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ABSTRACT

Reasoning models often exhibit overthinking, characterized by redundant reason-
ing steps. We identify internal bias elicited by the input question as a key trigger
of such behavior. Upon encountering a problem, the model immediately forms
a preliminary guess about the answer, which we term an internal bias since it
may not be explicitly generated, and it arises without systematic reasoning. When
this guess conflicts with its subsequent reasoning, the model tends to engage in
excessive reflection, resulting in wasted computation. We validate the associa-
tion between internal bias and overthinking across multiple models and diverse
reasoning tasks. To demonstrate the causal relationship more rigorously, we con-
duct two counterfactual interventions, showing that removing the input question
after the model reduces the redundant reasoning across various complex reason-
ing tasks, and manually injecting bias affects overthinking accordingly. Further
interpretability experiments suggest that excessive attention to the input question
serves as a key mechanism through which internal bias influences subsequent rea-
soning trajectories. Finally, we evaluated several methods aimed at mitigating
overthinking, yet the influence of internal bias persisted under all conditions.

1 INTRODUCTION

Current o1/R1-type reasoning models (OpenAI et al., 2024; DeepSeek-AI et al., 2025a) have demon-
strated outstanding performance with their ability to spontaneously reflect and correct errors (Xu
et al., 2025). However, the reasoning models tend to overthink (Sui et al., 2025), which is character-
ized by behavioral patterns such as repeatedly reaching the same conclusion without contributing to
the final answer. This redundant thinking results in significant waste in computation.

Despite efforts in reducing overthinking through training (Chen et al., 2025b; Su et al., 2025; Team
et al., 2025; Shen et al., 2025; Arora and Zanette, 2025) or manual intervention during decoding
(Chen et al., 2025a; Zhang et al., 2025a; Ma et al., 2025), an important question remains underex-
plored: what drives the reasoning models to exhibit such a overthinking tendency ?

We identify the internal bias of reasoning models as one important reason for their overthinking.
Our hypothesis is twofold: first, upon encountering a problem, the model forms a preliminary and
intuitive guess, before engaging in formal reasoning; second, when this initial guess conflicts with
the outcome of deliberate reasoning, the model is more likely to enter a state of excessive reflection.
We refer to this guess as an internal bias, to emphasize that it may not be explicitly output by the
model, and is not derived from rigorous reasoning but originates solely from the input question. This
entire process is illustrated in Figure 1 1.

Extensive statistical experiments across different model families (DeepSeek (DeepSeek-AI et al.,
2025b), Qwen (Qwen et al., 2025)), model sizes (14B, 32B and 671B), downstream tasks (character
operations, logical reasoning and mathematical reasoning) and questioning languages (English and
Chinese) consistently demonstrate that internal bias has a widespread influence on reasoning be-
havior. Specifically, the greater a model’s internal bias deviates from its reasoning result, the more
likely it is to engage in excessive reflection. In extreme cases, this tendency can even lead to the
parroting behavior (Xu et al., 2022).

1All responses in these examples are generated by DeepSeek-R1 (2025/01/20). The complete model re-
sponses and details of internal bias detection can be found in Appendix A.1 and A.2.
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Figure 1: Two examples illustrating the existence of internal bias. Green texts denote correct an-
swers derived from reasoning, while the navy-colored portions show the influence of internal bias. In
the left example (a simpler case), the model develops an internal bias of “2”, conflicting with the rea-
soning result “3”. In the more complex example (from AIME 2024) on the right, the model predicts
the answer to be approximately “20”, significantly deviating from the correct value “211” obtained
via reasoning. For both examples, the reasoning process are manually separated into chunks for bet-
ter illustration, where the model obtains the correct answer in the first chunk, but internal bias still
triggers later reflection. The number in the bottom-right corner of each chunk indicates the length
of it. It is clear that the model spends much more tokens in reflection due to internal bias.

To establish a causal link between internal bias and overthinking in reasoning models, we propose
two counterfactual validations: a reasoning trajectory intervention and a bias injection. The first
intervention removes the input question after the model generates an answer during its reasoning
steps, forcing it to decide whether to continue reasoning based solely on its own past reasoning
steps, thereby preventing the reactivation of input-dependent biases. This intervention reduces re-
dundant reasoning length by 31% to 53% across both synthetic simple tasks and complex logical and
mathematical reasoning benchmarks, while largely maintaining or even improving accuracy, indicat-
ing that the reduced reasoning steps are largely redundant. The second intervention, bias injection,
deliberately manipulates the model’s internal bias through controlled training signals, demonstrating
that erroneous biases exacerbate overthinking, whereas accurate ones suppress it.

We further conducted attention analysis along the reasoning process, to further understand how
internal bias affects reasoning. Interestingly, we found that after completing a reasoning step, the
model tends to excessively focus (attention) on the question description, which may introduce its
internal bias into the decision-making process on whether further reflection is needed. This suggests
that models might implicitly compare their reasoning results with its internal bias, leading to extra
reasoning in some cases despite having already arrived at the correct answer multiple times.

Finally, we tested several existing methods for mitigating overthinking. We found that, despite
reducing average reasoning length, these methods fail to eliminate the influence of internal bias,
demonstrating its resilience in model reasoning.

Our contributions are as follows:

• Identifying internal bias as one important reason for overthinking in reasoning models, and
validate the universality of this phenomenon across various experiment settings.

• Demonstrating the causal relationship between internal bias and overthinking with rigorous
experimental evidence.

• Discovering that internal bias influences the reasoning process through the model’s exces-
sive attention on the input question.

• Testing several methods of mitigating overthinking, and revealing they are ineffective in
eliminating the influence of internal bias.
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2 RELATED WORK

2.1 MITIGATING OVERTHINKING IN REASONING MODELS

To address overthinking in reasoning models, some researchers attempt to manually terminate rea-
soning at appropriate stages (Zhang et al., 2025a; Yang et al., 2025) or even skip the reasoning steps
(Ma et al., 2025), while others rely on training with synthetically shortened reasoning chains (Chen
et al., 2025b; Su et al., 2025) or reinforcement learning with length-based rewards (Team et al., 2025;
Shen et al., 2025; Arora and Zanette, 2025). These methods focus on controlling model behavior
without explaining why overthinking occurs.

Wang et al. (2025) characterizes overthinking as frequently switching between different reasoning
thoughts. Chen et al. (2025a) introduced interventions during decoding to encourage more sustained
and coherent reasoning. Although these works reveal certain behavioral patterns associated with
overthinking, they did not identify its underlying causes.

2.2 BIAS IN LANGUAGE MODELS

Due to pre-training data and training objectives, large language models can develop internal biases
or priors that influence their behavior (Zhu and Griffiths, 2024; Minder et al., 2025). Zhang et al.
(2025b) find that models tend to produce certain “common” answers for specific types of question.
Weston and Sukhbaatar (2023) show that models can even be misled by irrelevant contextual in-
formation, highlighting the susceptibility of model behavior to input-driven biases. Furthermore,
Ameisen et al. (2025) found that language models may have separate neural pathways that lead to
a rough estimate of the answer when solving simple addition tasks. These attempts may reveal the
reason why models form a bias in the first place. In contrast, we investigate its influence in reasoning
models and identify it as one of the key factors of overthinking.

3 MEASURING INTERNAL BIAS IN REASONING MODELS

We now introduce several definitions that will form the basis for quantifying and analyzing internal
bias in the later sections.

Direct Answer As introduced in § 1, we conceptualize the model’s internal bias as its preliminary
guess to a question, formally denoted as abias = f(q; θ), where q is the input question, θ represents
the model parameters and abias denotes the biased answer. To observe this implicit guess, we force
the model to skip reasoning and immediately output an answer. We name this answer as direct
answer. Specifically, we use templates containing a no-reasoning prompt followed by the special
token </think> to indicate termination of thought. The content generated after this prompt reflects
the preliminary judgment of the model formed prior to detailed reasoning. An example of such a
template is provided below. In contrast, the final answer after full reasoning is denoted as afinal.

<｜User｜>{question}<｜Assistant｜><think>
Let me answer him without thinking more.</think>
Answer:

Internal Bias as a Distribution As in a probabilistic generation process, the generated direct
answer may also be affected by the sampling strategy, e.g. the prompt or the temperature. On the
other hand, the model’s internal bias may also exist as a distribution over possible answers rather than
a single deterministic guess. So we use ãbias to denote the internal bias distribution. To approximate
this distribution, we adopt a multi-sampling approach with different templates. Empirically, we
collect 64 direct answers for each question in our experiments, which is a better approximation
of the model’s internal bias by observing its behavior under varied conditions. All templates and
decoding details can be found in Appendix B.

Deviation Degree The internal bias of a model may deviate from its own reasoning process, and
different deviation degree may have varying effects on its behavior. We define the bias deviation
degree Dbias = dist(ãbias, afinal), where dist(·, ·) is a task-specific distance function. For tasks with
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numerical answers, we compute the mean absolute error (MAE) between the direct answers and
afinal. For tasks with categorical answers, such as multiple-choice questions, we approximate Dbias
using inconsistency rate, defined as the proportion of direct answers that differ from afinal. These
serve as approximate quantitative estimates of the gap between the model’s direct guesses and the
reasoning output.

4 IMPACT OF INTERNAL BIAS ON THE REASONING PROCESS

In this section, we take a macroscopic view of the impact of internal bias on reasoning models. Our
analysis includes the examination on the direct answer and its relation to reasoning length, as well
as the understanding of the parroting phenomenon.

4.1 SETUPS

Tasks. We design a controllable character manipulation dataset: CharCount (zh) and CharCount
(en): The model is tasked with counting how many specific letters are in a given word. To account
for linguistic variation, the dataset is split into Chinese and English subsets, based on prompting
language. More details are presented in Appendix C. We also utilize several open-source reasoning
datasets: KnowLogic (Zhan et al., 2025): A complex dataset synthesized using real-world knowl-
edge and logical reasoning rules, where each question provides four possible answers A, B, C, and
D, and more than one may be correct. AIME 2024 and AIME 2025 2: Challenging mathematical
reasoning datasets.

Models. To demonstrate the universality of internal bias, we conduct experiments across different
model families and sizes. Specifically, we select DeepSeek-R1 (DeepSeek-AI et al., 2025a), R1-
distill-Qwen-14B, and QwQ-32B (QwenTeam, 2025).

Experiment Details. For each question, we let the model to generate 64 direct answers and one
normally reasoned response. Similar to many other works (Chen et al., 2025a; Zhang et al., 2025a),
we count reflection-related keywords (e.g. “wait”) to roughly illustrate the number of the model’s
reflections. The full keyword lists are in Appendix D. All experiments were conducted on NVIDIA
RTX A6000 GPUs.

4.2 OVERALL RESULTS

Table 1: Results on CharCount (zh), KnowLogic and AIME 2024 datasets.
CharCount (zh) Acc Accdirect Llow Lhigh R∆

DeepSeek-R1 99.2% 55.8% 556.7 735.6 32.1%
QwQ-32B 92.6% 36.8% 715.6 866.0 21.0%

R1-Distill-Qwen-14B 73.3% 17.3% 944.4 1228.7 30.1%
KnowLogic Acc Accdirect Llow Lhigh R∆

DeepSeek-R1 54.0% 29.4% 2965.7 4214.3 42.1%
QwQ-32B 51.6% 29.7% 5694.7 7167.1 25.9%

R1-Distill-Qwen-14B 27.2% 24.9% 5713.8 6927.6 21.2%
AIME 2024 Acc Accdirect LLow LHigh R∆

DeepSeek-R1 76.7% 3.3% 7934.8 9764.2 23.6%
QwQ-32B 73.3% 0.0% 10239.7 13521.6 32.1%

R1-Distill-Qwen-14B 63.3% 0.0% 8882.1 12709.9 43.1%

Table 1 presents results on CharCount (zh), KnowLogic and AIME 2024 datasets, with the rest
results provided in Appendix F.1. In each table, “Acc” is the accuracy after reasoning; “Accdirect” is

2https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_
Solutions

4

https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions


216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

the accuracy of direct answers computed by majority votes; Llow and Lhigh are the average reasoning
length (number of tokens) for cases with lower and higher half of deviation degree; R∆ represents
the relative length increase of the high-deviation group compared with the low-deviation group.

Direct answer’s accuracy is relatively low. The model exhibits a high error rate in its direct
answers, indicating that it often fails to perform a correct guess, which is why we define such answers
as internal bias. The result also suggests that bias is largely detrimental in most cases, especially as
the complexity of the questions increases.

The reasoning length of the high-deviation group is longer than that of the low-deviation
group. The increase in length is at least 21.0%, and reaches 42.1% in some cases. This obser-
vation intuitively demonstrates that the degree of internal bias deviation has a significant impact on
the model’s reasoning length. The trends are consistent across all models and datasets.

4.3 FINE-GRAINED ANALYSES

To conduct a more fine-grained analysis of the impact of internal bias, we further divide the deviation
degree into four smaller intervals. Figure 2 shows the results of R1-distill-Qwen-14B on CharCount
(zh), representing tasks with the numerical answers, and QwQ-32B on KnowLogic, representing
tasks with the categorical answers. More results are presented in Appendix F.2.

Figure 2: Correlation between deviation degree and reasoning behavior. The light-colored bars
represent the full reasoning length, while the dark-colored bars indicate the position at which the
model first provides an answer. The orange line shows the number of reflection keywords. Qwen-
14B here is short for R1-distill-Qwen-14B. Appendix E describes the method used to identify the
position at which the model first provides an answer during its reasoning process.

Reasoning models may naturally engage in reflection, so even for cases with low deviation bias
(MAE< 0.5 or Inconsistency Rate < 25%), reflective behavior can still be observed following the
initial reasoning step. The main reason for this reflection may be to check whether the result is
correct. For these cases, the number of reflection keywords is usually small.

The greater the deviation of the internal bias is, the more severely the model overthinks. As
internal bias deviation increases, both the average output length and the count of reflection keywords
rise sharply, which aligns with the earlier observation that internal bias triggers overthinking. For
these thinking processes, the model tend to generate much more reflection keywords, because it is
switching between different thoughts. These steps do not involve a thorough examination of the
reasoning process but instead result primarily in increased token consumption without meaningful
self-evaluation. This trend is consistently observed across all experiments.

Internal bias rather than question complexity causes the observed trends. One might think that
more difficult questions need longer thinking. Thus we collect the first reasoning length of each
question, i.e. the length of the first complete thought that leads to an answer, which could be seen
as an indicator of the complexity of the problem. As shown in Figure 2, the first reasoning lengths
are almost the same for examples within the same task, indicating that the complexity of questions
are almost the same in different groups in the same task. Therefore, internal bias is more likely to
be the reason for overthinking.
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In extreme cases, internal bias can lead to a parroting phenomenon. “Parroting” refers to sit-
uations in which the model repeatedly generates exactly the same content, thus fails to provide a
final answer. Taking R1-Distill-Qwen-14B performing CharCount (zh) as an example, among all
parroting cases, the direct answer accuracy is only 4.4%, compared to 17.3% across all cases (Ta-
ble 1). Conversely, if we estimate MAE between the last numeric value in the model’s output and
direct answers, and split all cases into two groups based on MAE, the high-MAE group exhibits a
parroting probability of 6.6%, while the low-MAE group shows a significantly lower rate of only
2.8%, suggesting a correlation between deviation degree and the parroting behavior. This highlights
the underlying reason behind the parroting phenomenon: driven by strong internal bias, the model
engages in excessive reflection early in the reasoning process, which further reinforces its tendency
to reflect. This self-perpetuating cycle ultimately leads to repetitive output during the later stages.

5 CAUSAL EFFECTS OBSERVED THROUGH COUNTERFACTUAL
INTERVENTIONS

In this section, we employ two distinct counterfactual intervention methods to establish the causal
relationship between internal bias and overthinking in reasoning models. We use R1-Distill-Qwen-
14B model for controllable analysis.

5.1 REMOVING QUESTION FROM PROMPT

When the model first generates an answer during its reasoning steps, we immediately remove the
input question from the prompt and allow the model to continue generating without access to the
original task. This forces the model to decide solely based on its own prior reasoning trajectory
whether to engage in further reflection or terminate the thinking process. Under this intervention,
we examine whether the model reduces its reasoning length and assess how its final performance on
answering the question is affected.

We validate this on the full KnowLogic, AIME 2024, and AIME 2025 datasets, as well as random
selected 1,000-example subsets from CharCount (en) and CharCount (zh). We introduce the length
reduction ratio r = (Lori−Lrem)/(Lori−Pfirst) to measure the length reduction after the first reasoning
answer is obtained, where L denotes the output length, the subscript ori/rem denotes the original
and question-removed situation, and Pfirst denotes the position where the first reasoning answer is
obtained, i.e. where we start to remove the input question. Results are shown in Table 2.

Table 2: Results of the removing question intervention.
Dataset Accori/Accrem Lori/Lrem Pfirst r

CharCount (en) 93.8 / 93.2 541.0 / 453.3 258.8 31.1
CharCount (zh) 73.4 / 72.9 1081.9 / 782.5 245.1 35.8

KnowLogic 27.2 / 29.3 6320.7 / 5857.5 4921.8 33.1
AIME 2024 63.3 / 66.7 10796.0 / 7706.1 5022.7 53.5
AIME 2025 36.7 / 46.7 13428.9 / 10303.0 4323.4 34.3

Removing question consistently leads to a reduction in redundant reasoning. Across all
datasets, removing the question leads to a reduction ratio r ranging from 31.1% to 53.5%, causally
confirming that the model’s excessive focus on the question section is a key driver of overthinking.

Removing question leads to better performance in complex tasks. We observe performance im-
provements on complex datasets. Case studies reveal that these improvements are largely attributed
to previously parroting behaviors now being resolved correctly, which, as discussed earlier in § 4.3,
are also strongly linked to the influence of internal bias. The observed accuracy decrease in simpler
tasks is slight and likely stems from the short reasoning chains, which may be more easily disrupted
by our coarse-grained intervention. These indicate that the reduced reasoning length primarily con-
sists of redundant thoughts that do not contribute to the model’s final answer.
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5.2 BIAS INJECTION

We further conduct a bias injection experiment, deliberately manipulating the model’s internal bias
toward specific questions and examine whether its reasoning behavior changes accordingly.

Specifically, we select 500 samples each with the the lowest and highest deviation degree (Dbias)
from the CharCount (zh) dataset. Based on this, we design a special bias injection method: we
construct 50 rephrased declarative statements for each sample and then fine-tune the model on these
statements to perform a sample-wise bias injection, and then test on the exact same sample. We
design four training regimes: a) Low2Wrong: construct wrong declarative statements with the lowest
Dbias samples; b) High2Correct: construct correct statements with the highest Dbias samples; c)
Random2Correct: construct a random correct statement that differs from the testing sample; d)
Random2Wrong: construct a random wrong statement that differs from the testing sample. The
last two serve as baselines to rule out influence of the bias injection training itself. Example of the
declarative statement, additional data and training details are provided in Appendix H.

Table 3: Bias injection results on sub-sampled Char-
Count(zh) dataset.

Setting LOW HIGH

Length Acc Length Acc

Random2Wrong 355.5 89.5% - -
Low2Wrong 454.9 83.4% - -

Random2Correct - - 600.8 67.0%
High2Correct - - 412.1 76.6%

As shown in Table 3, compared
to the Random baselines, we ob-
serve that in the Low2Wrong set-
ting, the reasoning length increases
from 355.5 to 454.9, whereas in
the High2Correct setting it decreases
from 600.8 to 412.1. These changes
indicate that injecting incorrect bi-
ases makes the model more prone
to reflection, while injecting correct
ones reduces unnecessary delibera-
tion, providing strong evidence for
a causal relationship between the in-
ternal bias and the model’s reflective
reasoning patterns.

6 INTERPRETABILITY ANALYSIS

As shown in Figure 1, although with the existence of internal bias, LLMs can indeed successfully
derive the correct answer with its own reasoning. An interesting question is: why the model keeps the
internal bias in mind even after long steps of reasoning ? We observe that the model pays excessive
attention to the input question when deciding whether to engage in further reflection. Intuitively,
the model may be referring the question to decide whether the current reasoning is correct. But this
heightened attention also reactivates the internal bias, influencing the decision to reflect. We now
examine attention behavior through both an illustrative example and quantitative analysis.

6.1 THE “STRAWBERRY” EXAMPLE

As a direct illustration, we revisit the “strawberry” example from Figure 1. We compare the attention
score for the context tokens at two different steps during the reasoning: the answer point, where the
model generates an intermediate result; and the reflection point, where the model decides whether
to perform a further reflection.

The visualization in Figure 3 reveals a clear shift in attention at the reflection point: Compared to the
the answer point, the model focuses more heavily on the question part (the first segment/paragraph),
its own paraphrasing of the question, and earlier superficial reasoning steps with reflection tokens
(the second segment), while reducing its attention to the core reasoning process that actually obtains
the answer (the third segment) when deciding whether a reflection token should be output or not.

6.2 STATISTICAL RESULTS ON CHARCOUNT

To further confirm the model’s excessive focus on the input question, we conduct a statistical anal-
ysis. We categorize all preceding tokens into three distinct categories: (1) Question, which refers to

7
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<｜begin▁of▁sentence｜> <｜User｜> How many letters ' r ' are there in word ' str aw berry '? Answer

directly with an Arabic number . <｜Assistant｜> <think>

Okay , so I need to figure out how many times the letter ' r ' appears in the word ' str aw berry '. Let me

start by writing out the word to visualize it better : S -T -R -A -W -B -E -R -R -Y . Wait , no , that 's not

quite right . Let me make sure I spell it correctly . S -T -R -A -W -B -E -R -R -Y ? Hmm , actually , I think I

might be adding an extra ' r ' there . Let me check again .

The word is ' str aw berry '. Breaking it down letter by letter : S , T , R , A , W , B , E , R , R , Y . Wait

, that 's 1 0 letters . But I 'm trying to count the ' r 's . So starting from the beginning : S ( no ), T ( no ),

R ( yes , that 's one ), A ( no ), W ( no ), B ( no ), E ( no ), R ( that 's two ), R ( that 's three ), Y ( no

). So I count  three 'r's.

Wait, but I think I might be making a mistake here...

Figure 3: The “strawberry” example as an illustration of abnormally high attention scores on ques-
tion part when a reflection token is about to be output. Color intensity is used to represent the ratio
of attention scores assigned to each preceding tokens at the following two steps: generating “three”
and generating “Wait”. Darker red indicates a higher relative attention at the reflection point when
“Wait” is generated, while darker blue reflects higher relative attention when generating “three”.

the tokens in the input question. (2) Mid_Results, which corresponds to tokens representing inter-
mediate counting results, e.g. “3” or “three”. (3) Others. For a token at position p, we can compute
the average normalized score scp it assigns to previous tokens of category c, and further aggregate
them across groups G ∈ {Reflection,Other}:

scp =
1

Nc

∑
i<p,i∈c

aip
1/p

, Sc
G =

1

|G|
∑
p∈G

scp

where Nc is the number of tokens that belongs to category c preceding to token p, and aip is the
attention weight from token p to i. Dividing the by 1/p normalizes for positional imbalances, as
it corresponds to the uniform attention baseline, enabling fair comparison across different token
positions. The group-level score Sc

G quantifies the average extent to which tokens in group G attend
to category c. All calculations exclude the first three tokens of the sequences to exclude the attention
sink phenomenon (Xiao et al., 2024).

(a) (b)

Figure 4: (a) Group-level scores Sc
G with averaged attention scores from layers 21 to 30. Similar

visualizations for other layers are in Appendix G and the trends are the same. (b) The ratio of
Sc

Reflection/S
c
Other across all layers.

Figure 4(a) shows the model generally pays low attention to the question section during most of
the reasoning process, while upon reflections it exhibits a sharp increase to more than four times its
original level. Although attention to previous intermediate results also increases, the proportion of
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attention allocated to the question section still rises significantly. Figure 4(b) shows the layer-wise
ratio of group-level scores Sc

G for tokens in reflection steps versus other tokens. A sharp increase in
attention to question tokens occurs in the middle-to-later layers, where the model engages in active
reasoning (Zhao et al., 2024; Wendler et al., 2024). These attention patterns may reactivate internal
bias during the model’s decision on whether to initiate further reflection and lead to overthinking.

7 MITIGATION TRIALS

Finally, we apply some existing techniques for mitigating overthinking and evaluate whether they
can also reduce the influence of internal bias.

We reproduce two mainstream categories of approaches: (1) training-based reasoning optimiza-
tion, exemplified by First-Correct Solutions with Reflection (denoted as FCS) (Chen et al., 2025b),
which focuses on constructing high-quality short reasoning data and refining the model through
post-training via Supervised Fine-Tuning (SFT) or Direct Preference Optimization (DPO); and (2)
decoding-based reasoning interventions, including SEAL (Chen et al., 2025a), which steers the rea-
soning trajectory by intervening hidden states during decoding, and PROBE (Zhang et al., 2025a),
which probes internal representations and determines an appropriate time to manully perform early
stopping. We implement these methods on R1-Distill-Qwen-14B model (denoted as Qwen-14B)
and the 1000-sample subset of CharCount (zh) dataset; and additionally reproduce the best per-
formed method FCSSFT on AIME 2024. The implement details are in Appendix I. The results are
summarized in Table 4, where the symbols follow the same convention as in Table 1, and include a
“Remove” entry corresponding to the question-removal intervention (§ 5.1) as a reference.

Table 4: Mitigation trials results in CharCount and
FCSSFT results in AIME2024.

CharCount Acc Llow Lhigh R∆

Qwen-14B 73.4% 934.7 1229.1 31.5%
+ Remove 72.9% 727.3 837.8 15.2%

+ FCSDPO 76.7% 555.3 812.8 46.3%
+ FCSSFT 78.9% 451.3 572.0 26.7%
+ SEAL 77.4% 581.3 805.1 38.5%
+ PROBE 73.1% 702.6 912.5 29.9%
AIME2024 Acc Llow Lhigh R∆

Qwen-14B 63.3% 8882.1 12709.9 43.1%
+ FCSSFT 50.0% 7204.6 9718.1 34.9%

On CharCount dataset, existing meth-
ods perform well in shortening reason-
ing trajectories, yet show minimal effec-
tiveness in mitigating internal bias, and
in some cases even exacerbating its in-
fluence, as evidenced by the compara-
ble or even larger R∆. As a reference,
question-removal can achieve an R∆ of
only 15.2%. The training data for these
methods are drawn from the CharCount
dataset itself, which may contribute to the
observed performance improvement. No-
tably, the simplest SFT method achieves
the highest accuracy and best R∆ among
existing methods. However, on the more
complex task AIME 2024, it suffers a sig-
nificant drop in accuracy, indicating that
shortened reasoning chains may impair
the model’s reasoning ability for complex problems, which aligns with the findings of Chen et al.
(2025b). These results suggest that existing methods achieve shorter reasoning traces only superfi-
cially, sometimes even harming the model’s reasoning capability. Crucially, the underlying reflection
pattern driven by internal bias continues to profoundly affect reasoning efficiency.

8 CONCLUSION

We identify internal bias as a key reason for overthinking in reasoning models, and demonstrate this
relevance across different experimental settings. Conterfactual bias intervention and bias injection
results provide rigorous evidence of the causal link between internal bias and overthinking. Further
interpretability analyses reveal that excessive attention to the question during reflection likely reac-
tivates the internal bias, leading to redundant reflections even after long reasoning chains. Finally,
we find that existing overthinking mitigation methods may fail to eliminate the influence of internal
bias, highlighting its resilience and the importance of addressing this issue. Our findings call for a
shift in how we understand reasoning models, and opens new directions for building more efficient,
self-aware and truly adaptive reasoning systems.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Emmanuel Ameisen, Jack Lindsey, Adam Pearce, Wes Gurnee, Nicholas L. Turner, Brian Chen,
Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar,
Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan,
Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman,
Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. Circuit tracing: Revealing
computational graphs in language models. Transformer Circuits Thread, 2025. URL https:
//transformer-circuits.pub/2025/attribution-graphs/methods.html.

Daman Arora and Andrea Zanette. Training language models to reason efficiently, 2025. URL
https://arxiv.org/abs/2502.04463.

Runjin Chen, Zhenyu Zhang, Junyuan Hong, Souvik Kundu, and Zhangyang Wang. Seal: Steerable
reasoning calibration of large language models for free, 2025a. URL https://arxiv.org/
abs/2504.07986.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu. Do not
think that much for 2+3=? on the overthinking of o1-like llms, 2025b. URL https://arxiv.
org/abs/2412.21187.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025a. URL https://arxiv.org/abs/2501.12948.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi
Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li,
Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang,
Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun
Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan

10

https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://arxiv.org/abs/2502.04463
https://arxiv.org/abs/2504.07986
https://arxiv.org/abs/2504.07986
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2501.12948


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J.
Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang,
Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng
Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shut-
ing Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao,
Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue
Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xi-
aokang Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin
Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang
Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui
Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying
Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu,
Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan
Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F.
Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan, Zhihong Shao,
Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan. Deepseek-v3 technical report, 2025b. URL
https://arxiv.org/abs/2412.19437.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Tianjun Zhang, Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing
o1-preview with a 1.5b model by scaling rl, 2025. Notion Blog.

Wenjie Ma, Jingxuan He, Charlie Snell, Tyler Griggs, Sewon Min, and Matei Zaharia. Reasoning
models can be effective without thinking, 2025. URL https://arxiv.org/abs/2504.
09858.

Julian Minder, Kevin Du, Niklas Stoehr, Giovanni Monea, Chris Wendler, Robert West, and
Ryan Cotterell. Controllable context sensitivity and the knob behind it, 2025. URL https:
//arxiv.org/abs/2411.07404.

OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden
Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko,
Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally
Bennett, Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich,
Andrey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghor-
bani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao Hao,
Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lugaresi, Cary
Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong Zhang,
Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts, Daniel
Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely, David Robinson,
Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund Wong, Eliz-
abeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan Wang,
Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred
von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace
Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart An-
drin, Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichan,
Ian O’Connell, Ian Osband, Ignasi Clavera Gilaberte, Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever,
Irina Kofman, Jakub Pachocki, James Lennon, Jason Wei, Jean Harb, Jerry Twore, Jiacheng Feng,
Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quiñonero Candela, Joe Palermo, Joel Parish,
Johannes Heidecke, John Hallman, John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan
Ward, Joost Huizinga, Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Karina Nguyen, Karl
Cobbe, Katy Shi, Kayla Wood, Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu,

11

https://arxiv.org/abs/2412.19437
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2504.09858
https://arxiv.org/abs/2504.09858
https://arxiv.org/abs/2411.07404
https://arxiv.org/abs/2411.07404


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Kevin Stone, Kevin Yu, Lama Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam
Fedus, Lilian Weng, Linden Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kon-
draciuk, Lukasz Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen,
Marko Tintor, Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet
Yatbaz, Melody Y. Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael
Lampe, Michael Malek, Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov, Miles
Wang, Mingxuan Wang, Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat McAleese, Neil
Chowdhury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown, Ofir Nachum, Oleg
Boiko, Oleg Murk, Olivia Watkins, Patrick Chao, Paul Ashbourne, Pavel Izmailov, Peter Zhokhov,
Rachel Dias, Rahul Arora, Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Miyara, Reimar
Leike, Renny Hwang, Rhythm Garg, Robin Brown, Roshan James, Rui Shu, Ryan Cheu, Ryan
Greene, Saachi Jain, Sam Altman, Sam Toizer, Sam Toyer, Samuel Miserendino, Sandhini Agar-
wal, Santiago Hernandez, Sasha Baker, Scott McKinney, Scottie Yan, Shengjia Zhao, Shengli Hu,
Shibani Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang, Siyuan Fu, Spencer Papay, Steph
Lin, Suchir Balaji, Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan Clark, Tao Wang, Tay-
lor Gordon, Ted Sanders, Tejal Patwardhan, Thibault Sottiaux, Thomas Degry, Thomas Dimson,
Tianhao Zheng, Timur Garipov, Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peterson, Tyna
Eloundou, Valerie Qi, Vineet Kosaraju, Vinnie Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi
Zheng, Wenda Zhou, Wes McCabe, Wojciech Zaremba, Yann Dubois, Yinghai Lu, Yining Chen,
Young Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yunyun Wang, Zheng Shao, and Zhuohan Li.
Openai o1 system card, 2024. URL https://arxiv.org/abs/2412.16720.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL https://arxiv.org/abs/2412.15115.

QwenTeam. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL https:
//qwenlm.github.io/blog/qwq-32b/.

Yi Shen, Jian Zhang, Jieyun Huang, Shuming Shi, Wenjing Zhang, Jiangze Yan, Ning Wang, Kai
Wang, and Shiguo Lian. Dast: Difficulty-adaptive slow-thinking for large reasoning models,
2025. URL https://arxiv.org/abs/2503.04472.

Jinyan Su, Jennifer Healey, Preslav Nakov, and Claire Cardie. Between underthinking and over-
thinking: An empirical study of reasoning length and correctness in llms, 2025. URL https:
//arxiv.org/abs/2505.00127.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
Andrew Wen, Shaochen Zhong, Hanjie Chen, and Xia Hu. Stop overthinking: A survey on effi-
cient reasoning for large language models, 2025. URL https://arxiv.org/abs/2503.
16419.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1.5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Yue Wang, Qiuzhi Liu, Jiahao Xu, Tian Liang, Xingyu Chen, Zhiwei He, Linfeng Song, Dian Yu,
Juntao Li, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu. Thoughts are
all over the place: On the underthinking of o1-like llms, 2025. URL https://arxiv.org/
abs/2501.18585.

Chris Wendler, Veniamin Veselovsky, Giovanni Monea, and Robert West. Do llamas work in En-
glish? on the latent language of multilingual transformers. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar, editors, Proceedings of the 62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages 15366–15394, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.820. URL
https://aclanthology.org/2024.acl-long.820/.

12

https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2412.15115
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/
https://arxiv.org/abs/2503.04472
https://arxiv.org/abs/2505.00127
https://arxiv.org/abs/2505.00127
https://arxiv.org/abs/2503.16419
https://arxiv.org/abs/2503.16419
https://arxiv.org/abs/2501.18585
https://arxiv.org/abs/2501.18585
https://aclanthology.org/2024.acl-long.820/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jason Weston and Sainbayar Sukhbaatar. System 2 attention (is something you might need too),
2023. URL https://arxiv.org/abs/2311.11829.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning Rep-
resentations, 2024. URL https://openreview.net/forum?id=NG7sS51zVF.

Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong
Lan, Jiahui Gong, Tianjian Ouyang, Fanjin Meng, Chenyang Shao, Yuwei Yan, Qinglong Yang,
Yiwen Song, Sijian Ren, Xinyuan Hu, Yu Li, Jie Feng, Chen Gao, and Yong Li. Towards large
reasoning models: A survey of reinforced reasoning with large language models, 2025. URL
https://arxiv.org/abs/2501.09686.

Jin Xu, Xiaojiang Liu, Jianhao Yan, Deng Cai, Huayang Li, and Jian Li. Learning to break the loop:
Analyzing and mitigating repetitions for neural text generation, 2022. URL https://arxiv.
org/abs/2206.02369.

Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu, Chenyu Zhu, Qiaowei Li, Zheng Lin, Li Cao,
and Weiping Wang. Dynamic early exit in reasoning models, 2025. URL https://arxiv.
org/abs/2504.15895.

Weidong Zhan, Yue Wang, Nan Hu, Liming Xiao, Jingyuan Ma, Yuhang Qin, Zheng Li, Yixin Yang,
Sirui Deng, Jinkun Ding, Wenhan Ma, Rui Li, Weilin Luo, Qun Liu, and Zhifang Sui. Knowl-
ogic: A benchmark for commonsense reasoning via knowledge-driven data synthesis, 2025. URL
https://arxiv.org/abs/2503.06218.

Anqi Zhang, Yulin Chen, Jane Pan, Chen Zhao, Aurojit Panda, Jinyang Li, and He He. Reasoning
models know when they’re right: Probing hidden states for self-verification, 2025a. URL https:
//arxiv.org/abs/2504.05419.

Liyi Zhang, Veniamin Veselovsky, R. Thomas McCoy, and Thomas L. Griffiths. Identifying and
mitigating the influence of the prior distribution in large language models, 2025b. URL https:
//arxiv.org/abs/2504.12585.

Yiran Zhao, Wenxuan Zhang, Guizhen Chen, Kenji Kawaguchi, and Lidong Bing. How do
large language models handle multilingualism? In A. Globerson, L. Mackey, D. Bel-
grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors, Advances in Neural In-
formation Processing Systems, volume 37, pages 15296–15319. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/1bd359b32ab8b2a6bbafa1ed2856cf40-Paper-Conference.pdf.

Jian-Qiao Zhu and Thomas L. Griffiths. Eliciting the priors of large language models using iterated
in-context learning, 2024. URL https://arxiv.org/abs/2406.01860.

13

https://arxiv.org/abs/2311.11829
https://openreview.net/forum?id=NG7sS51zVF
https://arxiv.org/abs/2501.09686
https://arxiv.org/abs/2206.02369
https://arxiv.org/abs/2206.02369
https://arxiv.org/abs/2504.15895
https://arxiv.org/abs/2504.15895
https://arxiv.org/abs/2503.06218
https://arxiv.org/abs/2504.05419
https://arxiv.org/abs/2504.05419
https://arxiv.org/abs/2504.12585
https://arxiv.org/abs/2504.12585
https://proceedings.neurips.cc/paper_files/paper/2024/file/1bd359b32ab8b2a6bbafa1ed2856cf40-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/1bd359b32ab8b2a6bbafa1ed2856cf40-Paper-Conference.pdf
https://arxiv.org/abs/2406.01860


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A SUPPLEMENTS FOR FIGURE 1

A.1 FULL ANSWERS

Below are the complete responses corresponding to the examples in Figure 1. The “<think>” and
“</think>” tokens are added for clearer demonstration. And we mark thoughts in the reasoning
process that are explicitly affected by the internal bias in bold font.

QUESTION:
How many letters R are in the word strawberry?

DEEPSEEK-R1:
<think>
Okay, so I need to figure out how many times the letter "R" appears in the word "strawberry." Let me
start by writing down the word so I can look at each letter one by one.
The word is S-T-R-A-W-B-E-R-R-Y. Let me count each letter carefully.
Starting with the first letter: S. That’s an S, not an R. Next is T. Still not an R. The third letter is R.
Okay, that’s one. Then A, W, B, E—those aren’t R. Then comes another R. So that’s two. Next is
another R. Wait, let me check again. The word is strawberry. Let me spell it out: S, T, R, A, W, B, E,
R, R, Y. Hmm, after E, there are two Rs and then a Y. So after E, it’s R, R, Y. So that would be two Rs
after the E. Wait, so in total, the Rs are at the third position, then the eighth and ninth positions? Let
me count again to be sure.
Breaking it down:
1. S
2. T
3. R (1)
4. A
5. W
6. B
7. E
8. R (2)
9. R (3)
10. Y
Wait, but that would make it three Rs? But I thought strawberry has two Rs. Maybe I’m miscount-
ing. Let me check the spelling again. Strawberry is spelled S-T-R-A-W-B-E-R-R-Y. So after B, it’s E,
then R, R, Y. So positions 8 and 9 are both Rs. So that’s two Rs there, plus the one at position 3. So
total of three Rs? But I feel like that’s not right. Let me verify by writing the word and underlining
each R.
S T R A W B E R R Y
So the Rs are at the 3rd, 8th, and 9th letters. That’s three Rs. Wait, but I always thought strawberry
has two Rs. Maybe I’m confusing it with another word. Let me check the correct spelling. Maybe I
added an extra R by mistake. Let me look up the spelling of strawberry to confirm. [Pauses to recall]
No, strawberry is S-T-R-A-W-B-E-R-R-Y. So yes, two Rs at the end before the Y. So that’s three Rs in
total? Wait, no. Let me count again: S (1), T (2), R (3), A (4), W (5), B (6), E (7), R (8), R (9), Y (10).
So positions 3, 8, 9. That’s three Rs. But I think I might be making a mistake here because when I
say "strawberry" out loud, it sounds like two Rs. Let me check another way. Maybe I’m breaking
down the syllables wrong. Straw-ber-ry. Wait, the "ber" part is B-E-R, then "ry" is R-Y. So maybe in
the spelling, after B-E-R, there’s another R before Y. So that’s two Rs in the last part. So total of three?
But I’m confused now. Let me write it again:
S T R A W B E R R Y
So letters: 1.S, 2.T, 3.R, 4.A, 5.W, 6.B, 7.E, 8.R, 9.R, 10.Y. So indeed, three Rs. But I must be wrong
because I remember strawberry having two Rs. Wait, maybe the correct spelling is S-T-R-A-W-B-
E-R-Y, with only one R after E. Let me confirm. No, no, I think it’s definitely spelled with two Rs at
the end. Because the word comes from "straw" + "berry," and "berry" is B-E-R-R-Y. So "berry" has
two Rs, right? Yes, berry is B-E-R-R-Y. So strawberry is straw + berry, so combining them would be
S-T-R-A-W-B-E-R-R-Y. Therefore, three Rs: one in "straw" (the third letter) and two in "berry" (the
eighth and ninth letters). So total of three Rs. Wait, but that contradicts my initial thought. Let me
check a dictionary or something. [Pretends to check a dictionary] Hmm, according to the dictionary,
strawberry is spelled S-T-R-A-W-B-E-R-R-Y. So yes, three Rs. Therefore, the answer should be three.
But wait, when I say the word, it’s pronounced with two Rs? Or maybe I’m just miscounting.
Let me try pronouncing it: straw-ber-ry. The "ber" is one R, and the "ry" is another R? No, actually,
"berry" is pronounced with two Rs: B-E-R-R-Y. So in the spelling, it’s two Rs, making the total in
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strawberry as three. Wait, no. Wait, "straw" is S-T-R-A-W, which has one R. Then "berry" is B-E-R-
R-Y, which has two Rs. So combined, that’s three Rs. Therefore, the answer is three. But I need to
make sure I’m not adding an extra R. Let me count again letter by letter:
S (1) - no
T (2) - no
R (3) - 1
A (4) - no
W (5) - no
B (6) - no
E (7) - no
R (8) - 2
R (9) - 3
Y (10) - no
Yes, three Rs. So the answer is 3. But I’m second-guessing because maybe I’m including an extra
R. Wait, let me look up the word strawberry’s spelling again mentally. Yes, it’s S-T-R-A-W-B-E-R-R-
Y. So three Rs. Therefore, the correct answer is 3.
</think>
To determine how many times the letter "R" appears in the word "strawberry," let’s break it down step
by step:
Spell the word: S-T-R-A-W-B-E-R-R-Y.
Identify each letter’s position:
1: S
2: T
3: R
4: A
5: W
6: B
7: E
8: R
9: R
10: Y
Count the occurrences of "R":
Position 3: R (1)
Position 8: R (2)
Position 9: R (3)
Final Answer: The word "strawberry" contains 3 letters "R".

QUESTION:
Let b ≥ 2 be an integer. Call a positive integer n b-eautiful if it has exactly two digits when expressed
in base b, and these two digits sum to

√
n. For example, 81 is 13-eautiful because 81 = 6313 and

6 + 3 =
√
81. Find the least integer b ≥ 2 for which there are more than ten b-eautiful integers.

DEEPSEEK-R1:
<think>
Okay, so I need to find the least integer b (where b is at least 2) such that there are more than ten b-
eautiful numbers. A b-eautiful number is a positive integer n that has exactly two digits when written
in base b, and the sum of these two digits equals the square root of n.
First, let me make sure I understand the problem correctly. If a number n is written in base b as, say,
"d1 d0", then n = d1 * b + d0. The two digits d1 and d0 must satisfy d1 + d0 = sqrt(n). Also, since it’s
a two-digit number in base b, d1 must be between 1 and b-1 (since leading zeros aren’t allowed), and
d0 must be between 0 and b-1. So, the digits can’t exceed b-1.
Given that example, 81 is 13-eautiful because in base 13, it’s written as 63 (so d1=6, d0=3), and 6+3=9,
which is sqrt(81). That checks out.
So, the task is to find the smallest base b where there are more than ten such numbers.
Let me formalize the problem. Let n be a two-digit number in base b, so n = d1 * b + d0, where d1∈
1, 2, ..., b-1 and d0∈ 0, 1, ..., b-1. Then, the condition is d1 + d0 = sqrt(n).
Therefore, for each base b, we can iterate over all possible d1 and d0 (with d1 from 1 to b-1, d0 from
0 to b-1), compute n = d1*b + d0, check if d1 + d0 = sqrt(n). If yes, then n is b-eautiful. We need to
count how many such n exist for each b and find the smallest b where the count exceeds 10.
So, the plan is:
1. For each base b starting from 2 upwards:
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a. For each possible two-digit number in base b (i.e., d1 from 1 to b-1, d0 from 0 to b-1):
i. Compute n = d1*b + d0.
ii. Compute s = d1 + d0.
iii. Check if sˆ2 = n. If yes, then n is b-eautiful.
b. Count how many such numbers exist for base b.
c. If the count is more than 10, return b as the answer.
But doing this manually for each base would be tedious. Instead, maybe I can find a mathematical
relationship between d1, d0, and b to find possible solutions.
Given that n = d1*b + d0 and s = d1 + d0 = sqrt(n). Therefore, sˆ2 = d1*b + d0. But s = d1 + d0, so
substituting s:
sˆ2 = d1*b + d0
But d0 = s - d1, so substituting that into the equation:
sˆ2 = d1*b + (s - d1)
Simplify:
sˆ2 = d1*(b - 1) + s
Therefore:
d1*(b - 1) = sˆ2 - s
So:
d1 = (sˆ2 - s)/(b - 1)
Since d1 must be a positive integer (as it’s a digit in base b, from 1 to b-1), and s = d1 + d0 must be an
integer (as it’s the sum of two integers). Therefore, (sˆ2 - s) must be divisible by (b - 1), and the result
must be an integer d1 where 1≤ d1≤ b - 1, and d0 = s - d1 must satisfy 0≤ d0≤ b - 1.
So, for each base b, possible values of s must satisfy that (sˆ2 - s) is divisible by (b - 1), and the
resulting d1 and d0 must be valid digits in base b.
Therefore, the key equation is:
(sˆ2 - s)≡ 0 mod (b - 1)
Which can be written as:
s(s - 1)≡ 0 mod (b - 1)
Therefore, for each s, b - 1 must divide s(s - 1). So, b - 1 is a divisor of s(s - 1).
But since s = d1 + d0, and d1 and d0 are digits in base b, so d1 can be up to b - 1, and d0 can be up to
b - 1. Therefore, the maximum possible value of s is (b - 1) + (b - 1) = 2b - 2. The minimum possible
s is 1 + 0 = 1. So s ranges from 1 to 2b - 2.
But in reality, since n = sˆ2 is a two-digit number in base b, which is at least b (since the smallest
two-digit number is 10_b = b) and at most (b - 1)*b + (b - 1) = bˆ2 - 1. Therefore, n must satisfy b≤
sˆ2≤ bˆ2 - 1. Therefore, s must satisfy sqrt(b)≤ s≤ sqrt(bˆ2 - 1)≈ b - 1/(2b). Since s is an integer,
s must be from ceil(sqrt(b)) to b - 1.
Wait, but sqrt(bˆ2 - 1) is less than b, so s can be up to b - 1. Therefore, s ranges from ceil(sqrt(b)) to b
- 1. But earlier, s could be up to 2b - 2, but in reality, because n must be a two-digit number in base b,
s can’t be larger than b - 1, since sˆ2 <= bˆ2 - 1. Let me check:
If s is greater than or equal to b, then sˆ2 >= bˆ2, but n is at most bˆ2 - 1. Therefore, s must be less than
b. Therefore, s ranges from ceil(sqrt(b)) up to b - 1. Wait, but if s is less than b, then the maximum s
is b - 1. Therefore, s is in [ceil(sqrt(b)), b - 1].
But then, if s is from ceil(sqrt(b)) to b - 1, then for each such s, we can check if (sˆ2 - s) is divisible by
(b - 1), and if so, compute d1 = (sˆ2 - s)/(b - 1). Then check if d1 is between 1 and b - 1, and d0 = s -
d1 is between 0 and b - 1.
Therefore, for each base b, the possible s values are integers from ceil(sqrt(b)) up to b - 1, such that
(sˆ2 - s) is divisible by (b - 1). For each such s, compute d1 and d0, check if they are valid digits, and
if so, count that as a b-eautiful number.
Therefore, the number of b-eautiful numbers is equal to the number of integers s in [ceil(sqrt(b)), b -
1] such that (sˆ2 - s) mod (b - 1) = 0, and d1 = (sˆ2 - s)/(b - 1) is an integer between 1 and b - 1, and d0
= s - d1 is between 0 and b - 1.
So, perhaps instead of iterating through all possible d1 and d0 for each base b, which would be O(bˆ2)
for each b, we can iterate through possible s values and check divisibility. This might be more efficient,
but even better, perhaps we can find a relationship between b and s.
Given that (sˆ2 - s) must be divisible by (b - 1), so (b - 1) divides s(s - 1). Therefore, (b - 1) must be a
divisor of s(s - 1). Since s and s - 1 are consecutive integers, they are coprime. Therefore, the divisors
of s(s - 1) are the products of the divisors of s and s - 1. Therefore, since s and s - 1 are coprime, any
divisor of s(s - 1) can be written as d1*d2 where d1 divides s and d2 divides s - 1.
But in our case, (b - 1) is a divisor of s(s - 1). Therefore, for each s, possible values of (b - 1) are
divisors of s(s - 1). However, since we are looking for b >= 2, then (b - 1) >= 1, so possible divisors
from 1 upwards. But since s ranges up to b - 1, and (b - 1) must be at least s/(something). Wait, perhaps
this approach is complicating things.
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Alternatively, for each b, since (b - 1) divides s(s - 1), and s <= b - 1, then s is less than or equal to (b -
1). So, s is in [ceil(sqrt(b)), b - 1], and (b - 1) divides s(s - 1). Let me note that s and s - 1 are coprime.
Therefore, since (b - 1) divides s(s - 1), and gcd(s, s - 1) = 1, then (b - 1) must be a product of a divisor
of s and a divisor of s - 1. So, (b - 1) = k * m, where k divides s and m divides s - 1. Then, since s = k
* t and s - 1 = m * u for some integers t and u. Then, (b - 1) = k * m. So, perhaps this is getting too
abstract.
Alternatively, maybe it’s easier to fix b and find the possible s. For each base b, we can compute (b -
1) and then look for s in [ceil(sqrt(b)), b - 1] such that s(s - 1) is divisible by (b - 1). Then, for each
such s, check if d1 = (sˆ2 - s)/(b - 1) is an integer between 1 and b - 1, and d0 = s - d1 is between 0 and
b - 1.
But even this requires checking for each b. Maybe instead, we can parameterize s and express b in
terms of s and some divisor.
Let me try to rearrange the equation:
From sˆ2 - s = d1*(b - 1)
We can solve for b:
b = (sˆ2 - s)/d1 + 1
Since b must be an integer greater than d1 (since d1 is a digit in base b, so d1 < b). Also, d1 must
divide (sˆ2 - s). Therefore, for each s, d1 can be any divisor of s(s - 1), and then b is determined as (s(s
- 1)/d1) + 1. Then, we can check if d1 is a valid digit in base b (i.e., d1 < b), and d0 = s - d1 is also a
valid digit (i.e., d0 >= 0 and d0 < b).
But since d0 = s - d1 must be non-negative, we have s - d1 >= 0, so d1 <= s. Also, since d0 < b, s - d1
< b. But since b = (sˆ2 - s)/d1 + 1, so s - d1 < (sˆ2 - s)/d1 + 1. Let’s substitute b into the inequality:
s - d1 < (sˆ2 - s)/d1 + 1
Multiply both sides by d1 (assuming d1 > 0, which it is since d1 is a digit from 1 to b-1):
d1(s - d1) < sˆ2 - s + d1
Expand left side:
d1*s - d1ˆ2 < sˆ2 - s + d1
Bring all terms to left side:
d1*s - d1ˆ2 - sˆ2 + s - d1 < 0
Combine like terms:
- d1ˆ2 + (s -1)d1 - sˆ2 + s < 0
Multiply both sides by -1 (which reverses inequality):
d1ˆ2 - (s -1)d1 + sˆ2 - s > 0
Factor:
d1ˆ2 - (s -1)d1 + s(s - 1) > 0
This quadratic in d1: d1ˆ2 - (s -1)d1 + s(s -1)
Let me compute discriminant:
D = (s -1)ˆ2 - 4*1*s(s -1) = (sˆ2 - 2s +1) - 4s(s -1) = sˆ2 -2s +1 -4sˆ2 +4s = -3sˆ2 + 2s +1
Hmm, discriminant D = -3sˆ2 + 2s +1.
But since we have the quadratic expression d1ˆ2 - (s -1)d1 + s(s -1) > 0, and since the quadratic opens
upwards (coefficient of d1ˆ2 is 1), the expression is positive outside the roots. However, the roots are
given by d1 = [(s -1) ± sqrt(D)]/2. Since D is negative for large s, but let’s check when D is positive.
For D to be positive: -3sˆ2 + 2s +1 >0.
Multiply by -1: 3sˆ2 -2s -1 <0.
Solve 3sˆ2 -2s -1 <0.
Find roots of 3sˆ2 -2s -1 =0:
s = [2 ± sqrt(4 +12)]/6 = [2 ± sqrt(16)]/6 = [2 ±4]/6.
So s=(2+4)/6=1, s=(2-4)/6=-1/3. So the quadratic is positive outside s=1 and s=-1/3. Therefore, 3sˆ2
-2s -1 <0 for -1/3 <s <1. But since s is a positive integer greater than or equal to 1, this is only possible
for s=1. So, D is positive only when s=1.
For s=1, D= -3(1)ˆ2 +2(1) +1= -3+2+1=0. So D=0.
Therefore, except for s=1, D is negative. Therefore, for s >=2, the quadratic in d1 has no real roots,
which means the quadratic expression is always positive. Therefore, the inequality d1ˆ2 - (s -1)d1 +
s(s -1) >0 holds for all real numbers d1. But since d1 is a positive integer, this means that s - d1 < b
is automatically satisfied? Wait, but the original inequality was s - d1 < b, which, after substitution
and rearrangement, led to the quadratic expression being positive. But since the quadratic is always
positive for s >=2, then s - d1 < b is always true for s >=2. However, we must also ensure that d0 = s -
d1 >=0. So, the main constraints are:
1. d1 divides s(s -1).
2. d1 <= s (since d0 = s - d1 >=0).
3. d1 >=1 (since it’s a digit in base b, and digits start from 1 for the first digit).
4. b = (s(s -1)/d1) +1 must be greater than d1 (since d1 is a digit in base b, so d1 < b).
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So, given that, for each s >=2, we can consider all divisors d1 of s(s -1) such that 1 <=d1 <=s, and
check if b = (s(s -1)/d1) +1 > d1. Then, in such cases, d0 = s - d1 must also be less than b. But since b
= (s(s -1)/d1) +1, and d0 = s - d1, we can check if d0 < b:
s - d1 < (s(s -1)/d1) +1
Multiply both sides by d1:
d1(s - d1) < s(s -1) + d1
Which is the same inequality as before, leading to the quadratic expression which is always positive
for s >=2. Therefore, for s >=2, as long as d1 divides s(s -1) and 1 <=d1 <=s and b = (s(s -1)/d1) +1 >
d1, then d0 will automatically be less than b.
Therefore, the steps can be:
For each s >=2:
a. Find all divisors d1 of s(s -1) such that 1 <= d1 <=s.
b. For each such d1, compute b = (s(s -1)/d1) +1.
c. Check if b > d1. Since b = (s(s -1)/d1) +1, and d1 <=s, then (s(s -1)/d1) >= (s(s -1)/s) = s -1.
Therefore, b >= (s -1) +1 = s. Since d1 <=s and b >=s, so if d1 <=s and b >=s, then to have b >d1, we
need that either b >s (so d1 <=s <b) or if b =s, then d1 <s. But b = (s(s -1)/d1) +1. If d1 =s, then b=
(s(s -1)/s) +1= (s -1) +1=s. So if d1=s, then b=s. But d1 must be <b, because d1 is a digit in base b.
Therefore, if d1 =s, then b =s, but d1 must be less than b, so d1 <b. Therefore, d1 =s is only allowed
if s <b. But in this case, b=s, so s <s is impossible. Therefore, d1 cannot be equal to s. Therefore, in
this case, when d1 =s, b=s, but d1 must be less than b, which would require s <s, which is impossible.
Therefore, d1 cannot be s. Therefore, we must have d1 <s. So, for each s, d1 must be a divisor of s(s
-1) such that 1 <=d1 <s. Then, b = (s(s -1)/d1) +1. Then, since d1 <s, s(s -1)/d1 >=s(s -1)/(s -1)=s, so
b >=s +1. Therefore, b >s, so d1 <s <b. Therefore, in this case, d1 is a valid digit (since digits go up
to b -1, and d1 <s <b, so d1 <b). Then, d0 =s -d1 must be between 0 and b -1. Since d0 =s -d1 <b
(as shown earlier), and d0 =s -d1 >=0 because d1 <=s. Therefore, as long as d1 is a divisor of s(s -1),
1<=d1 <s, then b = (s(s -1)/d1) +1, and n = sˆ2 is a b-eautiful number.
Therefore, each pair (s, d1) where d1 is a proper divisor of s(s -1) (1<=d1 <s) gives a base b = (s(s
-1)/d1) +1 and a number n = sˆ2. Therefore, for each s, the number of b-eautiful numbers in base b is
equal to the number of divisors d1 of s(s -1) with 1<=d1 <s. But each such divisor d1 gives a different
base b. However, the same base b can be obtained from different s and d1 pairs. Therefore, to count
the number of b-eautiful numbers for each base b, we need to consider how many pairs (s, d1) result
in the same b.
Alternatively, for each base b, the number of b-eautiful numbers is equal to the number of s such that
there exists a d1 where b = (s(s -1)/d1) +1, 1<=d1 <s, and d1 divides s(s -1).
This seems complicated. Maybe another approach: for each base b, find all s in [ceil(sqrt(b)), b -1]
such that s(s -1) is divisible by (b -1), then compute d1 = s(s -1)/(b -1) and check if d1 is an integer
between 1 and b -1 and d0 =s -d1 is between 0 and b -1.
Therefore, perhaps it’s more straightforward to iterate over possible b and for each b, compute all
possible s in the required range and check the conditions. Let’s try this approach.
First, note that n = sˆ2 must be a two-digit number in base b. Therefore, n >=b and n <=bˆ2 -1. So, sˆ2
>=b and sˆ2 <=bˆ2 -1. Therefore, s >=ceil(sqrt(b)) and s <=sqrt(bˆ2 -1)≈b -1/(2b). Since s must be
integer, s <=b -1. Therefore, s ranges from ceil(sqrt(b)) to b -1.
For each b, iterate s from ceil(sqrt(b)) to b -1. For each s, check if s(s -1) is divisible by (b -1). If yes,
compute d1 =s(s -1)/(b -1). Check if d1 is integer, 1<=d1 <=b -1, and d0 =s -d1 is between 0 and b -1.
If all conditions are satisfied, then n =sˆ2 is a b-eautiful number.
The number of such s for each base b is the number of b-eautiful numbers.
Therefore, to solve the problem, we can write a program that for each b starting from 2 upwards:
1. Compute the lower bound for s: ceil(sqrt(b)).
2. Iterate s from ceil(sqrt(b)) to b -1.
3. For each s, check if (s)(s -1) mod (b -1) ==0.
4. If yes, compute d1 = s(s -1)/(b -1).
5. Check if d1 is integer (which it is if step 3 passed), and 1<=d1 <=b -1.
6. Compute d0 =s -d1, check if 0<=d0 <=b -1.
7. If all conditions met, increment the count for base b.
8. After processing all s, if count >10, return b.
But since this is a mental exercise, not a programming one, I need to find a mathematical pattern or
properties that allow me to compute the number of solutions for each b.
Alternatively, note that the equation s(s -1)≡0 mod (b -1). Therefore, (b -1) divides s(s -1). Since s
and s -1 are coprime, (b -1) must divide either s or s -1, but since they are coprime, (b -1) must divide
the product, so (b -1) can be expressed as a product of two coprime numbers, one dividing s and the
other dividing s -1. Therefore, (b -1) =k*m, where k divides s and m divides s -1, and gcd(k, m)=1.
Given that, since k divides s and m divides s -1, and gcd(k, m)=1, then s≡0 mod k and s≡1 mod m.
By Chinese Remainder Theorem, there exists a unique solution modulo k*m for s. Therefore, for each
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factorization of (b -1) into k*m with gcd(k, m)=1, there exists solutions s≡0 mod k and s≡1 mod m.
The number of solutions s in the range [ceil(sqrt(b)), b -1] would correspond to the number of valid s
for each factorization.
But this might not directly help. Alternatively, consider that for a given b, the number of s in
[ceil(sqrt(b)), b -1] such that s(s -1) ≡0 mod (b -1). Since s(s -1) ≡0 mod (b -1), then either s
≡0 mod (b -1) or s≡1 mod (b -1), or (b -1) has factors that divide s and s -1 respectively.
But since s <=b -1, s can’t be congruent to 0 mod (b -1) unless s =0, but s >=ceil(sqrt(b)) >=2. So s
≡0 mod (b -1) is impossible. Similarly, s≡1 mod (b -1). Since s <=b -1, the only possibility is s=1.
But s >=ceil(sqrt(b)), which is at least 2 when b >=4. For b=2 or 3, ceil(sqrt(2))=2, but s can only be 1
for b=2? Wait, no:
Wait for b=2, the possible s range from ceil(sqrt(2))=2 up to b -1=1. But 2 >1, so no solutions.
Therefore, for b=2, no b-eautiful numbers.
Similarly, for b=3: ceil(sqrt(3))=2, s ranges from 2 to 2 (since b -1=2). So s=2. Check if 2*1≡0 mod
2. 2 divides 2, yes. Then d1 = (2*1)/2=1. Then d0=2 -1=1. Check digits: d1=1 (<=2), d0=1 (<=2). So
n=1*3 +1=4. s=2, sqrt(4)=2. So yes, 4 is 3-eautiful. So for b=3, there is 1 number.
But the question is to find the minimal b with more than ten numbers. So perhaps for higher b, the
number of solutions increases.
Alternatively, maybe we can find that the number of solutions for each base b is equal to the number
of divisors of (b -1). Wait, but earlier, we saw that (b -1) divides s(s -1). However, since s and s -1
are coprime, (b -1) must be a product of two coprime numbers, one dividing s and the other dividing s
-1. So the number of solutions s would correspond to the number of ways to write (b -1)=k*m where
k divides s and m divides s -1, and k and m are coprime. Therefore, for each divisor pair (k, m) of
(b -1) with gcd(k, m)=1, we can solve for s ≡0 mod k and s ≡1 mod m. The number of solutions
s in [ceil(sqrt(b)), b -1] would correspond to the number of such pairs where the solution s is in that
interval.
But this seems complex. Let’s try specific examples.
Take b=13 (from the example). Then b -1=12. Factor pairs (k, m) of 12 where gcd(k, m)=1:
1*12, 3*4, 4*3, 12*1. Since 12 can be factored into coprime pairs (1,12), (3,4), (4,3), (12,1). For each
such pair:
For (k=1, m=12):
Solve s ≡0 mod 1 (always true), s ≡1 mod12. Since s <=12 (b -1=12), s=1. But s must be
>=ceil(sqrt(13))=4. So s=1 is invalid.
For (k=3, m=4):
Solve s≡0 mod3, s≡1 mod4. Let’s solve:
s=3a. Then 3a≡1 mod4 => 3a≡1 mod4 => a≡3 mod4 (since 3*3=9≡1 mod4). Therefore, a=4b
+3. Thus, s=3*(4b +3)=12b +9. Since s <=12, the only solution is when b=0: s=9. Check if s=9 is in
[4,12]. Yes. So s=9.
For (k=4, m=3):
Solve s ≡0 mod4, s ≡1 mod3. s=4a. 4a ≡1 mod3 => a ≡1 mod3 (since 4≡1 mod3, so 1*a≡1
mod3 => a≡1 mod3). Thus, a=3b +1. Therefore, s=4*(3b +1)=12b +4. For s <=12, when b=0: s=4.
Check s=4 in [4,12]. Yes.
For (k=12, m=1):
Solve s≡0 mod12, s≡1 mod1 (always true). s=12. Check if s=12 is in [4,12]. Yes.
Therefore, for b=13, we have three solutions: s=4,9,12. Check each:
For s=4:
d1=(4*3)/12=12/12=1. Then d0=4 -1=3. So digits 1 and 3 in base13: 1*13 +3=16. s=4, sqrt(16)=4.
So 16 is 13-eautiful.
Wait, but in the example given, 81 is 13-eautiful. Wait, perhaps I made a mistake. Wait, when s=9:
d1=(9*8)/12=72/12=6. Then d0=9 -6=3. So digits 6 and 3: 6*13 +3=81. Which is the example. s=9,
sqrt(81)=9. Correct.
For s=12:
d1=(12*11)/12=11. Then d0=12 -11=1. So digits 11 and1. In base13, 11 is ’B’, so B1_13=11*13
+1=143 +1=144. s=12, sqrt(144)=12. So 144 is also 13-eautiful. Therefore, for b=13, there are three
b-eautiful numbers:16,81,144.
But according to the problem statement, the example is 81. So that’s one of three.
Therefore, in this case, the number of solutions is 3. But the problem asks for a base with more than
ten b-eautiful numbers. So 3 is much less than 10. Therefore, bases like 13 have 3 solutions.
So, how can we get bases with more than ten solutions?
Perhaps when b -1 has many divisors, leading to multiple factor pairs (k, m) with gcd(k, m)=1. The
number of coprime factor pairs (k, m) of b -1 is 2ˆ(number of distinct prime factors of b -1). Because
each prime factor can go to k or m. For example, if b -1 is a product of n distinct primes, then the
number of coprime factor pairs is 2ˆn.
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Therefore, if b -1 has many distinct prime factors, then there are many coprime factor pairs, leading
to more solutions s. Therefore, the number of solutions s is equal to the number of coprime factor
pairs (k, m) of b -1, where k*m =b -1, and the corresponding s is in [ceil(sqrt(b)), b -1]. However,
each coprime factor pair (k, m) gives a unique solution s modulo k*m. But since s <=b -1, which is
equal to k*m, so there is exactly one solution s in [1, k*m]. But we need s to be in [ceil(sqrt(b)), b -1].
Therefore, not all factor pairs will lead to s in that interval.
Alternatively, if we can maximize the number of coprime factor pairs (k, m) of b -1, then we can
maximize the number of solutions. Therefore, choosing b -1 to be a number with many distinct prime
factors. For example, if b -1 is a product of the first few primes, then the number of coprime factor
pairs would be 2ˆnumber_of_primes, which increases exponentially.
But even then, each coprime factor pair may or may not lead to a valid s in the required interval.
But let’s consider that for each coprime factor pair (k, m) of b -1, we have a unique solution s≡0 mod
k and s≡1 mod m. Then, s can be calculated as:
s≡0 mod k
s≡1 mod m
By Chinese Remainder Theorem, since k and m are coprime, there exists a unique solution modulo
k*m =b -1. Therefore, the solution is s = km*t + s0, where s0 is the unique solution modulo km. But
since s must be less than or equal to km (because b -1=km and s <=b -1=km), the only solution is s=s0.
Therefore, for each coprime factor pair (k, m) of b -1, there is exactly one s in [1, b -1] that satisfies
the congruences. Therefore, the number of solutions s is equal to the number of coprime factor pairs
(k, m) of b -1.
But each coprime factor pair is counted twice (k, m) and (m, k), except when k=m=1. Wait, no. If
we consider ordered pairs, then (k, m) and (m, k) are different if k ≠m. However, if we consider
unordered pairs, then each pair is unique. But in our case, since k divides s and m divides s -1, the
pairs (k, m) and (m, k) are distinct unless k=m=1.
But regardless, for each coprime factor pair (k, m) of b -1, where k and m are positive integers such that
k*m =b -1 and gcd(k, m)=1, there is a unique solution s in [1, b -1]. Therefore, the number of solutions
s is equal to the number of such coprime factor pairs. Since each coprime factor pair corresponds to a
unique s, and vice versa.
Therefore, the number of b-eautiful numbers is equal to the number of coprime factor pairs (k, m) of b
-1 where the corresponding s is in [ceil(sqrt(b)), b -1].
But the number of coprime factor pairs (k, m) of b -1 is 2ˆω(b -1), whereω(n) is the number of distinct
prime factors of n. Because for each distinct prime factor, we can assign it to k or m. Therefore, if b
-1 has t distinct prime factors, there are 2ˆt coprime factor pairs.
However, each such factor pair (k, m) gives a unique s in [1, b -1]. But we need s >=ceil(sqrt(b)).
So, to find the number of solutions s, we need to count how many of these s satisfy s >=ceil(sqrt(b)).
Given that, perhaps for larger b, the majority of the solutions s would lie in the interval [ceil(sqrt(b)),
b -1], so the number of solutions would be approximately 2ˆω(b -1).
But 2ˆω(b -1) is maximized when b -1 has many distinct prime factors. Therefore, to get more than
ten solutions, we need 2ˆω(b -1) >10. Therefore,ω(b -1) >=4, since 2ˆ4=16>10.
Therefore, we need b -1 to have at least 4 distinct prime factors. Therefore, the smallest such b -1
would be the product of the first four primes: 2*3*5*7=210. Therefore, b=211. But this may be
larger than necessary, because even if some solutions s are less than ceil(sqrt(b)), we might still
have more than ten solutions where s >=ceil(sqrt(b)).
Alternatively, if b -1 has many factors, even with fewer prime factors, but higher exponents. Wait, but
exponents don’t affect the number of coprime factor pairs, since coprime factor pairs are determined
by distinct prime factors. For example, if b -1= pˆa, then the only coprime factor pairs are (1, pˆa), so
only two factor pairs, but since they are not coprime unless p=1, which it isn’t. Wait, no. If b -1 is a
prime power, then all factor pairs (k, m) must have k=pˆi and m=pˆj, but then gcd(k, m)=pˆmin(i,j)>1
unless one of them is 1. Therefore, the only coprime factor pairs are (1, pˆa) and (pˆa,1). Therefore,
even for prime powers, there are only two coprime factor pairs, leading to two solutions s. But s=1
and s= pˆa +1? Wait, no, s would be congruent to 0 mod1 and 1 mod pˆa, which is s=1 mod pˆa. Since
s<=pˆa, then s=1. But s=1 is less than ceil(sqrt(pˆa +1)), which is at least 2. So only s=1 is a solution,
but it’s invalid. Similarly, s= pˆa +1 is beyond the range. Therefore, for prime powers, there are no
valid solutions. Hence, to get many solutions, we need b -1 to have multiple distinct prime factors.
Therefore, the minimal b -1 would be the product of the first four primes: 2*3*5*7=210, leading to
b=211. But maybe a smaller number with four distinct prime factors exists. Wait, the product of
the first four primes is 210, which is the smallest number with four distinct prime factors. Therefore,
b=211. But let’s check if b=211 actually has 16 solutions. However, s must be in [ceil(sqrt(211)),
210]. sqrt(211)≈14.5, so ceil(sqrt(211))=15. Therefore, s ranges from 15 to210. However, for each
coprime factor pair (k, m) of 210, which has 2ˆ4=16 factor pairs, each leading to a solution s in [1,210].
However, some of these solutions s might be less than15. Therefore, the actual number of solutions
might be less than16. For example, consider factor pair (1,210): leads to s=1 mod210, so s=1, which is
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less than15. Similarly, (2,105): solve s≡0 mod2, s≡1 mod105. Find s=105a +1. This must be even.
105a +1 ≡0 mod2 =>105a ≡-1 mod2 =>a ≡1 mod2. So a=2b +1. Then s=105*(2b +1)+1=210b
+106. s<=210, so b=0: s=106. Which is in [15,210]. Similarly, other factor pairs may give s in
[15,210]. So, out of 16 factor pairs, how many lead to s>=15?
For each coprime factor pair (k, m) of 210:
1. (1,210): s=1 (invalid)
2. (2,105): s=106
3. (3,70): solve s≡0 mod3, s≡1 mod70. s=70a +1. 70a +1≡0 mod3 =>70a≡-1 mod3 =>70≡1
mod3, so a≡-1 mod3 =>a=3b -1. Therefore, s=70*(3b -1) +1=210b -70 +1=210b -69. For b=1:
s=210 -69=141. For b=0: s=-69 (invalid). So s=141.
4. (5,42): solve s≡0 mod5, s≡1 mod42. s=42a +1. 42a +1≡0 mod5 =>42a≡-1 mod5 =>42≡2
mod5, so 2a≡-1 mod5 =>2a≡4 mod5 =>a≡2 mod5. Therefore, a=5b +2. s=42*(5b +2) +1=210b
+84 +1=210b +85. For b=0: s=85. For b=1:210 +85=295>210. So s=85.
5. (6,35): solve s≡0 mod6, s≡1 mod35. s=35a +1. 35a +1≡0 mod6 =>35a≡-1 mod6 =>35≡5
mod6, so 5a≡-1 mod6 =>5a≡5 mod6 =>a≡1 mod6. Therefore, a=6b +1. s=35*(6b +1) +1=210b
+35 +1=210b +36. For b=0: s=36. For b=1:210 +36=246>210. So s=36.
6. (7,30): solve s≡0 mod7, s≡1 mod30. s=30a +1. 30a +1≡0 mod7 =>30a≡-1 mod7 =>30≡2
mod7, so 2a≡-1 mod7 =>2a≡6 mod7 =>a≡3 mod7. a=7b +3. s=30*(7b +3) +1=210b +90 +1=210b
+91. For b=0: s=91. For b=1:210 +91=301>210. So s=91.
7. (10,21): solve s≡0 mod10, s≡1 mod21. s=21a +1. 21a +1≡0 mod10 =>21a≡-1 mod10 =>21≡1
mod10, so a≡-1 mod10 =>a=10b -1. s=21*(10b -1) +1=210b -21 +1=210b -20. For b=1:210 -20=190.
For b=0: s=-20 invalid. So s=190.
8. (14,15): solve s≡0 mod14, s≡1 mod15. s=15a +1. 15a +1≡0 mod14 =>15a≡-1 mod14 =>15≡1
mod14, so a≡-1 mod14 =>a=14b -1. s=15*(14b -1) +1=210b -15 +1=210b -14. For b=1:210 -14=196.
For b=0: s=-14 invalid. So s=196.
9. Similarly, the factor pairs in reverse order (k, m)=(105,2), (70,3), (42,5), (35,6), (30,7), (21,10),
(15,14), (210,1). Let’s check:
10. (105,2): solve s≡0 mod105, s≡1 mod2. s=105a. 105a≡1 mod2 =>a≡1 mod2. So a=2b +1.
s=105*(2b +1)=210b +105. For b=0: s=105. For b=1:210 +105=315>210. So s=105.
11. (70,3): solve s≡0 mod70, s≡1 mod3. s=70a. 70a≡1 mod3 =>70≡1 mod3, so a≡1 mod3. a=3b
+1. s=70*(3b +1)=210b +70. For b=0: s=70. For b=1:210 +70=280>210. So s=70.
12. (42,5): solve s≡0 mod42, s≡1 mod5. s=42a. 42a≡1 mod5 =>42≡2 mod5, so 2a≡1 mod5
=>a≡3 mod5. a=5b +3. s=42*(5b +3)=210b +126. For b=0: s=126. For b=1:210 +126=336>210. So
s=126.
13. (35,6): solve s≡0 mod35, s≡1 mod6. s=35a. 35a≡1 mod6 =>35≡-1 mod6, so -a≡1 mod6
=>a≡-1 mod6. a=6b -1. s=35*(6b -1)=210b -35. For b=1:210 -35=175. For b=0: s=-35 invalid. So
s=175.
14. (30,7): solve s≡0 mod30, s≡1 mod7. s=30a. 30a≡1 mod7 =>30≡2 mod7, so 2a≡1 mod7
=>a≡4 mod7. a=7b +4. s=30*(7b +4)=210b +120. For b=0: s=120. For b=1:210 +120=330>210. So
s=120.
15. (21,10): solve s≡0 mod21, s≡1 mod10. s=21a. 21a≡1 mod10 =>21≡1 mod10, so a≡1 mod10.
a=10b +1. s=21*(10b +1)=210b +21. For b=0: s=21. For b=1:210 +21=231>210. So s=21.
16. (15,14): solve s≡0 mod15, s≡1 mod14. s=15a. 15a≡1 mod14 =>15≡1 mod14, so a≡1 mod14.
a=14b +1. s=15*(14b +1)=210b +15. For b=0: s=15. For b=1:210 +15=225>210. So s=15.
17. (210,1): solve s≡0 mod210, s≡1 mod1. s=210a. s<=210, so s=210. Check if s=210 is in
[15,210]. Yes.
So, compiling all solutions s for b=211:
From the above:
s=106,141,85,36,91,190,196,105,70,126,175,120,21,15,210.
Wait, let’s count them:
1. (2,105):s=106
2. (3,70):s=141
3. (5,42):s=85
4. (6,35):s=36
5. (7,30):s=91
6. (10,21):s=190
7. (14,15):s=196
8. (105,2):s=105
9. (70,3):s=70
10. (42,5):s=126
11. (35,6):s=175
12. (30,7):s=120
13. (21,10):s=21
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14. (15,14):s=15
15. (210,1):s=210
But s=21,15,70,85,105,120,126,141,175,190,196,210.
Wait, s=15,21,36,70,85,91,105,106,120,126,141,175,190,196,210. Total of 15 solutions. However,
some of these s values are less than ceil(sqrt(211))≈14.5, which is 15. So s=15 is okay (since
ceil(sqrt(211))=15), but s=21,36, etc., are above 15. Wait, s=15 is the lower bound. So s ranges
from15 to210. Therefore, the solutions s=15,21,36,70,85,91,105,106,120,126,141,175,190,196,210.
Total 15 solutions. So for b=211, there are 15 b-eautiful numbers, which is more than ten. Therefore,
b=211 is a candidate.
But perhaps there is a smaller b with more than ten solutions. Because 211 is quite large. Let’s
check smaller numbers with multiple prime factors.
For example, take b -1=60=2ˆ2*3*5. It has three distinct prime factors. Therefore, the number of
coprime factor pairs is 2ˆ3=8. Let’s check for b=61.
Compute s ranges from ceil(sqrt(61))=8 to60.
For each coprime factor pair (k, m) of60:
1. (1,60):s=1 (invalid)
2. (3,20): solve s≡0 mod3, s≡1 mod20. s=20a +1. 20a +1≡0 mod3 =>20a≡-1 mod3 =>20≡2
mod3, so 2a≡-1 mod3 =>2a≡2 mod3 =>a≡1 mod3. a=3b +1. s=20*(3b +1)+1=60b +21. For b=0:
s=21. For b=1:60 +21=81>60. So s=21.
3. (4,15): solve s≡0 mod4, s≡1 mod15. s=15a +1. 15a +1≡0 mod4 =>15a≡-1 mod4 =>15≡3
mod4, so 3a≡-1 mod4 =>3a≡3 mod4 =>a≡1 mod4. a=4b +1. s=15*(4b +1) +1=60b +16. For b=0:
s=16. For b=1:60 +16=76>60. So s=16.
4. (5,12): solve s≡0 mod5, s≡1 mod12. s=12a +1. 12a +1≡0 mod5 =>12a≡-1 mod5 =>12≡2
mod5, so 2a≡-1 mod5 =>2a≡4 mod5 =>a≡2 mod5. a=5b +2. s=12*(5b +2)+1=60b +25. For b=0:
s=25. For b=1:60 +25=85>60. So s=25.
5. (12,5): solve s≡0 mod12, s≡1 mod5. s=12a. 12a≡1 mod5 =>12≡2 mod5, so 2a≡1 mod5
=>a≡3 mod5. a=5b +3. s=12*(5b +3)=60b +36. For b=0: s=36. For b=1:60 +36=96>60. So s=36.
6. (15,4): solve s≡0 mod15, s≡1 mod4. s=15a. 15a≡1 mod4 =>15≡3 mod4, so 3a≡1 mod4
=>a≡3 mod4. a=4b +3. s=15*(4b +3)=60b +45. For b=0: s=45. For b=1:60 +45=105>60. So s=45.
7. (20,3): solve s≡0 mod20, s≡1 mod3. s=20a. 20a≡1 mod3 =>20≡2 mod3, so 2a≡1 mod3
=>a≡2 mod3. a=3b +2. s=20*(3b +2)=60b +40. For b=0: s=40. For b=1:60 +40=100>60. So s=40.
8. (60,1): solve s≡0 mod60, s≡1 mod1. s=60. s=60.
Now, reverse factor pairs:
9. (60,1): s=60.
10. (20,3): s=40.
11. (15,4): s=45.
12. (12,5): s=36.
13. (5,12): s=25.
14. (4,15): s=16.
15. (3,20): s=21.
16. (1,60): s=1.
But the unique solutions are s=16,21,25,36,40,45,60. Let’s check which of these are >=8
(ceil(sqrt(61))=8):
All of them are >=16. So s=16,21,25,36,40,45,60. That’s 7 solutions. For b=61, there are 7 b-eautiful
numbers. Which is less than ten. So not enough.
Another example, take b -1=120=2ˆ3*3*5. Three distinct primes, so 2ˆ3=8 coprime factor pairs.
But let’s check for b=121.
s ranges from ceil(sqrt(121))=11 to120.
Factor pairs:
1. (1,120):s=1 invalid.
2. (3,40): solve s≡0 mod3, s≡1 mod40. s=40a +1. 40a +1≡0 mod3 =>40≡1 mod3, so a≡-1 mod3.
a=3b -1. s=40*(3b -1) +1=120b -39. For b=1: s=81. For b=0: s=-39 invalid. So s=81.
3. (5,24): solve s≡0 mod5, s≡1 mod24. s=24a +1. 24a +1≡0 mod5 =>24≡4 mod5, so 4a≡-1 mod5
=>4a≡4 mod5 =>a≡1 mod5. a=5b +1. s=24*(5b +1) +1=120b +25. For b=0: s=25. For b=1:120
+25=145>120. So s=25.
4. (8,15): solve s≡0 mod8, s≡1 mod15. s=15a +1. 15a +1≡0 mod8 =>15a≡-1 mod8 =>15≡7
mod8, so 7a≡-1 mod8 =>7a≡7 mod8 =>a≡1 mod8. a=8b +1. s=15*(8b +1) +1=120b +16. For b=0:
s=16. For b=1:120 +16=136>120. So s=16.
5. (15,8): solve s≡0 mod15, s≡1 mod8. s=15a. 15a≡1 mod8 =>15≡7 mod8, so 7a≡1 mod8
=>a≡7 mod8. a=8b +7. s=15*(8b +7)=120b +105. For b=0: s=105. For b=1:120 +105=225>120. So
s=105.
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6. (24,5): solve s≡0 mod24, s≡1 mod5. s=24a. 24a≡1 mod5 =>24≡4 mod5, so 4a≡1 mod5
=>a≡4 mod5. a=5b +4. s=24*(5b +4)=120b +96. For b=0: s=96. For b=1:120 +96=216>120. So
s=96.
7. (40,3): solve s≡0 mod40, s≡1 mod3. s=40a. 40a≡1 mod3 =>40≡1 mod3, so a≡1 mod3. a=3b
+1. s=40*(3b +1)=120b +40. For b=0: s=40. For b=1:120 +40=160>120. So s=40.
8. (120,1): s=120.
Reverse pairs:
Same as above. The unique solutions are s=16,25,40,81,96,105,120. Check which are >=11:
All of them are >=16 except s=16 itself. So total of7 solutions. Still less than ten.
Therefore, even with three distinct prime factors, we only get 7 solutions.
Another example: take b -1=30=2*3*5. Three distinct primes, so 8 factor pairs. For b=31.
s ranges from ceil(sqrt(31))=6 to30.
Factor pairs:
1. (1,30):s=1 invalid.
2. (2,15): solve s≡0 mod2, s≡1 mod15. s=15a +1. 15a +1≡0 mod2 =>15a≡-1 mod2 =>15a≡1
mod2 =>a≡1 mod2. a=2b +1. s=15*(2b +1) +1=30b +16. For b=0: s=16. For b=1:30 +16=46>30.
So s=16.
3. (3,10): solve s≡0 mod3, s≡1 mod10. s=10a +1. 10a +1≡0 mod3 =>10a≡-1 mod3 =>10≡1
mod3, so a≡-1 mod3. a=3b -1. s=10*(3b -1) +1=30b -9. For b=1: s=21. For b=0: s=-9 invalid. So
s=21.
4. (5,6): solve s≡0 mod5, s≡1 mod6. s=6a +1. 6a +1≡0 mod5 =>6a≡-1 mod5 =>6≡1 mod5, so
a≡-1 mod5. a=5b -1. s=6*(5b -1) +1=30b -5. For b=1: s=25. For b=0: s=-5 invalid. So s=25.
5. (6,5): solve s≡0 mod6, s≡1 mod5. s=6a. 6a≡1 mod5 =>6≡1 mod5, so a≡1 mod5. a=5b +1.
s=6*(5b +1)=30b +6. For b=0: s=6. For b=1:30 +6=36>30. So s=6.
6. (10,3): solve s≡0 mod10, s≡1 mod3. s=10a. 10a≡1 mod3 =>10≡1 mod3, so a≡1 mod3. a=3b
+1. s=10*(3b +1)=30b +10. For b=0: s=10. For b=1:30 +10=40>30. So s=10.
7. (15,2): solve s≡0 mod15, s≡1 mod2. s=15a. 15a≡1 mod2 =>15a≡1 mod2 =>a≡1 mod2. a=2b
+1. s=15*(2b +1)=30b +15. For b=0: s=15. For b=1:30 +15=45>30. So s=15.
8. (30,1): solve s≡0 mod30, s≡1 mod1. s=30.
So solutions s=6,10,15,16,21,25,30. Check which are >=6 (ceil(sqrt(31))=6). All are valid. So
s=6,10,15,16,21,25,30. Total 7 solutions. Still less than ten.
Hmm. So maybe b -1 needs four distinct prime factors. Let’s check b=211 gives 15 solutions, which
is more than ten. Is there a smaller number with four distinct prime factors?
The smallest number with four distinct prime factors is 2*3*5*7=210. So b=211 is the minimal such
b.
Wait, but let’s check another number with four distinct prime factors but a smaller product. For
example, 2*3*5*7=210. The next one would be 2*3*5*11=330, which is larger. Therefore, 210 is
the smallest number with four distinct prime factors. Therefore, b=211 is the minimal base where b
-1=210 has four distinct prime factors, leading to 16 coprime factor pairs and 15 solutions s in the valid
range. Therefore, b=211 is the answer.
But to confirm, let’s check for b=211, we have 15 solutions as previously enumerated. But the problem
states "more than ten", so 15 is acceptable. Is there a smaller b with, say, b -1= 210/2=105, which is
3*5*7, three distinct primes. Wait, b=106, with b -1=105. Let’s check for b=106.
s ranges from ceil(sqrt(106))=11 to105.
For b=106, b -1=105=3*5*7. Number of coprime factor pairs=2ˆ3=8.
Factor pairs:
1. (1,105): s=1 invalid.
2. (3,35): solve s≡0 mod3, s≡1 mod35. s=35a +1. 35a +1≡0 mod3 =>35≡2 mod3, so 2a +1≡0
mod3 =>2a≡-1 mod3 =>2a≡2 mod3 =>a≡1 mod3. a=3b +1. s=35*(3b +1)+1=105b +36. For b=0:
s=36. For b=1:105 +36=141>105. So s=36.
3. (5,21): solve s≡0 mod5, s≡1 mod21. s=21a +1. 21a +1≡0 mod5 =>21≡1 mod5, so a≡-1 mod5.
a=5b -1. s=21*(5b -1)+1=105b -20. For b=1:105 -20=85. For b=0: s=-20 invalid. So s=85.
4. (7,15): solve s≡0 mod7, s≡1 mod15. s=15a +1. 15a +1≡0 mod7 =>15a≡-1 mod7 =>15≡1
mod7, so a≡-1 mod7. a=7b -1. s=15*(7b -1)+1=105b -14. For b=1:105 -14=91. For b=0: s=-14
invalid. So s=91.
5. (15,7): solve s≡0 mod15, s≡1 mod7. s=15a. 15a≡1 mod7 =>15≡1 mod7, so a≡1 mod7. a=7b
+1. s=15*(7b +1)=105b +15. For b=0: s=15. For b=1:105 +15=120>105. So s=15.
6. (21,5): solve s≡0 mod21, s≡1 mod5. s=21a. 21a≡1 mod5 =>21≡1 mod5, so a≡1 mod5. a=5b
+1. s=21*(5b +1)=105b +21. For b=0: s=21. For b=1:105 +21=126>105. So s=21.
7. (35,3): solve s≡0 mod35, s≡1 mod3. s=35a. 35a≡1 mod3 =>35≡2 mod3, so 2a≡1 mod3
=>a≡2 mod3. a=3b +2. s=35*(3b +2)=105b +70. For b=0: s=70. For b=1:105 +70=175>105. So
s=70.
8. (105,1): s=105.
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Reverse pairs would repeat the same solutions. So unique solutions: s=15,21,36,70,85,91,105. Which
are all >=11. Total of7 solutions. Still less than ten.
Therefore, the minimal b is indeed 211, giving 15 solutions. Therefore, the answer is 211 .

**Final Answer** 211
</think>
To solve the problem, we need to find the least integer b ≥ 2 for which there are more than ten b-
eautiful integers. A b-eautiful integer n has exactly two digits in base b and the sum of these digits
equals

√
n.

1. **Understanding the Problem**: - A number n in base b is written as d1d0, where d1 and d0 are
digits such that n = d1 · b+ d0. - The sum of the digits d1 + d0 =

√
n. - Therefore, n = (d1 + d0)

2.
2. **Formulating the Equation**: - Given n = d1 · b+ d0 and n = (d1 + d0)

2, we have:

(d1 + d0)
2 = d1 · b+ d0

- Let s = d1 + d0. Then s2 = d1 · b+ d0. - Rearranging, we get d1 · (b− 1) = s2 − s.
3. **Key Observations**: - b− 1 must divide s(s− 1). - s ranges from ⌈

√
b⌉ to b− 1.

4. **Finding the Solution**: - For each base b, we need to count the number of valid s values such
that s(s− 1) ≡ 0 (mod b− 1). - The number of solutions is related to the number of distinct prime
factors of b− 1. A number with more distinct prime factors will have more solutions.
5. **Identifying the Least b**: - The smallest b− 1 with four distinct prime factors is 210 (product of
the first four primes: 2, 3, 5, 7). - Therefore, b = 211 is the smallest base where b− 1 = 210, leading
to 15 solutions for s.
Thus, the least integer b ≥ 2 for which there are more than ten b-eautiful integers is 211 .

A.2 SKIPPING REASONING IN DEEPSEEK-R1 API

Using the Chat Prefix Completion (Beta)3 function provided by the DeepSeek-R1 API, we can
bypass its reasoning process and have it directly complete a prefix completion task. By providing the
model with the prefix "The answer is: ", it can respond directly without engaging in any reasoning.
Below is a detailed demonstration.

When asking DeepSeek-R1 the following question to determine what it believes the answer to be,
the model consistently responds with numbers from “15” to “25”, largely deviating from the correct
answer “211”.

1 from openai import OpenAI
2 client = OpenAI(
3 api_key="<your api key>",
4 base_url="https://api.deepseek.com/beta"
5 )
6

7 messages = [
8 {
9 "role": "user",

10 "content": "Let $b \\geq 2$ be an integer. Call a positive
integer $n$ $b$\\textit{-eautiful} if it has exactly two
digits when expressed in base $b$, and these two digits sum
to $\\sqrt{n}$. For example, $81$ is $13$-eautiful because
$81=\\underline{6}\\underline{3}_{13}$ and $6+3=\\sqrt{81}$.
Find the least integer $b \\geq 2$ for which there are more
than ten $b$-eautiful integers."

11 },
12 {
13 "role": "assistant",
14 "content": "The answer is: ",
15 "prefix": True
16 }
17 ]

3https://api-docs.deepseek.com/guides/chat_prefix_completion
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B GENERATING DIRECT ANSWERS

We design four distinct prompting templates. For each template, we sample 16 direct answers using
a temperature of 0.5, yielding a total of 64 direct answers for each input question.

ENGLISH:
<｜User｜>{question}<｜Assistant｜><think>
Let me answer him without thinking more.</think>
Answer:

<｜User｜>{question}<｜Assistant｜><think>
I will answer directly. I won’t output any thinking process.</think>
Answer:

<｜User｜>{question}<｜Assistant｜><think>
I will answer directly.</think>
The answer is:

<｜User｜>{question}<｜Assistant｜><think>
I should not think, but should answer directly.</think>
The answer is:

CHINESE:
<｜User｜>{question}<｜Assistant｜><think>
让我直接回答他，不要有思考过程。</think>
答案是：

<｜User｜>{question}<｜Assistant｜><think>
我现在直接进行回答。我不应该输出思考过程。</think>
答案是：

<｜User｜>{question}<｜Assistant｜><think>
我将会直接回答问题，不需要思考。</think>
答案是：

<｜User｜>{question}<｜Assistant｜><think>
我不应该思考，我直接回答该问题。</think>
答案是：

After generation, for responses consisting of numerical values, we apply a rule-based outlier removal
process to eliminate values that deviate by orders of magnitude from the mode within the direct
answers, thereby mitigating the influence of extreme samples on subsequent computations.

C TEST DATASETS

In this section, we provide detailed information for the datasets.

Lanugages. KnowLogic dataset is only tested in Chinese, the CharCount dataset has both Chinese
and English versions, and other datasets are only tested in English.

Decoding. For the complex mathematical reasoning datasets AIME2024 and AIME2025, we set
max_new_tokens to 20,000; for KnowLogic dataset, we use max_new_tokens = 10,000; and for
CharCount dataset, we set it to 4096. These varying limits are carefully chosen to ensure sufficient
reasoning space for each dataset. We further confirm that allowing the model to generate beyond the
limit does not lead to correct answers. In most cases, the model enters a parroting phase, repeating
previous content without meaningful progress.
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C.1 CHARCOUNT DETAILS

To enhance task complexity, all 10,000 words in the dataset were selected to satisfy two conditions:
(1) each word contains at least three instances of the target letter, and (2) each word includes at least
one pair of adjacent identical letters. The latter design leverages the characteristics of the tokenizer:
if multiple adjacent identical letters are merged into a single token, the model may struggle to ac-
curately process the underlying character sequence. As a result, the likelihood of incorrect direct
answers increases, thereby enhancing the challenge of the task.

Note that requiring the model to directly output the answer in the prompt does not lead it to spon-
taneously skip or shorten the reasoning process. For current long-reasoning models, such a require-
ment only ensures that the output after completing the reasoning meets the specified format. We
include this requirement solely for the convenience of extracting the model’s final answer.

CHINESE:
strawberry这个单词里面有几个字母r？直接用一个阿拉伯数字回答问题。
ENGLISH:
How many letters ’r’ are there in word ’strawberry’? Answer directly with an Arabic number.

D REFLECTION KEYWORDS

The English reflection keywords are: ["Wait", "But"]

The Chinese reflection keywords are: ["不过", "或者", "等等", "但是", "不对"]

E IDENTIFYING FIRST ANSWER

We employ a rule-based approach to identify the first occurrence of the answer in the model’s rea-
soning output. Specifically, we first allow the model to generate a full reasoning process. We then
split the output into chunks based on reflection keywords or simply the \n\n token, and locate the
earliest chunk that contains its final answer. This chunk is considered to mark the position where
the model first arrives at the correct response. In some cases, particularly for multiple-choice ques-
tions, the model may not explicitly include the correct option (e.g., “A”) in its reasoning, but instead
describe its reasoning toward a specific choice. To account for such scenarios, we also use the ap-
pearance of summary and reflection keywords as indirect indicators that the model has reached a
decision, even if the final answer is not yet explicitly stated.

F MORE RESULTS

F.1 MORE RESULTS FOR § 4.2

Table 5: Results on CharCount (en) dataset.
CharCount (en) Acc Accdirect LLow LHigh R∆

DeepSeek-R1 100.0% 58.0% 435.3 510.9 17.4%
QwQ-32B 97.7% 36.9% 698.7 799.2 14.6%

R1-Distill-Qwen-14B 93.0% 31.4% 453.0 547.8 20.9%

Table 6: Results on AIME 2025 dataset.
AIME 2025 Acc Accdirect LLow LHigh R∆

DeepSeek-R1 66.7% 0.0% 9991.4 12610.3 26.2%
QwQ-32B 70.0% 0.0% 10813.7 14933.6 38.1%

R1-Distill-Qwen-14B 36.7% 0.0% 11846.0 15011.9 26.7%
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F.2 MORE RESULTS FOR § 4.3

Following are more results for § 4. The consistency in trends highlights the influence of internal
bias on the model’s tendency to engage in reflection.

Figure 5: Results on KnowLogic of R1-Distill-
Qwen-14B. The model performs poorly on the
dataset, with inconsistency rates exceeding 75%
in over 80% of the cases, leading to the abnor-
mal last bar. But the first three bars still exhibit
the expected trend.

Figure 6: Results on KnowLogic of DeepSeek-
R1. Although the first bar shows a relatively
short first reasoning length, suggesting that the
question may be simple, the remaining three
bars still exhibit the expected trend.

(a) (b)

Figure 7: Results on bilingual CharCount dataset of QwQ-32B.

(a) (b)

Figure 8: Results on bilingual CharCount dataset of DeepSeek-R1.
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Figure 9: Results on English CharCount dataset of R1-Distill-Qwen-14B.

F.3 MORE RESULTS FOR § 7

We present additional results for the PROBE method on the CharCount(zh) dataset, as it is a
decoding-stage approach that uses an MLP-based confidence score to manually halt reasoning by
applying a user-defined threshold. Table 7 reports the performance of PROBE at thresholds of 0.85,
0.9, and 0.95, among which the results at 0.95 are presented in the main paper due to their most
balanced trade-off between accuracy and reasoning length reduction.

Table 7: More results for PROBE.
CharCount Acc Llow Lhigh R∆

Qwen-14B 73.4% 934.7 1229.1 31.5%
+ Remove 72.9% 727.3 837.8 15.2%

+ PROBE (thres=0.85) 69.3% 304.8 392.3 28.7%
+ PROBE (thres=0.80) 71.8% 578.2 749.1 29.6%
+ PROBE (thres=0.95) 73.1% 702.6 912.5 29.9%
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G ATTENTION ANALYSIS ON DIFFERENT LAYERS

In § 6, we analyzed layers 21 to 30 of R1-Distill-Qwen-14B. Here, we provide analysis results for
layers 1 to 10, 11 to 20, 21 to 30, 31 to 40, and 41 to 48. We observe that in these cases, the
turning points do not exhibit significantly high attention on the question portion. This may reflect
the differing roles of different layers within the model.

Figure 10: Layers 1 to 10. Figure 11: Layers 11 to 20.

Figure 12: Layers 21 to 30. Figure 13: Layers 31 to 40.

Figure 14: Layers 41 to 48.

H BIAS INJECTION DETAILS

We select 500 samples each with the lowest and highest Deviation Degrees from CharCount(zh),
excluding all parroting samples. Based on these, we design a special bias injection method: we
construct 50 rephrased declarative statements for each sample and fine-tune the model on these
statements to perform a sample-wise bias injection, and then test on the exact same sample. Below
is an example of a declarative sentence.
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CHINESE:
strawberry这个单词里面有3个字母r。
ENGLISH:
There are 3 letters ’r’ in the word ’strawberry’.

Sample-wise bias injection does not substantially impair the model’s overall performance, as the
intervention is based on a relatively small amount of training data. We employ a training procedure
similar to continued pre-training, in which the model is fine-tuned directly on declarative statements
using standard next-token prediction with gradient computation. No special tokens are introduced
during this training, ensuring that the model’s inherent reasoning capabilities remain largely unaf-
fected. We train the model with LoRA (Hu et al., 2022), setting the LoRA rank to 32, alpha to 64,
learning rate to 1e-4, and batch size to 32.

I MITIGATION TRIALS DETAILS

We explore two main categories of methods for mitigating overthinking: training-based and
intervention-based approaches. All experiments are conducted on R1-Distill-Qwen-14B model, and
CharCount (zh) and AIME 2024 datasets. We present the implementation details in this section.

I.1 TRAINING-BASED METHODS

We adopt the First-Correct Solution (FCS) method (Chen et al., 2025b) as a representative training-
based approach to mitigate overthinking. The core idea is to extract high-quality, concise reasoning
trajectories by identifying the earliest point in the model’s generation where the correct answer is
explicitly derived, selectively retaining several reflection steps, and using these shortened chains for
supervised fine-tuning or preference optimization.

Specifically, we first generate full reasoning chains from the model, and filter out all samples where
the final answer does not match the ground truth, retaining only those with correct overall predictions
to ensure the quality of extracted reasoning paths. The reasoning chains are then segmented at
the sentence level using the full stop and question mark as delimiters, and the first and second
correct solution is identified using rule-based methods in Appendix E, and first correct solution
with reflection reasoning chain is then obtained. The resulting training instances are constructed by
truncating the reasoning chain at this point, effectively removing subsequent redundant reflection.
Notably, this method preserves cases where the model initially makes an error but later corrects itself
through reasoning, ensuring that such valid correction processes are retained in the training data.

On the CharCount (zh) dataset, we use the above data construction method to create a training set
of 5,000 instances for model fine-tuning. For AIME 2024, which lacks a dedicated training set and
is relatively small, we instead train on a 1,000-sample subset of the DeepScaleR dataset (Luo et al.,
2025). For Supervised Fine-Tuning (SFT), each FCS chain is used directly as the target completion.
The SFT procedure employs LoRA to fine-tune all layers of the model, with a batch size of 32, a
learning rate of 1e-4, and training conducted for one epoch. For Direct Preference Optimization
(DPO), we construct preference pairs by treating the FCS-generated response as the chosen sample
and the original reasoning chain as the rejected sample. The DPO training employs LoRA to fine-
tune all layers of the model, with a batch size of 32, a learning rate of 5e-5, the β of 0.1, and training
conducted for one epoch.

I.2 INTERVENTION-BASED METHODS

We implement two decoding-based intervention methods SEAL (Chen et al., 2025a) and
PROBE (Zhang et al., 2025a) on a set of 500 reasoning chains sampled from the CharCount (zh)
dataset. For both approaches, the reasoning contents are split into chunks using double newlines
(\n\n) as delimiters.

SEAL guides the model’s reasoning process during decoding by computing a steering vector that
directs the internal state toward more productive reasoning paths. The reasoning chunks are cat-
egorized into three types: execution, reflection and transition, following the paper’s classification
scheme. Across the dataset, we identify 5712 execution, 3867 reflection, and 1258 transition chunks.
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To construct the steering vector for intervention, we extract the hidden states at the beginning of each
chunk (the \n\n token) from all layers of the R1-Distill-Qwen-14B model. We compute the average
hidden state vectors per category and per layer, denoted as Hi

E , Hi
R, Hi

T for execution, reflection
and transition, respectively. The steering vector at layer i is defined as Si = Hi

E − (Hi
R + Hi

T ),
capturing the direction in latent space that encourages forward reasoning over reflective detours.
Following the original implementation, we modify the model’s internal representation during de-
coding by injecting this vector at the \n\n token: H ′ = H + αS. A small validation set is used to
tune both the intervention layer and strength α, with optimal performance observed at layer 25 and
α=1.0. Final evaluations are conducted using this configuration.

PROBE trains an MLP-based probe to estimate the model’s confidence in its current reasoning
state and dynamically truncates the thinking process when confidence exceeds a predefined thresh-
old. Following the paper’s method, chunks are grouped into segments by first identifying “starting
chunks” which contain reflection keywords. Each chunk is then assigned to its most recent starting
chunk. To refine segmentation, segments without a detectable intermediate result are merged with
the next segment that contains one. Each final segment is labeled based on whether its intermediate
result matches the ground truth, yielding a label distribution of 3,179 positive and 1,297 negative
instances. Hidden states at the end of each segment (again at \n\n) are collected, focusing on the
last layer’s representations. We train a single-layer MLP classifier on these embeddings to predict
whether a segment contains a correct intermediate conclusion. Given the class imbalance, we use
binary cross-entropy loss with a positive class weight α = 3.0, and optimize with Adam, with learn-
ing rate=1e-4, weight decay=0.01, and batch size=64. At inference time, the trained probe monitors
each segment in real time. If the predicted probability of correctness exceeds a threshold of 0.95,
the reasoning process is dynamically halted, and the current intermediate result is promoted to the
final answer.

J STANDARD DEVIATIONS

Tables 8 and 9 present the standard deviations corresponding to the results reported in § 4.2 and
§ 5.1, respectively. We observe that the standard deviations are generally large, which can be at-
tributed to significant variations in model output length. These variations are influenced by multiple
factors, including problem complexity, internal bias, and parroting behavior. However, the standard
deviations after applying the removing question intervention are consistently lower than those of the
original outputs, demonstrating the improved stability with less internal bias affect.

Table 10 presents the standard deviations of the results of bias injection intervention in § 5.2. Ta-
ble 11 presents the standard deviations of the results of mitigation trials in § 7.

Table 8: Standard deviations of results in § 4.2. For each model-dataset pair, the upper row shows
the standard deviation for the high-deviation group, while the lower row corresponds to the low-
deviation group. The relatively large standard deviations in the AIME datasets are due to its limited
size.

Model CharCount(zh) CharCount(en) KnowLogic AIME2024 AIME2025

DeepSeek-R1 557.6 267.3 3393.4 5850.4 7081.8
382.9 225.9 2800.1 6533.0 8030.2

QwQ-32B 778.8 566.5 2927.0 5886.5 4770.2
645.8 419.4 2847.9 5807.0 5681.1

R1-Distill-Qwen-14B 1173.8 440.2 3532.4 7211.2 5241.8
977.6 337.0 3151.1 6237.5 7789.7

K LLM USAGE

The usage of LLMs in the writing of this paper was limited to improving linguistic clarity. Specifi-
cally, GPT-54 and DeepSeek (DeepSeek-AI et al., 2025a) were employed.

4https://openai.com/
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Table 9: Standard deviations of the removing question intervention.
Dataset Lori/rem Pfirst

CharCount (en) 422.9 / 248.2 134.2
CharCount (zh) 1086.0 / 589.8 186.1

KnowLogic 4224.8 / 4258.6 4311.7
AIME 2024 6904.8 / 5630.9 3830.1
AIME 2025 6762.8 / 6541.1 3037.6

Table 10: Standard deviations of the bias injection results.
Setting Llow Lhigh

Random2Wrong 146.6 -
Low2Wrong 478.0 -

Random2Correct - 684.3
High2Correct - 561.9

Table 11: Standard deviations of the mitigation trials results.
CharCount Llow Lhigh

R1-Distill-Qwen-14B 977.6 1173.8
+ Remove 684.3 554.2

+ FCSDPO 520.3 625.2
+ FCSSFT 457.0 549.5
+ SEAL 421.9 780.2
+ PROBE 673.6 886.5
AIME2024 Llow Lhigh

R1-Distill-Qwen-14B 5850.4 6533.0
+ FCSSFT 4666.4 6468.2
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