. Consensus time is tracked by
timing the distributed agreement process on transactions, monitoring message exchanges between
nodes. Response time predictability involves analyzing the statistical distribution of response times
collected through automated scripts. Finally, deadline satisfaction rate is determined by comparing
completion times with deadlines, using system logs for accurate tracking.

RL-Based Data Sharing Vectors represents vectors that rely on RL or other adaptive strategies to
optimize performance over time. While these vectors still demand high adaptability, their impact
is realized gradually as the system learns and improves efficiency. For instance, learning conver-
gence ensures that models refine their decision-making over multiple iterations, leading to more
optimal bandwidth utilization and intelligent mode-switching strategies. Unlike time-exactness vec-
tors, which require instant precision, these indicators benefit from iterative improvements and long-
term adjustments. Such performance considerations are crucial in AI-driven networks, autonomous
decision-making platforms, and self-optimizing communication protocols.

Evaluating the efficiency of adaptive data sharing involves several metrics. Mode switching effi-
ciency is assessed by tracking the speed, accuracy, and overhead of switching between data sharing
modes. Bandwidth utilization is monitored using network tools to capture packet transmission rates.
Information quality score uses a predefined metric to evaluate the relevancy and accuracy of shared
data. Learning convergence tracks the reinforcement learning model’s performance over time, ana-
lyzing metrics like reward accumulation and policy stability.

Social Credit Efficacy Vectors collects vectors that prioritize short-term assessment of system trust-
worthiness but operate within rigid evaluation frameworks. These indicators measure how efficiently
a system detects and assesses trustworthy behavior but do not significantly adapt over time. Trust
convergence rate and credit score stability illustrate this principle, as they ensure that users or entities
are rapidly assigned a trustworthiness score based on predefined rules rather than dynamic learning.
While a system may quickly evaluate behavior, the underlying scoring logic remains relatively fixed.
This quadrant is particularly relevant for applications such as fraud detection, reputation manage-
ment, and risk assessment, where immediate identification of unreliable actors is necessary, but the
mechanisms governing evaluation evolve slowly.

To measure the reliability of the social credit system, the analysis tracks how quickly stable trust
scores are assigned, using logs to analyze trust convergence patterns. False positive/negative rates
are determined by comparing system assessments with immutable base data. System resilience is

14

Published as a conference paper at MathAI 2025

evaluated through attack simulations, measuring the impact on the social credit scores. Credit score
stability is assessed by analyzing the variance of credit scores over time, using logged updates.

Scalability Vectors encompasses vectors that measure large-scale system performance and resource
management over extended periods. These indicators exhibit low adaptability, as they depend
on deep architectural decisions rather than real-time modifications. Scalability concerns, such as
throughput scaling and communication overhead, become increasingly significant as the system
expands, yet their optimization typically requires structural changes rather than immediate adjust-
ments. The impact of these vectors emerges gradually as the network grows, making them essential
for evaluating long-term system sustainability. Applications such as decentralized networks, cloud
infrastructure scaling, and distributed databases rely on these vectors to ensure that expanding work-
loads can be handled efficiently without compromising overall performance.

Scalability is evaluated by measuring throughput scaling, observing how transaction processing rates
change with increasing users or nodes through load testing. Communication overhead is monitored
by capturing network traffic data and CPU utilization. Resource utilization tracks the consumption
of CPU, memory, and storage using system monitoring tools. Network growth impact is assessed
through simulations, observing the effect of network expansion on other scalability metrics.

4.2 EVALUATION METHODS

The evaluation approach consists of four key considerations for quadrant vectors. Measurement
Methodology describes how the metric is captured in a system while Theoretical Bounds sets ex-
pected performance limits in best- and worst-case scenarios. Comparative Baseline sets reference
points from existing systems or models, and Success Criteria declares thresholds that indicate ac-
ceptable performance. The comparison between quadrants vectors with success criteria, measure-
ment methodologies, and comparative baselines is displayed in table 1.

Quadrant Vectors Measurement Methodology Success Criteria Comparative Baseline

Time-Exactness
- Response time variance
- Consensus time
- Deadline satisfaction rate

- Response time deviation
within 1% of expectations
- 99.9%+ deadlines met

Traditional real-time systems
(e.g., blockchain validation)

RL-Based Data Sharing
- Mode switching efficiency
- Bandwidth utilization
- Learning convergence rate

- 95%+ model convergence
within predefined iterations
- 5%+ efficiency improvement
per iteration

Static allocation-based
non-RL systems

Social Credit Efficacy
- Trust convergence rate
- False positive/negative rates
- Credit score stability

- Trust convergence within 2σ
- False positive/negative
rates below 2%

Traditional reputation
management systems

Scalability
- Throughput scaling
- Communication overhead
- Resource utilization

- Linear or better throughput
scaling (O(n))
- <10% degradation per
doubling network size

Existing large-scale
distributed networks

Table 1: Comparison of Vectors for System Performance Evaluation

The Measurement Methodology for each quadrant focuses on the specific vectors that need to be
captured in order to evaluate system performance effectively. For time-exactness vectors, response
time variance, consensus time, and deadline satisfaction rates are key indicators to monitor real-time
performance, ensuring systems meet stringent timing requirements. In the case of RL-based data
sharing, the primary vectors include mode switching efficiency, bandwidth utilization, and learning
convergence rates, all of which assess the adaptability and efficiency of the system during its learning
process. Social credit efficacy requires monitoring trust convergence rates, false positive/negative
rates, and credit score stability to ensure that the system remains reliable while minimizing any unfair
penalties or rewards. Scalability vectors focus on throughput scaling, communication overhead,
and resource utilization to understand how the system adapts to larger loads without significant
degradation in performance.

The Success Criteria are closely related to Service Level Agreements (SLA), which serve as contrac-
tual guarantees between consumers and providers in service-oriented systems, ensuring reliability,
availability, and performance Bianco et al. (2008). For time-exactness vectors, a 1% response time

15

Published as a conference paper at MathAI 2025

deviation and 99.9%+ deadline adherence align with industry standards for real-time systems, where
even minor timing inconsistencies can cause cascading failures. For instance, Amazon S3 guaran-
tees 99.9% monthly uptime as part of its SLA commitments Bianco et al. (2008). RL-based data
sharing, which focuses on long-term adaptability, follows established reinforcement learning pat-
terns by targeting 5%+ efficiency improvement per iteration and 95%+ model convergence accuracy
within predefined epochs. Social credit efficacy, being a short-term but low-adaptability system,
requires trust convergence within 2σ and a false positive rate below 2%, ensuring stability while
minimizing unfair penalties. Scalability, a long-term challenge with low adaptability, necessitates
at least linear throughput scaling (O(n)) and performance degradation under 10% when the network
doubles, maintaining efficiency under growing demands.

Comparative Baselines provide reference points for performance comparisons with existing sys-
tems or models. Time-exactness vectors are compared to traditional real-time systems, such as
blockchain validation processes, where high precision in timing is critical. RL-based data sharing
systems are evaluated against static allocation-based non-RL systems to benchmark the performance
improvements provided by the adaptive nature of reinforcement learning. Social credit efficacy is
compared to traditional reputation management systems, which also aim to assess trustworthiness,
but often without the dynamic adaptability inherent in social credit systems. Finally, scalability vec-
tor are compared against existing large-scale distributed networks, which provide insight into how
the system will perform as it scales across more nodes or users. These baselines ensure that system
performance can be accurately gauged and improved over time, providing valuable context for each
metric.

Further, Queuing models and Markov Decision Processes (MDPs) are powerful tools which provide
formal support for practical and approximate decision-making in adaptive and distributed systems
Boucherie & Van Dijk (2017). These models are mapped across different quadrants based on two
dimensions: temporal efficiency (short-term vs. long-term impact) and system adaptability (high vs.
low adaptability). Analyzing these models through system performance vectors helps balance im-
mediate responsiveness with long-term strategic goals. In the time-exact quadrant, queuing models
are ideal for real-time resource allocation in systems that require quick adjustments, such as service
counters in a busy environment. MDPs can also be applied here for dynamic decision-making, ad-
justing strategies based on evolving data, like in adaptive traffic control or call center routing. In
the RL-based data sharing quadrant, queuing models can predict evolving system needs, such as
bandwidth requirements in adaptive networks. However, MDPs are more fitting as they provide an
iterative framework for long-term decision optimization, making them useful in AI-driven networks
and self-optimizing systems where strategies improve over time. In the social credit quadrant, queu-
ing models help allocate resources efficiently in predictable environments, such as trust or fraud
detection systems. MDPs are less applicable here, as they are more suited to systems requiring
ongoing learning, whereas this quadrant focuses on rigid, short-term evaluations. In the scalability
quadrant, queuing models are critical for managing system growth and resource allocation over time,
as seen in cloud infrastructure scaling. MDPs are less relevant in this context, though they could be
used to explore long-term strategies in large systems with evolving needs.

5 DISCUSSION

While the proposed hierarchical multi-blockchain framework introduces innovative mechanisms
for time-exact, verifiable, and scalable multi-agent systems (MAS) coordination, several limita-
tions must be acknowledged. First, managing multiple blockchain layers—especially when forming
dynamic temporary blockchains for localized consensus—introduces non-negligible computational
and communication overhead. As the number of agents increases, this layered architecture may en-
counter latency challenges, particularly during peak operations or in highly dynamic environments.
Moreover, integrating reinforcement learning for dynamic mode switching, although promising,
may require extensive tuning to cope with real-world uncertainties, such as noisy sensor inputs or
unforeseen event dynamics. Finally, while the reputation-based social credit mechanism enhances
trust, its reliance on peer verification might be susceptible to collusion or biased evaluations within
heterogeneous agent networks.

To mitigate these challenges, future research should explore several avenues. Advanced reinforce-
ment learning techniques —including deep multi-agent RL Foerster et al. (2016) and meta-learning

16

Published as a conference paper at MathAI 2025

approaches Hospedales et al. (2021) — could further improve adaptive decision-making under un-
certainty. Refining temporary blockchain consensus protocols (for instance, by blending PBFT with
faster, lightweight algorithms) may help reduce latency and enhance scalability. Additionally, incor-
porating edge-computing strategies can offload processing from central nodes, enabling faster local
consensus and data handling. Enhancements to the social credit mechanism, such as incorporating
anomaly detection or distributed fairness algorithms, can further reduce the risk of manipulation by
adversarial agents.

The proposed framework effectively bridges rigorous theoretical constructs—including the polyno-
mial hierarchy and P-complete verification—with practical implementations in decentralized MAS.
This synthesis demonstrates that time-exact transaction processing is achievable even in complex,
dynamic environments. By aligning local consensus, dynamic data sharing, and trust management
within a multi-blockchain context, the framework opens new research directions in both distributed
AI and blockchain-enabled architectures.

For real-world deployment, several practical issues must be considered. Network reliability, hard-
ware constraints, and regulatory requirements are critical factors that will influence implementation.
Designers must balance the trade-offs between high-fidelity sensory data sharing and lightweight
textual updates to prevent network congestion while meeting strict timing requirements. More-
over, pilot studies in simulated environments—such as virtual urban settings or controlled industrial
zones—will be essential to validate the theoretical performance vectors and ensure system adapt-
ability and resilience under diverse operational conditions.

6 CONCLUSIONS

This paper has introduced a novel hierarchical multi-blockchain architecture for time-exact MAS
that integrates a reinforcement learning-based dual-mode data sharing mechanism with a reputation-
driven social credit system. By leveraging principles from the polynomial hierarchy and formal
verification techniques, the framework ensures predictable transaction processing, dynamic stake-
holder routing, and precise temporal synchronization across local, regional, and global blockchain
layers. In doing so, it addresses key challenges in scalability, inter-agent coordination, and timing
uncertainties, paving the way for more trustworthy and resilient deployments in complex domains.

Moreover, the evaluation framework provides a comprehensive approach to assessing the perfor-
mance of distributed and adaptive systems across multiple dimensions. By categorizing key vectors
into four distinct quadrants —Time-Exactness, RL-Based Data Sharing, Social Credit Efficacy, and
Scalability— it becomes possible to identify the trade-offs between short-term operational needs
and long-term system adaptability. The proposed measurement methodologies, success criteria,
and comparative baselines offer a structured way to benchmark performance, ensuring that the sys-
tem meets both real-time responsiveness and sustainable growth requirements. Furthermore, the
integration of queuing models and MDPs enhances the ability to optimize decision-making, balanc-
ing immediate performance with long-term system evolution. This framework serves as a robust
foundation for future research and system design, guiding the development of adaptive, scalable
systems that can efficiently manage complex, dynamic environments. Overall, by merging formal
complexity theory with practical multi-agent coordination strategies, the framework paves the way
for next-generation decentralized systems with significant potential for applications such as urban
management, emergency response, and supply chain logistics.

Future research should concentrate on several key areas. First, investigating more advanced rein-
forcement learning algorithms —such as multi-agent deep RL and adaptive meta-learning— could
further enhance the system’s responsiveness in dynamic environments. Second, refining consen-
sus protocols and exploring alternative blockchain architectures may reduce latency and improve
throughput in large-scale deployments. Third, extensive real-world testing, including large-scale
simulations and pilot implementations, is essential to validate performance vectors and fine-tune
system parameters. Finally, further theoretical work on extending the distributed polynomial hierar-
chy model may provide deeper insights into the complexity and efficiency of decentralized decision-
making in MAS.

17

Published as a conference paper at MathAI 2025

REFERENCES

Philip Bianco, Grace A Lewis, and Paulo Merson. Service level agreements in service-oriented
architecture environments. Carnegie Mellon University, Software Engineering Institute, 2008.

Richard J Boucherie and Nico M Van Dijk. Markov decision processes in practice. Springer, 2017.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OsDI, volume 99, pp.
173–186, 1999.

Weizhe Chen, Sven Koenig, and Bistra Dilkina. Why solving multi-agent path finding with large lan-
guage model has not succeeded yet, 2024. URL https://arxiv.org/abs/2401.03630.

Mauro Conti, Ankit Gangwal, and Michele Todero. Blockchain trilemma solver algorand has
dilemma over undecidable messages. In Proceedings of the 14th International Conference on
Availability, Reliability and Security, ARES ’19. Association for Computing Machinery, 2019.
ISBN 9781450371643. doi: 10.1145/3339252.3339255. URL https://doi.org/10.
1145/3339252.3339255.

Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed Kosba, Andrew
Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, Dawn Song, and Roger Wattenhofer. On
scaling decentralized blockchains. In Jeremy Clark, Sarah Meiklejohn, Peter Y.A. Ryan, Dan
Wallach, Michael Brenner, and Kurt Rohloff (eds.), Financial Cryptography and Data Security,
pp. 106–125. Springer, 2016. ISBN 978-3-662-53357-4. doi: 10.1007/978-3-662-53357-4 8.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based algorithm for
discovering clusters in large spatial databases with noise. In kdd, volume 96, pp. 226–231, 1996.

Zheng Fang, Tao Ma, Jun Huang, Zhao Niu, and Fang Yang. Efficient task allocation in multi-agent
systems using reinforcement learning and genetic algorithm. Applied Sciences, 15(4):1905, 2025.

Jakob Foerster, Ioannis Alexandros Assael, Nando De Freitas, and Shimon Whiteson. Learning
to communicate with deep multi-agent reinforcement learning. Advances in neural information
processing systems, 29, 2016.

Ankit Gangwal, Haripriya Ravali Gangavalli, and Apoorva Thirupathi. A survey of layer-two
blockchain protocols. Journal of Network and Computer Applications, 209:103539, January
2023. ISSN 1084-8045. doi: 10.1016/j.jnca.2022.103539.

Sergey Goncharov and Andrey Nechesov. Semantic programming for ai and robotics.
IEEE(SIBIRCON), pp. 810–815, 2022. doi: 10.1109/SIBIRCON56155.2022.10017077.

Sergey Goncharov and Andrey Nechesov. Ai-driven digital twins for smart cities. Eng. Proc., 48
(94), 2023a. doi: 10.3390/ecsa-10-16223.

Sergey Goncharov and Andrey Nechesov. Axiomatization of blockchain theory. Mathematics, 11
(1313):2966, January 2023b. ISSN 2227-7390. doi: 10.3390/math11132966.

Sergey Goncharov, Andrey Nechesov, and Dmitry Sviridenko. Programming methodology in turing-
complete languages. IEEE (SIBIRCON), 2024. doi: 10.1109/SIBIRCON63777.2024.10758446.

Tong Guo, Xiaofeng Chen, Yidong Wang, Ruoying Chang, Sheng Pei, Nitesh V. Chawla, Olaf
Wiest, and Xiaohui Zhang. Large language model based multi-agents: A survey of progress and
challenges. arXiv, 2402.01680, 2024. Available online: https://arxiv.org/abs/2402.
01680 (accessed on 19 February 2025).

Shanshan Han, Qifan Zhang, Yuhang Yao, Weizhao Jin, Zhaozhuo Xu, and Chaoyang He. Llm
multi-agent systems: Challenges and open problems. arXiv, February 2024. doi: 10.48550/arXiv.
2402.03578. URL http://arxiv.org/abs/2402.03578. arXiv:2402.03578 [cs].

18

https://arxiv.org/abs/2401.03630
https://doi.org/10.1145/3339252.3339255
https://doi.org/10.1145/3339252.3339255
https://arxiv.org/abs/2402.01680
https://arxiv.org/abs/2402.01680
http://arxiv.org/abs/2402.03578

Published as a conference paper at MathAI 2025

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural
networks: A survey. IEEE transactions on pattern analysis and machine intelligence, 44(9):
5149–5169, 2021.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

Andrey Nechesov. Learning theory and knowledge hierarchy for artificial intelligence systems. In
2024 IEEE International Multi-Conference on Engineering, Computer and Information Sciences
(SIBIRCON), pp. 299–302, September 2024. doi: 10.1109/SIBIRCON63777.2024.10758505.
URL https://ieeexplore.ieee.org/document/10758505.

Andrey Nechesov and Sergey Goncharov. Functional variant of polynomial analogue of gandy’s
fixed point theorem. Mathematics, 12(2121):3429, January 2024. ISSN 2227-7390. doi: 10.
3390/math12213429.

Andrey Nechesov and Janne Ruponen. Empowering government efficiency through civic intelli-
gence: Merging artificial intelligence and blockchain for smart citizen proposals. Technologies,
12(271), 2024. doi: 10.3390/technologies12120271.

Andrey Nechesov, Ivan Dorokhov, and Janne Ruponen. Virtual cities: From digital twins to au-
tonomous ai societies. IEEE Access, 13:13866–13903, 2025. doi: 10.1109/ACCESS.2025.
3531222.

Diego Ongaro and John Ousterhout. In search of an understandable consensus algorithm. In 2014
USENIX annual technical conference (USENIX ATC 14), pp. 305–319, 2014.

Fernando Gomes Papi, Jomi Fred Hübner, and Maiquel de Brito. A blockchain integration to support
transactions of assets in multi-agent systems. Engineering Applications of Artificial Intelligence,
107:104534, 2022.

Fabian Reiter. A local view of the polynomial hierarchy. In Proceedings of the 43rd ACM Symposium
on Principles of Distributed Computing, pp. 347–357, 2024.

19

https://ieeexplore.ieee.org/document/10758505

	Challenges and Applications of Multi-Agent Blockchain Systems
	Hierarchical Multi-Blockchain Architecture and Integration with P-Complete Programming Realization
	Polynomial Hierarchy and Multi-Agents
	Time-Exact Smart Contract Execution and Coordination

	Trust, Resilience, and Asynchronous Global Integration in Decentralized Multi-Blockchain Systems
	Trust and Resilience in Social Swarm-Decentralized AI Systems
	Algorithmic Control of Dual-Mode Data Sharing in Embodied AI Networks
	Dynamic Mode Switching via Reinforcement Learning
	Integration with Hierarchical Blockchain Architecture
	Dynamic Stakeholder-Driven Event Resolution
	Summary

	Synchronous Local Consensus via Dynamic Temporary Blockchains
	Social Swarm-Decentralized AI: Trust and Resilience Mechanisms
	Integrated RL-Based Dual-Mode Data Sharing with Social Credit
	Agent State and Action Space
	Social Credit Update Mechanism
	Modified RL Reward Function
	Integrated RL Update and Pseudo-Code

	Benefits and Impact on Real-World Applications

	Evaluation System
	Performance Quadrant
	Evaluation Methods

	Discussion
	Conclusions

