
Compress, Gather, and Recompute:
REFORMing Long-Context Processing in Transformers

Woomin Song 1 2 † Sai Muralidhar Jayanthi 1 Srikanth Ronanki 1 Kanthashree Mysore Sathyendra 1

Jinwoo Shin 2 Aram Galstyan 1 Shubham Katiyar 1 Sravan Babu Bodapati 1

Abstract
As large language models increasingly gain pop-
ularity in real-world applications, processing
extremely long contexts, often exceeding the
model’s pre-trained context limits, has emerged
as a critical challenge. While existing approaches
to efficient long-context processing show promise,
recurrent compression-based methods struggle
with information preservation, whereas random
access approaches require substantial memory
resources. We introduce REFORM, a novel in-
ference framework that efficiently handles long
contexts through a two-phase approach. First,
it incrementally processes input chunks while
maintaining a compressed KV cache, constructs
cross-layer context embeddings, and utilizes early
exit strategy for improved efficiency. Second, it
identifies and gathers essential tokens via simi-
larity matching and selectively recomputes the
KV cache. Compared to baselines, REFORM
achieves over 52% and 34% performance gains on
RULER and BABILong respectively at 1M con-
text length. It also outperforms baselines on∞-
Bench, RepoEval, and MM-NIAH, demonstrating
flexibility across diverse tasks and domains. Ad-
ditionally, REFORM reduces inference time by
30% and peak memory usage by 5%, achieving
both efficiency and superior performance.

1. Introduction
The ability to handle extremely long contexts, often ex-
ceeding the original model’s pre-trained context limits, has
emerged as a critical challenge for the advanced usage of
large language models (LLMs) in real-world scenarios. This
capability is essential for various applications, such as pro-

†Work done during an internship at Amazon. 1Amazon
AGI 2KAIST. Correspondence to: Sravan Babu Bodapati <sra-
vanb@amazon.com>.

3rd Workshop on Efficient Systems for Foundation Models (ES-
FoMo III) at ICML, Vancouver, Canada. 2025.

cessing life-long user interactions, understanding and debug-
ging repository-level codebases, and handling multi-modal
inputs (interleaved sequences of text and visual informa-
tion can result in extremely long contexts). However, under
existing Transformer-based language model architectures
(Dubey et al., 2024; Jiang et al., 2023), processing such
long sequences often causes significant computational chal-
lenges, requiring substantial computation as well as memory
resources. These demanding requirements often prove in-
feasible in practical deployment settings, necessitating new
technologies that can handle extremely long sequences with
reasonable computational resources.

Current approaches to efficient context window extrapola-
tion broadly fall into two categories: recurrent context pro-
cessing and random access mechanisms. Recurrent methods
(Xiao et al., 2023a; Zhang et al., 2023b; Oren et al., 2024;
Kim et al., 2024) divide the input into manageable chunks
and iteratively process them while maintaining a summa-
rized representation of prior chunks, typically by compress-
ing or evicting parts of the Key-Value (KV) cache. While
these approaches reduce memory and computational costs,
they often suffer from ‘forgetting’ due to the loss of critical
information during compression and/or eviction.

In contrast, another line of work aims to enable dynamic
random-access to the previous inputs by preserving the full
KV cache and retrieving relevant portions when processing
new chunks (Xiao et al., 2024a; Liu et al., 2024). These
methods provide more flexibility in accessing prior con-
text, as they allow selective re-attention to specific segments
of the input. However, maintaining the full KV cache re-
quires substantial memory resources, often leading to sig-
nificant memory overhead and latency increases, especially
in practical deployments where CPU memory offloading
is necessary. Furthermore, the increased flexibility does
not necessarily lead to high retrieval performance. These
limitations highlight the need for a more balanced approach
that combines efficiency with precise long-context handling.

To address the above challenges, we propose REFORM
(REcurrent chunked Forwarding with On-demand cache
RecoMputation), a novel inference framework that com-
bines the efficiency of recurrent approaches with the supe-

1

Compress, Gather, and Recompute: REFORMing Long-Context Processing in Transformers

Transformer
Layers

Context Encoding with Recurrent Chunked Forwarding

Current Chunk
…

Last KV Cache

On-Demand Cache Recomputation

Previous Chunks QueryChunk N

1. Forward current chunk
conditioned on previous KV cache

3. Compress KV cache
using token eviction

2. Gather & store
selected QKV states

New KV Cache

Cross-Layer
Context Embeddings

Recomputed KV Cache

Gathered Inputs

4. Gather input tokens using
cosine-similarity search
with query embeddings

5. Recompute KV cache
with the gathered inputs

Figure 1. An overview of the proposed framework. REFORM efficiently processes long inputs through two phases. In the recurrent
chunked forwarding phase, it segments inputs into chunks and processes them iteratively. In each iteration, REFORM (1) forwards each
chunk conditioned on the previous KV cache, (2) extracts key QKV states from selected layers and heads for constructing cross-layer
context embeddings, and (3) compresses the cache via token eviction (Zhang et al., 2023b). An early exit strategy skips upper layers
beyond those used for embedding collection, further improving efficiency. In the on-demand cache recomputation phase, REFORM
selects important tokens via similarity search with the query embeddings (last part of the input), gathers them, and recomputes the KV
cache for further generation.

rior recall capabilities of random-access methods via a com-
putationally efficient compress-gather-recompute pipeline.
In contrast to existing recurrent methods that use com-
pressed KV cache for generation, REFORM uses compres-
sion to construct and store lightweight token-wise embed-
dings of the input. Given a query, REFORM then uses these
embeddings to gather most relevant input tokens via simi-
larity matching, and recomputes the full KV cache for those
tokens. This process yields high-fidelity yet efficient repre-
sentations for query-relevant tokens, leading to a superior
retrieval ability of the method while still benefiting from
reduced memory overhead.

Figure 1 illustrates the overall approach. In the encoding
phase, we process input tokens in chunks through an adap-
tive caching mechanism called recurrent chunked forward-
ing: as each chunk is processed, tokens are added to the KV
cache and compressed by retaining only the heavy hitters
(most influential tokens). Using this progressively sparsi-
fied KV cache, we compute representations up to an inter-
mediate transformer layer L, collecting QKV states from
multiple layers and heads to generate and store lightweight
cross-layer context embeddings for all tokens. This multi-
faceted efficiency strategy—combining chunked processing,
sparse KV cache updates, and early exit—significantly re-
duces both computation time and memory overhead, as we
maintain only small representations for retrieval while dy-
namically managing KV cache sparsity.

In the recomputation phase, the query tokens (correspond-
ing to the recent context) identify relevant historical tokens

through similarity matching with the stored retrieval em-
beddings, and only these selected tokens undergo full KV
cache recomputation across all layers. While this phase
requires full computation for selected tokens, this recompu-
tation is crucial: it restores high-fidelity representations for
contextually important tokens, ensuring accurate processing
of long-range dependencies. By selectively recomputing
only the most relevant tokens, we achieve a better balance
between computational efficiency and model performance,
allowing detailed historical context access while avoiding
the costs of maintaining full representations for all tokens.

Our extensive evaluations demonstrate REFORM’s effec-
tiveness across various long-context understanding tasks.
On complex synthetic benchmarks, REFORM significantly
outperforms existing methods, achieving over 52% perfor-
mance gain on RULER and 34% on BABILong at 1M con-
text lengths with the Mistral-NeMo model, compared to
the best-performing baselines. On ∞-Bench evaluations,
REFORM achieves 31.2% average accuracy on four real-
world tasks with the same model, substantially exceeding
the baseline performance of 24.8%.

Operating at the transformer architecture level, REFORM
is modality-agnostic and applicable to any domain/modality
the base model supports. For example, REFORM signifi-
cantly outperforms the baselines in RepoEval, a repository-
level code completion task, using Qwen2.5-Coder-1.5B,
and shows superior performance in multimodal needle-in-a-
haystack datasets using Pixtral model.

Finally, REFORM delivers substantial efficiency improve-

2

Compress, Gather, and Recompute: REFORMing Long-Context Processing in Transformers

ments over recent state-of-the-art long-context processing
methods. Compared to InfLLM (Xiao et al., 2024a) and In-
finiPot (Kim et al., 2024), REFORM reduces inference time
by 80% and 33% and peak memory usage by 32% and 5%
respectively, in evaluations with 256k token inputs. These
results demonstrate that REFORM effectively combines the
benefits of both recurrent compression and random access
approaches while mitigating their respective limitations.

2. Method
In this section, we present the details of our proposed
method. In Section 2.1, we first describe REFORM’s recur-
rent chunk forwarding phase in detail. This phase efficiently
constructs token-level, cross-layer context embeddings by
segmenting the long input into multiple chunks and repeat-
edly processing them while conditioning on a compressed
previous KV cache. We further elaborate on how we con-
struct the cross-layer context embeddings in Appendix C.1.
Then, in Section 2.2, we describe how we use the context
embeddings to identify the relevant input segments and high-
light our on-demand cache recomputation framework that
enables random access to previous contexts while main-
taining the integrity of the KV cache. We outline the full
procedure in Figure 1 and Algorithm 1.

2.1. Embedding Extraction with Recurrent Chunked
Forwarding and Early-Exit

Encoding long contexts with pre-trained Transformers is
often infeasible due to the quadratic computational cost
and the model’s limited context window. To overcome this
problem, we focus on recurrent KV cache compression ap-
proaches that allow the processing of infinite context under
limited resources and context windows. Here, we describe
the encoding process in detail, discuss key efficiency bene-
fits, and present our early exit strategy that provides further
efficiency gains when using recurrent chunked forwarding
to create context embeddings.

Embedding extraction with recurrent chunked forward-
ing. To process extremely long inputs under limited compu-
tational budget and context windows, we adopt an iterative
KV cache compression approach (Xiao et al., 2023a; Zhang
et al., 2023b; Oren et al., 2024). Specifically, we segment
the long input into larger chunks (32k tokens for our ex-
periments) and apply KV cache compression after forward-
ing each chunk to better utilize parallel computation. For
KV cache compression, we employ attention-based token
eviction following H2O (Zhang et al., 2023b). After com-
pression, we reassign the position IDs so that the tokens in
the compressed cache have consecutive position IDs. This
position reassignment allows the model to handle longer
sequences beyond its pre-trained context limit.

Unlike existing approaches that directly use these com-
pressed KV cache for generation, we use it only to construct
context embeddings that will later be used to identify which
part of the input is required. We outline more details for
embedding construction in Appendix C.1.

Early exit. Utilizing a compressive approach for creating
embeddings introduces an additional benefit: efficiency can
be further improved by employing an early exit strategy. As
observed in Appendix C.1, high-performing embeddings are
often available in the lower Transformer layers. Therefore,
forwarding the inputs through the remaining layers after the
topmost layer used for embedding extraction is unnecessary.
The proposed early exit strategy reduces both computation
and memory requirements because we do not need to keep
the KV cache for the upper layers.

2.2. On-Demand Cache Recomputation

To enable random access to the previous inputs, we utilize
the cross-layer context embeddings to identify the input
segments that are relevant to the last part of the input. Then,
we gather the corresponding input embeddings and forward
them through the model again, re-constructing the KV cache
with the most relevant inputs. We conduct the detailed
process as follows.

Identification of significant inputs. After constructing
the cross-layer context embeddings corresponding to the
input, we perform a token-level similarity search between
the query (the last part of the input) and the remaining inputs
using the context embeddings. Then, we max-pool the
similarity scores over the query to tokens to ensure that each
token is assigned a single score. To preserve the continuity
of the identified inputs, we further max-pool each token’s
score with the 128 adjacent tokens. After processing the
significance scores, we identify the tokens with the highest
scores. We always keep the initial and final 256 tokens to
maintain coherence.

On-Demand Cache Recomputation. Once we identify
the relevant segments, we gather the corresponding input
embeddings and forward them through the model again,
recomputing the KV cache. The new KV cache is then used
for the further decoding process. By introducing on-demand
cache recomputation, we avoid the need of storing the full
KV cache while enabling random access to previous inputs,
significantly reducing the memory requirements.

3. Experiments
Experimental setup and baselines. We compare REFORM
against training-free context extrapolation methods, includ-
ing StreamingLLM (Xiao et al., 2023a), TOVA (Oren et al.,
2024), H2O (Zhang et al., 2023b), InfiniPot (Kim et al.,
2024), and InfLLM (Xiao et al., 2024a). We also include

3

Compress, Gather, and Recompute: REFORMing Long-Context Processing in Transformers

Table 1. Evaluation on RULER and BABILong. We measure the performance on an extended version of the RULER (Hsieh et al., 2024)
and BABILong (Kuratov et al., 2024) benchmark. We report the averaged performance of all tasks at different context lengths. The best
values are highlighted in bold.

RULER BABILong

64k 128k 200k 300k 400k 500k 1M 64k 128k 256k 512k 1M

Mistral-Nemo-Instruct-2407

Truncation 32.6 20.4 17.8 15.2 12.3 12.5 10.8 32.2 26.2 17.0 13.6 14.0
StreamingLLM 27.6 13.8 11.6 9.3 7.2 7.1 4.7 38.8 23.4 15.4 11.0 6.2
TOVA 21.6 15.3 14.0 11.8 7.9 8.7 4.6 37.8 23.6 14.4 9.6 3.4
H2O 15.1 7.4 7.8 5.6 4.2 5.7 3.6 38.0 25.2 16.2 7.2 3.6
InfiniPot 26.9 19.4 15.6 14.5 12.7 13.4 12.0 39.6 26.8 18.6 11.2 8.8
InfLLM 52.7 39.7 28.5 24.9 20.9 22.0 23.3 40.6 34.0 23.6 13.0 9.6
REFORM (Ours) 79.9 81.1 83.0 84.6 84.1 83.5 75.5 57.4 51.4 50.6 47.6 48.8

Qwen2.5-7B-Instruct

Truncation 46.3 25.1 21.8 17.4 14.9 15.2 11.3 48.4 33.4 27.4 20.0 15.6
StreamingLLM 43.5 25.3 18.7 17.3 11.8 11.8 9.1 53.4 40.6 33.2 23.8 19.6
TOVA 66.2 27.7 25.7 25.8 21.9 20.4 17.0 56.0 46.6 40.6 29.4 21.8
H2O 51.8 20.9 18.5 17.1 11.6 12.1 8.7 57.0 41.6 36.4 24.6 18.8
InfiniPot 65.7 51.7 39.2 33.9 27.8 26.7 23.7 59.6 51.0 53.4 48.2 40.2
InfLLM 47.1 34.2 29.2 24.0 22.0 23.2 23.8 43.0 29.2 20.4 15.4 11.4
REFORM (Ours) 78.2 75.8 74.7 74.9 74.9 73.0 75.1 61.6 60.4 59.8 58.8 58.8

a truncation baseline, which simply drops the middle part
of the input. All recurrent baselines operate with a KV
cache budget and chunk size of 32k tokens, and InfLLM
also uses 32k active KV cache budget. We always keep
the initial and recent 256 tokens in cache for all baselines
and REFORM to maintain the coherency of the text. For
REFORM, we use a recomputation budget of 8k tokens for
Mistral-Nemo-Instruct-2407 and 16k tokens for all other
models. We provide more details in Appendix C.2.

Performance on RULER and BABILong. Here, we
demonstrate the performance of our approach in challenging
synthetic benchmarks. Specifically, we evaluate different
methods on an extended version of the RULER (Hsieh et al.,
2024) and BABILong (Kuratov et al., 2024) benchmarks.
RULER is a synthetic long-context benchmark consisting
of diverse and challenging needle-in-a-haystack tasks, as
well as some aggregation and question-answering tasks. BA-
BILong further challenges the model by introducing more
difficult tasks, such as multi-hop reasoning. Although the
original version of RULER only supports up to 128k tokens,
we further extend the dataset to 1M using the same recipe
to evaluate on longer inputs.

We highlight the evaluation results on RULER and BABI-
Long in Table 1. In both benchmarks, REFORM outper-
forms the baselines by a large margin, indicating its supe-
riority in tasks that require precise recall of essential parts
of the context, benefiting both from the ability to locate
essential contexts from long inputs and the removal of dis-
tribution shifts in the KV cache that commonly come with
recurrence-based or random-access approaches.

Further evaluations. While we focus on the RULER and
BABILong evaluations in the main text, we conducted ex-
tensive evaluation across more diverse tasks and models. We
provide the evaluation results in Appendix D. Specifically,
in Appendix D.1, we evaluate our approach using needle-
in-a-haystack benchmark and showcase that REFORM can
retrieve relevant contexts from any position for long inputs
up to 1 million tokens. In Appendix D.2, we evaluate RE-
FORM on more diverse realistic benchmarks with a wide
range of models, including∞-Bench (Zhang et al., 2024) for
text models, RepoEval (Zhang et al., 2023a) for code mod-
els, and MM-NIAH (Wang et al., 2024a) for multi-modal
models. In Appendix D.3, we compare REFORM with
retrieval-augmented generation. In Appendix D.4, we ablate
on each component of REFORM. Finally in Appendix D.5,
we highlight that REFORM achieves superior performance
while also being the most efficient in terms of memory re-
quirements and inference latency.

4. Conclusion
We introduce REFORM, a novel inference framework for
efficient long-context processing. REFORM incrementally
processes input chunks while maintaining a compressed
KV cache, extracting key QKV states to construct cross-
layer context embeddings. An early-exit strategy enhances
efficiency, and a similarity-based selection mechanism iden-
tifies and gathers essential tokens for KV cache recom-
putation. REFORM outperforms existing methods across
long-context benchmarks while reducing inference time and
memory usage. Furthermore, its modality-agnostic design

4

Compress, Gather, and Recompute: REFORMing Long-Context Processing in Transformers

makes it applicable to a wide range of use cases including
multi-modal applications.

References
Agrawal, P., Antoniak, S., Hanna, E. B., Bout, B., Chap-

lot, D., Chudnovsky, J., Costa, D., De Monicault, B.,
Garg, S., Gervet, T., et al. Pixtral 12b. arXiv preprint
arXiv:2410.07073, 2024.

bloc97. Ntk-aware scaled rope allows llama models
to have extended (8k+) context size without any
fine-tuning and minimal perplexity degradation.
https://www.reddit.com/r/LocalLLaMA/
comments/14lz7j5/ntkaware_%20scaled_
rope_allows_llama_models_to_have/, 2023.

Bulatov, A., Kuratov, Y., and Burtsev, M. Recurrent memory
transformer. Advances in Neural Information Processing
Systems, 35:11079–11091, 2022.

Chen, S., Wong, S., Chen, L., and Tian, Y. Extending
context window of large language models via positional
interpolation. arXiv preprint arXiv:2306.15595, 2023a.

Chen, Y., Qian, S., Tang, H., Lai, X., Liu, Z., Han, S., and
Jia, J. Longlora: Efficient fine-tuning of long-context
large language models. arXiv preprint arXiv:2309.12307,
2023b.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V., and
Salakhutdinov, R. Transformer-xl: Attentive language
models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019.

Dao, T. FlashAttention-2: Faster attention with better paral-
lelism and work partitioning. In International Conference
on Learning Representations (ICLR), 2024.

Dong, H., Yang, X., Zhang, Z., Wang, Z., Chi, Y., and Chen,
B. Get more with less: Synthesizing recurrence with
kv cache compression for efficient llm inference. arXiv
preprint arXiv:2402.09398, 2024.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

gkamradt. Needle in a haystack - pressure test-
ing llms. https://github.com/gkamradt/
LLMTest_NeedleInAHaystack, 2023.

Han, C., Wang, Q., Xiong, W., Chen, Y., Ji, H., and Wang, S.
Lm-infinite: Simple on-the-fly length generalization for
large language models. arXiv preprint arXiv:2308.16137,
2023.

Hooper, C., Kim, S., Mohammadzadeh, H., Mahoney,
M. W., Shao, Y. S., Keutzer, K., and Gholami, A.
Kvquant: Towards 10 million context length llm in-
ference with kv cache quantization. arXiv preprint
arXiv:2401.18079, 2024.

Hsieh, C.-P., Sun, S., Kriman, S., Acharya, S., Rekesh, D.,
Jia, F., Zhang, Y., and Ginsburg, B. Ruler: What’s the
real context size of your long-context language models?
arXiv preprint arXiv:2404.06654, 2024.

Hui, B., Yang, J., Cui, Z., Yang, J., Liu, D., Zhang, L., Liu,
T., Zhang, J., Yu, B., Dang, K., et al. Qwen2. 5-coder
technical report. arXiv preprint arXiv:2409.12186, 2024.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. l., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Jin, H., Han, X., Yang, J., Jiang, Z., Liu, Z., Chang, C.-Y.,
Chen, H., and Hu, X. Llm maybe longlm: Self-extend
llm context window without tuning, 2024.

kaiokendev. Things i’m learning while training super-
hot. https://kaiokendev.github.io/til#
extending-context-to-8k./, 2023.

Kang, H., Zhang, Q., Kundu, S., Jeong, G., Liu, Z., Krishna,
T., and Zhao, T. Gear: An efficient kv cache compression
recipefor near-lossless generative inference of llm. arXiv
preprint arXiv:2403.05527, 2024.

Kim, M., Shim, K., Choi, J., and Chang, S. Infinipot: Infinite
context processing on memory-constrained llms. arXiv
preprint arXiv:2410.01518, 2024.

Kuratov, Y., Bulatov, A., Anokhin, P., Rodkin, I., Sorokin,
D., Sorokin, A., and Burtsev, M. Babilong: Testing the
limits of llms with long context reasoning-in-a-haystack.
arXiv preprint arXiv:2406.10149, 2024.

Li, Y., Huang, Y., Yang, B., Venkitesh, B., Locatelli, A.,
Ye, H., Cai, T., Lewis, P., and Chen, D. Snapkv: Llm
knows what you are looking for before generation. arXiv
preprint arXiv:2404.14469, 2024a.

Li, Z., Li, C., Zhang, M., Mei, Q., and Bendersky, M. Re-
trieval augmented generation or long-context llms? a
comprehensive study and hybrid approach. In Proceed-
ings of the 2024 Conference on Empirical Methods in
Natural Language Processing: Industry Track, pp. 881–
893, 2024b.

Liu, X., Li, R., Guo, Q., Liu, Z., Song, Y., Lv, K., Yan, H.,
Li, L., Liu, Q., and Qiu, X. Reattention: Training-free
infinite context with finite attention scope. arXiv preprint
arXiv:2407.15176, 2024.

5

https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_%20scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_%20scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_%20scaled_rope_allows_llama_models_to_have/
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://kaiokendev.github.io/til#extending-context-to-8k./
https://kaiokendev.github.io/til#extending-context-to-8k./

Compress, Gather, and Recompute: REFORMing Long-Context Processing in Transformers

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models, 2016.

Munkhdalai, T., Faruqui, M., and Gopal, S. Leave no con-
text behind: Efficient infinite context transformers with
infini-attention. arXiv preprint arXiv:2404.07143, 2024.

Oren, M., Hassid, M., Yarden, N., Adi, Y., and Schwartz,
R. Transformers are multi-state rnns. arXiv preprint
arXiv:2401.06104, 2024.

Peng, B., Quesnelle, J., Fan, H., and Shippole, E. Yarn:
Efficient context window extension of large language
models. arXiv preprint arXiv:2309.00071, 2023.

Robertson, S. E., Walker, S., Jones, S., Hancock-Beaulieu,
M. M., Gatford, M., et al. Okapi at trec-3. Nist Special
Publication Sp, 109:109, 1995.

Singhania, P., Singh, S., He, S., Feizi, S., and Bhatele, A.
Loki: Low-rank keys for efficient sparse attention. arXiv
preprint arXiv:2406.02542, 2024.

Song, W., Oh, S., Mo, S., Kim, J., Yun, S., Ha, J.-W.,
and Shin, J. Hierarchical context merging: Better long
context understanding for pre-trained llms. arXiv preprint
arXiv:2404.10308, 2024.

Su, J. Rectified rotary position embeddings. https://
github.com/bojone/rerope, 2023.

Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., and Liu, Y.
Roformer: Enhanced transformer with rotary position
embedding. Neurocomputing, 568:127063, 2024.

Tang, H., Lin, Y., Lin, J., Han, Q., Hong, S., Yao, Y., and
Wang, G. Razorattention: Efficient kv cache compression
through retrieval heads. arXiv preprint arXiv:2407.15891,
2024.

Wang, W., Dong, L., Cheng, H., Liu, X., Yan, X., Gao, J.,
and Wei, F. Augmenting language models with long-term
memory. arXiv preprint arXiv:2306.07174, 2023.

Wang, W., Zhang, S., Ren, Y., Duan, Y., Li, T., Liu, S.,
Hu, M., Chen, Z., Zhang, K., Lu, L., et al. Needle in a
multimodal haystack. arXiv preprint arXiv:2406.07230,
2024a.

Wang, Z., Jin, B., Yu, Z., and Zhang, M. Model tells you
where to merge: Adaptive kv cache merging for llms
on long-context tasks. arXiv preprint arXiv:2407.08454,
2024b.

Wu, W., Wang, Y., Xiao, G., Peng, H., and Fu, Y. Re-
trieval head mechanistically explains long-context factual-
ity, 2024. URL https://arxiv.org/abs/2404.
15574.

Wu, Y., Rabe, M. N., Hutchins, D., and Szegedy, C. Mem-
orizing transformers. arXiv preprint arXiv:2203.08913,
2022.

Xiao, C., Zhang, P., Han, X., Xiao, G., Lin, Y., Zhang,
Z., Liu, Z., Han, S., and Sun, M. Infllm: Unveiling
the intrinsic capacity of llms for understanding extremely
long sequences with training-free memory. arXiv preprint
arXiv:2402.04617, 2024a.

Xiao, G., Tian, Y., Chen, B., Han, S., and Lewis, M. Ef-
ficient streaming language models with attention sinks.
arXiv preprint arXiv:2309.17453, 2023a.

Xiao, G., Tang, J., Zuo, J., Guo, J., Yang, S., Tang, H.,
Fu, Y., and Han, S. Duoattention: Efficient long-context
llm inference with retrieval and streaming heads. arXiv
preprint arXiv:2410.10819, 2024b.

Xiao, S., Liu, Z., Zhang, P., and Muennighoff, N. C-pack:
Packaged resources to advance general chinese embed-
ding, 2023b.

Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu,
B., Li, C., Liu, D., Huang, F., Wei, H., et al. Qwen2. 5
technical report. arXiv preprint arXiv:2412.15115, 2024.

Yang, Z., Qi, P., Zhang, S., Bengio, Y., Cohen, W. W.,
Salakhutdinov, R., and Manning, C. D. Hotpotqa: A
dataset for diverse, explainable multi-hop question an-
swering. arXiv preprint arXiv:1809.09600, 2018.

Yu, T., Xu, A., and Akkiraju, R. In defense of rag in the
era of long-context language models. arXiv preprint
arXiv:2409.01666, 2024.

Zhang, F., Chen, B., Zhang, Y., Keung, J., Liu, J., Zan,
D., Mao, Y., Lou, J.-G., and Chen, W. Repocoder:
Repository-level code completion through iterative re-
trieval and generation. arXiv preprint arXiv:2303.12570,
2023a.

Zhang, X., Chen, Y., Hu, S., Xu, Z., Chen, J., Hao, M., Han,
X., Thai, Z., Wang, S., Liu, Z., et al. ∞ bench: Extending
long context evaluation beyond 100k tokens. In Proceed-
ings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp.
15262–15277, 2024.

Zhang, Z., Sheng, Y., Zhou, T., Chen, T., Zheng, L., Cai,
R., Song, Z., Tian, Y., Ré, C., Barrett, C., et al. H2o:
Heavy-hitter oracle for efficient generative inference of
large language models. Advances in Neural Information
Processing Systems, 36:34661–34710, 2023b.

Zhu, D., Yang, N., Wang, L., Song, Y., Wu, W., Wei, F.,
and Li, S. Pose: Efficient context window extension of
llms via positional skip-wise training. arXiv preprint
arXiv:2309.10400, 2023.

6

https://github.com/bojone/rerope
https://github.com/bojone/rerope
https://arxiv.org/abs/2404.15574
https://arxiv.org/abs/2404.15574

Compress, Gather, and Recompute: REFORMing Long-Context Processing in Transformers

A. REFORM algorithm
We illustrate the overall process of REFORM through a pseudocode in Algorithm 1.

Algorithm 1 Overview of REFORM

procedure FORWARDCHUNK(chunk, cache, emb)
/* Initialize hidden states */
hs← input
/* Forward with early exit */
for layer in model_layers[:early_exit_layer] do

hs, cache, qkv← layer.Forward(hs, cache)
/* Save selected embeddings */
emb.SaveSelected(qkv)

end for
/* Evict less important tokens */
cache← Compress(cache)
return cache, emb

end procedure
procedure REFORM(input)

/* Initialize */
cache, emb← EmptyInit()
/* Prepare input chunks */
context, query← SplitQuery(input)
chunks← ChunkInputs(context) + [query]
/* Recurrent chunked forwarding */
for ci in chunks do

cache, emb← ForwardChunk(ci, cache, emb)
end for
/* Gather relevant inputs */
relevant_inputs← GatherRelevant(input, emb)
/* On-demand recomputation */
cache← model.Forward(relevant_inputs)
return cache

end procedure

B. Related Works
In this section, we discuss the existing approaches for extending LLM’s native context window to efficiently handle extremely
long inputs. We categorize these approaches into two groups: methods that use recurrent context processing and methods
that leverage random access.

Recurrent context processing. To address the computational challenges of long-context processing, several studies explore
the use of recurrence for greater efficiency. A line of works (Dai et al., 2019; Bulatov et al., 2022; Munkhdalai et al., 2024)
introduce architectural changes to Transformers, enabling chunk-level recurrence operations to process long contexts in
smaller, manageable units. However, these approaches typically necessitate extensive training of the model, and therefore is
not directly applicable to existing pre-trained large language models. More recent efforts leverage KV cache eviction to
iteratively encode input chunks and compress the KV cache, avoiding architectural modifications or additional training.
For instance, StreamingLLM (Xiao et al., 2023a) maintains fluent generation by preserving initial and most recent tokens
while compressing intermediate ones. Later approaches (Zhang et al., 2023b; Oren et al., 2024; Kim et al., 2024) identify
important tokens from the prior context, enabling more informative cache compression. Despite their efficiency, the process
of compressing prior inputs often results in the loss of critical information, leading to ‘forgetting’ issues. Consequently,
these methods may struggle with tasks requiring precise retrieval of earlier inputs. REFORM addresses this issue through its
gather and recompute phases, which yields high-fidelity representation of all query-relevant input tokens.

7

Compress, Gather, and Recompute: REFORMing Long-Context Processing in Transformers

Random access approaches. An alternative direction is to enable random access to prior context, akin to full attention, but
in a more computationally efficient manner. These methods typically store the full KV cache in memory and dynamically
retrieve relevant tokens as needed. Some approaches train the model (Wu et al., 2022) or an auxiliary side-network (Wang
et al., 2023) to utilize the retrieved tokens effectively. More recently, training-free strategies have emerged, which store
the full KV cache in memory and retrieve it dynamically (Xiao et al., 2024a; Liu et al., 2024). While these methods allow
random access to any part of the input sequence, they introduce significant memory overhead due to the need to maintain
large caches. In practice, this often necessitates CPU offloading, which can further increase latency. Furthermore, the
flexibility to access previous context may not necessarily lead to high retrieval performance. In contrast, REFORM uses KV
cache compression and constructs compact token-level embeddings using only the high-performing heads to reduce memory
overhead while still maintaining high retrieval performance.

Extending LLMs to handle extremely long inputs. To extend the context windows of Large Language Modles (LLMs)
efficiently, various approaches have been proposed. A significant body of work focuses on modifying positional embeddings.
These include scaling Rotary Positional Embeddings (RoPE) (Su et al., 2024) beyond the model’s context limit (Chen et al.,
2023a; kaiokendev, 2023; bloc97, 2023; Peng et al., 2023), applying attention masks (Han et al., 2023), or adjusting the
relative distances between tokens to fall within a predefined range (Su, 2023; Jin et al., 2024). Another line of research
explores fine-tuning techniques to adapt models for longer contexts (Zhu et al., 2023; Chen et al., 2023b). While these
methods enable models to handle extended inputs, they do not address the significant computational and memory costs
introduced by the self-attention mechanism, limiting their practical utility for extremely long contexts. Hence, we did not
include them as baselines in our experiments.

Other approaches for efficient long context processing. Together with the recurrent KV cache compression approaches, a
large volume of recent works focus on reducing the size of the KV cache to enable more efficient inference at long contexts.
For example, SnapKV (Li et al., 2024a) proposes to forward the full input through the model, and then compress the cache
by evicting tokens based on attention scores. While efficient at decoding-time, it requires the model to first process the
full input, and therefore is not applicable to extremely long inputs that exceed the model’s pre-trained context window.
Alternatively, HOMER (Song et al., 2024) proposes to use a hierarchical divide-and-conquer approach to combine the
encoding and eviction process. Some works propose to further enhance KV cache compression by merging tokens instead
of evicting them (Wang et al., 2024b; Dong et al., 2024), but their experiments also only consider inputs within the model’s
context limit, and their extrapolation capabilities remain unknown. Some recent works propose another direction to keep the
full cache only for some selected attention heads known as ‘retrieval heads’ (Tang et al., 2024; Xiao et al., 2024b), reducing
the memory burden of preserving the full KV cache. Other works investigate quantization (Hooper et al., 2024; Kang et al.,
2024) and low-rank cache compression (Singhania et al., 2024) to further reduce the memory requirements of the KV cache.
However, these methods also cannot extrapolate to longer sequences beyond the model’s pre-trained context limit.

C. Experimental Details
C.1. Constructing Cross-Layer Context Embeddings

Table 2. Comparing similarity search methods. Best-3 MNR
scores (lower is better) corresponding to different similarity search
methods including attention, and cosine similarity search using hid-
den states (HS) or attention QKV states. Scores are measured with
Mistral-Nemo-Instruct-2407, and averaged over 500 Multi-hop QA
examples.

Type Dim. Top-1 Top-2 Top-3 Avg.

Attention 160 6.91 7.70 7.81 7.47
Cosine-HS 5120 9.40 9.63 9.80 9.61
Cosine-Q 160 6.48 6.74 6.93 6.72
Cosine-K 160 6.77 7.31 7.41 7.16
Cosine-V 160 5.77 6.57 6.57 6.30

Prior research has revealed the existence of specialized
Transformer heads distributed across different layers that
can accurately retrieve relevant information from long
context input (Wu et al., 2024). To construct informative
embeddings, we thus analyze the retrieval performance of
various heads and embeddings in Transformers to deter-
mine the most suitable ones for our method. Specifically,
we compare the token-level retrieval performance of at-
tention scores (without positional encoding, to make it
applicable to extremely long inputs), and cosine similarity
between hidden states, or the attention QKV states (i.e.
embeddings resulting from QKV projection in attention
layers) across Transformer layers.

Embedding head identification. We conducted a set of experiments on a multi-hop question-answering dataset to identify
the best embeddings to use for the similarity search; see Appendix C.2 for details. We report the MNR scores for the
top-performing layers and heads in Table 2. Somewhat surprisingly, we observe that cosine similarity search with attention

8

Compress, Gather, and Recompute: REFORMing Long-Context Processing in Transformers

QKV states often outperform the widely-used attention scores. It also outperformed using cosine similarity between the
hidden states despite having a much smaller size. This finding suggests that, with careful selection of the appropriate heads,
directly using the QKV states from the attention layer and using them for cosine similarity search can achieve a very high
performance, while requiring minimal memory.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
Layer

0
1
2
3
4
5
6
7

Va
lu

e
He

ad

5

10

15

20

25

30

Figure 2. MNR Scores for Value Heads. The distribution of the
MNR scores (lower is better) across value states of different attention
heads, measured by Mistral-Nemo-Instruct-2407 model for 500 syn-
thetic multi-hop QA examples. 256-token heavy hitter budget was
used for computation.

Figure 2 illustrates the distribution of the top-performing
value heads. Notably, the best-performing heads are not
necessarily from the final Transformer layers. This obser-
vation implies that forwarding inputs through the upper
layers may not be required for constructing effective re-
trieval embeddings, serving as a key motivation for our
early exit strategy described in the previous section.

To create a universal embedding that is useful for a wide
range of tasks, we do additional experiments to iden-
tify heads that can effectively represent complex input
patterns. Specifically, we create a synthetic key-value re-
trieval task, which involves embedding multiple sentences
of the format “The value corresponding to the id {key} is
{value}.” within the WikiText (Merity et al., 2016) corpus,
where keys and values are random 10-character ASCII
strings.

We selected the top-performing embeddings for each synthetic dataset after evaluating 500 samples each. We highlight that
although head selection is based on relatively short synthetic data (8k tokens), the benefits extrapolate to longer contexts
involving millions of tokens.

Combining multiple heads. After identifying the top-performing heads, we combine their embeddings to create a single,
token-level embedding. In our preliminary experiments, we observed that using an average of retrieval scores obtained from
different heads often improves final retrieval performance. Accordingly, we concatenate the gathered embeddings after
normalizing them:

ecomb = concat

({
ei
||ei||

, i ∈ selected_heads
})

This approach ensures that performing a cosine similarity search using the resulting embedding is mathematically equivalent
to independently computing cosine similarity scores for each head and then averaging them.

C.2. Evaluating Retrieval Heads and Embeddings

Dataset preparation. To evaluate the embeddings, we constructed a synthetic dataset based on multi-hop question answering.
In this setup, we embedded documents from the HotPotQA dataset (Yang et al., 2018) at random positions within a long text
corpus derived from the WikiText dataset (Merity et al., 2016). Each question was appended at the end of the context, and
token-level labels were created, where tokens from the golden documents were marked as ground truth. All samples were
designed to be 8k tokens long, which is within the context window of the Mistral-7B-Instruct-v0.2 model.

Embedding extraction. To simulate long-context scenarios where full attention computation is infeasible due to compu-
tational or memory constraints, we employed a recurrent chunk forwarding method based on H2O (Zhang et al., 2023b),
elaborated in Section 2.1. For attention, we compute the retrieval scores using the dot product between query states (Q) and
the key states (K) without applying positional encoding. For all other embeddings, we compute the significance scores using
cosine similarity between question embeddings and context embeddings, followed by max-pooling over question tokens.
Additionally, retrieval scores for each context token were smoothed by mean-pooling with 20 neighboring tokens.

Performance measurement. Retrieval performance was quantified using the Mean Normalized Rank (MNR), which is
calculated as the average normalized rank of the golden tokens. Lower scores correspond to higher performance, as the
golden tokens have a high rank.

MNR =
1

len(gold_doc)

∑
t∈gold_doc

rank(t)

num_tokens

9

Compress, Gather, and Recompute: REFORMing Long-Context Processing in Transformers

C.3. Multimodal Evaluations

Baseline details. In the multi-modal experiments, we evaluate the model performance using recurrence-based methods only,
as the codebase for InfLLM only supports text-based models. For InfiniPot, the NuC (novelty under compression) score
cannot be utilized for cache compression for multi-modal models because the vision tokens do not output a logit. Therefore,
we only apply the CaP (catalyst prompt) score for the InfiniPot baseline in multi-modal experiments.

C.4. Comparison against RAG

Experiment setup. We follow the setup in OP-RAG (Yu et al., 2024) for the RAG experiments, segmenting the inputs
to 128-token chunks and preserving the order of the chunks instead of rearranging them according to the retrieval scores.
We use Mistral-NeMo-Instruct-2407 as the base LLM. We use BM25 (Robertson et al., 1995) as the sparse retriever, and
bge-large-en-v1.5 (Xiao et al., 2023b) as the dense retriever. For each sample, 8k tokens are retrieved in total, matching the
KV size with our approach to ensure fair comparison.

C.5. Efficiency Measurements

Experiment setup. We measure the average inference time and peak memory usage for generating 10 tokens conditioned
on 256k tokens. All measurements are made on a single H100 GPU, and we apply Flash Attention 2 (Dao, 2024) for all
measurements. We further elaborate the experiment setup for InfLLM, as the inference speed and memory consumption
can largely vary depending on the configuration. We use the default configuration provided in their GitHub repository,
while modifying the number of retrieved blocks to keep 32k active tokens in the cache. The maximum number of blocks
cached in GPU was set to be the twice as large as the number of retrieved blocks, following the convention in their official
configuration file.

C.6. Embedding Construction and Similarity Search for REFORM

Embedding head selection. We construct the context embeddings by combining four QKV embeddings, where two heads
are identified using the pattern matching dataset and the other two are identified using the multi-hop QA dataset. To balance
between performance and efficiency gains, we select the top-performing heads from layers with depth under 70% for pattern
matching heads. See Appendix D.6 for a more detailed discussion.

For Mistral-NeMo-Instruct-2407, the following heads are used: Query head 9 at layer 15, Value head 5 at layer 19, Value
head 0 at layer 27, Value head 7 at layer 27.

For Qwen2.5-7B-Instruct, the following heads are used: Value head 3 at layer 7, Key head 0 at layer 14, Value head 3 at
layer 14, Value head 0 at layer 19.

For Qwen2.5-Coder-1.5B-Instruct, the following heads are used: Query head 3 at layer 8, Value head 1 at layer 11, Key
head 0 at layer 14, Value head 0 at layer 15.

For Qwen2.5-Coder-7B-Instruct, the following heads are used: Value head 2 at layer 13, Key head 0 at layer 14, Value head
3 at layer 14, Query head 4 at layer 14.

For Pixtral-12B-2409, the following heads are used: Value head 3 at layer 10, Value head 5 at layer 19, Value head 0 at layer
27, Value head 7 at layer 27.

Similarity search. REFORM performs a cosine similarity search between each token in the query (the final part of the
input) and the remaining tokens. For better precision in identifying the relevant inputs, we remove the special tokens and the
generation prefix (e.g. ‘the answer is’) when computing the similarity scores.

10

Compress, Gather, and Recompute: REFORMing Long-Context Processing in Transformers

D. Additional Results
This section further demonstrates the performance of our method across diverse tasks. In Appendix D.1, we begin by
showcasing the precise retrieval ability of our approach using a needle-in-a-haystack benchmark. In Appendix D.2, we
test REFORM’s performance on more realistic tasks including∞-Bench (Zhang et al., 2024) and RepoEval (Zhang et al.,
2023a), as well as highlighting the flexibility of our approach by evaluating it on multi-modal benchmarks. In Appendix D.3,
we compare our approach to retrieval-augmented generation, an emerging direction for handling long inputs. Then, we
ablate on the key components and analyze the efficiency of our approach in Appendix D.4. In Appendix D.5, we highlight
the efficiency benefits of REFORM.

Experimental setup and baselines. Throughout the paper, we mainly compare our approach against training-free context
extrapolation methods, with both recurrence-based and random-access approaches. Specifically, we compare our method
against StreamingLLM (Xiao et al., 2023a), TOVA (Oren et al., 2024), H2O (Zhang et al., 2023b), InfiniPot (Kim et al.,
2024), and InfLLM (Xiao et al., 2024a). We also include a truncation baseline, which simply drops the middle part of the
input. For H2O, we restrict attention score computations to the last 128 tokens of each chunk for efficient implementation.

For all text-based experiments, we use Mistral-NeMo-Instruct-2407 (Jiang et al., 2023) and Qwen2.5-7B-Instruct (Yang
et al., 2024) models. For code completion experiments and multimodal experiments, we use Qwen2.5-Coder-1.5B/7B (Hui
et al., 2024) models and Pixtral-12B-2409 (Agrawal et al., 2024), respectively. All recurrent baselines operate with a KV
cache budget and chunk size of 32k tokens, and InfLLM also uses 32k active KV cache budget. We always keep the initial
and recent 256 tokens in cache for all baselines and REFORM to maintain the coherency of the text. For REFORM, we use
a recomputation budget of 8k tokens for Mistral-Nemo-Instruct-2407 and 16k tokens for all other models. We provide more
details in Appendix C.2.

D.1. Needle-In-A-Haystack Evaluation

32k 64k 128k 256k 512k 1M
Context Length

10%
20%
30%
40%
50%
60%
70%
80%
90%

Ne
ed

le
 D

ep
th

0

20

40

60

80

100

Figure 3. Needle-In-A-Haystack Evaluation. We vi-
sualize the retrieval accuracy of Qwen2.5-7B-Instruct
at different depth and context lengths. Performance is
averaged over 20 samples.

To evaluate the precise retrieval performance of our approach, we em-
ploy the Needle-in-a-Haystack (NIAH) benchmark (gkamradt, 2023).
In this task, a specific "needle" sentence (“The best thing to do in San
Francisco is eat a sandwich and sit in Dolores Park on a sunny day”)
is embedded within various depths of irrelevant context consisting of
diverse essays by Paul Graham. The model must correctly answer
the question: “What is the best thing to do in San Francisco?” For
evaluation, we consider a response to be correct if it contains all three
key phrases: “eat a sandwich”, “sit in Dolores Park”, and “a sunny
day.”

In Figure 3, we measure the performance of our method at differ-
ent context lengths and needle depths. Our method demonstrates
perfect performance across all setups up to 1M tokens, highlighting
our method’s robustness in handling extremely long contexts while
maintaining precise retrieval performance.

D.2. Performance on∞-bench, RepoEval, and Multi-Modal Evaluations

In this section, we further evaluate the performance on more diverse long context handling tasks. Specifically, we evaluate
the performance of REFORM on∞-bench (Zhang et al., 2024), a more realistic long-context benchmark including tasks
derived from long books and dialogues, and RepoEval (Zhang et al., 2023a), a repository-level code completion benchmark,
to demonstrate that REFORM is useful in realistic tasks. Furthermore, we highlight the broad applicability of REFORM by
demonstrating its performance on a multi-modal benchmark, MM-NIAH (Wang et al., 2024a).

For∞-bench, we evaluate both Mistral-Nemo-Instruct-2407 and Qwen2.5-7B-Instruct models. For RepoEval, we perform
evaluation using code-specific models, namely Qwen2.5-Coder-1.5B/7B-Instruct (Hui et al., 2024). For each sample, we
provide the entire repository as the context except for the file that is being completed for the given sample. We report the
edit similarity (ES) score as the evaluation metric. Finally for multi-modal evaluations, we use Pixtral-12B-2409 (Agrawal
et al., 2024).

11

Compress, Gather, and Recompute: REFORMing Long-Context Processing in Transformers

Table 3. Evaluation on ∞-Bench. We evaluate each method on more realistic datasets from ∞-Bench (Zhang et al., 2024) ranging from
long text summarization (En.Sum), question answering from long documents (En.QA, En.MC) and long dialogue understanding (En.Dia).
The best values are highlighted in bold.

En.Sum En.QA En.MC En.Dia Avg.

Mistral-Nemo-Instruct-2407

Truncation 13.7 16.0 51.1 11.5 23.1
StreamingLLM 12.5 12.6 45.9 6.5 19.3
TOVA 12.3 13.8 47.2 8.0 20.3
H2O 14.2 17.6 49.3 6.0 21.8
InfiniPot 11.9 17.1 52.0 7.0 22.0
InfLLM 16.9 17.4 58.1 7.0 24.8
REFORM (Ours) 18.2 18.0 70.3 18.5 31.2

Qwen2.5-7B-Instruct

Truncation 29.0 13.3 43.2 15.0 25.1
StreamingLLM 29.2 8.6 52.4 14.5 26.2
TOVA 29.4 8.6 56.8 15.0 27.4
H2O 31.0 11.0 56.3 15.5 28.5
InfiniPot 30.6 11.3 59.0 17.0 29.4
InfLLM 27.6 9.6 38.0 12.0 21.8
REFORM (Ours) 27.8 16.5 61.6 21.5 31.9

Table 4. Evaluation on RepoEval and MM-NIAH. For RepoEval, we report the edit similarity (ES) score on RepoEval api-level
completion task and line-level completion task with 1.5B and 7B models. For MM-NIAH, we report normalized performance across
input lengths to ensure equal contribution from each context length range. We do not run multi-modal evaluation for InfLLM, as its
implementation only supports text-based models. Best results are in bold.

Method RepoEval MM-NIAH

1.5B API 1.5B Line 7B API 7B Line Retrieval Counting Reasoning Avg.

Truncate 54.8 63.9 59.2 59.5 72.2 18.7 51.2 47.4
StreamingLLM 55.0 62.7 59.9 58.4 71.9 17.8 49.8 46.5
TOVA 54.7 62.2 59.7 59.8 82.9 18.8 54.1 52.0
H2O 55.1 63.4 61.2 59.6 83.3 18.9 53.5 51.9
InfiniPot 59.4 68.4 66.2 63.8 85.4 18.8 54.7 53.0
InfLLM 61.8 66.8 64.3 66.3 N/A N/A N/A N/A
REFORM (Ours) 65.3 72.4 68.7 69.4 89.2 22.0 61.3 57.5

As shown in Table 3 and Table 4, REFORM consistently outperforms all baselines in all three benchmarks. This highlights
REFORM’s superior performance on realistic tasks, and its flexibility to handle diverse inputs, even across modalities.

D.3. Comparison to Retrieval Augmented Generation

We now compare REFORM to Retrieval Augmented Generation (RAG), a popular method for processing long inputs (Li
et al., 2024b; Yu et al., 2024). RAG frameworks segment inputs into smaller chunks, which are independently encoded,
and use external retrieval models to identify relevant segments. While effective in some scenarios, RAG suffers from key
limitations.

First, REFORM avoids the context fragmentation inherent in RAG by conditioning retrieval embeddings on the entire input,
ensuring global context continuity and allowing for cohesive processing of long contexts. Second, while RAG frameworks
are constrained by the training domain of the retrieval model—requiring domain-specific retraining or advanced adaptations
for different domains and modalities—REFORM is inherently flexible and can seamlessly handle diverse domains, including
multi-modal applications, without requiring such modifications. Finally, REFORM integrates retrieval functionality directly
into the model, eliminating the need for external retrieval models.

In Table 5, we compare the performance of REFORM against RAG approaches using sparse and dense retrievers on the
needle-in-a-haystack datasets from RULER at 300k contexts. We provide a more detailed experiment setup in Appendix C.4.

12

Compress, Gather, and Recompute: REFORMing Long-Context Processing in Transformers

Table 5. Comparison with RAG. We compare the performance of RAG methods and REFORM on four groups of needle-in-a-haystack
datasets (single, multikey, multivalue, and multiquery) from RULER at 300k contexts, using Mistral-NeMo-Instruct-2407 model.

Single M.Key M.Value M.Query

Sparse RAG 86.7 77.3 88.5 90.0
Dense RAG 87.3 57.3 82.5 78.0

REFORM 99.3 93.3 98.5 100.0
+ RAG 99.3 94.7 99.0 100.0

REFORM consistently outperforms both approaches in all evaluations, demonstrating its robustness and efficiency. Fur-
thermore, we explore a hybrid approach by combining REFORM with a dense retriever, blending REFORM ’s token-level
significance scores with retrieval scores using a weighted sum (25% for the dense retriever, 75% for REFORM). This
approach performs even better, highlighting the complementary strengths of REFORM and RAG.

D.4. Ablation Studies

Table 6. Ablation study and efficiency analysis. (a) We report the average performance on RULER 300k and BABILong 512k datasets
using Mistral-NeMo-Instruct-2407 model. (b) We compare the inference time and peak memory usage required for generating 10 tokens
conditioned on 256k inputs. All measurements are made with the Mistral-NeMo-Instruct-2407 model on a single H100 GPU, and are
averaged over 10 samples. The best values are highlighted in bold.

(a) Ablation study.

RULER BABILong

REFORM (Ours) 84.6 47.6

w/ StreamingLLM 82.7 44.6
w/ TOVA 81.4 46.8

w/ Random heads 80.3 43.0
w/ Worst heads 44.7 22.8

w/ Kernel size 5 18.4 36.8

(b) Efficiency Analysis.

Time (s) Memory (GB)

StreamingLLM 36.58 37.34
H2O 41.33 37.85
TOVA 39.46 37.06
InfiniPot 40.90 37.06
InfLLM 129.14 51.62
REFORM (Ours) 27.24 35.00

We conduct an ablation study to evaluate the key components contributing to the effectiveness of our approach. Specifically,
we analyze the impact of (1) the choice of the recurrent compression method, (2) the selection of attention heads used for
retrieval, and (3) size of the maxpool kernel applied during the gather stage.

Choice of recurrent compression method. To demonstrate the generality of our approach, we replace our recurrent
compression component with alternative methods, namely StreamingLLM and TOVA. While H2O yields the best results,
Table 6a shows that other compression methods achieve comparable performance. This further highlights the flexibility of
our framework and its potential for even higher performance with more advanced compression techniques.

Choice of attention heads. To examine the importance of attention head selection for embedding construction, we replace
the selected heads with (1) four randomly chosen heads and (2) four worst heads, identified based on poor performance on
both synthetic datasets used for head selection. As shown in Table 6a, the heads selected by our mechanism achieve the
best performance, demonstrating its effectiveness. Random heads generally show lower but reasonable performance. In
contrast, using bad heads results in a substantial performance drop on both benchmarks, underscoring the importance of
proper attention head selection to ensure effective embedding construction.

Pooling kernel size. In the on-demand cache recomputation phase, we apply max-pooling over 129-token windows to
smooth token-level similarity scores. Reducing the pooling size to 5 tokens significantly degrades performance, highlighting
the importance of pooling to maintain contextual information during the recomputation.

D.5. Efficiency Analysis

To highlight the efficiency benefits of our approach, we measure the peak memory usage and inference time required for
processing a long input. We outline the results in Table 6b. InfLLM suffers from high inference time due to frequent
memory transfer between CPU and GPU and requires large memory to store the cache. Recurrent methods offer faster

13

Compress, Gather, and Recompute: REFORMing Long-Context Processing in Transformers

inference at lower memory costs, enjoying the benefits of using a fixed-size KV cache. Our approach shows even lower
latency and memory requirements compared to the recurrent baselines thanks to the early exit, which saves computation as
well as memory by removing the need to keep the KV cache for the upper layers.

D.6. Embedding Head Identification for Pattern Matching Task

Table 7. Comparing different LLM embeddings. Best-3 MNR scores (lower is better) corresponding to the hidden states and the
attention states, measured by Mistral-Nemo-Instruct-2407. Scores are averaged over 500 synthetic pattern matching examples.

Type Dim. Top-1 Top-2 Top-3 Avg.

Hidden States 5120 1.72 1.88 2.10 1.90
Attention 160 1.24 1.36 1.37 1.32
Query 160 1.51 1.56 1.57 1.55
Key 160 1.53 1.65 1.72 1.63
Value 160 0.93 0.95 1.13 1.00

In this section, we present the distribution of MNR scores measured with our pattern matching dataset, similarly to what
we presented in Table 2 and Figure 2. The corresponding results for pattern matching dataset is presented in Table 7 and
Figure 4. The retrieval performance of QKV heads often outperform that of the hidden states, similarly to the case of
multi-hop QA datasets.

Interestingly, the distribution of best-performing heads show a different pattern compared to the milti-hop QA dataset, and
the heads at lower layers and middle-to-upper layers show the highest performance. This suggests that different heads
show different characteristics depending on the task. It also motivates our approach of using the embeddings identified
by the different tasks as it yields more general representations and makes similarity-based retrieval more accurate. It is
also important to note that while the upper layer has more good-performing heads, these heads can be also identified in
the mid-lower layers (e.g., Layer 16, Head 1). To balance the performance with the efficiency gains provided by early-exit
strategy, we select the best-performing pattern-matching heads from layers under 70% of depth. This strategy ensures that
we utilize the high-performing heads as well as enjoying the computation savings from early exit.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
Layer

0
1
2
3
4
5
6
7

Va
lu

e
He

ad

0

2

4

6

8

Figure 4. MNR Scores for Value Heads. The distribution of the MNR scores (lower is better) across value states of different attention
heads, measured by Mistral-Nemo-Instruct-2407 model over 500 synthetic pattern matching examples. Recurrent chunked forwarding
with 256-token heavy hitter budget was employed for computing the embeddings.

E. Broader impacts
We believe that the high capability and flexibility will aid everyday use of large foundation models, by extending the model
capabilities to efficiently and effectively handle very long contexts. On the other hand, such capabilities of REFORM could
potentially enable malicious parties to analyze vast amount of data, enhancing the capabilities of autonomous systems that
could be used for manipulation or misinformation.

F. License information for datasets and models
Here, we provide the license for all datasets and models used in our experiments. Apache 2.0 license is applied for Babilong,
RULER, Mistral-Nemo-Instruct-2407, Qwen2.5-Coder family, and Pixtral-12B-2409. BSD license is also applied for

14

Compress, Gather, and Recompute: REFORMing Long-Context Processing in Transformers

some parts of Babilong dataset. MIT license is applied to Needle-in-a-Haystack, InfiniteBench, RepoEval, WikiText, and
bge-large-en-v1.5. CC BY-SA 4.0 is applied for HotPotQA.

15

