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ABSTRACT

Recently, graph neural networks (GNNs) have achieved a stride of success in
many graph-based applications. However, most GNNs suffer from a critical
issue: representation learned is constructed based on a fixed k-hop neighborhood
and insensitive to individual needs for each node, which greatly hampers the
performance of GNNs. To satisfy the unique needs of each node, we propose a new
architecture – Graph Attention Multi-Layer Perceptron (GAMLP). This architecture
combines multi-scale knowledge and learns to capture the underlying correlations
between different scales of knowledge with two novel attention mechanisms:
Recursive attention and Jumping Knowledge (JK) attention. Instead of using
node feature only, the knowledge within node labels is also exploited to reinforce
the performance of GAMLP. Extensive experiments on 12 real-world datasets
demonstrate that GAMLP achieves state-of-the-art performance while enjoying
high scalability and efficiency.

1 INTRODUCTION

Graph Neural Networks (GNNs) generalize convolutional neural networks to graph-structured data
and have achieved great success in a wide range of tasks, including node classification, link prediction,
and recommendation. (Kipf & Welling, 2016; Hamilton et al., 2017; Bo et al., 2020; Cui et al., 2020;
Fan et al., 2019). Through stacking K graph convolution layers, GNNs learn node representations by
utilizing information from the K-hop neighborhood and thus enhance the performance by getting
more unlabeled nodes involved in the training process. In such a GNN model, the nodes within the
K-hop neighborhood of a specific node are called this node’s Receptive Field (RF). As the size of RF
grows exponentially to the number of GNN layers, the rapidly expanding RF incurs high computation
and memory costs in a single machine. Besides, even in a distributed environment, GNN has to pull a
great number of neighboring node features to compute the representation of each node, leading to
high communication cost (Zheng et al., 2020).

Many recent advancements towards scalable GNNs are based on model simplification. For example,
Simplified GCN (SGC) (Wu et al., 2019) decouples the feature propagation and the non-linear
transformation process, and the former is executed during pre-processing. Unlike the sampling-based
methods (Hamilton et al., 2017), which still need feature propagation during each training epoch,
this time-consuming process in SGC is only executed once, and only the nodes of the training
set are involved in the training process. As a result, SGC is computation and memory-efficient
in a single machine and scalable in distributed settings since it does not require each machine to
fetch neighboring node features during the model training process. Despite the high efficiency
and scalability, SGC simply preserves a fixed RF for all the nodes by assigning them the same
feature propagation depth. Such a fixed propagation mechanism in SGC disables its ability to exploit
knowledge within neighborhoods of different sizes.

Lines of other simplified models have been proposed to learn better node representations exploiting
multi-scale knowledge. SIGN (Frasca et al., 2020) proposes to concatenate all the propagated features
without information loss, while S2GC (Zhu & Koniusz, 2021) averages all these propagated features
to generate the combined feature. Although multi-scale knowledge is considered, the importance and
correlations between multiple scales are ignored. Being the first attempt to explore the correlations
between different scales of knowledge, GBP (Chen et al., 2020b) adopts a heuristic constant decay
factor for the weighted average for propagated features at different propagation steps. Motivated by
Personalized PageRank, the large-scale features has a higher risk of over-smoothing, and they will
contribute less to the combination in GBP.
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Figure 1: (Left) Test accuracy of SGC on 20 randomly sampled nodes of Citeseer. The X-axis is the
node id, and Y-axis is the propagation steps (layers). The color from white to blue represents the ratio
of being predicted correctly in 50 different runs. (Right) The local graph structures for two nodes in
different regions; the node in the dense region has larger RF within two iterations of propagation.

Unfortunately, the coarse-grained, layer-wise combination prevents these methods from unleashing
their full potential. As shown in Figure 1(a), different nodes require different propagation steps to
achieve optimal predictive accuracy. Besides, assigning the same weight distribution to propagated
features along with propagation depth to all the nodes may be unsuitable due to the inconsistent RF
expansion speed shown in Figure 1(b). However, nodes in most existing GNNs are restricted to a
fixed-hop neighborhood and insensitive to the actual demands of different nodes. This imperfection
either makes that long-range dependencies cannot be fully leveraged due to limited hops/layers or
loses local information by introducing many irrelevant nodes into the receptive fields for many nodes
when increasing the number of propagation depth (Chen et al., 2020a; Li et al., 2018; Xu et al., 2018).

The above observations motivate us to explicitly learn the importance and correlation of multi-
scale knowledge in a node-adaptive manner. To this end, we develop a new architecture – Graph
Attention Multi-Layer Perceptron (GAMLP) – that could automatically exploit the knowledge over
different neighborhoods at the granularity of nodes. GAMLP achieves this by introducing two
novel attention mechanisms: Recursive attention and Jumping Knowledge (JK) attention. These
two attention mechanisms can capture the complex correlations between propagated features at
different propagation depths in a node-adaptive manner. Consequently, our architecture has the same
benefits as the existing simplified and scalable GNN models while providing much better performance
derived from its ability to utilizes a node-adaptive receptive field. Moreover, the proposed attention
mechanisms can be applied to both node features and labels over neighborhoods with different sizes.
By combining these two categories of information together, GAMLP could achieve the best of both
worlds in terms of accuracy.

Our contributions are as follows: (1) New perspective. To the best of our knowledge, we
are the first to explore both node-adaptive feature and label propagation schemes for scalable
GNNs. (2) Novel method. We propose GAMLP, a scalable, efficient, and deep graph model. (3)
State-of-the-art performance. Experimental results demonstrate that GAMLP achieves state-of-the-
art performance on 12 benchmark datasets while maintains high scalability and efficiency. In
particular, GAMLP outperforms the competitive baseline GraphSAINT (Zeng et al., 2020) in terms
of accuracy by a margin of 0.42%, 3.02% and 0.44% on PPI, Flickr, and Reddit datasets under the
inductive setting, while achieving up to 45× training speedups in the large ogbn-products dataset.
Remarkably, under the transductive setting in large OGB datasets, the accuracy of GAMLP exceeds
the current state-of-the-art method by 1.03% and 1.32% on the ogbn-products and ogbn-papers100M
datasets, respectively.

2 PRELIMINARIES

2.1 PROBLEM FORMULATION

We consider an undirected graph G = (V ,E) with |V| = n nodes, |E| = m edges, and c different
node classes. We denote by A the adjacency matrix of G, weighted or not. Nodes can possibly have
features vector of size f , stacked up in an n × f matrix X. D = diag (d1, d2, · · · , dN ) ∈ Rn×n
denotes the degree matrix of A, where di =

∑
vj∈V Aij is the degree of node vi. Suppose Vl is the

labeled set, and our goal is to predict the labels for nodes in the unlabeled set Vu with the supervision
of Vl.
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2.2 SCALABLE GNNS

Sampling. A commonly used method to tackle the scalability issue (i.e., the recursive neighborhood
expansion) in GNN is sampling. As a node-wise sampling method, GraphSAGE (Hamilton et al.,
2017) randomly samples a fixed-size set of neighbors for computation in each mini-batch. VR-
GCN (Chen et al., 2018a) analyzes the variance reduction, and it reduces the size of samples with
additional memory cost. For the layer-wise sampling, Fast-GCN (Chen et al., 2018b) samples a fixed
number of nodes at each layer, and ASGCN (Huang et al., 2018) proposes the adaptive layer-wise
sampling with better variance control. In the graph level, Cluster-GCN (Chiang et al., 2019) firstly
clusters the nodes and then samples the nodes in the clusters, and GraphSAINT (Zeng et al., 2020)
directly samples a subgraph for mini-batch training. Orthogonal to model simplification, sampling
has already been widely used in many GNNs and GNN systems (Zheng et al., 2020; Zhu et al., 2019;
Fey & Lenssen, 2019). However, these sampling-based GNNs are imperfect because they still face
high communication costs, and the sampling quality highly influences the model performance.

Graph-wise Propagation. Recently studies have observed that non-linear feature transformation
contributes little to the performance of the GNNs as compared to feature propagation. Thus, a new
direction recently emerging for scalable GNN is based on the simplified GCN (SGC) (Wu et al., 2019),
which successively removes nonlinearities and collapsing weight matrices between consecutive layers.
This reduces GNNs into a linear model operating on K-layers propagated features:

X(K) = ÂKX(0), Y = softmax(ΘX(K)), (1)

where X(0) = X, X(K) is the K-layers propagated feature, and Â = D̃r−1ÃD̃−r. By setting r =
0.5, 1 and 0, Â represents the symmetric normalization adjacency matrix D̃−1/2ÃD̃−1/2 (Klicpera
et al., 2019), the transition probability matrix ÃD̃−1 (Zeng et al., 2020), or the reverse transition
probability matrix D̃−1Ã (Xu et al., 2018), respectively. As the propagated features X(K) can be
precomputed, SGC is more scalable and efficient for the large graph. However, such graph-wise
propagation restricts the same propagation steps and a fixed RF for each node. Therefore, some
nodes’ features may be over-smoothed or under-smoothed due to the inconsistent RF expansion
speed, leading to non-optimal performance.

Layer-wise Propagation. Following SGC, some recent methods adopt layer-wise propagation to
combine the features with different propagation layers. SIGN (Frasca et al., 2020) proposes to
concatenate the propagated features at different propagation depth after simple linear transformation:
[X(0)W0,X

(1)W1, ...,X
(K)WK ]. S2GC (Zhu & Koniusz, 2021) proposes the simple spectral

graph convolution to average the propagated features in different iterations as X(K) =
K∑
l=0

ÂlX(0).

In addition, GBP (Chen et al., 2020b) further improves the combination process by weighted averaging

as X(K) =
K∑
l=0

wlÂ
lX(0) with the layer weight wl = β(1− β)l. Similar to these works, we also use

a linear model for higher training scalability. The difference lies in that we consider the propagation
process from a node-wise perspective and each node in GAMLP has a personalized combination of
different steps of the propagated features.

2.3 LABEL UTILIZATION ON GNNS.

Labels of training nodes are conventionally only used as supervision signals in loss functions in most
graph learning methods. However, there also exist some graph learning methods that directly exploit
the labels of training nodes. Among them, the label propagation algorithm (Zhu & Ghahramani,
2002) is the most well-known one. It simply regards the partially observed label matrix Y ∈ RN×C
as input features for nodes in the graph and propagates the input features through the graph structure,
where C is the number of candidate classes. UniMP (Shi et al., 2020) proposes to map the partially
observed label matrix Y to the dimension of the node feature matrix X and add these two matrices
together as the new input feature. To fight against the label leakage problem, UniMP further randomly
masks the training nodes during every training epoch.

Instead of using only the hard training labels, Correct & Smooth (Huang et al., 2020) first trains a
simple model such as an MLP and gets this model’s predicted soft labels for unlabeled nodes. Then,
it propagates the learning errors on the labeled nodes to connected nodes and smooths the output in a

3



Under review as a conference paper at ICLR 2022

P P P P

MLP 1

1.Propagate

2. Combine

3. Train

P P P P

MLP 2

Node-wise Feature Propagation Node-wise Label PropagationOutputs

Last Residual

Figure 2: Overview of the proposed GAMLP, including (1) feature and label propagation, (2) combine
the propagated features and labels with RF attention, and (3) MLP training. Note that both the feature
and label propagation can be pre-processed.

Personalized PageRank manner like APPNP (Klicpera et al., 2019). Besides, SLE (Sun & Wu, 2021)
decouples the label utilization procedure in UniMP, and executes the propagation in advance. Unlike
UniMP, “label reuse” (Wang et al., 2021) concatenates the partially observed label matrix Y with
the node feature matrix X to form the new input matrix. Concretely, it fills the missing elements
in the partially observed label matrix Y with the soft label predicted by the model, and this newly
generated Y′ is again concatenated with X and then fed into the model to generate new predictions.

3 GRAPH ATTENTION MULTI-LAYER PERCEPTRON

3.1 ARCHITECTURE OVERVIEW

As shown in Fig. 2, GAMLP decomposes the end-to-end GNN training into three parts: feature and
label propagation, feature and label combination with RF attention, and the MLP training. As the
feature and label propagation is pre-processed only once, and MLP training is efficient and salable,
we can easily scale GAMLP to large graphs. Besides, with the RF attention, each node in GAMLP
can adaptively get the suitable combination weights for propagated features and labels under different
receptive fields, thus boosting model performance.

3.2 NODE-WISE FEATURE AND LABEL PROPAGATION

Node-wise Feature Propagation. We separate the essential operation of GNNs — feature
propagation by removing the neural network Θ and nonlinear activation δ for feature transformation.
Specifically, we construct a parameter-free K-step feature propagation as:

X(k) ← ÂX(k−1), ∀k = 1, . . . ,K, (2)

where X(k) contains the features of a fixed RF: the node itself and its k-hop neighborhoods.

AfterK-step feature propagation shown in E.q. 2, we correspondingly get a list of propagated features
under different propagation steps: [X(0),X(1),X(k), ...,X(K)]. For a node-wise propagation, we
propose to average these propagated features in a weighted manner:

HX =

K∑
k=0

WkX(k), (3)

where Wk = Diag(ηk) ∈ Rn×n is the diagonal matrix derived from vector ηk, and ηk ∈ Rn is a
vector derived from vector ηk[i] = wi(k), 1 ≤ i ≤ n, and wi(k) measures the importance of the
k-step propagated feature for node vi.

Node-wise Label Propagation. We use a scalable and node-adaptive way to take advantage of
the node labels of the training set. Concretely, the label embedding matrix Y ∈ Rn×c (Y(0)) is
propagated with the normalized adjacency matrix Â:

Y(l) ← ÂY(l−1), ∀l = 1, . . . , L, (4)

After L-step label propagation, we get a list of propagated labels under different propagation steps:
[Y(0),Y(1),Y(2), ...,Y(L)]. Generally, the propagated label Y(l) is closer to the original label
matrix Y(0) with smaller propagation step l, and thus face a higher risk of data leakage problem if it
is directly used as the model input. We propose last residual connection to solve this problem.
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Definition 3.1 (Last Residual Connection). Given the propagation step l, and a list of propagated
labels: [Y(0),Y(1),Y(2), ...,Y(L)], we smooth each label Y(l) with the smoothed label Y(L):

Ŷ(l) ← (1− αl)Y
(l) + αlY

(L), l = 1, . . . , L, (5)

where αl = cos
(
πl
2L

)
controls the proportion of Y(L) in the l-step propagated label.

Similar to the node-wise feature propagation introduced in Sec. 3.2, we propose to average these
propagated labels in a weighted manner:

HY =

L∑
l=0

ŴlŶ
(l). (6)

3.3 NODE-ADAPTIVE ATTENTION MECHANISMS

To satisfy different RF requirements for each node, we introduce two RF attention mechanisms to get
wi(k). Note that these attention mechanisms can be used in both the feature and label propagation,
and we introduce them from a feature perspective here. To apply them for node-wise label propagation,
we only need to replace the feature Xi in Eq. 7 and Eq. 8 with the label Yi.
Definition 3.2 (Recursive Attention). At each propagation step l, suppose s ∈ Rd is a learnable
parameter vector, we recursively measure the feature information gain compared with the previous
combined feature as:

X̃
(l)
i = X

(l)
i ‖

l−1∑
k=0

wi(k)X
(k)
i , w̃i(l) = δ(X̃

(l)
i · s), wi(l) = ew̃i(l)/

K∑
k=0

ew̃i(k). (7)

As X̃
(l−1)
i ∈ Rd combines the graph information under different propagation steps and RF, large

proportion of the information in X̃
(l)
i may have already existed in

∑l−1
k=0 wi(k)X

(k)
i , leading to small

information gain. A larger wi(l) indicates the feature X
(l)
i is more important to the current state of

node vi since combining X̃
(l)
i will introduce higher information gain.

Jumping Knowledge Network (JK-Net) (Xu et al., 2018) adopts layer aggregation to combine the
node embeddings of different GCN layers, and thus it can leverage the propagated nodes’ information
with different RF. Motivated by JK-Net, we propose to guide the feature combination process with
the model prediction trained on all the propagated features. Concretely, GAMLP with JK attention
includes two branches: the concatenated JK branch and the attention-based combination branch.
Definition 3.3 (JK Attention). Given the MLP prediction of the JK branch as Ei = MLP(X(1)

i ‖
X

(2)
i ‖ ... ‖ X

(K)
i ) ∈ RKf , the combination weight is defined as:

X̃
(l)
i = X

(l)
i ‖ Ei, w̃i(l) = δ(X̃

(l)
i · s), wi(l) = ew̃i(l)/

K∑
k=0

ew̃i(k). (8)

The JK branch aims to create a multi-scale feature representation for each node, which helps the
attention mechanism learn the weight wi(k). The learned weights are then fed into the attention-
based combination branch to generate each node’s refined attention feature representation. As the
training process continues, the attention-based combination branch will gradually emphasize those
neighborhood regions that are more helpful to the target nodes. The JK attention can model a wider
neighborhood while enhancing correlations, bringing a better feature representation for each node.

3.4 MODEL TRAINING

Both the combined feature HX and combined label HY are transformed with MLP, and then be
added to get the final output embedding:

H̃ = MLP(HX) + βMLP(HY), (9)

where β is a hyper-parameter that measures the importance of the combined label. For example,
some graphs have good features but low-quality labels (e.g., label noise or low label rate), and we
should decrease β so that more attention is paid to the graph features.
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We adopt the Cross-Entropy (CE) measurement between the predicted softmax outputs and the
one-hot ground-truth label distributions as the objective function:

LCE = −
∑
i∈Vl

∑
j

Yij log(softmax(H̃)ij), (10)

where Yi is the one-hot label indicator vector.

3.5 PROPERTIES OF GAMLP

High Efficiency and Scalability. Compared with the previous GNNs (e.g., GCN and GraphSAGE),
our proposed GAMLP only need to do the feature and label propagation only once. Suppose P and Q
are the number of layers in MLP trained with feature and labels, and k is the sampled nodes, the time
complexity of GAMLP is O(Pnf2 +Qnc2), which is smaller than the complexity of GraphSAGE
(i.e., O(kKnf2)). Besides, it also cost less memory than the sampling-based GNNs, and thus can
scale to a larger graph in a single machine. Notably, like other simplified GNNs (i.e., SGC and SIGN),
GAMLP can pre-compute the propagated features and labels only once. It doesn’t need to pull the
intermediate representation of other nodes during the MLP training. Therefore, it can also be well
adapted to the distributed environment. Further details can be found in Appendix A.3.

Deep propagation. With our recursive and JK attention, GAMLP can support large propagation
depth without the over-smoothing issue since each node can get the node personalized combination
weights for different propagated features and labels according to its demand. Such characteristic is
essential for sparse graph, i.e., sparse labels, edges, and features. For example, a graph with a low
label rate or edge rate can increase the propagation depth to spread the label supervision over the full
graph. Each node can utilize the high-order graph structure information with deep propagation and
then boost the node classification performance. Further details is in Appendix B.2.

3.6 RELATION WITH CURRENT METHODS

GAMLP vs. GBP. Both GAMLP and GBP propose to combine the propagated features under
different propagation steps. However, GBP adopts a layer-wise propagation scheme and ignores the
inconsistent receptive field expansion speed for different nodes. As the optimal propagation steps
and smoothing levels of different nodes are different, some nodes may face the over-smoothing issue,
even propagating the same step. GAMLP considers the feature and label propagation in a more
fine-grained node perspective.

GAMLP vs. GAT. Each node in a GAT layer learns to weighted combine the embedding (or feature)
of its neighborhoods with an attention mechanism, and the attention weights are measured by the
local information in a fixed RF – the node itself and its direct neighbors. Different from the attention
mechanism in GAT, GAMLP considers more global information under different RF.

GAMLP vs. JK-Net. Motivated by JK-Net, GAMLP with JK attention concatenate the propagated
features under different propagation steps. However, the model prediction based on the concatenated
feature is just used as a reference vector for the attention-based combination branch in GAMLP
rather than the final results. Compared with JK-Net, GAMLP with JK attention is more effective in
alleviating the over-smoothing and scalability issue that deep architecture introduces.

GAMLP vs. SAGN. SAGN also proposes to do node-specific propagation in GNN. Concretely,
SAGN learns the node-specific attention weights with the original node feature. Unlike SAGN,
GAMLP adopts two attention mechanisms to learn the interactions between the propagated features
over different sizes of receptive fields. Besides, node-wise label propagation is also employed in
GAMLP for better utilization of node labels.

4 EXPERIMENTS

In this section, we verify the effectiveness of GAMLP on 12 real-world graph datasets under both
the transductive and inductive settings. We aim to answer the following four questions. Q1: Can
GAMLP outperform the state-of-the-art GNN methods? Q2: If so, where does the performance gain
of GAMLP come from? Q3: How about the efficiency of GAMLP compared with current GNN
methods? Q4: How does GAMLP perform when applied to highly sparse graphs (i.e., given few
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Table 1: Performance comparison on seven transductive datasets.

Methods Cora Citeseer PubMed Amazon
Computer

Amazon
Photo

Coauthor
CS

Coauthor
Physics

GCN 81.8±0.5 70.8±0.5 79.3±0.7 82.4±0.4 91.2±0.6 90.7±0.2 92.7±1.1
GAT 83.0±0.7 72.5±0.7 79.0±0.3 80.1±0.6 90.8±1.0 87.4±0.2 90.2±1.4

JK-Net 81.8±0.5 70.7±0.7 78.8±0.7 82.0±0.6 91.9±0.7 89.5±0.6 92.5±0.4
ResGCN 82.2±0.6 70.8±0.7 78.3±0.6 81.1±0.7 91.3±0.9 87.9±0.6 92.2±1.5
APPNP 83.3±0.5 71.8±0.5 80.1±0.2 81.7±0.3 91.4±0.3 92.1±0.4 92.8±0.9

AP-GCN 83.4±0.3 71.3±0.5 79.7±0.3 83.7±0.6 92.1±0.3 91.6±0.7 93.1±0.9
SGC 81.0±0.2 71.3±0.5 78.9±0.5 82.2±0.9 91.6±0.7 90.3±0.5 91.7±1.1
SIGN 82.1±0.3 72.4±0.8 79.5±0.5 83.1±0.8 91.7±0.7 91.9±0.3 92.8±0.8
S2GC 82.7±0.3 73.0±0.2 79.9±0.3 83.1±0.7 91.6±0.6 91.6±0.6 93.1±0.8
GBP 83.9±0.7 72.9±0.5 80.6±0.4 83.5±0.8 92.1±0.8 92.3±0.4 93.3±0.7

UNIMP 82.6±0.4 72.5±0.9 80.1±0.5 83.9±0.8 92.0±1.1 92.4±0.3 93.5±0.8

GAMLP(JK) 84.3±0.8 74.6±0.4 80.7±0.4 84.5±0.7 92.8±0.7 92.6±0.5 93.6±1.0
GAMLP(R) 83.9±0.6 73.9±0.6 80.8±0.5 84.2±0.5 92.6±0.8 92.8±0.7 93.2±1.0

edges and low label rate)? More experimental results about the heterogeneous graph, propagation
depth and interpretability can be found in Appendix B.

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate the predictive accuracy of GAMLP under both transductive and inductive
settings. For transductive settings, we conduct experiments on nine transductive datasets: three
citation network datasets (Cora, Citeseer, PubMed) (Sen et al., 2008), two user-item datasets (Amazon
Computer, Amazon Photo), two co-author datasets (Coauthor CS, Coauthor Physics) (Shchur
et al., 2018), and two OGB datasets (ogbn-products, ogbn-papers100M) (Hu et al., 2021). For
inductive settings, we perform the comparison experiments on three inductive datasets: PPI, Flickr,
and Reddit (Zeng et al., 2019). The statistics about these datasets can be found in Table 10 in
Appendix C.1.

Baselines. Under the transductive setting, we compare GAMLP with the following representative
baseline methods: GCN (Kipf & Welling, 2016), GAT (Veličković et al., 2017), JK-Net (Xu et al.,
2018), ResGCN (Li et al., 2019), APPNP (Klicpera et al., 2018), AP-GCN (Spinelli et al., 2020),
SGC (Wu et al., 2019), SIGN (Frasca et al., 2020), S2GC (Zhu & Koniusz, 2021), and GBP (Chen
et al., 2020b). For the comparison in the OGB datasets, we choose the top-performing methods
from the OGB leaderboard along with their accuracy results. Under the inductive setting, we choose
following representative methods: SGC (Wu et al., 2019), GraphSAGE (Hamilton et al., 2017),
Cluster-GCN (Chiang et al., 2019), and GraphSAINT (Zeng et al., 2019).

In addition, two variants of GAMLP are tested in the evaluation: GAMLP(JK) and GAMLP(R). “JK”
and “R” stand for adopting “JK attention” and “Recursive attention” for the node-adaptive attention
mechanism, respectively.

Table 2: Performance comparison on the ogbn-
products dataset.

Methods Val Accuracy Test Accuracy
GCN 92.00±0.03 75.64±0.21
SGC 92.13±0.02 75.87±0.14

GraphSAGE 92.24±0.07 78.50±0.14
GraphSAINT 92.52±0.13 80.27±0.26

GBP 92.82±0.10 80.48±0.05
SIGN 92.99±0.04 80.52±0.16

DeeperGCN 92.38±0.09 80.98±0.20
UniMP 93.08±0.17 82.56±0.31
SAGN 93.09±0.04 81.20±0.07

SAGN+0-SLE 93.27±0.04 83.29±0.18

GAMLP(JK) 93.19±0.03 83.54±0.25
GAMLP(R) 93.11±0.05 83.59±0.09

Table 3: Performance comparison on the ogbn-
papers100M dataset.

Methods Val Accuracy Test Accuracy
SGC 66.48±0.20 63.29±0.19
SIGN 69.32±0.06 65.68±0.06

SIGN-XL 69.84±0.06 66.06±0.19
SAGN 70.34±0.99 66.75±0.84

SAGN+0-SLE 71.06±0.08 67.55±0.15

GAMLP(JK) 71.92±0.04 68.07±0.10
GAMLP(R) 71.21±0.03 67.46±0.02
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Table 4: Performance comparison on three inductive datasets.

Methods PPI Flickr Reddit
SGC 65.7±0.01 50.2±0.12 94.9±0.00

GraphSAGE 61.2±0.05 50.1±0.13 95.4±0.01
Cluster-GCN 99.2±0.04 48.1±0.05 95.7±0.00
GraphSAINT 99.4±0.03 51.1±0.10 96.6±0.01

GAMLP(JK) 99.82±0.01 54.12±0.01 97.04±0.01
GAMLP(R) 99.66±0.01 53.12±0.00 96.62±0.01

4.2 END-TO-END COMPARISON

Transductive Performance. To answer Q1, we report the transductive performance of GAMLP in
Tables 1, 2, and 3. We observe that both variants of GAMLP outperform all the baseline methods
on almost all the datasets. For example, on the small Citeseer dataset, GAMLP(JK) outperforms
the state-of-the-art method S2GC by a large margin of 1.6%; on the medium-sized dataset Amazon
Computers, the predictive accuracy of GAMLP (JK) exceeds the one of the state-of-the-art method
GBP by 1.0%; on the two large OGB datasets, GAMLP takes the lead by 1.03% and 1.32% on
ogbn-products and ogbn-papers100M, respectively. Furthermore, the experimental results illustrate
that the contest between the two variants of GAMLP is not a one-horse race, which suggests that
these two different attention mechanisms both have their irreplaceable sense in some ways.

Inductive Performance. We also evaluate GAMLP under the inductive setting. The experiment
results in Table 4 show that GAMLP consistently outperforms all the baseline methods. The leading
advantage of GAMLP(JK) over SOTA inductive method – GraphSAINT is more than 3.0% on the
widely-used dataset – Filckr. The impressive performance of GAMLP under the inductive setting
illustrates that GAMLP is alpowerful in predicting the properties of unseen nodes.

Table 5: Ablation study on label utilization.

Methods Val Accuracy Test Accuracy
GAMLP(R) 93.11±0.05 83.59±0.05

-no_label 92.29±0.06 81.43±0.18
-plain_label 92.53±0.21 81.12±0.45

-uniform 92.72±0.15 81.28±0.93

Table 6: Ablation study on reference vector.

Methods Val Accuracy Test Accuracy
GAMLP(JK) 82.5±0.5 80.7±0.4

-origin_feature 82.2±0.4 80.5±0.4
-normal_noise 81.8±0.4 79.8±0.5
-no_reference 81.5±0.5 79.9±0.3

4.3 ABLATION STUDY

To answer Q2, we focus on two modules in GAMLP: (1) label utilization; (2) attention mechanism
in the node-wise propagation. For the second one, we evaluate the effects of different choices for
reference vectors in the JK attention.

Label Utilization. In this part, we evaluate whether adding last residual connection and making
use of training labels really help or not. The predictive accuracy of GAMLP(R) is evaluated on the
ogbn-products dataset along with its three variants: “-no_label”, “-plain_label”, and “-uniform”,
which stands for not using labels, removing last residual connections, and replacing last residual
connections with uniform distributions, respectively. The experimental results in Table 5 show that
utilizing labels brings huge performance gain to GAMLP: from 81.43% to 83.59%. The performance
drop from removing the last residual connections (“-plain_label” in Table 5) is significant since
directly adopting the raw training labels leads to the overfitting issue. The fact that “-uniform”
performs worse than “-no_label” illustrates that intuitively fusing the original label distribution with
the uniform distribution would harm the predictive accuracy. It further demonstrates the effectiveness
of our proposed last residual connections.

Reference Vector in Attention Mechanism. In this part, we study the role of the reference vector
(originally set as the concatenated features from different propagation steps) in our proposed JK
attention. We evaluate the three variants of GAMLP(JK): “-origin_feature”, “-normal_noise”, and
“-no_reference”, which changes the reference vector to the original node feature, noise from the
normal distribution, and nothing, respectively. The predictive accuracy of each variant on the PubMed
dataset is reported in Table 6. The experimental results show that our original choice of the reference

8
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Table 7: Efficiency comparison on the ogbn-products dataset.
Methods SGC SIGN GAMLP(JK) GAMLP(R) GraphSAINT Cluster-GCN

Training time 1.0 4.0 8.0 9.3 364 503
Test accuracy 75.87 80.52 83.54 83.59 79.08 78.97
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Figure 3: Test accuracy on PubMed dataset under different levels of label and edge sparsity.

vector is the best among itself and its three variants. The superiority of the concatenated features from
different propagation steps comes from the fact that it allows the model to capture the interactions
between the propagated features over the receptive fields with different sizes.

4.4 EFFICIENCY COMPARISON

To answer Q3, we evaluate the efficiency of each method on the ogbn-products dataset. We
compare the efficiency of GAMLP with sampling-based GraphSAINT and Cluster-GCN, graph-wise-
propagation-based SGC, and layer-wise-propagation-based SIGN. Table 7 illustrates the relative
training time of each compared method along with its predictive accuracy. The training time of SGC
is set to 1 as reference. We observe that (1) sampling-based methods (e.g., GraphSAINT) consume
much more time than graph/layer-wise-propagation based methods (e.g., SGC, SIGN) due to the high
computation cost introduced by the sampling process; (2) the two variants of GAMLP achieve the
best predictive accuracy while requiring comparable training time with SGC.

4.5 EXPERIMENTS ON SPARSE GRAPHS

To answer Q4, we conduct experiments to evaluate the predictive accuracy of GAMLP when faced
with edge and label sparsity problems, where the number of edges and training labels are highly
scarce. We randomly remove a fixed percentage of edges from the original graph to simulate the edge
sparsity problem. The removed edges are exactly the same for all the compared methods. Besides,
we enumerate the number of training nodes per class from 1 to 20 to evaluate the performance of
GAMLP given different levels of label sparsity. The experimental results in Figure 3 show that
GAMLP consistently outperforms all the baselines when faced with different levels of edge and
label sparsity. This experiment further demonstrates the effectiveness of our proposed node-wise
propagation scheme. The node-wise propagation enables GAMLP to better capture long-range
dependencies, which is crucial when applying GNN methods to highly sparse graphs.

5 CONCLUSION

We presented Graph Attention Multilayer Perceptron (GAMLP), a scalable, efficient, and deep graph
model based on receptive field attention. GAMLP introduced two new attention mechanisms:
recursive attention and JK attention, which enables to learn the representations over RF with
different sizes in a node-adaptive manner. Extensive experiments on 12 graph datasets verified
the effectiveness of the proposed method. GAMLP moves forward the performance boundary of
scalable GNNs, especially on large-scale graphs. This initial attempt also motivates several interesting
future directions: (1) exploring other attention mechanisms and (2) studying the mechanisms on
heterogeneous graphs.

9



Under review as a conference paper at ICLR 2022

6 REPRODUCIBILITY STATEMENT

The source code of GAMLP can be found in Anonymous Github (https://anonymous.4open.
science/r/ICLR-GAMLP). To ensure reproducibility, we have provided the overview of datasets
and baselines in Section 4.1 and Table 10 in Appendix C.1. The detailed hyperparameter settings
for our GAMLP can be found in Appendix C.2. Our experimental environment is presented in
Appendix C.1, and please refer to “README.md” in the Github repository for more details.
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Figure 4: The architecture of GAMLP with JK Attention.

A MORE DETAILS ABOUT GAMLP

A.1 AN EXAMPLE OF JK ATTENTION

Fig. 4 provides a more zoomed-in look of JK attention, one of the two node-adaptive attention
mechanisms we proposed. The propagated features are concatenated and then fed into an MLP to
map the concatenated feature to the hidden dimension of the model. The mapped feature is then
set as the reference vector of the following attention mechanism, where a linear layer is adopted
to calculate the combination weight for propagated features at different propagation steps. The
propagated features are then multiplied with the corresponding combination weight, and the summed
results are fed into another MLP to generate final predictions.

A.2 COMPARISON BETWEEN THE LABEL USAGE IN UNIMP AND GAMLP

(1) The label usage in UniMP is coupled with the training process, making it hard to scale to large
graphs. While GAMLP decouples the label usage from the training process, the label propagation
process can be executed as preprocessing.

(2) The label propagation steps in UniMP are restricted to the same number of model layers. And
if the number of model layers becomes large, UniMP will encounter the efficiency and scalability
issues even on relatively small graphs. While the label propagation steps in GAMLP can be quite
large since the label propagation is performed as preprocessing.

(3) Both UniMP and GAMLP propose approaches to fight against the label leakage issue. However,
the random masking in UniMP has to be executed in each training epoch, while the last residual
connection (composed of simple matrix addition) in GAMLP just needs to be executed once during
preprocessing. Thus, UniMP consumes more resources than GAMLP to fight the label leakage issue.

A.3 COMPLEXITY ANALYSIS

Table 8 provides a detailed asymptotic complexity comparison between GAMLP and representative
scalable GNN methods. During preprocessing, the time cost of clustering in Cluster-GCN is O(m)
and the time complexity of most linear models is O(Kmf). Besides, GAMLP has an extra time
cost O(Lmc) for the propagation of training labels. GBP takes advantage of Monte-Carlo method
and conducts this process approximately with a bound of O(Knf +K

√
m lgn
ε ), where ε is a error

threshold. Compared with sampling-based GNNs, graph/layer/node-wise-propagation-based models
usually have smaller training and inference time complexity. Memory complexity is a crucial factor in
large-scale graph learning as it fundamentally determines whether it is possible to adopt the method.
Compared with SIGN, both GBP and GAMLP do not need to store smoothed features at different
propagation steps, and the memory complexity can be reduced from O(bLf) to O(bf).
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Table 8: Algorithm analysis for existing scalable GNNs. n, m, c, and f are the number of nodes,
edges, classes, and feature dimensions, respectively. b is the batch size, and k refers to the number
of sampled nodes. K and L corresponds to the number of times we aggregate features and labels
respectively. Besides, P and Q are the number of layers in MLP classifiers trained with features and
labels respectively.

Type Method Pre-processing Training Memory

Sampling
GraphSAGE - O(kKnf2) O(bkKf +Kf2)

FastGCN - O(kKnf2) O(bkKf +Kf2)
Cluster-GCN O(m) O(Pmf + Pnf2) O(bKf +Kf2)

Graph-wise propagation SGC O(Kmf) O(nf2) O(bf + f2)

Layer-wise propagation
SIGN O(Kmf) O(Pnf2) O(bLf + Pf2)
S2GC O(Kmf) O(nf2) O(bf + f2)

GBP O(Knf +K
√
m lgn
ε ) O(Pnf2) O(bf + Pf2)

Node-wise propagation GAMLP O(Kmf + Lmc) O(Pnf2 +Qnc2) O(bf + Pf2 +Qc2)

Table 9: Test accuracy on ogbn-mag dataset.

Methods Validation Accuracy Test Accuracy
R-GCN 40.84±0.41 39.77±0.46
SIGN 40.68±0.10 40.46±0.12
HGT 49.84±0.47 49.27±0.61

R-GSN 51.82±0.41 50.32±0.37
HGConv 53.00±0.18 50.45±0.17
R-HGNN 53.61±0.22 52.04±0.26

NARS 53.72±0.09 52.40±0.16
NARS-GAMLP 55.52±0.08 54.01±0.21

B ADDITIONAL EXPERIMENTS

B.1 EXPERIMENTS ON OGBN-MAG

Compared Baselines. Ogbn-mag dataset is a heterogeneous graph consists of 1,939,743 nodes
and 21,111,007 edges of different types. For comparison, we choose eight baseline methods from
the OGB ogbn-mag leaderboard: R-GCN (Schlichtkrull et al., 2018), SIGN (Frasca et al., 2020),
HGT (Hu et al., 2020), R-GSN (Wu et al., 2021), HGConv (Yu et al., 2020a), R-HGNN (Yu et al.,
2021), and NARS (Yu et al., 2020b).

Adapt GAMLP to Heterogeneous Graphs. In its original design, GAMLP does not support
training on heterogeneous graphs. Here we imitate the model design of NARS to adapt GAMLP to
heterogeneous graphs.

First, we sample subgraphs from the original heterogeneous graphs according to relation types and
regard the subgraph as a homogeneous graph although it may have different kinds of nodes and edges.
Then, on each subgraph, the propagated features of different steps are generated. The propagated
features of the same propagation step across different subgraphs are aggregated using 1-d convolution.
After that, aggregated features of different steps are fed into our GAMLP to get the final results. This
variant of our GAMLP is called NARS-GAMLP as it mimics the design of NARS.

As ogbn-mag dataset only contains node features for “paper” nodes, we here adopt the ComplEx
algorithm (Trouillon et al., 2017) to generate features for other nodes.

Experiment Results. We report the validation and test accuracy of our proposed GAMLP on the
ogbn-mag dataset in Table 9. It can be seen from the results that NARS-GAMLP achieves great
performance on the heterogeneous graph ogbn-mag, outperforming the performance of the strongest
single model baseline NARS by a large margin of 1.61%.
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Figure 5: Test accuracy when the propagation depth increases from 10 to 100.
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Figure 6: The average attention weights of propagated features of different steps on 60 randomly
selected nodes from ogbn-products.

B.2 DEEP PROPAGATION IS POSSIBLE

Equipped with the learnable node-wise propagation scheme, our GAMLP can still maintain high
predictive accuracy even when the propagation depth is over 50. Here, we evaluate the predictive
accuracy of our proposed GAMLP(JK) at propagation depth 10, 30, 50, 80, 100 on the PubMed
dataset. The performance of JK-Net and SGC are also reported as baselines. The experimental
results in Fig. 5 show that even at propagation depth equals 100, the predictive accuracy of our
GAMLP(JK) still exceeds 80.0%, higher than the predictive accuracy of most baselines in Table 1.
At the same time, the predictive accuracy of SGC and JK-Net both drops rapidly when propagation
depth increases from 10 to 100.

B.3 INTERPRETABILITY OF THE ATTENTION MECHANISM

GAMLP can adaptively and effectively combine multi-scale propagated features for each node. To
demonstrate this, Fig. 6 shows the average attention weights of propagated features of GAMLP(JK)
according to the number of steps and degrees of input nodes, where the maximum step is 6. In this
experiment, we randomly select 20 nodes for each degree range (1-4, 5-8, 9-12) and plot the relative
weight based on the maximum value. We get two observations from the heat map: 1) The 1-step and
2-step propagated features are always of great importance, which shows that GAMLP captures the
local information as those widely 2-layer methods do; 2) The weights of propagated features with
larger steps drop faster as the degree grows, indicating that our attention mechanism could prevent
high-degree nodes from including excessive irrelevant nodes, leading to over-smoothing. From the
two observations, we conclude that GAMLP can identify the different RF demands of nodes and
explicitly weight each propagated feature.
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Table 10: Overview of the Datasets

Dataset #Nodes #Features #Edges #Classes #Train/Val/Test Task type Description
Cora 2,708 1,433 5,429 7 140/500/1000 Transductive citation network

Citeseer 3,327 3,703 4,732 6 120/500/1000 Transductive citation network
Pubmed 19,717 500 44,338 3 60/500/1000 Transductive citation network

Amazon Computer 13,381 767 245,778 10 200/300/12881 Transductive co-purchase graph
Amazon Photo 7,487 745 119,043 8 160/240/7,087 Transductive co-purchase graph
Coauthor CS 18,333 6,805 81,894 15 300/450/17,583 Transductive co-authorship graph

Coauthor Physics 34,493 8,415 247,962 5 100/150/34,243 Transductive co-authorship graph

ogbn-products 2,449,029 100 61,859,140 47 196k/49k/2204k Transductive co-purchase graph
ogbn-papers100M 111,059,956 128 1,615,685,872 172 1207k/125k/214k Transductive citation network

ogbn-mag 1,939,743 128 21,111,007 349 626k/66k/37k Transductive citation network

PPI 56,944 50 818,716 121 45k / 6k / 6k Inductive protein interactions network
Flickr 89,250 500 899,756 7 44k/22k/22k Inductive image network
Reddit 232,965 602 11,606,919 41 155k/23k/54k Inductive social network

Table 11: Ablation study of choices for αl on the ogbn-products dataset.

Choices Test Accuracy
Fixed weight 82.56±0.43

Linear-decreasing weight 82.72±0.93
Cosine function 83.59±0.05

B.4 CHOICES FOR αl IN THE LAST RESIDUAL CONNECTION

Our first choice for the αl in the last residual connection module is αl = L−l
L . However, we find

that GAMLP still encounters the over-fitting issue on some datasets. Thus, we instead choose
αl = cos( πl2L ) to give more penalties to labels at large propagation steps. We provide the performance
comparison on the ogbn-products dataset in Table 11. Three weighting schemes for the last residual
connection module are tested: "Cosine function" stands for αl = cos( πl2L ), the one in GAMLP;
"Linear-decreasing weight" stands for αl = L−l

L ; and "Fixed weight" stands for αl = 0.7. Table 11
shows that the weighting scheme GAMLP adopts, αl = cos( πl2L ), outperforms the other two options.

C DETAILED EXPERIMENT SETUP

C.1 EXPERIMENT ENVIRONMENT

We provide detailed information about the datasets we adopted during the experiment in Table 10.
To alleviate the influence of randomness, we repeat each method ten times and report the mean
performance and the standard deviations. For the largest ogbn-papers100M dataset, we run each
method five times instead. The experiments are conducted on a machine with Intel(R) Xeon(R)
Platinum 8255C CPU@2.50GHz, and a single Tesla V100 GPU with 32GB GPU memory. The
operating system of the machine is Ubuntu 16.04. As for software versions, we use Python 3.6,
Pytorch 1.7.1, and CUDA 10.1. The hyper-parameters in each baseline are set according to the
original paper if available. Please refer to Appendix C.2 for the detailed hyperparameter settings for
our GAMLP.

C.2 DETAILED HYPERPARAMETERS

We provide the detailed hyperparameter setting on GAMLP in Table 12, 13 and 14 to help reproduce
the results. To reproduce the experimental results of GAMLP, just follow the same hyperparameter
setting yet only run the first stage.
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Table 12: Detailed hyperparameter setting on OGB datasets.

Datasets attention type hidden size num layer in JK num layer activation
ogb-products Recursive 512 / 4 leaky relu, a=0.2

ogb-papers100M JK 1280 4 6 sigmoid
ogb-mag JK 512 4 4 leaky relu, a=0.2

Table 13: Detailed hyperparameter setting on OGB datasets.

Datasets hops hops for label input dropout attention dropout dropout
ogb-products 5 10 0.2 0.5 0.5

ogb-papers100M 12 10 0 0.5 0.5
ogb-mag 5 3 0.1 0 0.5

Table 14: Detailed hyperparameter setting on OGB datasets.

Datasets beta patience lr batch size epochs
ogb-products 1 300 0.001 50000 400

ogb-papers100M 1 60 0.0001 5000 400
ogb-mag 1 100 0.001 10000 400
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