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ABSTRACT

Reasoning models often exhibit overthinking, characterized by redundant reason-
ing steps. We identify internal bias elicited by the input question as a key trigger
of such behavior. Upon encountering a problem, the model immediately forms
a preliminary guess about the answer, which we term an internal bias since it
may not be explicitly generated, and it arises without systematic reasoning. When
this guess conflicts with its subsequent reasoning, the model tends to engage in
excessive reflection, resulting in wasted computation. We validate the associa-
tion between internal bias and overthinking across multiple models and diverse
reasoning tasks. To demonstrate the causal relationship more rigorously, we con-
duct two counterfactual interventions, showing that removing the input question
after the model reduces the redundant reasoning across various complex reason-
ing tasks, and manually injecting bias affects overthinking accordingly. Further
interpretability experiments suggest that excessive attention to the input question
serves as a key mechanism through which internal bias influences subsequent rea-
soning trajectories. Finally, we evaluated several methods aimed at mitigating
overthinking, yet the influence of internal bias persisted under all conditions.

1 INTRODUCTION

Current o1/R1-type reasoning models (OpenAI et al., 2024; DeepSeek-AI et al., 2025a) have demon-
strated outstanding performance with their ability to spontaneously reflect and correct errors (Xu
et al., 2025a). However, the reasoning models tend to overthink (Chen et al., 2025b), which is
characterized by behavioral patterns such as repeatedly reaching the same conclusion without con-
tributing to the final answer. This redundant thinking results in significant waste in computation.

Despite efforts in reducing overthinking through training (Chen et al., 2025b; Su et al., 2025; Team
et al., 2025; Shen et al., 2025; Arora and Zanette, 2025) or manual intervention during decoding
(Chen et al., 2025a; Zhang et al., 2025a; Ma et al., 2025), an important question remains underex-
plored: what drives the reasoning models to exhibit such a overthinking tendency ?

We identify the internal bias of reasoning models as one important reason for their overthinking.
Our hypothesis is twofold: first, upon encountering a problem, the model forms a preliminary and
intuitive guess, before engaging in formal reasoning; second, when this initial guess conflicts with
the outcome of deliberate reasoning, the model is more likely to enter a state of excessive reflection.
We refer to this guess as an internal bias, to emphasize that it may not be explicitly output by the
model, and is not derived from rigorous reasoning but originates solely from the input question. This
entire process is illustrated in Figure 1 1.

Extensive statistical experiments across different model families (DeepSeek (DeepSeek-AI et al.,
2025b), Qwen (Qwen et al., 2025)), model sizes (14B, 32B and 671B), downstream tasks (character
operations, logical reasoning and mathematical reasoning) and questioning languages (English and
Chinese) consistently demonstrate that internal bias has a widespread influence on reasoning be-
havior. Specifically, the greater a model’s internal bias deviates from its reasoning result, the more

†Corresponding author.
1All responses in these examples are generated by DeepSeek-R1 (2025/01/20). The complete model re-

sponses and details of internal bias detection can be found in Appendix A.1 and A.2.
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Figure 1: Two examples illustrating the existence of internal bias. Green texts denote correct an-
swers derived from reasoning, while the navy-colored portions show the influence of internal bias. In
the left example (a simpler case), the model develops an internal bias of “2”, conflicting with the rea-
soning result “3”. In the more complex example (from AIME 2024) on the right, the model predicts
the answer to be approximately “20”, significantly deviating from the correct value “211” obtained
via reasoning. For both examples, the reasoning process are manually separated into chunks for bet-
ter illustration, where the model obtains the correct answer in the first chunk, but internal bias still
triggers later reflection. The number in the bottom-right corner of each chunk indicates the length
of it. It is clear that the model spends much more tokens in reflection due to internal bias.

likely it is to engage in excessive reflection. In extreme cases, this tendency can even lead to the
parroting behavior (Xu et al., 2022).

To establish a causal link between internal bias and overthinking in reasoning models, we propose
two counterfactual validations: a reasoning trajectory intervention and a bias injection. The first
intervention removes the input question after the model generates an answer during its reasoning
steps, forcing it to decide whether to continue reasoning based solely on its own past reasoning
steps, thereby preventing the reactivation of input-dependent biases. This intervention reduces re-
dundant reasoning length by 31% to 53% across both synthetic simple tasks and complex logical and
mathematical reasoning benchmarks, while largely maintaining or even improving accuracy, indicat-
ing that the reduced reasoning steps are largely redundant. The second intervention, bias injection,
deliberately manipulates the model’s internal bias through controlled training signals, demonstrating
that erroneous biases exacerbate overthinking, whereas accurate ones suppress it.

We further conducted attention analysis along the reasoning process, to further understand how
internal bias affects reasoning. Interestingly, we found that after completing a reasoning step, the
model tends to excessively focus (attention) on the question description, which may introduce its
internal bias into the decision-making process on whether further reflection is needed. This suggests
that models might implicitly compare their reasoning results with its internal bias, leading to extra
reasoning in some cases despite having already arrived at the correct answer multiple times.

Finally, we tested several existing methods for mitigating overthinking. We found that, despite
reducing average reasoning length, these methods fail to eliminate the influence of internal bias,
demonstrating its resilience in model reasoning.

Our contributions are as follows:

• Identifying internal bias as one important reason for overthinking in reasoning models, and
validate the universality of this phenomenon across various experiment settings.

• Demonstrating the causal relationship between internal bias and overthinking with rigorous
experimental evidence.

• Discovering that internal bias influences the reasoning process through the model’s exces-
sive attention on the input question.
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• Testing several methods of mitigating overthinking, and revealing they are ineffective in
eliminating the influence of internal bias.

2 RELATED WORK

2.1 MITIGATING OVERTHINKING IN REASONING MODELS

With the emergence of DeepSeek-R1 (DeepSeek-AI et al., 2025a) and OpenAI-o1 (OpenAI et al.,
2024) style reasoning models, the overthinking phenomenon, in which models produce exces-
sively long and unnecessary chains of thought, has become a widely recognized issue. This has
spurred growing interest in efficient reasoning approaches aimed at mitigating such behavior (Yue
et al., 2025; Sui et al., 2025), which can be broadly categorized into three families: training-time,
inference-time and prompting approaches.

Training-time approaches constrain reasoning length by encouraging shorter reasoning chains (Chen
et al., 2025b; Yu et al., 2025; Cheng et al., 2025), or by incorporating difficulty-dependent length
penalties that allow the model to adaptively select reasoning paths (Shen et al., 2025; Liu et al., 2025;
Luo et al., 2025a). Inference-time approaches reduce redundant thinking through decoding interven-
tions, such as confidence- or consistency-based dynamic early exit Zhang et al. (2025a); Yang et al.
(2025) or representation-level steering of model behavior (Chen et al., 2025a; Huang et al., 2025;
Eisenstadt et al., 2025). Prompting-based approaches control reasoning overhead through input de-
sign, for example by imposing token budgets (Han et al., 2025), using draft-style prompting (Xu
et al., 2025b), or even explicitly skipping reasoning when appropriate (Ma et al., 2025).

These methods aim to control model behavior without investigating the root cause of overthinking.
Our work addresses this gap by showing that internal bias is one of the key underlying factors driving
overthinking.

2.2 BIAS AND UNFAITHFULNESS IN LANGUAGE MODELS

Language models often develop various biases or priors. One prominent category involves system-
atic biases in sensitive domains such as law and social ethics (Gallegos et al., 2024), which may raise
fairness concerns in practical applications. More broadly, models exhibit a wide range of behavioral
biases, including a tendency to produce the most “common” rather than the correct answers for
certain question types (Zhang et al., 2025b), susceptibility to irrelevant contextual cues or format-
specific patterns (Minder et al., 2025; Weston and Sukhbaatar, 2023), and preference priors induced
inevitably by reinforcement learning reward (Greenblatt et al., 2024; Denison et al., 2024). Ameisen
et al. (2025) found that language models may have separate neural pathways that lead to a rough es-
timate of the answer when solving simple addition tasks, providing additional mechanistic evidence
for the presence of such biases. The internal bias discussed in this paper is closely related to this
type of bias, and we focus on how such direct estimations of the answer can trigger overthinking.

Unfaithfulness is closely intertwined with biases. When a model produces Chain-of-Thought (CoT),
the generated steps may not necessarily reflect the model’s true reasoning process. Paul et al. (2024)
shows that interfering with the CoT sentences typically has little effect on its final answer, sug-
gesting a spurious reasoning phenomenon during reasoning. Turpin et al. (2023) and Chen et al.
(2025c) demonstrate that models often produce explanations for a pre-selected answer. Arcuschin
et al. (2025) extend this line of evidence by identifying bias-driven implicit post-hoc rationalization:
systematic biases shape the model’s internal decision, and explicit CoT is then used to rationalize
the resulting biased answer, producing a divergence between surface-level reasoning and underly-
ing computation even under natural, non-adversarial prompts. These unfaithfulness works involve
models deviating from normal reasoning processes. However, our work finds that even when mod-
els successfully follow correct reasoning procedures, they can still be influenced by bias at critical
reflection steps, leading to overthinking.

3 MEASURING INTERNAL BIAS IN REASONING MODELS

We now introduce several definitions that will form the basis for quantifying and analyzing internal
bias in the later sections.
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Direct Answer 2 As introduced in § 1, we conceptualize the model’s internal bias as its prelim-
inary guess to a question, formally denoted as abias = f(q; θ), where q is the input question, θ
represents the model parameters and abias denotes the biased answer. To observe this implicit guess,
we force the model to skip reasoning and immediately output an answer. We name this answer as
direct answer. Specifically, we use templates containing a no-reasoning prompt followed by the spe-
cial token </think> to indicate termination of thought. The content generated after this prompt
reflects the preliminary judgment of the model formed prior to detailed reasoning. An example of
such a template is provided below. In contrast, the final answer after full reasoning is denoted as
afinal.

<｜User｜>{question}<｜Assistant｜><think>
Let me answer him without thinking more.</think>
Answer:

Internal Bias as a Distribution As in a probabilistic generation process, the generated direct
answer may also be affected by the sampling strategy, e.g. the prompt or the temperature. On the
other hand, the model’s internal bias may also exist as a distribution over possible answers rather than
a single deterministic guess. So we use ãbias to denote the internal bias distribution. To approximate
this distribution, we adopt a multi-sampling approach with different templates. Empirically, we
collect 64 direct answers for each question in our experiments, which is a better approximation
of the model’s internal bias by observing its behavior under varied conditions. All templates and
decoding details can be found in Appendix B.

Deviation Degree The internal bias of a model may deviate from its own reasoning process, and
different deviation degree may have varying effects on its behavior. We define the bias deviation
degree Dbias = dist(ãbias, afinal), where dist(·, ·) is a task-specific distance function. For tasks with
numerical answers, we compute the mean absolute error (MAE) between the direct answers and
afinal. For tasks with categorical answers, such as multiple-choice questions, we approximate Dbias
using inconsistency rate, defined as the proportion of direct answers that differ from afinal. These
serve as approximate quantitative estimates of the gap between the model’s direct guesses and the
reasoning output.

4 IMPACT OF INTERNAL BIAS ON THE REASONING PROCESS

In this section, we take a macroscopic view of the impact of internal bias on reasoning models. Our
analysis includes the examination on the direct answer and its relation to reasoning length, as well
as the understanding of the parroting phenomenon.

4.1 SETUPS

Tasks. We design a controllable character manipulation dataset: CharCount (zh) and CharCount
(en): The model is tasked with counting how many specific letters are in a given word. To account
for linguistic variation, the dataset is split into Chinese and English subsets, based on prompting
language. More details are presented in Appendix C. We also utilize several open-source reasoning
datasets: KnowLogic (Zhan et al., 2025): A complex dataset synthesized using real-world knowl-
edge and logical reasoning rules, where each question provides four possible answers A, B, C, and
D, and more than one may be correct. AIME 2024 and AIME 2025 3: Challenging mathematical
reasoning datasets.

Models. To demonstrate the universality of internal bias, we conduct experiments across different
model families and sizes. Specifically, we select DeepSeek-R1 (DeepSeek-AI et al., 2025a), R1-
distill-Qwen-14B, and QwQ-32B (QwenTeam, 2025).

2In Appendix J, we verify that direct answers are consistent with latent representations, demonstrating that
they can fairly and accurately capture the internal bias.

3https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_
Solutions
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Experiment Details. For each question, we let the model to generate 64 direct answers and one
normally reasoned response. Similar to many other works (Chen et al., 2025a; Zhang et al., 2025a),
we count reflection-related keywords (e.g. “wait”) to roughly illustrate the number of the model’s
reflections. The full keyword lists are in Appendix D. All experiments were conducted on NVIDIA
RTX A6000 GPUs.

4.2 OVERALL RESULTS

Table 1: Results on CharCount (zh), KnowLogic and AIME 2024 datasets.
CharCount (zh) Acc Accdirect Llow Lhigh R∆

DeepSeek-R1 99.2% 55.8% 556.7 735.6 32.1%
QwQ-32B 92.6% 36.8% 715.6 866.0 21.0%

R1-Distill-Qwen-14B 73.3% 17.3% 944.4 1228.7 30.1%
KnowLogic Acc Accdirect Llow Lhigh R∆

DeepSeek-R1 54.0% 29.4% 2965.7 4214.3 42.1%
QwQ-32B 51.6% 29.7% 5694.7 7167.1 25.9%

R1-Distill-Qwen-14B 27.2% 24.9% 5713.8 6927.6 21.2%
AIME 2024 Acc Accdirect LLow LHigh R∆

DeepSeek-R1 76.7% 3.3% 7934.8 9764.2 23.6%
QwQ-32B 73.3% 0.0% 10239.7 13521.6 32.1%

R1-Distill-Qwen-14B 63.3% 0.0% 8882.1 12709.9 43.1%

Table 1 presents results on CharCount (zh), KnowLogic and AIME 2024 datasets, with the rest
results provided in Appendix F.1. In each table, “Acc” is the accuracy after reasoning; “Accdirect” is
the accuracy of direct answers computed by majority votes; Llow and Lhigh are the average reasoning
length (number of tokens) for cases with lower and higher half of deviation degree; R∆ represents
the relative length increase of the high-deviation group compared with the low-deviation group.

Direct answer’s accuracy is relatively low. The model exhibits a high error rate in its direct
answers, indicating that it often fails to perform a correct guess, which is why we define such answers
as internal bias. The result also suggests that bias is largely detrimental in most cases, especially as
the complexity of the questions increases.

The reasoning length of the high-deviation group is longer than that of the low-deviation
group. The increase in length is at least 21.0%, and reaches 42.1% in some cases. This obser-
vation intuitively demonstrates that the degree of internal bias deviation has a significant impact on
the model’s reasoning length. The trends are consistent across all models and datasets.

4.3 FINE-GRAINED ANALYSES

To conduct a more fine-grained analysis of the impact of internal bias, we further divide the deviation
degree into four smaller intervals. Figure 2 shows the results of R1-distill-Qwen-14B on CharCount
(zh), representing tasks with the numerical answers, and QwQ-32B on KnowLogic, representing
tasks with the categorical answers. More results are presented in Appendix F.2.

Reasoning models may naturally engage in reflection, so even for cases with low deviation bias
(MAE< 0.5 or Inconsistency Rate < 25%), reflective behavior can still be observed following the
initial reasoning step. The main reason for this reflection may be to check whether the result is
correct. For these cases, the number of reflection keywords is usually small.

The greater the deviation of the internal bias is, the more severely the model overthinks. As
internal bias deviation increases, both the average output length and the count of reflection keywords
rise sharply, which aligns with the earlier observation that internal bias triggers overthinking. For
these thinking processes, the model tend to generate much more reflection keywords, because it is
switching between different thoughts. These steps do not involve a thorough examination of the
reasoning process but instead result primarily in increased token consumption without meaningful
self-evaluation. This trend is consistently observed across all experiments.
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Figure 2: Correlation between deviation degree and reasoning behavior. The light-colored bars
represent the full reasoning length, while the dark-colored bars indicate the position at which the
model first provides an answer. The orange line shows the number of reflection keywords. Qwen-
14B here is short for R1-distill-Qwen-14B. Appendix E describes the method used to identify the
position at which the model first provides an answer during its reasoning process.

Internal bias rather than question complexity causes the observed trends. One might think that
more difficult questions need longer thinking. Thus we collect the first reasoning length of each
question, i.e. the length of the first complete thought that leads to an answer, which could be seen
as an indicator of the complexity of the problem. As shown in Figure 2, the first reasoning lengths
are almost the same for examples within the same task, indicating that the complexity of questions
are almost the same in different groups in the same task. Therefore, internal bias is more likely to
be the reason for overthinking.

In extreme cases, internal bias can lead to a parroting phenomenon. “Parroting” refers to sit-
uations in which the model repeatedly generates exactly the same content, thus fails to provide a
final answer. Taking R1-Distill-Qwen-14B performing CharCount (zh) as an example, among all
parroting cases, the direct answer accuracy is only 4.4%, compared to 17.3% across all cases (Ta-
ble 1). Conversely, if we estimate MAE between the last numeric value in the model’s output and
direct answers, and split all cases into two groups based on MAE, the high-MAE group exhibits a
parroting probability of 6.6%, while the low-MAE group shows a significantly lower rate of only
2.8%, suggesting a correlation between deviation degree and the parroting behavior. This highlights
the underlying reason behind the parroting phenomenon: driven by strong internal bias, the model
engages in excessive reflection early in the reasoning process, which further reinforces its tendency
to reflect. This self-perpetuating cycle ultimately leads to repetitive output during the later stages.

5 CAUSAL EFFECTS OBSERVED THROUGH COUNTERFACTUAL
INTERVENTIONS

In this section, we employ two distinct counterfactual intervention methods to establish the causal
relationship between internal bias and overthinking in reasoning models. We use R1-Distill-Qwen-
14B model for controllable analysis.

5.1 REMOVING QUESTION FROM PROMPT

When the model first generates an answer during its reasoning steps, we immediately remove the
input question from the prompt and allow the model to continue generating without access to the
original task. Since a complete reasoning process has already incorporated the necessary information
from the question, this forces the model to decide solely based on its own prior reasoning trajectory
whether to engage in further reflection or terminate the thinking process. Under this intervention,
we examine whether the model reduces its reasoning length and assess how its final performance on
answering the question is affected.

We validate this on the full KnowLogic, AIME 2024, and AIME 2025 datasets, as well as random
selected 1,000-example subsets from CharCount (en) and CharCount (zh). We introduce the length
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reduction ratio r = (Lori−Lrem)/(Lori−Pfirst) to measure the length reduction after the first reasoning
answer is obtained, where L denotes the output length, the subscript ori/rem denotes the original
and question-removed situation, and Pfirst denotes the position where the first reasoning answer is
obtained, i.e. where we start to remove the input question. Results are shown in Table 2.

Table 2: Results of the removing question intervention.
Dataset Accori/Accrem Lori/Lrem Pfirst r

CharCount (en) 93.8 / 93.2 541.0 / 453.3 258.8 31.1
CharCount (zh) 73.4 / 72.9 1081.9 / 782.5 245.1 35.8

KnowLogic 27.2 / 29.3 6320.7 / 5857.5 4921.8 33.1
AIME 2024 63.3 / 66.7 10796.0 / 7706.1 5022.7 53.5
AIME 2025 36.7 / 46.7 13428.9 / 10303.0 4323.4 34.3

Removing question consistently leads to a reduction in redundant reasoning. Across all
datasets, removing the question leads to a reduction ratio r ranging from 31.1% to 53.5%, causally
confirming that the model’s excessive focus on the question section is a key driver of overthinking.

Removing question leads to better performance in complex tasks. We observe performance im-
provements on complex datasets. Case studies reveal that these improvements are largely attributed
to previously parroting behaviors now being resolved correctly, which, as discussed earlier in § 4.3,
are also strongly linked to the influence of internal bias. The observed accuracy decrease in simpler
tasks is slight and likely stems from the short reasoning chains, which may be more easily disrupted
by our coarse-grained intervention. These indicate that the reduced reasoning length primarily con-
sists of redundant thoughts that do not contribute to the model’s final answer.

5.2 BIAS INJECTION

We further conduct a bias injection experiment, deliberately manipulating the model’s internal bias
toward specific questions and examine whether its reasoning behavior changes accordingly.

Specifically, we select 500 samples each with the the lowest and highest deviation degree (Dbias)
from the CharCount (zh) dataset. Based on this, we design a bias injection method: we construct 50
rephrased declarative statements for each sample and then fine-tune the model on these statements to
perform a sample-wise bias injection, and then test on the exact same sample. We design two training
regimes: a) Low2Wrong: construct wrong declarative statements with the lowest Dbias samples; b)
High2Correct: construct correct statements with the highest Dbias samples; c) Random2Correct: test
on high Dbias samples, but construct random correct statements that differ from the testing sample;
d) Random2Wrong: test on low Dbias samples, but construct random wrong statements. The last
two serve as baselines to rule out influence of the bias injection training itself. An example of the
declarative statement, additional data and training details are provided in Appendix H.

Table 3: Bias injection results on sub-
sampled CharCount(zh) dataset.

Setting Length Acc

Random2Wrong 355.5 89.5%
Low2Wrong 454.9 83.4%

Random2Correct 600.8 67.0%
High2Correct 412.1 76.6%

As shown in Table 3, when comparing each set-
ting with its corresponding Random baseline, we
observe that in the Low2Wrong setting, the reason-
ing length increases from 355.5 to 454.9, whereas
in the High2Correct setting it decreases from 600.8
to 412.1. These changes indicate that injecting in-
correct biases makes the model more prone to re-
flection, while injecting correct ones reduces unnec-
essary deliberation, providing strong evidence for a
causal relationship between the internal bias and the
model’s reflective reasoning patterns. This may in-
dicate that the model’s incorrect internal knowledge
distribution is one of the origins of internal bias.
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6 INTERPRETABILITY ANALYSIS

As shown in Figure 1, although with the existence of internal bias, LLMs can indeed successfully
derive the correct answer with its own reasoning. An interesting question is: why the model keeps the
internal bias in mind even after long steps of reasoning ? We observe that the model pays excessive
attention to the input question when deciding whether to engage in further reflection. Intuitively,
the model may be referring the question to decide whether the current reasoning is correct. But
this heightened attention also reactivates the internal bias, influencing the decision to reflect. In
Appendix J.1, we conduct a probing study that verifies the hidden states from the question segment
are highly correlated with the direct answers and thus encode the internal bias. This supports that
bias could be reactivated through attention to the input. We now examine attention behavior through
both an illustrative example and quantitative analysis.

6.1 THE “STRAWBERRY” EXAMPLE

<｜begin▁of▁sentence｜> <｜User｜> How many letters ' r ' are there in word ' str aw berry '? Answer

directly with an Arabic number . <｜Assistant｜> <think>

Okay , so I need to figure out how many times the letter ' r ' appears in the word ' str aw berry '. Let me

start by writing out the word to visualize it better : S -T -R -A -W -B -E -R -R -Y . Wait , no , that 's not

quite right . Let me make sure I spell it correctly . S -T -R -A -W -B -E -R -R -Y ? Hmm , actually , I think I

might be adding an extra ' r ' there . Let me check again .

The word is ' str aw berry '. Breaking it down letter by letter : S , T , R , A , W , B , E , R , R , Y . Wait

, that 's 1 0 letters . But I 'm trying to count the ' r 's . So starting from the beginning : S ( no ), T ( no ),

R ( yes , that 's one ), A ( no ), W ( no ), B ( no ), E ( no ), R ( that 's two ), R ( that 's three ), Y ( no

). So I count  three 'r's.

Wait, but I think I might be making a mistake here...

Figure 3: The “strawberry” example as an illustration of abnormally high attention scores on ques-
tion part when a reflection token is about to be output. Color intensity is used to represent the ratio
of attention scores assigned to each preceding tokens at the following two steps: generating “three”
and generating “Wait”. Darker red indicates a higher relative attention at the reflection point when
“Wait” is generated, while darker blue reflects higher relative attention when generating “three”.

As a direct illustration, we revisit the “strawberry” example from Figure 1. We compare the attention
score for the context tokens at two different steps during the reasoning: the answer point, where the
model generates an intermediate result; and the reflection point, where the model decides whether
to perform a further reflection.

The visualization in Figure 3 reveals a clear shift in attention at the reflection point: Compared to the
the answer point, the model focuses more heavily on the question part (the first segment/paragraph),
its own paraphrasing of the question, and earlier superficial reasoning steps with reflection tokens
(the second segment), while reducing its attention to the core reasoning process that actually obtains
the answer (the third segment) when deciding whether a reflection token should be output or not.

6.2 STATISTICAL RESULTS ON CHARCOUNT

To further confirm the model’s excessive focus on the input question, we conduct a statistical anal-
ysis. We categorize all preceding tokens into three distinct categories: (1) Question, which refers to
the tokens in the input question. (2) Mid_Results, which corresponds to tokens representing inter-
mediate counting results, e.g. “3” or “three”. (3) Others. For a token at position p, we can compute
the average normalized score scp it assigns to previous tokens of category c, and further aggregate
them across groups G ∈ {Reflection,Other}:
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scp =
1

Nc

∑
i<p,i∈c

aip
1/p

, Sc
G =

1

|G|
∑
p∈G

scp

where Nc is the number of tokens that belongs to category c preceding to token p, and aip is the
attention weight from token p to i. Dividing the by 1/p normalizes for positional imbalances, as
it corresponds to the uniform attention baseline, enabling fair comparison across different token
positions. The group-level score Sc

G quantifies the average extent to which tokens in group G attend
to category c. All calculations exclude the first three tokens of the sequences to exclude the attention
sink phenomenon (Xiao et al., 2024).

(a) (b)

Figure 4: (a) Group-level scores Sc
G with averaged attention scores from layers 21 to 30. Similar

visualizations for other layers are in Appendix G and the trends are the same. (b) The ratio of
Sc

Reflection/S
c
Other across all layers.

Figure 4(a) shows the model generally pays low attention to the question section during most of
the reasoning process, while upon reflections it exhibits a sharp increase to more than four times its
original level. Although attention to previous intermediate results also increases, the proportion of
attention allocated to the question section still rises significantly. Figure 4(b) shows the layer-wise
ratio of group-level scores Sc

G for tokens in reflection steps versus other tokens. A sharp increase in
attention to question tokens occurs in the middle-to-later layers, where the model engages in active
reasoning (Zhao et al., 2024; Wendler et al., 2024). These attention patterns may reactivate internal
bias during the model’s decision on whether to initiate further reflection and lead to overthinking.

7 MITIGATION TRIALS

Finally, we apply some existing techniques for mitigating overthinking and evaluate whether they
can also reduce the influence of internal bias.

We reproduce two mainstream categories of approaches: (1) training-time reasoning optimiza-
tion, exemplified by First-Correct Solutions with Reflection (denoted as FCS) (Chen et al., 2025b),
which focuses on constructing high-quality short reasoning data and refining the model through
post-training via Supervised Fine-Tuning (SFT) or Direct Preference Optimization (DPO); and (2)
inference-time reasoning interventions, including SEAL (Chen et al., 2025a), which steers the rea-
soning trajectory by intervening hidden states during decoding, and PROBE (Zhang et al., 2025a),
which probes internal representations and determines an appropriate time to manully perform early
stopping. We implement these methods on R1-Distill-Qwen-14B model (denoted as Qwen-14B)
and the 1000-sample subset of CharCount (zh) dataset; and additionally reproduce the best per-
formed method FCSSFT on AIME 2024. The implement details are in Appendix I. The results are
summarized in Table 4, where the symbols follow the same convention as in Table 1, and include a
“Remove” entry corresponding to the question-removal intervention (§ 5.1) as a reference.

On CharCount dataset, existing methods perform well in shortening reasoning trajectories, yet
show minimal effectiveness in mitigating internal bias, and in some cases even exacerbating

9



Published as a conference paper at ICLR 2026

Table 4: Mitigation trials results in CharCount and
FCSSFT results in AIME2024.

CharCount Acc Llow Lhigh R∆

Qwen-14B 73.4% 934.7 1229.1 31.5%
+ Remove 72.9% 727.3 837.8 15.2%

+ FCSDPO 76.7% 555.3 812.8 46.3%
+ FCSSFT 78.9% 451.3 572.0 26.7%
+ SEAL 77.4% 581.3 805.1 38.5%
+ PROBE 73.1% 702.6 912.5 29.9%
AIME2024 Acc Llow Lhigh R∆

Qwen-14B 63.3% 8882.1 12709.9 43.1%
+ Remove 66.7% 7252.6 8159.6 12.5%

+ FCSSFT 50.0% 7204.6 9718.1 34.9%

its influence, as evidenced by the compa-
rable or even larger R∆. As a reference,
question-removal can achieve an R∆ of
only 15.2%. The training data for these
methods are drawn from the CharCount
dataset itself, which may contribute to the
observed performance improvement. No-
tably, the simplest SFT method achieves
the highest accuracy and best R∆ among
existing methods. However, on the more
complex task AIME 2024, it suffers a sig-
nificant drop in accuracy, indicating that
shortened reasoning chains may impair
the model’s reasoning ability for complex
problems, which aligns with the findings
of Chen et al. (2025b). These results sug-
gest that existing methods achieve shorter
reasoning traces only superficially, some-
times even harming the model’s reasoning capability. Crucially, the underlying reflection pattern
driven by internal bias continues to profoundly affect reasoning efficiency.

8 CONCLUSION AND DISCUSSION

We identify internal bias as a key reason for overthinking in reasoning models, and demonstrate this
relevance across different experimental settings. Conterfactual bias intervention and bias injection
results provide rigorous evidence of the causal link between internal bias and overthinking. Further
interpretability analyses reveal that excessive attention to the question during reflection likely reac-
tivates the internal bias, leading to redundant reflections even after long reasoning chains. Finally,
we find that existing overthinking mitigation methods may fail to eliminate the influence of internal
bias, highlighting its resilience and the importance of addressing this issue. Our findings call for a
shift in how we understand reasoning models and open new directions for building more efficient,
self-aware, and adaptive reasoning systems.

Nevertheless, several aspects still merit deeper discussion, including the origins of internal bias, the
dynamics of its influence, potential mitigation strategies, and the limitations of this work.

Origins of Internal Bias Internal biases may arise from multiple interacting factors rooted in
training methods and data. For instance, reinforcement learning with verifiable rewards only may
implicitly promote repeated self-checking, while inaccurate knowledge distributions can create con-
flicts between the model’s internal states and the correct reasoning path, triggering reflections, which
has already received preliminary verification in the bias injection experiments in §5.2. Further analy-
sis of knowledge storage mechanisms like FFN neurons may provide additional insights into biases.

Transition from Bias to Reasoned Output We are interested in when a model becomes “con-
vinced” by the reasoning outputs and discards its internal bias. We hypothesize that this transition is
gradual: as reasoning progresses, attention to the question becomes diluted, decreasing the influence
of internal bias and allowing trust in the ongoing reasoning trajectory to dominate. Supplementary
results supporting this hypothesis are provided in Appendix K.

Potential Solutions Since bias is deeply rooted within the model, we argue that the most efficient
approach is not to eliminate bias through training, but rather to decouple its influence during infer-
ence. Inspired by the analysis in §6, an attention-based early-exit mechanism may offer a promising
direction. We explored this idea in Appendix I.3 and observed improvement on the CharCount (zh)
dataset. However, developing more robust solutions remains future work.

Limitations All analyses in this paper are restricted to tasks with outputs that are explicit numer-
ical values, ranges, or multiple-choice options. We acknowledge that for open-ended tasks, bias is
not yet well defined, as it may manifest in more complex forms.
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A SUPPLEMENTS FOR FIGURE 1

A.1 FULL ANSWERS

Below are the complete responses corresponding to the examples in Figure 1. The “<think>” and
“</think>” tokens are added for clearer demonstration. And we mark thoughts in the reasoning
process that are explicitly affected by the internal bias in bold font.

QUESTION:
How many letters R are in the word strawberry?

DEEPSEEK-R1:
<think>
Okay, so I need to figure out how many times the letter "R" appears in the word "strawberry." Let me
start by writing down the word so I can look at each letter one by one.
The word is S-T-R-A-W-B-E-R-R-Y. Let me count each letter carefully.
Starting with the first letter: S. That’s an S, not an R. Next is T. Still not an R. The third letter is R.
Okay, that’s one. Then A, W, B, E—those aren’t R. Then comes another R. So that’s two. Next is
another R. Wait, let me check again. The word is strawberry. Let me spell it out: S, T, R, A, W, B, E,
R, R, Y. Hmm, after E, there are two Rs and then a Y. So after E, it’s R, R, Y. So that would be two Rs
after the E. Wait, so in total, the Rs are at the third position, then the eighth and ninth positions? Let
me count again to be sure.
Breaking it down:
1. S
2. T
3. R (1)
4. A
5. W
6. B
7. E
8. R (2)
9. R (3)
10. Y
Wait, but that would make it three Rs? But I thought strawberry has two Rs. Maybe I’m miscount-
ing. Let me check the spelling again. Strawberry is spelled S-T-R-A-W-B-E-R-R-Y. So after B, it’s E,
then R, R, Y. So positions 8 and 9 are both Rs. So that’s two Rs there, plus the one at position 3. So
total of three Rs? But I feel like that’s not right. Let me verify by writing the word and underlining
each R.
S T R A W B E R R Y
So the Rs are at the 3rd, 8th, and 9th letters. That’s three Rs. Wait, but I always thought strawberry
has two Rs. Maybe I’m confusing it with another word. Let me check the correct spelling. Maybe I
added an extra R by mistake. Let me look up the spelling of strawberry to confirm. [Pauses to recall]
No, strawberry is S-T-R-A-W-B-E-R-R-Y. So yes, two Rs at the end before the Y. So that’s three Rs in
total? Wait, no. Let me count again: S (1), T (2), R (3), A (4), W (5), B (6), E (7), R (8), R (9), Y (10).
So positions 3, 8, 9. That’s three Rs. But I think I might be making a mistake here because when I
say "strawberry" out loud, it sounds like two Rs. Let me check another way. Maybe I’m breaking
down the syllables wrong. Straw-ber-ry. Wait, the "ber" part is B-E-R, then "ry" is R-Y. So maybe in
the spelling, after B-E-R, there’s another R before Y. So that’s two Rs in the last part. So total of three?
But I’m confused now. Let me write it again:
S T R A W B E R R Y
So letters: 1.S, 2.T, 3.R, 4.A, 5.W, 6.B, 7.E, 8.R, 9.R, 10.Y. So indeed, three Rs. But I must be wrong
because I remember strawberry having two Rs. Wait, maybe the correct spelling is S-T-R-A-W-B-
E-R-Y, with only one R after E. Let me confirm. No, no, I think it’s definitely spelled with two Rs at
the end. Because the word comes from "straw" + "berry," and "berry" is B-E-R-R-Y. So "berry" has
two Rs, right? Yes, berry is B-E-R-R-Y. So strawberry is straw + berry, so combining them would be
S-T-R-A-W-B-E-R-R-Y. Therefore, three Rs: one in "straw" (the third letter) and two in "berry" (the
eighth and ninth letters). So total of three Rs. Wait, but that contradicts my initial thought. Let me
check a dictionary or something. [Pretends to check a dictionary] Hmm, according to the dictionary,
strawberry is spelled S-T-R-A-W-B-E-R-R-Y. So yes, three Rs. Therefore, the answer should be three.
But wait, when I say the word, it’s pronounced with two Rs? Or maybe I’m just miscounting.
Let me try pronouncing it: straw-ber-ry. The "ber" is one R, and the "ry" is another R? No, actually,
"berry" is pronounced with two Rs: B-E-R-R-Y. So in the spelling, it’s two Rs, making the total in
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strawberry as three. Wait, no. Wait, "straw" is S-T-R-A-W, which has one R. Then "berry" is B-E-R-
R-Y, which has two Rs. So combined, that’s three Rs. Therefore, the answer is three. But I need to
make sure I’m not adding an extra R. Let me count again letter by letter:
S (1) - no
T (2) - no
R (3) - 1
A (4) - no
W (5) - no
B (6) - no
E (7) - no
R (8) - 2
R (9) - 3
Y (10) - no
Yes, three Rs. So the answer is 3. But I’m second-guessing because maybe I’m including an extra
R. Wait, let me look up the word strawberry’s spelling again mentally. Yes, it’s S-T-R-A-W-B-E-R-R-
Y. So three Rs. Therefore, the correct answer is 3.
</think>
To determine how many times the letter "R" appears in the word "strawberry," let’s break it down step
by step:
Spell the word: S-T-R-A-W-B-E-R-R-Y.
Identify each letter’s position:
1: S
2: T
3: R
4: A
5: W
6: B
7: E
8: R
9: R
10: Y
Count the occurrences of "R":
Position 3: R (1)
Position 8: R (2)
Position 9: R (3)
Final Answer: The word "strawberry" contains 3 letters "R".

QUESTION:
Let b ≥ 2 be an integer. Call a positive integer n b-eautiful if it has exactly two digits when expressed
in base b, and these two digits sum to

√
n. For example, 81 is 13-eautiful because 81 = 6313 and

6 + 3 =
√
81. Find the least integer b ≥ 2 for which there are more than ten b-eautiful integers.

DEEPSEEK-R1:
<think>
Okay, so I need to find the least integer b (where b is at least 2) such that there are more than ten b-
eautiful numbers. A b-eautiful number is a positive integer n that has exactly two digits when written
in base b, and the sum of these two digits equals the square root of n.
First, let me make sure I understand the problem correctly. If a number n is written in base b as, say,
"d1 d0", then n = d1 * b + d0. The two digits d1 and d0 must satisfy d1 + d0 = sqrt(n). Also, since it’s
a two-digit number in base b, d1 must be between 1 and b-1 (since leading zeros aren’t allowed), and
d0 must be between 0 and b-1. So, the digits can’t exceed b-1.
Given that example, 81 is 13-eautiful because in base 13, it’s written as 63 (so d1=6, d0=3), and 6+3=9,
which is sqrt(81). That checks out.
So, the task is to find the smallest base b where there are more than ten such numbers.
Let me formalize the problem. Let n be a two-digit number in base b, so n = d1 * b + d0, where d1∈
1, 2, ..., b-1 and d0∈ 0, 1, ..., b-1. Then, the condition is d1 + d0 = sqrt(n).
Therefore, for each base b, we can iterate over all possible d1 and d0 (with d1 from 1 to b-1, d0 from
0 to b-1), compute n = d1*b + d0, check if d1 + d0 = sqrt(n). If yes, then n is b-eautiful. We need to
count how many such n exist for each b and find the smallest b where the count exceeds 10.
So, the plan is:
1. For each base b starting from 2 upwards:
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a. For each possible two-digit number in base b (i.e., d1 from 1 to b-1, d0 from 0 to b-1):
i. Compute n = d1*b + d0.
ii. Compute s = d1 + d0.
iii. Check if sˆ2 = n. If yes, then n is b-eautiful.
b. Count how many such numbers exist for base b.
c. If the count is more than 10, return b as the answer.
But doing this manually for each base would be tedious. Instead, maybe I can find a mathematical
relationship between d1, d0, and b to find possible solutions.
Given that n = d1*b + d0 and s = d1 + d0 = sqrt(n). Therefore, sˆ2 = d1*b + d0. But s = d1 + d0, so
substituting s:
sˆ2 = d1*b + d0
But d0 = s - d1, so substituting that into the equation:
sˆ2 = d1*b + (s - d1)
Simplify:
sˆ2 = d1*(b - 1) + s
Therefore:
d1*(b - 1) = sˆ2 - s
So:
d1 = (sˆ2 - s)/(b - 1)
Since d1 must be a positive integer (as it’s a digit in base b, from 1 to b-1), and s = d1 + d0 must be an
integer (as it’s the sum of two integers). Therefore, (sˆ2 - s) must be divisible by (b - 1), and the result
must be an integer d1 where 1≤ d1≤ b - 1, and d0 = s - d1 must satisfy 0≤ d0≤ b - 1.
So, for each base b, possible values of s must satisfy that (sˆ2 - s) is divisible by (b - 1), and the
resulting d1 and d0 must be valid digits in base b.
Therefore, the key equation is:
(sˆ2 - s)≡ 0 mod (b - 1)
Which can be written as:
s(s - 1)≡ 0 mod (b - 1)
Therefore, for each s, b - 1 must divide s(s - 1). So, b - 1 is a divisor of s(s - 1).
But since s = d1 + d0, and d1 and d0 are digits in base b, so d1 can be up to b - 1, and d0 can be up to
b - 1. Therefore, the maximum possible value of s is (b - 1) + (b - 1) = 2b - 2. The minimum possible
s is 1 + 0 = 1. So s ranges from 1 to 2b - 2.
But in reality, since n = sˆ2 is a two-digit number in base b, which is at least b (since the smallest
two-digit number is 10_b = b) and at most (b - 1)*b + (b - 1) = bˆ2 - 1. Therefore, n must satisfy b≤
sˆ2≤ bˆ2 - 1. Therefore, s must satisfy sqrt(b)≤ s≤ sqrt(bˆ2 - 1)≈ b - 1/(2b). Since s is an integer,
s must be from ceil(sqrt(b)) to b - 1.
Wait, but sqrt(bˆ2 - 1) is less than b, so s can be up to b - 1. Therefore, s ranges from ceil(sqrt(b)) to b
- 1. But earlier, s could be up to 2b - 2, but in reality, because n must be a two-digit number in base b,
s can’t be larger than b - 1, since sˆ2 <= bˆ2 - 1. Let me check:
If s is greater than or equal to b, then sˆ2 >= bˆ2, but n is at most bˆ2 - 1. Therefore, s must be less than
b. Therefore, s ranges from ceil(sqrt(b)) up to b - 1. Wait, but if s is less than b, then the maximum s
is b - 1. Therefore, s is in [ceil(sqrt(b)), b - 1].
But then, if s is from ceil(sqrt(b)) to b - 1, then for each such s, we can check if (sˆ2 - s) is divisible by
(b - 1), and if so, compute d1 = (sˆ2 - s)/(b - 1). Then check if d1 is between 1 and b - 1, and d0 = s -
d1 is between 0 and b - 1.
Therefore, for each base b, the possible s values are integers from ceil(sqrt(b)) up to b - 1, such that
(sˆ2 - s) is divisible by (b - 1). For each such s, compute d1 and d0, check if they are valid digits, and
if so, count that as a b-eautiful number.
Therefore, the number of b-eautiful numbers is equal to the number of integers s in [ceil(sqrt(b)), b -
1] such that (sˆ2 - s) mod (b - 1) = 0, and d1 = (sˆ2 - s)/(b - 1) is an integer between 1 and b - 1, and d0
= s - d1 is between 0 and b - 1.
So, perhaps instead of iterating through all possible d1 and d0 for each base b, which would be O(bˆ2)
for each b, we can iterate through possible s values and check divisibility. This might be more efficient,
but even better, perhaps we can find a relationship between b and s.
Given that (sˆ2 - s) must be divisible by (b - 1), so (b - 1) divides s(s - 1). Therefore, (b - 1) must be a
divisor of s(s - 1). Since s and s - 1 are consecutive integers, they are coprime. Therefore, the divisors
of s(s - 1) are the products of the divisors of s and s - 1. Therefore, since s and s - 1 are coprime, any
divisor of s(s - 1) can be written as d1*d2 where d1 divides s and d2 divides s - 1.
But in our case, (b - 1) is a divisor of s(s - 1). Therefore, for each s, possible values of (b - 1) are
divisors of s(s - 1). However, since we are looking for b >= 2, then (b - 1) >= 1, so possible divisors
from 1 upwards. But since s ranges up to b - 1, and (b - 1) must be at least s/(something). Wait, perhaps
this approach is complicating things.
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Alternatively, for each b, since (b - 1) divides s(s - 1), and s <= b - 1, then s is less than or equal to (b -
1). So, s is in [ceil(sqrt(b)), b - 1], and (b - 1) divides s(s - 1). Let me note that s and s - 1 are coprime.
Therefore, since (b - 1) divides s(s - 1), and gcd(s, s - 1) = 1, then (b - 1) must be a product of a divisor
of s and a divisor of s - 1. So, (b - 1) = k * m, where k divides s and m divides s - 1. Then, since s = k
* t and s - 1 = m * u for some integers t and u. Then, (b - 1) = k * m. So, perhaps this is getting too
abstract.
Alternatively, maybe it’s easier to fix b and find the possible s. For each base b, we can compute (b -
1) and then look for s in [ceil(sqrt(b)), b - 1] such that s(s - 1) is divisible by (b - 1). Then, for each
such s, check if d1 = (sˆ2 - s)/(b - 1) is an integer between 1 and b - 1, and d0 = s - d1 is between 0 and
b - 1.
But even this requires checking for each b. Maybe instead, we can parameterize s and express b in
terms of s and some divisor.
Let me try to rearrange the equation:
From sˆ2 - s = d1*(b - 1)
We can solve for b:
b = (sˆ2 - s)/d1 + 1
Since b must be an integer greater than d1 (since d1 is a digit in base b, so d1 < b). Also, d1 must
divide (sˆ2 - s). Therefore, for each s, d1 can be any divisor of s(s - 1), and then b is determined as (s(s
- 1)/d1) + 1. Then, we can check if d1 is a valid digit in base b (i.e., d1 < b), and d0 = s - d1 is also a
valid digit (i.e., d0 >= 0 and d0 < b).
But since d0 = s - d1 must be non-negative, we have s - d1 >= 0, so d1 <= s. Also, since d0 < b, s - d1
< b. But since b = (sˆ2 - s)/d1 + 1, so s - d1 < (sˆ2 - s)/d1 + 1. Let’s substitute b into the inequality:
s - d1 < (sˆ2 - s)/d1 + 1
Multiply both sides by d1 (assuming d1 > 0, which it is since d1 is a digit from 1 to b-1):
d1(s - d1) < sˆ2 - s + d1
Expand left side:
d1*s - d1ˆ2 < sˆ2 - s + d1
Bring all terms to left side:
d1*s - d1ˆ2 - sˆ2 + s - d1 < 0
Combine like terms:
- d1ˆ2 + (s -1)d1 - sˆ2 + s < 0
Multiply both sides by -1 (which reverses inequality):
d1ˆ2 - (s -1)d1 + sˆ2 - s > 0
Factor:
d1ˆ2 - (s -1)d1 + s(s - 1) > 0
This quadratic in d1: d1ˆ2 - (s -1)d1 + s(s -1)
Let me compute discriminant:
D = (s -1)ˆ2 - 4*1*s(s -1) = (sˆ2 - 2s +1) - 4s(s -1) = sˆ2 -2s +1 -4sˆ2 +4s = -3sˆ2 + 2s +1
Hmm, discriminant D = -3sˆ2 + 2s +1.
But since we have the quadratic expression d1ˆ2 - (s -1)d1 + s(s -1) > 0, and since the quadratic opens
upwards (coefficient of d1ˆ2 is 1), the expression is positive outside the roots. However, the roots are
given by d1 = [(s -1) ± sqrt(D)]/2. Since D is negative for large s, but let’s check when D is positive.
For D to be positive: -3sˆ2 + 2s +1 >0.
Multiply by -1: 3sˆ2 -2s -1 <0.
Solve 3sˆ2 -2s -1 <0.
Find roots of 3sˆ2 -2s -1 =0:
s = [2 ± sqrt(4 +12)]/6 = [2 ± sqrt(16)]/6 = [2 ±4]/6.
So s=(2+4)/6=1, s=(2-4)/6=-1/3. So the quadratic is positive outside s=1 and s=-1/3. Therefore, 3sˆ2
-2s -1 <0 for -1/3 <s <1. But since s is a positive integer greater than or equal to 1, this is only possible
for s=1. So, D is positive only when s=1.
For s=1, D= -3(1)ˆ2 +2(1) +1= -3+2+1=0. So D=0.
Therefore, except for s=1, D is negative. Therefore, for s >=2, the quadratic in d1 has no real roots,
which means the quadratic expression is always positive. Therefore, the inequality d1ˆ2 - (s -1)d1 +
s(s -1) >0 holds for all real numbers d1. But since d1 is a positive integer, this means that s - d1 < b
is automatically satisfied? Wait, but the original inequality was s - d1 < b, which, after substitution
and rearrangement, led to the quadratic expression being positive. But since the quadratic is always
positive for s >=2, then s - d1 < b is always true for s >=2. However, we must also ensure that d0 = s -
d1 >=0. So, the main constraints are:
1. d1 divides s(s -1).
2. d1 <= s (since d0 = s - d1 >=0).
3. d1 >=1 (since it’s a digit in base b, and digits start from 1 for the first digit).
4. b = (s(s -1)/d1) +1 must be greater than d1 (since d1 is a digit in base b, so d1 < b).
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So, given that, for each s >=2, we can consider all divisors d1 of s(s -1) such that 1 <=d1 <=s, and
check if b = (s(s -1)/d1) +1 > d1. Then, in such cases, d0 = s - d1 must also be less than b. But since b
= (s(s -1)/d1) +1, and d0 = s - d1, we can check if d0 < b:
s - d1 < (s(s -1)/d1) +1
Multiply both sides by d1:
d1(s - d1) < s(s -1) + d1
Which is the same inequality as before, leading to the quadratic expression which is always positive
for s >=2. Therefore, for s >=2, as long as d1 divides s(s -1) and 1 <=d1 <=s and b = (s(s -1)/d1) +1 >
d1, then d0 will automatically be less than b.
Therefore, the steps can be:
For each s >=2:
a. Find all divisors d1 of s(s -1) such that 1 <= d1 <=s.
b. For each such d1, compute b = (s(s -1)/d1) +1.
c. Check if b > d1. Since b = (s(s -1)/d1) +1, and d1 <=s, then (s(s -1)/d1) >= (s(s -1)/s) = s -1.
Therefore, b >= (s -1) +1 = s. Since d1 <=s and b >=s, so if d1 <=s and b >=s, then to have b >d1, we
need that either b >s (so d1 <=s <b) or if b =s, then d1 <s. But b = (s(s -1)/d1) +1. If d1 =s, then b=
(s(s -1)/s) +1= (s -1) +1=s. So if d1=s, then b=s. But d1 must be <b, because d1 is a digit in base b.
Therefore, if d1 =s, then b =s, but d1 must be less than b, so d1 <b. Therefore, d1 =s is only allowed
if s <b. But in this case, b=s, so s <s is impossible. Therefore, d1 cannot be equal to s. Therefore, in
this case, when d1 =s, b=s, but d1 must be less than b, which would require s <s, which is impossible.
Therefore, d1 cannot be s. Therefore, we must have d1 <s. So, for each s, d1 must be a divisor of s(s
-1) such that 1 <=d1 <s. Then, b = (s(s -1)/d1) +1. Then, since d1 <s, s(s -1)/d1 >=s(s -1)/(s -1)=s, so
b >=s +1. Therefore, b >s, so d1 <s <b. Therefore, in this case, d1 is a valid digit (since digits go up
to b -1, and d1 <s <b, so d1 <b). Then, d0 =s -d1 must be between 0 and b -1. Since d0 =s -d1 <b
(as shown earlier), and d0 =s -d1 >=0 because d1 <=s. Therefore, as long as d1 is a divisor of s(s -1),
1<=d1 <s, then b = (s(s -1)/d1) +1, and n = sˆ2 is a b-eautiful number.
Therefore, each pair (s, d1) where d1 is a proper divisor of s(s -1) (1<=d1 <s) gives a base b = (s(s
-1)/d1) +1 and a number n = sˆ2. Therefore, for each s, the number of b-eautiful numbers in base b is
equal to the number of divisors d1 of s(s -1) with 1<=d1 <s. But each such divisor d1 gives a different
base b. However, the same base b can be obtained from different s and d1 pairs. Therefore, to count
the number of b-eautiful numbers for each base b, we need to consider how many pairs (s, d1) result
in the same b.
Alternatively, for each base b, the number of b-eautiful numbers is equal to the number of s such that
there exists a d1 where b = (s(s -1)/d1) +1, 1<=d1 <s, and d1 divides s(s -1).
This seems complicated. Maybe another approach: for each base b, find all s in [ceil(sqrt(b)), b -1]
such that s(s -1) is divisible by (b -1), then compute d1 = s(s -1)/(b -1) and check if d1 is an integer
between 1 and b -1 and d0 =s -d1 is between 0 and b -1.
Therefore, perhaps it’s more straightforward to iterate over possible b and for each b, compute all
possible s in the required range and check the conditions. Let’s try this approach.
First, note that n = sˆ2 must be a two-digit number in base b. Therefore, n >=b and n <=bˆ2 -1. So, sˆ2
>=b and sˆ2 <=bˆ2 -1. Therefore, s >=ceil(sqrt(b)) and s <=sqrt(bˆ2 -1)≈b -1/(2b). Since s must be
integer, s <=b -1. Therefore, s ranges from ceil(sqrt(b)) to b -1.
For each b, iterate s from ceil(sqrt(b)) to b -1. For each s, check if s(s -1) is divisible by (b -1). If yes,
compute d1 =s(s -1)/(b -1). Check if d1 is integer, 1<=d1 <=b -1, and d0 =s -d1 is between 0 and b -1.
If all conditions are satisfied, then n =sˆ2 is a b-eautiful number.
The number of such s for each base b is the number of b-eautiful numbers.
Therefore, to solve the problem, we can write a program that for each b starting from 2 upwards:
1. Compute the lower bound for s: ceil(sqrt(b)).
2. Iterate s from ceil(sqrt(b)) to b -1.
3. For each s, check if (s)(s -1) mod (b -1) ==0.
4. If yes, compute d1 = s(s -1)/(b -1).
5. Check if d1 is integer (which it is if step 3 passed), and 1<=d1 <=b -1.
6. Compute d0 =s -d1, check if 0<=d0 <=b -1.
7. If all conditions met, increment the count for base b.
8. After processing all s, if count >10, return b.
But since this is a mental exercise, not a programming one, I need to find a mathematical pattern or
properties that allow me to compute the number of solutions for each b.
Alternatively, note that the equation s(s -1)≡0 mod (b -1). Therefore, (b -1) divides s(s -1). Since s
and s -1 are coprime, (b -1) must divide either s or s -1, but since they are coprime, (b -1) must divide
the product, so (b -1) can be expressed as a product of two coprime numbers, one dividing s and the
other dividing s -1. Therefore, (b -1) =k*m, where k divides s and m divides s -1, and gcd(k, m)=1.
Given that, since k divides s and m divides s -1, and gcd(k, m)=1, then s≡0 mod k and s≡1 mod m.
By Chinese Remainder Theorem, there exists a unique solution modulo k*m for s. Therefore, for each
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factorization of (b -1) into k*m with gcd(k, m)=1, there exists solutions s≡0 mod k and s≡1 mod m.
The number of solutions s in the range [ceil(sqrt(b)), b -1] would correspond to the number of valid s
for each factorization.
But this might not directly help. Alternatively, consider that for a given b, the number of s in
[ceil(sqrt(b)), b -1] such that s(s -1) ≡0 mod (b -1). Since s(s -1) ≡0 mod (b -1), then either s
≡0 mod (b -1) or s≡1 mod (b -1), or (b -1) has factors that divide s and s -1 respectively.
But since s <=b -1, s can’t be congruent to 0 mod (b -1) unless s =0, but s >=ceil(sqrt(b)) >=2. So s
≡0 mod (b -1) is impossible. Similarly, s≡1 mod (b -1). Since s <=b -1, the only possibility is s=1.
But s >=ceil(sqrt(b)), which is at least 2 when b >=4. For b=2 or 3, ceil(sqrt(2))=2, but s can only be 1
for b=2? Wait, no:
Wait for b=2, the possible s range from ceil(sqrt(2))=2 up to b -1=1. But 2 >1, so no solutions.
Therefore, for b=2, no b-eautiful numbers.
Similarly, for b=3: ceil(sqrt(3))=2, s ranges from 2 to 2 (since b -1=2). So s=2. Check if 2*1≡0 mod
2. 2 divides 2, yes. Then d1 = (2*1)/2=1. Then d0=2 -1=1. Check digits: d1=1 (<=2), d0=1 (<=2). So
n=1*3 +1=4. s=2, sqrt(4)=2. So yes, 4 is 3-eautiful. So for b=3, there is 1 number.
But the question is to find the minimal b with more than ten numbers. So perhaps for higher b, the
number of solutions increases.
Alternatively, maybe we can find that the number of solutions for each base b is equal to the number
of divisors of (b -1). Wait, but earlier, we saw that (b -1) divides s(s -1). However, since s and s -1
are coprime, (b -1) must be a product of two coprime numbers, one dividing s and the other dividing s
-1. So the number of solutions s would correspond to the number of ways to write (b -1)=k*m where
k divides s and m divides s -1, and k and m are coprime. Therefore, for each divisor pair (k, m) of
(b -1) with gcd(k, m)=1, we can solve for s ≡0 mod k and s ≡1 mod m. The number of solutions
s in [ceil(sqrt(b)), b -1] would correspond to the number of such pairs where the solution s is in that
interval.
But this seems complex. Let’s try specific examples.
Take b=13 (from the example). Then b -1=12. Factor pairs (k, m) of 12 where gcd(k, m)=1:
1*12, 3*4, 4*3, 12*1. Since 12 can be factored into coprime pairs (1,12), (3,4), (4,3), (12,1). For each
such pair:
For (k=1, m=12):
Solve s ≡0 mod 1 (always true), s ≡1 mod12. Since s <=12 (b -1=12), s=1. But s must be
>=ceil(sqrt(13))=4. So s=1 is invalid.
For (k=3, m=4):
Solve s≡0 mod3, s≡1 mod4. Let’s solve:
s=3a. Then 3a≡1 mod4 => 3a≡1 mod4 => a≡3 mod4 (since 3*3=9≡1 mod4). Therefore, a=4b
+3. Thus, s=3*(4b +3)=12b +9. Since s <=12, the only solution is when b=0: s=9. Check if s=9 is in
[4,12]. Yes. So s=9.
For (k=4, m=3):
Solve s ≡0 mod4, s ≡1 mod3. s=4a. 4a ≡1 mod3 => a ≡1 mod3 (since 4≡1 mod3, so 1*a≡1
mod3 => a≡1 mod3). Thus, a=3b +1. Therefore, s=4*(3b +1)=12b +4. For s <=12, when b=0: s=4.
Check s=4 in [4,12]. Yes.
For (k=12, m=1):
Solve s≡0 mod12, s≡1 mod1 (always true). s=12. Check if s=12 is in [4,12]. Yes.
Therefore, for b=13, we have three solutions: s=4,9,12. Check each:
For s=4:
d1=(4*3)/12=12/12=1. Then d0=4 -1=3. So digits 1 and 3 in base13: 1*13 +3=16. s=4, sqrt(16)=4.
So 16 is 13-eautiful.
Wait, but in the example given, 81 is 13-eautiful. Wait, perhaps I made a mistake. Wait, when s=9:
d1=(9*8)/12=72/12=6. Then d0=9 -6=3. So digits 6 and 3: 6*13 +3=81. Which is the example. s=9,
sqrt(81)=9. Correct.
For s=12:
d1=(12*11)/12=11. Then d0=12 -11=1. So digits 11 and1. In base13, 11 is ’B’, so B1_13=11*13
+1=143 +1=144. s=12, sqrt(144)=12. So 144 is also 13-eautiful. Therefore, for b=13, there are three
b-eautiful numbers:16,81,144.
But according to the problem statement, the example is 81. So that’s one of three.
Therefore, in this case, the number of solutions is 3. But the problem asks for a base with more than
ten b-eautiful numbers. So 3 is much less than 10. Therefore, bases like 13 have 3 solutions.
So, how can we get bases with more than ten solutions?
Perhaps when b -1 has many divisors, leading to multiple factor pairs (k, m) with gcd(k, m)=1. The
number of coprime factor pairs (k, m) of b -1 is 2ˆ(number of distinct prime factors of b -1). Because
each prime factor can go to k or m. For example, if b -1 is a product of n distinct primes, then the
number of coprime factor pairs is 2ˆn.
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Therefore, if b -1 has many distinct prime factors, then there are many coprime factor pairs, leading
to more solutions s. Therefore, the number of solutions s is equal to the number of coprime factor
pairs (k, m) of b -1, where k*m =b -1, and the corresponding s is in [ceil(sqrt(b)), b -1]. However,
each coprime factor pair (k, m) gives a unique solution s modulo k*m. But since s <=b -1, which is
equal to k*m, so there is exactly one solution s in [1, k*m]. But we need s to be in [ceil(sqrt(b)), b -1].
Therefore, not all factor pairs will lead to s in that interval.
Alternatively, if we can maximize the number of coprime factor pairs (k, m) of b -1, then we can
maximize the number of solutions. Therefore, choosing b -1 to be a number with many distinct prime
factors. For example, if b -1 is a product of the first few primes, then the number of coprime factor
pairs would be 2ˆnumber_of_primes, which increases exponentially.
But even then, each coprime factor pair may or may not lead to a valid s in the required interval.
But let’s consider that for each coprime factor pair (k, m) of b -1, we have a unique solution s≡0 mod
k and s≡1 mod m. Then, s can be calculated as:
s≡0 mod k
s≡1 mod m
By Chinese Remainder Theorem, since k and m are coprime, there exists a unique solution modulo
k*m =b -1. Therefore, the solution is s = km*t + s0, where s0 is the unique solution modulo km. But
since s must be less than or equal to km (because b -1=km and s <=b -1=km), the only solution is s=s0.
Therefore, for each coprime factor pair (k, m) of b -1, there is exactly one s in [1, b -1] that satisfies
the congruences. Therefore, the number of solutions s is equal to the number of coprime factor pairs
(k, m) of b -1.
But each coprime factor pair is counted twice (k, m) and (m, k), except when k=m=1. Wait, no. If
we consider ordered pairs, then (k, m) and (m, k) are different if k ≠m. However, if we consider
unordered pairs, then each pair is unique. But in our case, since k divides s and m divides s -1, the
pairs (k, m) and (m, k) are distinct unless k=m=1.
But regardless, for each coprime factor pair (k, m) of b -1, where k and m are positive integers such that
k*m =b -1 and gcd(k, m)=1, there is a unique solution s in [1, b -1]. Therefore, the number of solutions
s is equal to the number of such coprime factor pairs. Since each coprime factor pair corresponds to a
unique s, and vice versa.
Therefore, the number of b-eautiful numbers is equal to the number of coprime factor pairs (k, m) of b
-1 where the corresponding s is in [ceil(sqrt(b)), b -1].
But the number of coprime factor pairs (k, m) of b -1 is 2ˆω(b -1), whereω(n) is the number of distinct
prime factors of n. Because for each distinct prime factor, we can assign it to k or m. Therefore, if b
-1 has t distinct prime factors, there are 2ˆt coprime factor pairs.
However, each such factor pair (k, m) gives a unique s in [1, b -1]. But we need s >=ceil(sqrt(b)).
So, to find the number of solutions s, we need to count how many of these s satisfy s >=ceil(sqrt(b)).
Given that, perhaps for larger b, the majority of the solutions s would lie in the interval [ceil(sqrt(b)),
b -1], so the number of solutions would be approximately 2ˆω(b -1).
But 2ˆω(b -1) is maximized when b -1 has many distinct prime factors. Therefore, to get more than
ten solutions, we need 2ˆω(b -1) >10. Therefore,ω(b -1) >=4, since 2ˆ4=16>10.
Therefore, we need b -1 to have at least 4 distinct prime factors. Therefore, the smallest such b -1
would be the product of the first four primes: 2*3*5*7=210. Therefore, b=211. But this may be
larger than necessary, because even if some solutions s are less than ceil(sqrt(b)), we might still
have more than ten solutions where s >=ceil(sqrt(b)).
Alternatively, if b -1 has many factors, even with fewer prime factors, but higher exponents. Wait, but
exponents don’t affect the number of coprime factor pairs, since coprime factor pairs are determined
by distinct prime factors. For example, if b -1= pˆa, then the only coprime factor pairs are (1, pˆa), so
only two factor pairs, but since they are not coprime unless p=1, which it isn’t. Wait, no. If b -1 is a
prime power, then all factor pairs (k, m) must have k=pˆi and m=pˆj, but then gcd(k, m)=pˆmin(i,j)>1
unless one of them is 1. Therefore, the only coprime factor pairs are (1, pˆa) and (pˆa,1). Therefore,
even for prime powers, there are only two coprime factor pairs, leading to two solutions s. But s=1
and s= pˆa +1? Wait, no, s would be congruent to 0 mod1 and 1 mod pˆa, which is s=1 mod pˆa. Since
s<=pˆa, then s=1. But s=1 is less than ceil(sqrt(pˆa +1)), which is at least 2. So only s=1 is a solution,
but it’s invalid. Similarly, s= pˆa +1 is beyond the range. Therefore, for prime powers, there are no
valid solutions. Hence, to get many solutions, we need b -1 to have multiple distinct prime factors.
Therefore, the minimal b -1 would be the product of the first four primes: 2*3*5*7=210, leading to
b=211. But maybe a smaller number with four distinct prime factors exists. Wait, the product of
the first four primes is 210, which is the smallest number with four distinct prime factors. Therefore,
b=211. But let’s check if b=211 actually has 16 solutions. However, s must be in [ceil(sqrt(211)),
210]. sqrt(211)≈14.5, so ceil(sqrt(211))=15. Therefore, s ranges from 15 to210. However, for each
coprime factor pair (k, m) of 210, which has 2ˆ4=16 factor pairs, each leading to a solution s in [1,210].
However, some of these solutions s might be less than15. Therefore, the actual number of solutions
might be less than16. For example, consider factor pair (1,210): leads to s=1 mod210, so s=1, which is
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less than15. Similarly, (2,105): solve s≡0 mod2, s≡1 mod105. Find s=105a +1. This must be even.
105a +1 ≡0 mod2 =>105a ≡-1 mod2 =>a ≡1 mod2. So a=2b +1. Then s=105*(2b +1)+1=210b
+106. s<=210, so b=0: s=106. Which is in [15,210]. Similarly, other factor pairs may give s in
[15,210]. So, out of 16 factor pairs, how many lead to s>=15?
For each coprime factor pair (k, m) of 210:
1. (1,210): s=1 (invalid)
2. (2,105): s=106
3. (3,70): solve s≡0 mod3, s≡1 mod70. s=70a +1. 70a +1≡0 mod3 =>70a≡-1 mod3 =>70≡1
mod3, so a≡-1 mod3 =>a=3b -1. Therefore, s=70*(3b -1) +1=210b -70 +1=210b -69. For b=1:
s=210 -69=141. For b=0: s=-69 (invalid). So s=141.
4. (5,42): solve s≡0 mod5, s≡1 mod42. s=42a +1. 42a +1≡0 mod5 =>42a≡-1 mod5 =>42≡2
mod5, so 2a≡-1 mod5 =>2a≡4 mod5 =>a≡2 mod5. Therefore, a=5b +2. s=42*(5b +2) +1=210b
+84 +1=210b +85. For b=0: s=85. For b=1:210 +85=295>210. So s=85.
5. (6,35): solve s≡0 mod6, s≡1 mod35. s=35a +1. 35a +1≡0 mod6 =>35a≡-1 mod6 =>35≡5
mod6, so 5a≡-1 mod6 =>5a≡5 mod6 =>a≡1 mod6. Therefore, a=6b +1. s=35*(6b +1) +1=210b
+35 +1=210b +36. For b=0: s=36. For b=1:210 +36=246>210. So s=36.
6. (7,30): solve s≡0 mod7, s≡1 mod30. s=30a +1. 30a +1≡0 mod7 =>30a≡-1 mod7 =>30≡2
mod7, so 2a≡-1 mod7 =>2a≡6 mod7 =>a≡3 mod7. a=7b +3. s=30*(7b +3) +1=210b +90 +1=210b
+91. For b=0: s=91. For b=1:210 +91=301>210. So s=91.
7. (10,21): solve s≡0 mod10, s≡1 mod21. s=21a +1. 21a +1≡0 mod10 =>21a≡-1 mod10 =>21≡1
mod10, so a≡-1 mod10 =>a=10b -1. s=21*(10b -1) +1=210b -21 +1=210b -20. For b=1:210 -20=190.
For b=0: s=-20 invalid. So s=190.
8. (14,15): solve s≡0 mod14, s≡1 mod15. s=15a +1. 15a +1≡0 mod14 =>15a≡-1 mod14 =>15≡1
mod14, so a≡-1 mod14 =>a=14b -1. s=15*(14b -1) +1=210b -15 +1=210b -14. For b=1:210 -14=196.
For b=0: s=-14 invalid. So s=196.
9. Similarly, the factor pairs in reverse order (k, m)=(105,2), (70,3), (42,5), (35,6), (30,7), (21,10),
(15,14), (210,1). Let’s check:
10. (105,2): solve s≡0 mod105, s≡1 mod2. s=105a. 105a≡1 mod2 =>a≡1 mod2. So a=2b +1.
s=105*(2b +1)=210b +105. For b=0: s=105. For b=1:210 +105=315>210. So s=105.
11. (70,3): solve s≡0 mod70, s≡1 mod3. s=70a. 70a≡1 mod3 =>70≡1 mod3, so a≡1 mod3. a=3b
+1. s=70*(3b +1)=210b +70. For b=0: s=70. For b=1:210 +70=280>210. So s=70.
12. (42,5): solve s≡0 mod42, s≡1 mod5. s=42a. 42a≡1 mod5 =>42≡2 mod5, so 2a≡1 mod5
=>a≡3 mod5. a=5b +3. s=42*(5b +3)=210b +126. For b=0: s=126. For b=1:210 +126=336>210. So
s=126.
13. (35,6): solve s≡0 mod35, s≡1 mod6. s=35a. 35a≡1 mod6 =>35≡-1 mod6, so -a≡1 mod6
=>a≡-1 mod6. a=6b -1. s=35*(6b -1)=210b -35. For b=1:210 -35=175. For b=0: s=-35 invalid. So
s=175.
14. (30,7): solve s≡0 mod30, s≡1 mod7. s=30a. 30a≡1 mod7 =>30≡2 mod7, so 2a≡1 mod7
=>a≡4 mod7. a=7b +4. s=30*(7b +4)=210b +120. For b=0: s=120. For b=1:210 +120=330>210. So
s=120.
15. (21,10): solve s≡0 mod21, s≡1 mod10. s=21a. 21a≡1 mod10 =>21≡1 mod10, so a≡1 mod10.
a=10b +1. s=21*(10b +1)=210b +21. For b=0: s=21. For b=1:210 +21=231>210. So s=21.
16. (15,14): solve s≡0 mod15, s≡1 mod14. s=15a. 15a≡1 mod14 =>15≡1 mod14, so a≡1 mod14.
a=14b +1. s=15*(14b +1)=210b +15. For b=0: s=15. For b=1:210 +15=225>210. So s=15.
17. (210,1): solve s≡0 mod210, s≡1 mod1. s=210a. s<=210, so s=210. Check if s=210 is in
[15,210]. Yes.
So, compiling all solutions s for b=211:
From the above:
s=106,141,85,36,91,190,196,105,70,126,175,120,21,15,210.
Wait, let’s count them:
1. (2,105):s=106
2. (3,70):s=141
3. (5,42):s=85
4. (6,35):s=36
5. (7,30):s=91
6. (10,21):s=190
7. (14,15):s=196
8. (105,2):s=105
9. (70,3):s=70
10. (42,5):s=126
11. (35,6):s=175
12. (30,7):s=120
13. (21,10):s=21
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14. (15,14):s=15
15. (210,1):s=210
But s=21,15,70,85,105,120,126,141,175,190,196,210.
Wait, s=15,21,36,70,85,91,105,106,120,126,141,175,190,196,210. Total of 15 solutions. However,
some of these s values are less than ceil(sqrt(211))≈14.5, which is 15. So s=15 is okay (since
ceil(sqrt(211))=15), but s=21,36, etc., are above 15. Wait, s=15 is the lower bound. So s ranges
from15 to210. Therefore, the solutions s=15,21,36,70,85,91,105,106,120,126,141,175,190,196,210.
Total 15 solutions. So for b=211, there are 15 b-eautiful numbers, which is more than ten. Therefore,
b=211 is a candidate.
But perhaps there is a smaller b with more than ten solutions. Because 211 is quite large. Let’s
check smaller numbers with multiple prime factors.
For example, take b -1=60=2ˆ2*3*5. It has three distinct prime factors. Therefore, the number of
coprime factor pairs is 2ˆ3=8. Let’s check for b=61.
Compute s ranges from ceil(sqrt(61))=8 to60.
For each coprime factor pair (k, m) of60:
1. (1,60):s=1 (invalid)
2. (3,20): solve s≡0 mod3, s≡1 mod20. s=20a +1. 20a +1≡0 mod3 =>20a≡-1 mod3 =>20≡2
mod3, so 2a≡-1 mod3 =>2a≡2 mod3 =>a≡1 mod3. a=3b +1. s=20*(3b +1)+1=60b +21. For b=0:
s=21. For b=1:60 +21=81>60. So s=21.
3. (4,15): solve s≡0 mod4, s≡1 mod15. s=15a +1. 15a +1≡0 mod4 =>15a≡-1 mod4 =>15≡3
mod4, so 3a≡-1 mod4 =>3a≡3 mod4 =>a≡1 mod4. a=4b +1. s=15*(4b +1) +1=60b +16. For b=0:
s=16. For b=1:60 +16=76>60. So s=16.
4. (5,12): solve s≡0 mod5, s≡1 mod12. s=12a +1. 12a +1≡0 mod5 =>12a≡-1 mod5 =>12≡2
mod5, so 2a≡-1 mod5 =>2a≡4 mod5 =>a≡2 mod5. a=5b +2. s=12*(5b +2)+1=60b +25. For b=0:
s=25. For b=1:60 +25=85>60. So s=25.
5. (12,5): solve s≡0 mod12, s≡1 mod5. s=12a. 12a≡1 mod5 =>12≡2 mod5, so 2a≡1 mod5
=>a≡3 mod5. a=5b +3. s=12*(5b +3)=60b +36. For b=0: s=36. For b=1:60 +36=96>60. So s=36.
6. (15,4): solve s≡0 mod15, s≡1 mod4. s=15a. 15a≡1 mod4 =>15≡3 mod4, so 3a≡1 mod4
=>a≡3 mod4. a=4b +3. s=15*(4b +3)=60b +45. For b=0: s=45. For b=1:60 +45=105>60. So s=45.
7. (20,3): solve s≡0 mod20, s≡1 mod3. s=20a. 20a≡1 mod3 =>20≡2 mod3, so 2a≡1 mod3
=>a≡2 mod3. a=3b +2. s=20*(3b +2)=60b +40. For b=0: s=40. For b=1:60 +40=100>60. So s=40.
8. (60,1): solve s≡0 mod60, s≡1 mod1. s=60. s=60.
Now, reverse factor pairs:
9. (60,1): s=60.
10. (20,3): s=40.
11. (15,4): s=45.
12. (12,5): s=36.
13. (5,12): s=25.
14. (4,15): s=16.
15. (3,20): s=21.
16. (1,60): s=1.
But the unique solutions are s=16,21,25,36,40,45,60. Let’s check which of these are >=8
(ceil(sqrt(61))=8):
All of them are >=16. So s=16,21,25,36,40,45,60. That’s 7 solutions. For b=61, there are 7 b-eautiful
numbers. Which is less than ten. So not enough.
Another example, take b -1=120=2ˆ3*3*5. Three distinct primes, so 2ˆ3=8 coprime factor pairs.
But let’s check for b=121.
s ranges from ceil(sqrt(121))=11 to120.
Factor pairs:
1. (1,120):s=1 invalid.
2. (3,40): solve s≡0 mod3, s≡1 mod40. s=40a +1. 40a +1≡0 mod3 =>40≡1 mod3, so a≡-1 mod3.
a=3b -1. s=40*(3b -1) +1=120b -39. For b=1: s=81. For b=0: s=-39 invalid. So s=81.
3. (5,24): solve s≡0 mod5, s≡1 mod24. s=24a +1. 24a +1≡0 mod5 =>24≡4 mod5, so 4a≡-1 mod5
=>4a≡4 mod5 =>a≡1 mod5. a=5b +1. s=24*(5b +1) +1=120b +25. For b=0: s=25. For b=1:120
+25=145>120. So s=25.
4. (8,15): solve s≡0 mod8, s≡1 mod15. s=15a +1. 15a +1≡0 mod8 =>15a≡-1 mod8 =>15≡7
mod8, so 7a≡-1 mod8 =>7a≡7 mod8 =>a≡1 mod8. a=8b +1. s=15*(8b +1) +1=120b +16. For b=0:
s=16. For b=1:120 +16=136>120. So s=16.
5. (15,8): solve s≡0 mod15, s≡1 mod8. s=15a. 15a≡1 mod8 =>15≡7 mod8, so 7a≡1 mod8
=>a≡7 mod8. a=8b +7. s=15*(8b +7)=120b +105. For b=0: s=105. For b=1:120 +105=225>120. So
s=105.
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6. (24,5): solve s≡0 mod24, s≡1 mod5. s=24a. 24a≡1 mod5 =>24≡4 mod5, so 4a≡1 mod5
=>a≡4 mod5. a=5b +4. s=24*(5b +4)=120b +96. For b=0: s=96. For b=1:120 +96=216>120. So
s=96.
7. (40,3): solve s≡0 mod40, s≡1 mod3. s=40a. 40a≡1 mod3 =>40≡1 mod3, so a≡1 mod3. a=3b
+1. s=40*(3b +1)=120b +40. For b=0: s=40. For b=1:120 +40=160>120. So s=40.
8. (120,1): s=120.
Reverse pairs:
Same as above. The unique solutions are s=16,25,40,81,96,105,120. Check which are >=11:
All of them are >=16 except s=16 itself. So total of7 solutions. Still less than ten.
Therefore, even with three distinct prime factors, we only get 7 solutions.
Another example: take b -1=30=2*3*5. Three distinct primes, so 8 factor pairs. For b=31.
s ranges from ceil(sqrt(31))=6 to30.
Factor pairs:
1. (1,30):s=1 invalid.
2. (2,15): solve s≡0 mod2, s≡1 mod15. s=15a +1. 15a +1≡0 mod2 =>15a≡-1 mod2 =>15a≡1
mod2 =>a≡1 mod2. a=2b +1. s=15*(2b +1) +1=30b +16. For b=0: s=16. For b=1:30 +16=46>30.
So s=16.
3. (3,10): solve s≡0 mod3, s≡1 mod10. s=10a +1. 10a +1≡0 mod3 =>10a≡-1 mod3 =>10≡1
mod3, so a≡-1 mod3. a=3b -1. s=10*(3b -1) +1=30b -9. For b=1: s=21. For b=0: s=-9 invalid. So
s=21.
4. (5,6): solve s≡0 mod5, s≡1 mod6. s=6a +1. 6a +1≡0 mod5 =>6a≡-1 mod5 =>6≡1 mod5, so
a≡-1 mod5. a=5b -1. s=6*(5b -1) +1=30b -5. For b=1: s=25. For b=0: s=-5 invalid. So s=25.
5. (6,5): solve s≡0 mod6, s≡1 mod5. s=6a. 6a≡1 mod5 =>6≡1 mod5, so a≡1 mod5. a=5b +1.
s=6*(5b +1)=30b +6. For b=0: s=6. For b=1:30 +6=36>30. So s=6.
6. (10,3): solve s≡0 mod10, s≡1 mod3. s=10a. 10a≡1 mod3 =>10≡1 mod3, so a≡1 mod3. a=3b
+1. s=10*(3b +1)=30b +10. For b=0: s=10. For b=1:30 +10=40>30. So s=10.
7. (15,2): solve s≡0 mod15, s≡1 mod2. s=15a. 15a≡1 mod2 =>15a≡1 mod2 =>a≡1 mod2. a=2b
+1. s=15*(2b +1)=30b +15. For b=0: s=15. For b=1:30 +15=45>30. So s=15.
8. (30,1): solve s≡0 mod30, s≡1 mod1. s=30.
So solutions s=6,10,15,16,21,25,30. Check which are >=6 (ceil(sqrt(31))=6). All are valid. So
s=6,10,15,16,21,25,30. Total 7 solutions. Still less than ten.
Hmm. So maybe b -1 needs four distinct prime factors. Let’s check b=211 gives 15 solutions, which
is more than ten. Is there a smaller number with four distinct prime factors?
The smallest number with four distinct prime factors is 2*3*5*7=210. So b=211 is the minimal such
b.
Wait, but let’s check another number with four distinct prime factors but a smaller product. For
example, 2*3*5*7=210. The next one would be 2*3*5*11=330, which is larger. Therefore, 210 is
the smallest number with four distinct prime factors. Therefore, b=211 is the minimal base where b
-1=210 has four distinct prime factors, leading to 16 coprime factor pairs and 15 solutions s in the valid
range. Therefore, b=211 is the answer.
But to confirm, let’s check for b=211, we have 15 solutions as previously enumerated. But the problem
states "more than ten", so 15 is acceptable. Is there a smaller b with, say, b -1= 210/2=105, which is
3*5*7, three distinct primes. Wait, b=106, with b -1=105. Let’s check for b=106.
s ranges from ceil(sqrt(106))=11 to105.
For b=106, b -1=105=3*5*7. Number of coprime factor pairs=2ˆ3=8.
Factor pairs:
1. (1,105): s=1 invalid.
2. (3,35): solve s≡0 mod3, s≡1 mod35. s=35a +1. 35a +1≡0 mod3 =>35≡2 mod3, so 2a +1≡0
mod3 =>2a≡-1 mod3 =>2a≡2 mod3 =>a≡1 mod3. a=3b +1. s=35*(3b +1)+1=105b +36. For b=0:
s=36. For b=1:105 +36=141>105. So s=36.
3. (5,21): solve s≡0 mod5, s≡1 mod21. s=21a +1. 21a +1≡0 mod5 =>21≡1 mod5, so a≡-1 mod5.
a=5b -1. s=21*(5b -1)+1=105b -20. For b=1:105 -20=85. For b=0: s=-20 invalid. So s=85.
4. (7,15): solve s≡0 mod7, s≡1 mod15. s=15a +1. 15a +1≡0 mod7 =>15a≡-1 mod7 =>15≡1
mod7, so a≡-1 mod7. a=7b -1. s=15*(7b -1)+1=105b -14. For b=1:105 -14=91. For b=0: s=-14
invalid. So s=91.
5. (15,7): solve s≡0 mod15, s≡1 mod7. s=15a. 15a≡1 mod7 =>15≡1 mod7, so a≡1 mod7. a=7b
+1. s=15*(7b +1)=105b +15. For b=0: s=15. For b=1:105 +15=120>105. So s=15.
6. (21,5): solve s≡0 mod21, s≡1 mod5. s=21a. 21a≡1 mod5 =>21≡1 mod5, so a≡1 mod5. a=5b
+1. s=21*(5b +1)=105b +21. For b=0: s=21. For b=1:105 +21=126>105. So s=21.
7. (35,3): solve s≡0 mod35, s≡1 mod3. s=35a. 35a≡1 mod3 =>35≡2 mod3, so 2a≡1 mod3
=>a≡2 mod3. a=3b +2. s=35*(3b +2)=105b +70. For b=0: s=70. For b=1:105 +70=175>105. So
s=70.
8. (105,1): s=105.
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Reverse pairs would repeat the same solutions. So unique solutions: s=15,21,36,70,85,91,105. Which
are all >=11. Total of7 solutions. Still less than ten.
Therefore, the minimal b is indeed 211, giving 15 solutions. Therefore, the answer is 211 .

**Final Answer** 211
</think>
To solve the problem, we need to find the least integer b ≥ 2 for which there are more than ten b-
eautiful integers. A b-eautiful integer n has exactly two digits in base b and the sum of these digits
equals

√
n.

1. **Understanding the Problem**: - A number n in base b is written as d1d0, where d1 and d0 are
digits such that n = d1 · b+ d0. - The sum of the digits d1 + d0 =

√
n. - Therefore, n = (d1 + d0)

2.
2. **Formulating the Equation**: - Given n = d1 · b+ d0 and n = (d1 + d0)

2, we have:

(d1 + d0)
2 = d1 · b+ d0

- Let s = d1 + d0. Then s2 = d1 · b+ d0. - Rearranging, we get d1 · (b− 1) = s2 − s.
3. **Key Observations**: - b− 1 must divide s(s− 1). - s ranges from ⌈

√
b⌉ to b− 1.

4. **Finding the Solution**: - For each base b, we need to count the number of valid s values such
that s(s− 1) ≡ 0 (mod b− 1). - The number of solutions is related to the number of distinct prime
factors of b− 1. A number with more distinct prime factors will have more solutions.
5. **Identifying the Least b**: - The smallest b− 1 with four distinct prime factors is 210 (product of
the first four primes: 2, 3, 5, 7). - Therefore, b = 211 is the smallest base where b− 1 = 210, leading
to 15 solutions for s.
Thus, the least integer b ≥ 2 for which there are more than ten b-eautiful integers is 211 .

A.2 SKIPPING REASONING IN DEEPSEEK-R1 API

Using the Chat Prefix Completion (Beta)4 function provided by the DeepSeek-R1 API, we can
bypass its reasoning process and have it directly complete a prefix completion task. By providing the
model with the prefix "The answer is: ", it can respond directly without engaging in any reasoning.
Below is a detailed demonstration.

When asking DeepSeek-R1 the following question to determine what it believes the answer to be,
the model consistently responds with numbers from “15” to “25”, largely deviating from the correct
answer “211”.

1 from openai import OpenAI
2 client = OpenAI(
3 api_key="<your api key>",
4 base_url="https://api.deepseek.com/beta"
5 )
6

7 messages = [
8 {
9 "role": "user",

10 "content": "Let $b \\geq 2$ be an integer. Call a positive
integer $n$ $b$\\textit{-eautiful} if it has exactly two
digits when expressed in base $b$, and these two digits sum
to $\\sqrt{n}$. For example, $81$ is $13$-eautiful because
$81=\\underline{6}\\underline{3}_{13}$ and $6+3=\\sqrt{81}$.
Find the least integer $b \\geq 2$ for which there are more
than ten $b$-eautiful integers."

11 },
12 {
13 "role": "assistant",
14 "content": "The answer is: ",
15 "prefix": True
16 }
17 ]

4https://api-docs.deepseek.com/guides/chat_prefix_completion
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B GENERATING DIRECT ANSWERS

We design four distinct prompting templates. For each template, we sample 16 direct answers using
a temperature of 0.5, yielding a total of 64 direct answers for each input question.

ENGLISH:
<｜User｜>{question}<｜Assistant｜><think>
Let me answer him without thinking more.</think>
Answer:

<｜User｜>{question}<｜Assistant｜><think>
I will answer directly. I won’t output any thinking process.</think>
Answer:

<｜User｜>{question}<｜Assistant｜><think>
I will answer directly.</think>
The answer is:

<｜User｜>{question}<｜Assistant｜><think>
I should not think, but should answer directly.</think>
The answer is:

CHINESE:
<｜User｜>{question}<｜Assistant｜><think>
让我直接回答他，不要有思考过程。</think>
答案是：

<｜User｜>{question}<｜Assistant｜><think>
我现在直接进行回答。我不应该输出思考过程。</think>
答案是：

<｜User｜>{question}<｜Assistant｜><think>
我将会直接回答问题，不需要思考。</think>
答案是：

<｜User｜>{question}<｜Assistant｜><think>
我不应该思考，我直接回答该问题。</think>
答案是：

After generation, for responses consisting of numerical values, we apply a rule-based outlier removal
process to eliminate values that deviate by orders of magnitude from the mode within the direct
answers, thereby mitigating the influence of extreme samples on subsequent computations.

C TEST DATASETS

In this section, we provide detailed information for the datasets.

Lanugages. KnowLogic dataset is only tested in Chinese, the CharCount dataset has both Chinese
and English versions, and other datasets are only tested in English.

Decoding. For the complex mathematical reasoning datasets AIME2024 and AIME2025, we set
max_new_tokens to 20,000; for KnowLogic dataset, we use max_new_tokens = 10,000; and for
CharCount dataset, we set it to 4096. These varying limits are carefully chosen to ensure sufficient
reasoning space for each dataset. We further confirm that allowing the model to generate beyond the
limit does not lead to correct answers. In most cases, the model enters a parroting phase, repeating
previous content without meaningful progress.
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C.1 CHARCOUNT DETAILS

To enhance task complexity, all 10,000 words in the dataset were selected to satisfy two conditions:
(1) each word contains at least three instances of the target letter, and (2) each word includes at least
one pair of adjacent identical letters. The latter design leverages the characteristics of the tokenizer:
if multiple adjacent identical letters are merged into a single token, the model may struggle to ac-
curately process the underlying character sequence. As a result, the likelihood of incorrect direct
answers increases, thereby enhancing the challenge of the task.

Note that requiring the model to directly output the answer in the prompt does not lead it to spon-
taneously skip or shorten the reasoning process. For current long-reasoning models, such a require-
ment only ensures that the output after completing the reasoning meets the specified format. We
include this requirement solely for the convenience of extracting the model’s final answer.

CHINESE:
strawberry这个单词里面有几个字母r？直接用一个阿拉伯数字回答问题。
ENGLISH:
How many letters ’r’ are there in word ’strawberry’? Answer directly with an Arabic number.

D REFLECTION KEYWORDS

The English reflection keywords are: ["Wait", "But"]

The Chinese reflection keywords are: ["不过", "或者", "等等", "但是", "不对"]

E IDENTIFYING FIRST ANSWER

We employ a rule-based approach to identify the first occurrence of the answer in the model’s rea-
soning output. Specifically, we first allow the model to generate a full reasoning process. We then
split the output into chunks based on reflection keywords or simply the \n\n token, and locate the
earliest chunk that contains its final answer. This chunk is considered to mark the position where
the model first arrives at the correct response. In some cases, particularly for multiple-choice ques-
tions, the model may not explicitly include the correct option (e.g., “A”) in its reasoning, but instead
describe its reasoning toward a specific choice. To account for such scenarios, we also use the ap-
pearance of summary and reflection keywords as indirect indicators that the model has reached a
decision, even if the final answer is not yet explicitly stated.

F MORE RESULTS

F.1 MORE RESULTS FOR § 4.2

Table 5: Results on CharCount (en) dataset.
CharCount (en) Acc Accdirect LLow LHigh R∆

DeepSeek-R1 100.0% 58.0% 435.3 510.9 17.4%
QwQ-32B 97.7% 36.9% 698.7 799.2 14.6%

R1-Distill-Qwen-14B 93.0% 31.4% 453.0 547.8 20.9%

Table 6: Results on AIME 2025 dataset.
AIME 2025 Acc Accdirect LLow LHigh R∆

DeepSeek-R1 66.7% 0.0% 9991.4 12610.3 26.2%
QwQ-32B 70.0% 0.0% 10813.7 14933.6 38.1%

R1-Distill-Qwen-14B 36.7% 0.0% 11846.0 15011.9 26.7%
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F.2 MORE RESULTS FOR § 4.3

Following are more results for § 4. The consistency in trends highlights the influence of internal
bias on the model’s tendency to engage in reflection.

Figure 5: Results on KnowLogic of R1-Distill-
Qwen-14B. The model performs poorly on the
dataset, with inconsistency rates exceeding 75%
in over 80% of the cases, leading to the abnor-
mal last bar. But the first three bars still exhibit
the expected trend.

Figure 6: Results on KnowLogic of DeepSeek-
R1. Although the first bar shows a relatively
short first reasoning length, suggesting that the
question may be simple, the remaining three
bars still exhibit the expected trend.

(a) (b)

Figure 7: Results on bilingual CharCount dataset of QwQ-32B.

(a) (b)

Figure 8: Results on bilingual CharCount dataset of DeepSeek-R1.
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Figure 9: Results on English CharCount dataset of R1-Distill-Qwen-14B.

F.3 MORE RESULTS FOR § 7

We present additional results for the PROBE method on the CharCount(zh) dataset, as it is a
decoding-stage approach that uses an MLP-based confidence score to manually halt reasoning by
applying a user-defined threshold. Table 7 reports the performance of PROBE at thresholds of 0.85,
0.9, and 0.95, among which the results at 0.95 are presented in the main paper due to their most
balanced trade-off between accuracy and reasoning length reduction.

Table 7: More results for PROBE.
CharCount Acc Llow Lhigh R∆

Qwen-14B 73.4% 934.7 1229.1 31.5%
+ Remove 72.9% 727.3 837.8 15.2%

+ PROBE (thres=0.85) 69.3% 304.8 392.3 28.7%
+ PROBE (thres=0.80) 71.8% 578.2 749.1 29.6%
+ PROBE (thres=0.95) 73.1% 702.6 912.5 29.9%
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G MORE ATTENTION ANALYSIS RESULTS

In § 6, we analyzed layers 21 to 30 of R1-Distill-Qwen-14B on ChatCount (zh) dataset. Here, we
provide analysis results for layers 1 to 10, 11 to 20, 21 to 30, 31 to 40, and 41 to 48. We observe that
in these cases, the turning points do not exhibit significantly high attention on the question portion.
This may reflect the differing roles of different layers within the model.

We also provide the layer-wise attention analysis of this model on the MATH500 (Lightman et al.,
2024) dataset (similar to Figure 4(b)) in Figure 15.

Figure 10: Layers 1 to 10. Figure 11: Layers 11 to 20.

Figure 12: Layers 21 to 30. Figure 13: Layers 31 to 40.

Figure 14: Layers 41 to 48. Figure 15: Layer-wise ratio of Sc
Reflection/S

c
Other,

on the MATH500 dataset.

H BIAS INJECTION DETAILS

We select 500 samples each with the lowest and highest Deviation Degrees from CharCount(zh),
excluding all parroting samples. Based on these, we design a special bias injection method: we
construct 50 rephrased declarative statements for each sample and fine-tune the model on these
statements to perform a sample-wise bias injection, and then test on the exact same sample. Below
is an example of a declarative sentence.
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CHINESE:
strawberry这个单词里面有3个字母r。
ENGLISH:
There are 3 letters ’r’ in the word ’strawberry’.

Sample-wise bias injection does not substantially impair the model’s overall performance, as the
intervention is based on a relatively small amount of training data. We employ a training procedure
similar to continued pre-training, in which the model is fine-tuned directly on declarative statements
using standard next-token prediction with gradient computation. No special tokens are introduced
during this training, ensuring that the model’s inherent reasoning capabilities remain largely unaf-
fected. We train the model with LoRA (Hu et al., 2022), setting the LoRA rank to 32, alpha to 64,
learning rate to 1e-4, and batch size to 32.

I MITIGATION TRIALS

We explore two main categories of existing methods for mitigating overthinking: training-time and
inference-time approaches. All experiments are conducted on R1-Distill-Qwen-14B model, and
CharCount (zh) and AIME 2024 datasets. We present the details in Appendix I.1 and I.2.

Inspired by §6, we explored an attention-based inference-time early stopping approach. We present
the details and results of this method in Appendix I.3.

I.1 TRAINING-TIME METHODS

We adopt the First-Correct Solution (FCS) method (Chen et al., 2025b) as a representative training-
based approach to mitigate overthinking. The core idea is to extract high-quality, concise reasoning
trajectories by identifying the earliest point in the model’s generation where the correct answer is
explicitly derived, selectively retaining several reflection steps, and using these shortened chains for
supervised fine-tuning or preference optimization.

Specifically, we first generate full reasoning chains from the model, and filter out all samples where
the final answer does not match the ground truth, retaining only those with correct overall predictions
to ensure the quality of extracted reasoning paths. The reasoning chains are then segmented at
the sentence level using the full stop and question mark as delimiters, and the first and second
correct solution is identified using rule-based methods in Appendix E, and first correct solution
with reflection reasoning chain is then obtained. The resulting training instances are constructed by
truncating the reasoning chain at this point, effectively removing subsequent redundant reflection.
Notably, this method preserves cases where the model initially makes an error but later corrects itself
through reasoning, ensuring that such valid correction processes are retained in the training data.

On the CharCount (zh) dataset, we use the above data construction method to create a training set
of 5,000 instances for model fine-tuning. For AIME 2024, which lacks a dedicated training set
and is relatively small, we instead train on a 1,000-sample subset of the DeepScaleR dataset (Luo
et al., 2025b). For Supervised Fine-Tuning (SFT), each FCS chain is used directly as the target
completion. The SFT procedure employs LoRA to fine-tune all layers of the model, with a batch
size of 32, a learning rate of 1e-4, and training conducted for one epoch. For Direct Preference
Optimization (DPO), we construct preference pairs by treating the FCS-generated response as the
chosen sample and the original reasoning chain as the rejected sample. The DPO training employs
LoRA to fine-tune all layers of the model, with a batch size of 32, a learning rate of 5e-5, the β of
0.1, and training conducted for one epoch.

I.2 INFERENCE-TIME METHODS

We implement two decoding-based intervention methods SEAL (Chen et al., 2025a) and
PROBE (Zhang et al., 2025a) on a set of 500 reasoning chains sampled from the CharCount (zh)
dataset. For both approaches, the reasoning contents are split into chunks using double newlines
(\n\n) as delimiters.
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Table 8: Attention-based early-exit results in CharCount (zh).
CharCount Acc Llow Lhigh R∆

Qwen-14B 73.4% 934.7 1229.1 31.5%
+ Remove 72.9% 727.3 837.8 15.2%
+ Attn-Exit 72.9% 472.1 516.6 9.4%

+ FCSDPO 76.7% 555.3 812.8 46.3%
+ FCSSFT 78.9% 451.3 572.0 26.7%
+ SEAL 77.4% 581.3 805.1 38.5%
+ PROBE 73.1% 702.6 912.5 29.9%

SEAL guides the model’s reasoning process during decoding by computing a steering vector that
directs the internal state toward more productive reasoning paths. The reasoning chunks are cat-
egorized into three types: execution, reflection and transition, following the paper’s classification
scheme. Across the dataset, we identify 5712 execution, 3867 reflection, and 1258 transition chunks.
To construct the steering vector for intervention, we extract the hidden states at the beginning of each
chunk (the \n\n token) from all layers of the R1-Distill-Qwen-14B model. We compute the average
hidden state vectors per category and per layer, denoted as Hi

E , Hi
R, Hi

T for execution, reflection
and transition, respectively. The steering vector at layer i is defined as Si = Hi

E − (Hi
R + Hi

T ),
capturing the direction in latent space that encourages forward reasoning over reflective detours.
Following the original implementation, we modify the model’s internal representation during de-
coding by injecting this vector at the \n\n token: H ′ = H + αS. A small validation set is used to
tune both the intervention layer and strength α, with optimal performance observed at layer 25 and
α=1.0. Final evaluations are conducted using this configuration.

PROBE trains an MLP-based probe to estimate the model’s confidence in its current reasoning state
and dynamically truncates the thinking process when confidence exceeds a predefined threshold.
Following the original paper, chunks are grouped into segments by first identifying “starting chunks”
which contain reflection keywords. Each chunk is then assigned to its most recent starting chunk.
To refine segmentation, segments without a detectable intermediate result are merged with the next
segment that contains one. Each final segment is labeled based on whether its intermediate result
matches the ground truth, yielding a label distribution of 3,179 positive and 1,297 negative instances.
Hidden states at the end of each segment (again at \n\n) are collected, focusing on the last layer’s
representations. We train a single-layer MLP classifier on these embeddings to predict whether a
segment contains a correct intermediate conclusion. Given the class imbalance, we use binary cross-
entropy loss with a positive class weight α = 3.0, and optimize with Adam, with learning rate=1e-4,
weight decay=0.01, and batch size=64. At inference time, the trained probe monitors each segment
in real time. If the predicted probability of correctness exceeds a threshold of 0.95, the reasoning
process will be halted, and the current intermediate result is promoted to the final answer.

I.3 ATTENTION-BASED EARLY-EXIT

The core idea is to early exit when the normalized attention score (defined in §6.2) on the question
portion exceeds a certain threshold during inference, which may indicate that the model is overly
focusing on bias signals from the input.

Specifically, for R1-Distill-Qwen-14B on the CharCount (zh) task, we split the model’s output into
sentences and compute the normalized attention scores (from the 21st layer) on the question part at
the end of these sentences. We use the 95th percentile of these scores as the threshold to dynamically
truncate the inference process and force the model to output a final answer.

The results are shown in Table 8. Our approach (denoted as Attn-Exit) achieves a significantly lower
R∆, as well as a substantially reduced average inference length, demonstrating both high efficiency
and strong mitigation of bias effects with minimal accuracy degradation.

However, the method is still very preliminary, and selecting hyperparameters such as the layer for
attention operation and the attention threshold is challenging. Therefore, here we are only providing
a potential direction for future solutions.
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J CONSISTENCY BETWEEN DIRECT ANSWERS AND LATENT
REPRESENTATIONS

In this section, we provide experimental evidence of the consistency between direct answers and
the model’s latent representations, demonstrating that using direct answers to capture the model’s
internal bias is fair and accurate, without losing its internal information. We still analyze with the
R1-Distill-Qwen-14B model and the CharCount (zh) dataset.

Specifically, we use an MLP to predict the direct answers from the model’s hidden states, and can
achieve an accuracy of up to 85%. Additionally, we use the logit lens (nostalgebraist, 2020) to
compute the proportion of numbers decoded internally that are related to the direct answers and
find them to be highly correlated. The former indicates that bias arises immediately after the model
encounters the question and is encoded in the hidden states; the latter shows that this bias persists
throughout the reasoning process.

J.1 PROBING DIRECT ANSWERS

Given the hidden states from the question segment of R1-Distill-Qwen-14B, we attempt to probe for
information related to the direct answers by training a two-layer Multi-Layer Perceptron (MLP) to
predict the probability distribution of the sampled direct answers.

The MLP takes the hidden states of the R1-Distill-Qwen-14B model (with dimensionality 5120) as
input, has a hidden size of 256, and outputs a 5-dimensional vector corresponding to direct answers
1, 2, 3, 4, and 5. The original model has 48 layers; we use the hidden states from layer 24 to train
the MLP. We train the MLP with KL loss using a learning rate of 1e-5 to fit the distribution. During
testing, if the number with the highest predicted probability matches the mode of the direct answers,
we consider the prediction correct.

We randomly sampled 2,000 examples as train set and 200 samples as the test set (ensuring a 50-50
split between correct and incorrect direct answer modes). Specifically, we extract the hidden states
corresponding to the question tokens and apply mean pooling to obtain a single 5120-dimensional
representation as the MLP input. Figure 16(a) shows that after 13 epochs of training, the MLP
achieved a classification accuracy of 85%. Given that the direct answer distribution itself may
be smooth or complex, this accuracy is sufficiently high to indicate that the hidden states encode
sufficient information to reconstruct the bias, and that the internal bias is already formed as soon as
the model sees the question.

We further extract five random reflection points from the reasoning chain of each sample (i.e., the lo-
cations immediately before generating the keywords defined in Appendix D). We obtain the hidden
states at these positions and apply the same training settings as above. Figure 16(b) shows the train-
ing results, achieving over 72% prediction accuracy. This indicates that even during the reasoning
process, the MLP can to some extent detect internal bias.

(a) (b)

Figure 16: Training loss and test accuracy over 15 epochs: (a) results of the probe applied to the
mean-pooled hidden states of the question part to measure internal bias; (b) results of the probe
applied to the hidden states at reflection points to measure internal bias.
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Figure 17: Logit lens results of decoding each tokens in the five groups. ∆r denotes how much the
normalized probability of decoding the token corresponding to a given number deviates from the
average.

J.2 LOGIT LENS

We random select samples with the mode of the direct answers equals to 1, 2, 3, 4 and 5, with 100
samples per group, referred to as group1 through group5. During the model’s full reasoning process,
we use logit lens to decode the hidden states at all layers and positions, identifying the tokens that
can be decoded as the numbers 1 through 5. Since our model is based on Qwen-series and the dataset
is CharCount(zh), the tokens of interest are 5:

number2tokenMap = {
1: ["一个"],
2: ["两个"],
3: ["三个"],
4: ["四个"],
5: ["五个"]

}

These Chinese strings are individual tokens in the vocabulary of the R1-Distill-Qwen-14B model.
For rigor, if the token ultimately generated at a given position is one of these tokens, all layer outputs
at that position are skipped: we only focus on cases where the model’s intermediate states contain the
number even though it is not explicitly generating this token, as this is considered a better reflection
of the model’s internal bias.

For each of these five tokens, we count the number of times their internal decoding probability
exceeded 0.1, and calculated their normalized proportions within each group of 100 samples. To
highlight the trends, we subtracted the overall mean value from each of the five groups. After this
operation, positive values indicate that the model is more likely (than average) to decode that number
in its internal states, while negative values indicate the opposite.

The results are shown in Figure 17. We can see that, for each group, the token corresponding to the
mode has a positive value (higher than the average), and the top two values are always the tokens
closest to the corresponding mode.

K ATTENTION AND BIAS CHANGES DURING THE REASONING STEPS

We analyze how the average normalized score (defined in §6.2) for the three token categories, Ques-
tion, Middle Results, and Others, evolves across reasoning steps. The experiment was conducted on
the same dataset described above. We identified the first five reflection steps during the reasoning
process, and between every two consecutive reflections, we randomly selected four positions for

5Even when the question is in English, the model can still decode these tokens with high probability, because
the internal reasoning language of the model is generally consistent (Wendler et al., 2024).
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Figure 18: Changes in the model’s average normalized attention scores for three types of tokens
during the reasoning process.

comparison. The resulting plot Figure 18 shows these points, where all data points at multiples of
five on the x-axis correspond to reflection steps, while the others serve as comparison points. From
the results, we observe that (1) at reflection points, the model’s attention to the Question category
increases, and (2) this increase in attention tends to diminish as the reasoning process progresses.

We further investigate how this decrease in attention affects bias during the reasoning process. We
randomly selected 100 samples where the mode of direct answers was 2, but both the final out-
put and the correct answer were 3. After each sentence in the reasoning process, we appended
</think>The answer is: to generate a response, examining the probabilities with which
the model produced 2 or 3. Here, step 0 refers to the state before any reasoning has occurred, ap-
proximating the distribution of direct answers (note that the true direct answers were derived from
different templates, whereas here only a single template is used); subsequent steps i (i > 0) corre-
spond to each sentence in the model’s normal reasoning procedure.

From the results in Figure 19, we can observe that, on average (Figure 19(a)), the model requires
only one reasoning step to fully spell out the target word, and after which the influence of bias is no
longer discernible in this measurement. (However, as demonstrated from multiple perspectives in
the main text, bias still plays an underlying role in such cases.)

We further extract a “high-bias” subset from the these data and repeat the experiment (Figure 19(b)).
In this subset, we observe a gradual decrease in the probability of decoding the biased answer and a
corresponding increase in the probability of generating the correct answer throughout the reasoning
process. This trend directly illustrates how the influence of bias diminishes progressively as the
model performs more reasoning steps.

L STANDARD DEVIATIONS

Tables 9 and 10 present the standard deviations corresponding to the results reported in § 4.2 and
§ 5.1, respectively. We observe that the standard deviations are generally large, which can be at-
tributed to significant variations in model output length. These variations are influenced by multiple
factors, including problem complexity, internal bias, and parroting behavior. However, the standard
deviations after applying the removing question intervention are consistently lower than those of the
original outputs, demonstrating the improved stability with less internal bias affect.

Table 11 presents the standard deviations of the results of bias injection intervention in § 5.2. Ta-
ble 12 presents the standard deviations of the results of mitigation trials in § 7.
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(a) (b)

Figure 19: The probabilities of decoding the biased answer and the correct answer after each sen-
tence in the reasoning process: (a) average case; (b) high bias case.

Table 9: Standard deviations of results in § 4.2. For each model-dataset pair, the upper row shows
the standard deviation for the high-deviation group, while the lower row corresponds to the low-
deviation group. The relatively large standard deviations in the AIME datasets are due to its limited
size.

Model CharCount(zh) CharCount(en) KnowLogic AIME2024 AIME2025

DeepSeek-R1 557.6 267.3 3393.4 5850.4 7081.8
382.9 225.9 2800.1 6533.0 8030.2

QwQ-32B 778.8 566.5 2927.0 5886.5 4770.2
645.8 419.4 2847.9 5807.0 5681.1

R1-Distill-Qwen-14B 1173.8 440.2 3532.4 7211.2 5241.8
977.6 337.0 3151.1 6237.5 7789.7

Table 10: Standard deviations of the removing question intervention.
Dataset Lori/rem Pfirst

CharCount (en) 422.9 / 248.2 134.2
CharCount (zh) 1086.0 / 589.8 186.1

KnowLogic 4224.8 / 4258.6 4311.7
AIME 2024 6904.8 / 5630.9 3830.1
AIME 2025 6762.8 / 6541.1 3037.6

Table 11: Standard deviations of the bias injection results.
Setting Length

Random2Wrong 146.6
Low2Wrong 478.0

Random2Correct 684.3
High2Correct 561.9
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Table 12: Standard deviations of the mitigation trials results.
CharCount Llow Lhigh

R1-Distill-Qwen-14B 977.6 1173.8
+ Remove 684.3 554.2

+ FCSDPO 520.3 625.2
+ FCSSFT 457.0 549.5
+ SEAL 421.9 780.2
+ PROBE 673.6 886.5
AIME2024 Llow Lhigh

R1-Distill-Qwen-14B 5850.4 6533.0
+ FCSSFT 4666.4 6468.2

M LLM USAGE

The usage of LLMs in the writing of this paper was limited to improving linguistic clarity. Specifi-
cally, GPT-56 and DeepSeek (DeepSeek-AI et al., 2025a) were employed.

6https://openai.com/
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