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Abstract
Networked dynamical systems are widely used as
formal models of real-world cascading phenom-
ena, such as the spread of diseases and informa-
tion. Prior research has addressed the problem of
learning the behavior of an unknown dynamical
system when the underlying network has a sin-
gle layer. In this work, we study the learnability
of dynamical systems over multilayer networks,
which are more realistic and challenging. First,
we present an efficient PAC learning algorithm
with provable guarantees to show that the learner
only requires a small number of training examples
to infer an unknown system. We further provide a
tight analysis of the Natarajan dimension which
measures the model complexity. Asymptotically,
our bound on the Nararajan dimension is tight
for almost all multilayer graphs. The techniques
and insights from our work provide the theoretical
foundations for future investigations of learning
problems for multilayer dynamical systems.

1. Introduction
Networked dynamical systems are mathematical frame-
works for numerous cascade processes, including the spread
of social behaviors, information, diseases, and biological
phenomena (Battiston et al., 2020; Ji et al., 2017; Lum et al.,
2014; Sneddon et al., 2011; Schelling, 2006; Laubenbacher
& Stigler, 2004; Kauffman et al., 2003). In general, such
a system consists of an underlying graph where vertices
are entities (e.g., individuals, genes), and edges represent
relationships between the entities. In modeling contagion
propagation, each vertex maintains a state, and has a set
of interaction functions (i.e., behavior) specifying how the
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state evolves over time. Overall, the system dynamics pro-
ceeds in discrete time, with vertices updating their states
using interaction functions.

Inferring the unknown components of networked systems is
an active research area (Chen & Poor, 2022; Dawkins et al.,
2021; Conitzer et al., 2020; Adiga et al., 2019; Lokhov,
2016; Narasimhan et al., 2015). One ongoing line of work
focuses on learning the unknown interaction functions of
vertices. Interaction functions are crucial to the system dy-
namics; they specify the decision-making rules that entities
employ to update their states. An illustrative example is
the class of threshold interaction functions (Granovetter,
1978), which are widely used to model the spread of so-
cial contagions (Li et al., 2020; Watts, 2002). Under this
framework, each entity in the network has a decision thresh-
old that represents the tipping point for a behavioral (i.e.,
state) shift. For instance, in rumor propagation, a person’s
belief changes when the number of neighbors believing in
the rumor reaches a threshold (Trpevski et al., 2010). Over-
all, the interaction functions define the mechanism of the
cascade process, which also describes the system’s global
behavior (Del Vicario et al., 2016).

Existing methods for learning interaction functions only ap-
ply to the case when the underlying graph has a single-layer.
Nevertheless, such single-layer frameworks often are over-
simplifications of reality, as real-world networks encompass
diverse types of connections that are not adequately cap-
tured by single-layer graphs (Kivelä et al., 2014). To our
knowledge, the learning problem for the more complex and
realistic multilayer setting (corresponding to multi-relational
networks) has not received attention in the literature. In this
work, we fill this gap through a formal study of the learn-
ability of dynamical systems over multilayer networks.

The multilayer setting. The graph in our target system
consists of multiple layers, with generally a different set
of edges in each layer. This is a classic setting for mul-
tilayer networks, and the capacity of such networks to
model complex real-world phenomena has been widely rec-
ognized (e.g., (Hammoud & Kramer, 2020; Kivelä et al.,
2014; Newman, 2018)). Notably, multilayer networks al-
low heterogeneous ties between vertices, with edges in
each layer capturing a particular type of interaction (e.g.,
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close friend, acquaintance) (Newman, 2018; Kivelä et al.,
2014; De Domenico et al., 2013). Further, the multi-
layer framework enables the modeling of more realistic
and complex cascades that involve cross-layer interac-
tions (De Domenico et al., 2016; Salehi et al., 2015; Boc-
caletti et al., 2014). These cascades are characterized by
increasingly intricate interaction functions of the system.

Problem description. Consider a multilayer networked
system where the interaction functions of vertices are un-
known. By inferring the missing functions, we aim to learn
a system that captures the behavior of the true unknown
system, with performance guarantees under the Probably
Approximately Correct (PAC) model (Valiant, 1984). We
learn from snapshots of the true system’s dynamics, a com-
mon scheme considered in related papers (e.g., (Chen et al.,
2021; Wilinski & Lokhov, 2021; Conitzer et al., 2020)).
To further measure the expressive power of the hypothesis
class and characterize the sample complexity of learning,
we examine the Natarajan dimension (Natarajan, 1989) of
the model, a well-known generalization of the VC dimen-
sion (Vapnik & Chervonenkis, 2015). Overall, we aim to
address the following questions: (i) How can one efficiently
learn multilayer systems? (ii) What is the complexity of our
model for learning multilayer systems?

Challenges. The multilayer setting poses new challenges.
First, the number of hypotheses grows exponentially in the
number of layers, thus requiring a learner to search a much
larger space. Further, a learner is tasked with extracting
information from complex cross-layer interactions. For
example, while the training data (snapshots of dynamics)
indicates a vertex’s state change, it does not indicate which
layer(s) triggered the change. Additionally, analyzing a
learner’s performance is challenging, as incorrect predic-
tions could be caused by any combination of layers. The
intertwined connections between vertices in the multilayer
setting further complicate the analysis of model complexity.
Collectively, these factors distinctly set apart our problem
from its single-layer counterpart. In Appendix C.2, we
present an example to further explain the differences be-
tween inference problems for single-layer and multilayer
discrete dynamical systems.

Our contributions are as follows:

• Efficient learning. We show that a small training set is
sufficient to efficiently PAC learn a multilayer system.
Specifically, we obtain the following results. (i) We de-
velop an efficient PAC learning algorithm with provable
guarantees: w.p. at least 1 − δ, the prediction error is
at most ϵ, for any ϵ, δ > 0. (ii) For any fixed ϵ and δ,
the number of training examples used by our algorithm is
onlyO(σk log (σk)), where k is the number of layers and
σ is the number of vertices with unknown interaction func-
tions. Thus, when σ is fixed, the size of an adequate train-

ing set does not increase with the network size or density.
This result also provides an upper bound on the sample
complexity that is tighter than the general information-
theoretic bound (Haussler, 1988). (iii) We extend the
proposed learner to the Probably Mostly Approximately
Correct setting (Balcan & Harvey, 2011) and prove that
the amount of training data can be further reduced when
the learner is allowed to make approximated predictions.
(iv) Using real-world and synthetic multilayer networks,
we experimentally explore the relationship between our
learning algorithm’s performance and system parameters
under various scenarios.

• Model complexity. We provide a tight analysis of the
Natarajan dimension (Ndim), which measures the expres-
sive power of the learning model. (i) We present a novel
combinatorial structure and establish its equivalence to
shatterable sets. (ii) Based on this equivalence, we de-
velop an (efficient) method for constructing shatterable
sets and show that when restricting the system to an in-
dividual layer, Ndim is exactly σ, the number of vertices
with unknown interaction functions. This precise char-
acterization could be of independent interest. (iii) We
then extend the argument to show that for a k-layer sys-
tem, Ndim is between σ and kσ and present classes of
instances where the bounds are tight. This result also
provides a lower bound on the sample complexity. (iv)
Lastly, using a probabilistic argument, we show that our
upper bound kσ is asymptotically tight almost surely: for
almost all graphs, Ndim is exactly kσ.

Related work. Learning unknown components of net-
worked systems is an active research area. For single-layer
networks, many studies have developed methods to tackle
cascade inference-related issues (e.g., learning the inter-
action functions, edge parameters, infection source, and
contagion states) by observing propagation dynamics. For
instance, Lokhov (2016) examines the problem of recon-
structing the parameters of a diffusion model given infection
cascades. Chen et al. (2021) focus on learning the edge prob-
ability and source vertices under the independent cascade
model. Conitzer et al. (2020) investigate the problem of
inferring opinions (states) of vertices in stochastic cascades
under the PAC scheme. Other representative results in-
clude (Chen & Poor, 2022; Conitzer et al., 2022; Dawkins
et al., 2021; Wilinski & Lokhov, 2021; Kalimeris et al.,
2018; Wen et al., 2017; He et al., 2016; Narasimhan et al.,
2015; Daneshmand et al., 2014; Du et al., 2014; González-
Bailón et al., 2011; Hellerstein & Servedio, 2007). Learn-
ing the network structure has also been studied (Huang
et al., 2019; Pouget-Abadie & Horel, 2015; Abrahao et al.,
2013; Du et al., 2012; Myers & Leskovec, 2010; Gomez-
Rodriguez et al., 2010). To our knowledge, the problem of
learning the interaction functions of networked multilayer
systems has not been examined.
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The paper that is most closely related to our work is by
Adiga et al. (2019), where the PAC learnability of threshold
interaction functions in single-layer networked systems is
studied. They present an efficient consistent learner when
there are only positive examples and show the hardness of
learning when negative examples are also included. They
also bound the sample complexity based on the VC dimen-
sion. As mentioned earlier, the multilayer setting introduces
new challenges that do not arise in the single-layer setting.
For these reasons, the results in (Adiga et al., 2019) cannot
be directly applied to our multilayer setting, which requires
new techniques in our work.

2. Preliminaries
The setting of our model aligns with existing research on
learning networked systems. For the readers’ reference, a
list of the settings used in several related papers is given in
the Appendix (Section A).

2.1. Multilayer Networked Dynamical Systems

In this section, we present Multilayer Dynamical Systems
as a formal model for cascades on multilayer graphs.

Multilayer networks. All the graphs considered are undi-
rected. For any integer k ≥ 1, let [k] denote the set
{1, . . . , k}. A multilayer network (Kivelä et al., 2014) is a
sequence of graphs M = {Gi}ki=1, Gi = (V, E i), where V
is a set of n vertices shared by all graphs in M, and E i is
the set of edges in Gi, i ∈ [k]. The edge sets of graphs in
M are generally different. Overall, one can view M as a
k-layer network where Gi ∈ M is the ith layer.

Dynamical systems. Dynamical systems on multilayer
networks are generalizations of systems over single-layer
networks. A Multilayer Synchronous Dynamical System
(MSyDS) over the Boolean domain B = {0, 1} is a triple
h∗ = (M,F ,Ψ):

• M = {Gi}ki=1 is an underlying multilayer network with
k layers. Each vertex has a state from B.

• F = {fi,v : i ∈ [k], v ∈ V} is a collection of functions,
with fi,v denoting vertex v’s interaction function on the
ith layer Gi.

• Ψ = {ψv : v ∈ V} is a collection of functions, with ψv

denoting the master function of vertex v.

The system dynamics proceeds in discrete time. Starting
from an initial configuration of vertex states, at each step,
vertices update states synchronously using interaction func-
tions and master functions. Specifically, for any t ≥ 0, the
state of each vertex v at time t+ 1 is computed as follows:

• For each Gi ∈ M, the interaction function fi,v ∈ F is
evaluated; the inputs are the time-t states of vertices in
v’s closed neighborhood (i.e., v and its neighbors) in Gi;

fi,v then outputs a value in B. This gives a k-vector Wv

for each v, where Wv(i) is the output of fi,v , i ∈ [k].
• Next, the master function ψv is evaluated, with Wv as the

input. The output of ψv , which is a value in B, is the next
state of v (i.e., its state at time t+ 1).

Interaction functions. We focus on threshold interaction
functions, a classic framework for the spread of social con-
tagions (Rosenkrantz et al., 2022; Chen et al., 2021; Watts,
2002; Granovetter, 1978). In particular, each v ∈ V has an
integer threshold τi(v) ∈ [0, degi(v) + 2] for each layer Gi,
i ∈ [k]; degi(v) is the degree of v in Gi. The interaction
function fi,v ∈ F outputs 1 if the number of active (i.e.,
state-1) vertices in v’s closed neighborhood in Gi is at least
τi(v); fi,v outputs 0 otherwise. If fi,v outputs 1, we say that
the threshold condition of v is satisfied on Gi.

Master functions. The two classes of master functions
proposed in the literature are OR and AND (Pastor-Satorras
et al., 2015; Lee et al., 2014; Brummitt et al., 2012). When
function ψv is OR, the next state of v is 1 iff there exists a
layer i ∈ [k] where the interaction function fi,v evaluates
to 1. In other words, v’s next state is 1 iff its threshold
condition is satisfied in at least one layer. Analogously, for
AND functions, the next state of v is 1 iff fi,v evaluates to 1
in all the layers.

An illustrative example. Consider a rumor spreading on a
2-layer social network with two types of ties (e.g., “friends”
and “co-workers”) and OR as the master function at each
vertex. Thus, a person’s belief in the rumor changes if the
number of neighbors in any one of the layers believing in
the rumor reaches a certain decision threshold; however, the
person’s thresholds for the two layers may be different due
to the difference in the strengths of the social ties.

Figure 1. A 2-layer threshold system with OR master functions.
Threshold values of vertices v1 to v4 in layer 1 are (2, 3, 3, 2), and
in layer 2 are (3, 3, 2, 1). State-1 vertices are in blue. The configu-
ration C = (1, 1, 1, 0), and its successor is C′ = (1, 0, 0, 1).

A configuration C is an n-bit binary vector that specifies
the state of each vertex at a given time step. We use C(v) to
denote the state of vertex v in C. A configuration C′ is the
successor of C under a system h∗ if C′ evolves from C in
one time step; this is denoted by C′ = h∗(C). Overall, the
evolution of system h∗ can be represented as a time-ordered
sequence of configurations. An example of an evolution
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from C to C′ is shown in Fig. 1. Our goal in presenting
this toy example of a multilayer system is to make it eas-
ier for readers to understand the above formal definitions.
For examples of realistic large multilayer systems, we re-
fer the reader to references such as (Kivelä et al., 2014)
and (Hammoud & Kramer, 2020).

2.2. The Learning Setting

There is a ground truth MSyDS h∗. The learner is only given
partial information about h∗, where the interaction functions
(on all layers) of a subset V ′ ⊆ V of vertices are unknown.
Let σ = |V ′|. The hypothesis class H consists of Θ(nσk)
MSyDSs over all possible threshold values of vertices in
V ′. The goal of a learner is to infer an MSyDS h ∈ H that
is a good approximation of h∗ by inferring the unknown
interaction functions. When V ′ = V , the thresholds of all
vertices must be learned.

Training. We learn the target system h∗ from snapshots
of its dynamics under the PAC framework. Formally, let
X = {0, 1}n be the set of all n-bit binary vectors. Let
T = {(Cj , C′

j)}qj=1 be a training set of q examples, which
consists of the snapshots of system dynamics. Following
the PAC setting, examples in T are configuration pairs,
where Cj is drawn i.i.d. from an unknown distribution D,
and C′

j = h∗(Cj) is the successor of Cj under h∗. We use
T ∼ Dq to denote such a training set.

Predictions. Given a new sample C ∼ D, a hypothesis
h ∈ H makes a successful prediction if h(C) = h∗(C). The
true error of a hypothesis h is defined as L(D,h∗)(h) :=
Pr C∼D[h(C) ̸= h∗(C)]. In the PAC model, when T is
sufficiently large, the goal of a learner is to output an h ∈ H
s.t. with probability at least 1−δ over T ∼ Dq , it holds that
L(D,h∗)(h) ≤ ϵ, for any given ϵ, δ ∈ (0, 1). The minimum
number of training examples needed by any PAC learner to
learn H is called the sample complexity of H.

Natarajan dimension. Learning a hypothesis h ∈ H in our
context can be cast as a multiclass classification problem,
where each configuration is a class. Given a configuration C,
h maps C to one of the possible 2n configurations (classes).
To characterize the model complexity and the expressive
power of the hypothesis set H, we turn to the Natarajan
dimension (Natarajan, 1989), which extends the VC di-
mension to multiclass settings. Formally, the Natarajan
dimension of H, denoted by Ndim(H), is the maximum
size of a shatterable set. A set R ⊂ X is shattered by H
if for every C ∈ R, there are two associated configurations,
CA, CB ∈ X , s.t. (i) CA ̸= CB , and (ii) for every subset
R′ ⊆ R, there exists h ∈ H where ∀C ∈ R′, h(C) = CA

and ∀C ∈ R \ R′, h(C) = CB .

3. PAC Learnability of Multilayer Systems
In this section, we establish the efficient PAC learnabil-
ity of the hypothesis class H, defined in Section 2. We
first propose a learner that efficiently infers an unknown
multilayer system. We then show that a training set of
size ⌈1/ϵ · σk · log (σk/δ)⌉ is sufficient for the learner to
achieve the (ϵ, δ)-PAC guarantee. Lastly, we prove that
our algorithm can also handle the more general PMAC
learning setting (Balcan & Harvey, 2011), which permits
learners to make approximate predictions. Due to space con-
straints, full proofs appear in the Appendix (Section B).
We present proofs for learning interaction functions under
the OR master function. The results for AND master func-
tions follow by duality (see Appendix, Section B).

3.1. An Efficient PAC Learner

For a configuration C, a vertex v ∈ V and a layer i ∈ [k], let
Γi[C, v] be the number of 1’s in the input to the interaction
function fi,v under C (i.e., the number of state-1 vertices in
v’s closed neighborhood in Gi). We call Γi[C, v] the score
of v in Gi under C. Let τhi (v) be the learned threshold of v
for the ith layer in h, and let τh

∗

i (v) be v’s true threshold in
the target system h∗.

PAC Learner. Our algorithm learns a hypothesis h ∈ H
by inferring the unknown thresholds in the target system h∗.
Let T ∼ Dq be a given training set. For each vertex v ∈ V ′

with an unknown threshold on each layer Gi ∈ M, if the
master function ψv is OR, we assign

τhi (v) = max
(C, C′)∈T : C′(v)=0

{Γi[C, v]}+ 1. (1)

If C′(v) = 1 for all (C, C′) ∈ T , we set τhi (v) = 0.

If the master function is AND, then we assign τhi (v) =
min(C,C′)∈T : C′(v)=1{Γi[C, v]}. If C′(v) = 0 for all
(C, C′) ∈ T , we set τhi (v) = degi(v) + 2, where degi(v) is
the degree of v in Gi.

Lastly, the algorithm returns the corresponding system h ∈
H. One can easily verify that h has zero empirical risk: h is
consistent with all samples in the training set. Further, one
can easily verify that the running time is polynomial w.r.t.
n, k, and |T |. Thus, the algorithm is an efficient consistent
learner for H. Combined with the fact that H is finite, the
class H is efficiently PAC learnable (Shalev-Shwartz &
Ben-David, 2014).

Theorem 3.1. The class H is efficiently PAC learnable.

3.2. The Sample Complexity

We now show that our algorithm requires a small train-
ing set to PAC-learn H. To begin with, a well-known
general result in (Haussler, 1988) implies that the sample
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complexity mH(δ, ϵ) of learning H is upper bounded by
(1/ϵ) log (|H|/δ), where ϵ, δ ∈ (0, 1) are the two PAC pa-
rameters. In our case, one can derive that

mH(δ, ϵ) ≤ 1

ϵ
·
(
σk · log (davg(V ′)) + log (

1

δ
)

)
, (2)

where σ = |V ′|, and davg(V ′) is the average degree of the
vertices of V ′ in the network where layers are merged into a
single layer while keeping parallel edges removed.

A new bound. As one might expect, bound (2) depends
explicitly on the average degree since a denser network leads
to a larger hypothesis class, requiring a larger training set.
Nevertheless, we now establish an alternative bound on the
training set size |T | for our algorithm. Notably, this bound
does not depend explicitly on any graph parameters (e.g.,
davg) except for the number of layers k.

A key lemma. For a configuration C ∼ D, and a vertex v,
letB(C, v) denote the event that “h∗(C)(v) = 0”; i.e., in the
true system h∗, C does not satisfy the threshold condition
of v on any layer. For a layer i ∈ [k] and a system h ∈ H,
let A(C, i, v, h) be the “bad” event that (1) “the threshold
condition of v on the ith layer is satisfied under h”, and
(2) “B(C, v) occurs”. Namely, h makes a wrong prediction
for the state of v in Gi. Formally, A(C, i, v, h) is defined as
“Γi[C, v] ≥ τhi (v) and ∀j ∈ [k], Γj [C, v] < τh

∗

j (v)”.

We now bound the probability (over T ∼ Dq) of our algo-
rithm learning a “bad” h ∈ H s.t. PrC∼D[A(C, i, v, h)] ≥
α, for a given α ∈ (0, 1).

Lemma 3.2. For a v ∈ V ′ and an i ∈ [k], suppose
τh

∗

i (v) ≥ 1. Let h ∈ H be a hypothesis learned from a
training set T of size q ≥ 1. Consider a given α ∈ (0, 1).

(1) Suppose all integers ρi(v) ∈ [0, τh
∗

i (v)) satisfy
PrC∼D[B(C, v) and Γi[C, v] ≥ ρi(v)] < α. Then
PrC∼D[A(C, i, v, h)] < α.

(2) Suppose Condition (1) does not hold; that
is, there is a ρi(v) ∈ [0, τh

∗

i (v)) such that
PrC∼D[B(C, v) and Γi[C, v] ≥ ρi(v)] ≥ α. Then
PrC∼D[A(C, i, v, h)] ≥ α holds with probability at most
(1− α)q over T ∼ Dq .

For an error rate α ∈ (0, 1), Lemma 3.2 states that the
probability (over T ∼ Dq) of the algorithm learning a “bad”
hypothesis h where PrC∼D[A(C, i, v, h)] ≥ α is at most
(1− α)q. Using this lemma, we now present the result on
the size of an adequate training set for our algorithm.

Theorem 3.3. For any ϵ, δ ∈ (0, 1), with a training set of
size

q = ⌈1/ϵ · σk · log (σk/δ)⌉

the proposed algorithm learns a hypothesis h ∈ H such
that with probability at least 1 − δ (over T ∼ Dq),
PrC∼D[h(C) ̸= h∗(C)] < ϵ.

Proof sketch. We first prove that the learned hypothesis h
makes a mistake on a vertex v if and only if h(C)(v) = 1 and
h∗(C)(v) = 0, which corresponds to the event A(C, i, v, h)
for some i ∈ [k]. Then, using Lemma 3.2, we show that with
probability at most k · (1− ϵ/(σk))q over T ∼ Dq , the loss
satisfies Pr C∼D[h(C)(v) ̸= h∗(C)(v)] ≥ ϵ/σ. It follows
that with probability (over T ∼ Dq) at most σk · (1 −
ϵ/(σk))q, we have Pr C∼D[h(C) ̸= h∗(C)] ≥ ϵ. Having
q = ⌈ 1

ϵ · σk · log (σkδ )⌉, one can verify that σk · (1 −
ϵ/(σk))q ≤ δ. Equivalently, with probability at least 1− δ
over T ∼ Dq , we have Pr C∼D[h(C) ̸= h∗(C)] < ϵ. ■

Implication on the sample complexity. Theorem 3.3 pro-
vides an upper bound on the sample complexity mH(δ, ϵ)
of learning H. Specifically, we have

mH(δ, ϵ) ≤
⌈
1

ϵ
· σk · log (σk

δ
)

⌉
. (3)

Remark. With the proposed learner, Theorem 3.3 shows
that an adequate number of examples to PAC-learn H does
not explicitly depend on the average degree or the size of
the multilayer graph. Thus, when other parameters are
fixed, the sample complexity of learning H does not grow
as the graph increases in size or density (even though H
itself grows exponentially), making the algorithm scalable
to larger networks. Further, our bound in Theorem 3.3 is
tighter than Ineq (2) in several regimes. For instance, for a
fixed σ, the bound in Ineq (2) grows as davg(V ′) gets larger;
on the other hand, our bound remains unchanged.

3.3. Extension to the PMAC Model

Our learner can operate in a more general Probably Mostly
Approximately Correct (PMAC) framework (Balcan & Har-
vey, 2011). In this setting, a learner aims to make predictions
that are good approximations for the true values, allowing
small errors in the predictions. The PMAC model has been
used in many contexts such as learning submodular func-
tions (Rosenfeld et al., 2018; Balcan & Harvey, 2011) and
cascade inference (Conitzer et al., 2020).

Formulation. In PMAC model, the learned hypothesis h
makes a successful prediction if h(C) agrees with h∗(C)
on the states of more than (1 − β) fraction of the vertices
in V ′, for a given approximation factor β ∈ (0, 1). For-
mally, let W (h(C), h∗(C)) be the number of vertices in
V ′ whose states in h(C) are different from those in h∗(C).
For given ϵ, δ, β ∈ (0, 1), the goal is to learn a hypothe-
sis h ∈ H such that with probability at least 1 − δ over
T ∼ Dq, Pr C∼D[W (h(C), h∗(C)) ≥ βσ] ≤ ϵ, where
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“W (h(C), h∗(C)) ≥ βσ” is the “bad” event that h(C) does
not approximate h∗(C) to the desired factor.

We prove that under PMAC setting, the size of the training
set for our algorithm (in Section 3.1) to learn an unknown
system is significantly reduced.

Theorem 3.4. For any given ϵ, δ, β ∈ (0, 1), with a training
set T of size

q = ⌈1/ϵ · 1/β · k · log (σk/δ)⌉

the proposed algorithm (Section 3.1) learns an h ∈ H such
that with probability at least 1− δ over T ∼ Dq , h satisfies
that Pr C∼D[W (h(C), h∗(C)) ≥ βσ] ≤ ϵ.

Proof sketch. Let A(C, v, h) is the “bad” event where
h(C)(v) ̸= h∗(C)(v) for a vertex v ∈ V ′ and C ∼ D.
Using Lemma 3.2, where we set α = (ϵβ)/k, with
probability (over T ∼ Dq) at most k · (1 − (ϵβ)/k)q,
we have Pr C∼D[A(C, v, h)] ≥ (ϵβ) for any vertex v ∈
V ′. Thus, with probability (over T ∼ Dq) at most
σk · (1 − (ϵβ)/k)q, there exists a vertex v ∈ V ′ such that
Pr C∼D[A(C, v, h)] ≥ ϵβ. By the linearity of expectation,
we have EC∼D[W (h(C), h∗(C))] < ϵβ · σ. Then, using
Markov Inequality, it follows that with probability (over
T ∼ Dq) at least 1 − σk · (1 − (ϵβ)/k)q, the learned
h ∈ H satisfies Pr C∼D[W (h(C), h∗(C)) ≥ βσ] ≤ ϵ.
Lastly, setting q = ⌈1/ϵ · 1/β · k · log (σk/δ)⌉, we have
1− σk · (1− (ϵβ)/k)q ≥ 1− δ. ■

Remark. Compared to the bound on the PAC sample com-
plexity in Theorem 3.3, the size of an adequate training
set under the PMAC model is reduced by a multiplicative
factor of σβ. For instance, when β is a constant (i.e., to
obtain a constant-factor approximation), the training set size
is decreased by a linear (w.r.t. σ) factor. This demonstrates
a trade-off between the quality of the prediction and the size
of the training data: when our learner is allowed to make
approximate predictions, it requires a much lower number
of examples to learn an appropriate hypothesis.

4. Tight Analysis of Model Complexity
The Natarajan dimension (Ndim) measures the expressive-
ness of a hypothesis class and characterizes the complexity
of learning (Natarajan, 1989). The higher the value of Ndim,
the greater the expressive power of the learning model. Fur-
ther, Ndim informs us about the requisite sample size for
learning good hypotheses. In this section, we examine Ndim
of the hypothesis class H for multilayer systems, denoted by
Ndim(H), and develop the following results. See Appendix
(Section C) for full proofs.

(1) We present an efficient method for constructing shatter-
able sets. Using this method, we establish that Ndim(H) is
exactly σ when the underlying network has only one layer.

Previously, Adiga et al. (Adiga et al., 2019) showed that for
the single-layer case where σ = n, the VC dimension of
H is at least n/4. Our precise characterization of Ndim(H)
provides both an improvement over their bound (Adiga et al.,
2019) and an extension to arbitrary σ.

(2) We show that for multilayer networks, Ndim(H) is
bounded between σ and kσ. This proof uses an extended
version of our technique for the single-layer case. Further,
we present classes of instances where the bounds are tight.
Our results also show that the best possible lower bound of
sample complexity that one can obtain using this approach
is Ω([σ + log (1/δ)]/ϵ).

(3) We further tighten our analysis by proving that asymp-
totically, for almost all graphs (i.e., almost surely) with n
vertices and k ≥ 2 layers, Ndim(H) of the corresponding
hypothesis class H is exactly σk.

4.1. An Exact Characterization for a Single Layer

Let h∗ be the true system with a single-layer network. We
present a combinatorial characterization of shatterable sets,
which allows us to obtain an exact value for Ndim(H). We
begin with some definitions.
Definition 4.1 (Landmark Vertices). Suppose the underly-
ing network has a single layer. Given a set R ⊆ X , a vertex
v ∈ V ′ is a landmark vertex for a configuration C ∈ R if
the score Γ[C, v] ̸= Γ[Ĉ, v] for all Ĉ ∈ R \ {C}.

The landmark vertices play a key role in R being shatterable.
Given R ⊆ X , let W(R) ⊆ V ′ be the (possibly empty)
set of vertices that are landmark vertices for at least one
configuration in R.
Definition 4.2 (Canonical Set). A set R ⊆ X is canonical
w.r.t. H if there is an injective mapping from R to W(R)
s.t. each C ∈ R maps to a landmark vertex of C.

By the definition of shattering (see Section 2), each C in
a shatterable set R is associated with two configurations,
denoted by CA and CB , where CA ̸= CB .
Definition 4.3 (Contested Vertices). We call a vertex v
contested for a C ∈ R if CA(v) ̸= CB(v).

By linking landmark vertices to contested vertices, our next
lemma shows that for a single-layer system, the property of
a set being canonical is equivalent to being shatterable.
Lemma 4.4. When the underlying network has a single
layer, a set R ⊆ X can be shattered by H if and only if R
is canonical w.r.t. H.

Proof sketch. (⇒) Suppose H shatters R. We want to
show that R is canonical. We first establish the following
claims: (1) All contested vertices are in V ′. (2) No two
configurations in R have a common contested vertex. Fur-
ther, a contested vertex for a configuration C ∈ R is also a
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landmark vertex for C. From these claims, it follows that
there exists an injective mapping from R to W(R); i.e., R
is canonical. (⇐) Suppose that R ⊆ X is canonical w.r.t H.
To show that H shatters R, we present a method to construct
the associated configurations CA and CB for each C ∈ R
by specifying the states of vertices. We then show that the
shattering conditions are satisfied under CA and CB . ■

Remark. By definition, the size of a canonical set is at
most |V ′| = σ. From Lemma 4.4, it follows that Ndim(H),
which is the maximum size of a shatterable set, is at most
σ when the underlying network has a single layer.

Next, we present an efficient method in Theorem 4.5 for
constructing a canonical set of size σ based on depth-first
search (see proof in the Appendix). Consequently, for any
underlying single-layer network, there exists a shatterable
set of size exactly σ. Formally:
Theorem 4.5. When the underlying network has a single
layer, a shatterable set of size σ can be (efficiently) con-
structed. Thus, Ndim(H) = σ.

Proof sketch. To construct a canonical set R ⊂ X with
σ configurations, R is initially empty. Let G′ = G[V ′]
be the subgraph induced on V ′. Starting from any vertex
v1 ∈ V ′, the algorithm carries out a depth-first traversal on
G′, while maintaining a stack K of vertices. Let vi, i ∈ [σ],
denote the ith discovered vertex, 1 ≤ i ≤ σ. When vi is
discovered, the configuration Cvi added to R is constructed
as follows: Cvi

(v) = 1 if v ∈ K and Cvi(v) = 0 otherwise.
The algorithm terminates when all vertices in V ′ are visited.
Clearly |R| = σ. We then show that vi is a landmark
vertex of Cvi , thereby establishing that R is canonical. By
Lemma 4.4, R is also shatterable. ■

Remark. Theorem 4.5 is interesting since for many prob-
lems (Vapnik et al., 1994; Bartlett et al., 2019), including
those on learning networked systems (Adiga et al., 2019),
known results on such dimensions provide only bounds
rather than exact values. The graph-theoretic machinery
we have introduced (e.g., canonical set) to aid our analysis
may be of independent interest in studying other learning
problems for dynamical systems.

4.2. Bounds on Ndim for Multilayer Systems

Using the results developed in the previous section, we
now derive bounds on Ndim(H) for systems with k ≥ 2
layers. We first prove that Ndim(H) ≤ kσ by showing that
each v ∈ V ′ is contested for at most k configurations in
any shatterable set. We then show that Ndim(H) ≥ σ by
establishing that any shatterable set obtained by restricting
the system to any single layer in M is also shatterable over
the multilayer network M. We first state the upper bound.
Lemma 4.6. For any network with k ≥ 2 layers, the size of
any shatterable set R is at most kσ.

Proof sketch. For a v ∈ V ′, let Rv ⊆ R be the subset of
configurations with v being (one of) their contested vertices.
W.l.o.g., suppose Rv ̸= ∅. We show the following:

Claim. For each C ∈ Rv, ∃ i ∈ [k] such that Γi(C, v) >
Γi(Ĉ, v), ∀ Ĉ ∈ Rv \ {C}.

The claim implies that for each C ∈ Rv , there exists a layer
i where v’s score under C is strictly larger than v’s score
under any other configurations in Rv . Thus, |Rv| ≤ k, and
|R| ≤ kσ. ■

To establish a lower bound of σ on the size of a shatterable
set, we prove the following lemma.

Lemma 4.7. Suppose h∗ is an MSyDS whose underlying
network has k ≥ 2 layers. Let ĥ∗ be a single-layer system
obtained from h∗ by using the network in any layer i ∈ [k].
If a set R is shatterable by the hypothesis class of ĥ∗, then
it is also shatterable by the hypothesis class of h∗.

By Theorem 4.5, when the underlying network has a sin-
gle layer, there exists a shatterable set of size σ. Thus,
Lemma 4.7 implies that there also exists a shatterable set
of size σ for the multilayer setting. Overall, we obtain the
following bounds on Ndim(H):

Theorem 4.8. Suppose the underlying network has k ≥ 2
layers. Then σ ≤ Ndim(H) ≤ kσ.

Remark. There are classes of multilayer systems where the
bounds are tight. To match the lower bound, consider the
class of k-layer networks M = {G1, ...,Gk} where k ≥ 2
and for each vertex v, the following condition holds: the ver-
tex v’s neighbors in Gi+1 form a superset of its neighbors in
Gi, with exactly one extra neighbor in Gi+1, i = 1, ..., k−1.
It can be verified that in such a system, given any shatter-
able set R, each vertex with unknown interaction functions
can be contested for at most one configuration in this set.
Therefore, |R| is at most σ and Ndim = σ. On the other
hand, in Section 4.3, we show that the upper bound kσ is
tight for almost all threshold multilayer systems.

Bounds on the sample complexity. By a result in (Shalev-
Shwartz & Ben-David, 2014), our bounds on Ndim(H) in
Theorem 4.8 also imply the following bounds on the sample
complexity mH(δ, ϵ):

(1) Lower bound: c1
σ+log(1/δ)

ϵ ;

(2) Upper bound: 1
ϵ ·

(
c2 · kσ · log (kσϵ ) + kσ2 + log ( 1δ )

)
for some constants c1, c2 ≥ 0.

Remark. The above upper bound is weaker than our bound
in Theorem 3.3. Notably, the above bound has a domi-
nant term O(kσ2), while our bound in Theorem 3.3 is
O(kσ log (kσ)). Further, when k is a constant (a realis-
tic scenario in real-world networks by the Dunbar’s num-
ber (Dunbar, 1993)), the upper bound in Theorem 3.3 is

7



PAC Learnability of Dynamical Systems Over Multilayer Networks

within a factor O(log (σ)) of the lower bound stated above.

4.3. The Asymptotic Behavior of Ndim

We have shown that Ndim(H) ≤ kσ for any k-layer system.
In this section, we further explore the complexity of the
hypothesis class and prove that asymptotically (i.e., as n→
∞), for almost all graphs with n vertices and k ≥ 2 layers,
Ndim(H) of the corresponding hypothesis class is exactly
kσ, which matches our upper bound (Theorem 4.8).

Approach overview. Given a multilayer network M, we
first define a special set Q of vertex-layer pairs in M. We
then show that for each such set Q, there is a shatterable set
of size |Q|. Next, using a probabilistic argument, we prove
that in the space of all k-layer graphs with n vertices, the
proportion of graphs that admit such sets Q of size kσ tends
to 1 asymptotically (w.r.t n).

A special vertex-layer set. For a k-layer network M and
a subset V ′ of vertices, let QM,V′ be a set of vertex-layer
pairs (v, i), v ∈ V ′, i ∈ [k], such that every (v, i) ∈ QM,V′

satisfies the following condition: NM[v, i] \NM[v′, i′] ̸=
∅ for all pairs (v′, i′) ∈ QM,V′ , (v′, i′) ̸= (v, i), where
NM[v, i] is the closed neighborhood of v in the ith layer of
M. We first establish the correspondence between such a
set QM,V′ and a shatterable set.
Lemma 4.9. Given a multilayer network M and a subset
V ′ of vertices, for each set QM,V′ , there is a shatterable set
of size |QM,V′ | for the corresponding hypothesis class over
M, where thresholds of vertices in V ′ are unknown.

Our next lemma shows that, asymptotically, almost all
graphs M with n vertices and k layers have a set QM,V′ of
size kσ, where V ′ is a subset of vertices and σ = |V ′|.
Lemma 4.10. Let n ≥ 1, k ≥ 2, V ′ ⊆ [n], and σ =
|V ′| In the space of all k-layer graphs with n vertices, the
proportion of graphs that admits a set QM,V′ of size kσ is
at least 1− 4 · (σk)2 · ( 34 )n.

Proof sketch. Let Gn,k,1/2 be the space of k-layer graphs
with n vertices. Let M ∼ Gn,k,1/2 be a graph chosen
uniformly at random. We first show that the probability of
any pair (v, i) violating the condition of QM,V′ is at most
4·( 34 )n. It follows that w.p. at most 8·

(
σk
2

)
·( 34 )n ≤ 4·(σk)2·

( 34 )
n, there exists such an undesirable pair. Consequently,

w.p. at least 1− 4 · (σk)2 · ( 34 )n, QM,V′ contains all the kσ
pairs. We remark that such a probability can be interpreted
as the proportion of graphs in the space of all k-layer graphs
with n vertices. ■

Collectively, by Lemmas 4.9 and 4.10, we conclude that for
any k ≥ 2, asymptotically w.r.t. n, almost all the hypothesis
classes of threshold dynamical systems over k-layer graphs
have Ndim exactly kσ.
Theorem 4.11. Given k ≥ 2, as n approaches infinity,

almost all the hypothesis classes of threshold dynamical
systems over k-layer graphs have Ndim exactly σk.

Remark. We note that the term almost all is standard in
probabilistic methods (e.g., see (Alon & Spencer, 2016;
Erdős & Wilson, 1977)). Formally, a property holds for
almost all graphs if asymptotically (w.r.t n) with probability
one, a random graph (drawn the space of all n-vertex graphs)
possesses that property. In our case, this probability is
≥ 1 − 4 · (σk)2 · ( 34 )n ∼ 1 − o(1), which approaches 1
quickly due to the exponent of n. We also found empirically
that for this proportion to be close to 1, n only needs to be
around 1, 000 (see Appendix, Section C.1).

5. Experimental Analysis
We present experimental studies on the relationships be-
tween model parameters and the empirical performance of
our PAC algorithm. Here, we study the performance of the
algorithm on a variety of different networks (Magnani et al.,
2013; Omodei et al., 2015; Stark et al., 2006; Coleman et al.,
1957), as shown in Table 1. In particular, the objective of
our experiments is two-fold: (i) We examine the effect of
different model parameters on the empirical loss, as these
parameters appear in the derived sample complexity bound;
(ii) We empirically verify that the loss decreases as more
samples are provided.

Dataset Type k n m Avg. deg.

Aarhus Social 5 61 620 20.33
CKM-Phy Social 3 246 1, 551 12.61
Multi-Gnp Random 2 500 7, 495 15
PPI Biology 7 900 12, 870 28.6
Twitter Social 2 2000 10, 233 10.23

Table 1. List of multilayer networks. Parameters k, n, and m are
the number of layers, the number of vertices, and the total number
of edges in a network, respectively.

Training and testing. For each network, we have a target
system h∗ where the threshold of each vertex v ∈ V on each
layer i is in [0, degi(v) + 2]. For each such h∗, a training
set T = {(Ci, h∗(Ci))}qi=1 is constructed, where each Ci is
sampled from a distribution D. We consider distributions
where the state of each vertex in Ci ∈ T is 0 w.p. p and 1
w.p. 1− p, for a p ∈ {0.1, 0.5, 0.9}. Intuitively, a higher p
implies a distribution that is more biased towards vertices in
state 0. Our PAC algorithm then uses T to learn a hypothesis
h ∈ H where all the thresholds are inferred. To evaluate
the solution quality, we sample 10,000 configurations from
D, and compute the empirical loss ℓ, which is the fraction
of sampled configurations C such that h(C) ̸= h∗(C). In
presenting the results, each data point is the average over 50
learned hypotheses.
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5.1. Experimental Results

Impacts of model parameters. We first examine the rela-
tionships between the loss ℓ and the training set size |T |,
over three distributions specified by different values of p.
Experimental results using the Multi-Gnp network (Ta-
ble 1) are in Fig 2(a), where the interaction functions of all
vertices must be learned (i.e., σ = n).
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Figure 2. (a): ℓ vs |T | and (b): ℓ vs σ, over different distributions
specified by p. The underlying network is Multi-Gnp (Table 1).
The stdev for all data points is less than 0.09.

Observations. In Figure 2(a), the loss ℓ decreases as |T |
increases. Such a relationship is expected since a larger
sample usually provides more information about the un-
derlying system. Further, for each value of |T |, the loss
increases as the distribution of samples becomes skewed
towards vertices having state 0. One reason for this behavior
is that when configurations in C ∼ D consist mostly of 0’s,
the scores of vertices under C could be far from their true
thresholds. Since our algorithm learns based on the scores,
it will require more examples to infer an appropriate system.

Next, we study the relationship between ℓ and σ, under
a fixed |T | = 500 over different distributions. The re-
sults for the Multi-Gnp network are shown in Fig 2(b).
Specifically, observe that ℓ increases with σ. This is be-
cause a larger σ leads to an (exponentially) larger hypothesis
space. Since the amount of training data (i.e., |T |) is fixed,
a learned hypothesis would incur a higher loss when σ is
larger. Nevertheless, even though |H| is exponential in σ,
the loss ℓ of our algorithm grows much more slowly.

Impact of the number of layers. We study the effect of
the graph structure on ℓ. We first examine the relationship
between ℓ and |T | using real-world multilayer networks
where the thresholds of all vertices are to be learned, and
D is the uniform distribution. The results are in Fig 3(a).

Observations. From Fig 3(a), we observe a joint effect of σ
and k on the loss ℓ. If the network has more vertices (thus a
larger σ), the learned hypothesis h usually has a higher loss
ℓ, as expected. Further, even though Twitter has more
vertices than PPI, the latter network has more layers. Since
the size of the hypothesis class is exponential w.r.t k, for the
same |T |, observe that the h under the PPI network incurs a
higher loss. Next, we study the effect of k on the loss ℓ using

multilayer Gnp networks of size 500 and average degree
(on each layer) of 10. The number of layers is increased
from 2 to 6 while |T | is fixed at 500. The result is shown in
Fig 3(b) for three values of σ. Overall, we observe a positive
correlation between k and ℓ; this is because a larger k leads
to a larger hypothesis space.
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Figure 3. (a): ℓ vs |T | over real-world networks (Table 1), and (b):
ℓ vs k over different values of σ, where the underlying network is
Gnp. The stdev for all data points is less than 0.08.

6. Discussion and Future Work
One direction for future work is to improve our lower bound
on the sample complexity for PAC learnability. A second
direction is to tighten the gap between the lower and upper
bounds on the Natarajan dimension for multilayer systems,
using other techniques. Another promising direction is to
consider a noisy setting where labels in the training set
(i.e., the successor configurations) may be incorrect with a
small probability. Lastly, we note that real-world networks
are closer to graphs with special structures, such as multi-
layer scale-free or small-world networks. The multilayer
expander graphs and graphs with fixed spectral dimensions
are also very interesting due to their theoretical significance.
Therefore, we believe that it is important to understand
the asymptotic properties of Ndim on such graphs. There
are known results on the asymptotic properties of some
subgraphs (e.g., cliques (Daly et al., 2020), number of trian-
gles (Bollobás & Riordan, 2003)) of scale-free graphs and
small-world graphs (Bollobás & Riordan, 2003). However,
we note that the problems studied in these references are
very different from our learning problem. Moreover, the
networks considered in these references have only a single
layer. We believe that obtaining results for Ndim on special
classes of multilayer graphs, such as multilayer scale-free,
small-world, and multilayer expanders, poses challenges
that require the development of new theoretical tools.

Impact Statement
The work reported in this paper addresses the theoretical
foundations of learning multilayer networked dynamical
systems. Such systems serve as formal models for contagion
propagation in multilayer social networks. The results are in
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the form of theorems and algorithms for learning multilayer
dynamical systems. Our contributions mainly theoretical;
they have virtually no societal implications.
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Appendix

A. The Settings of Existing Works
Our problem setting follows the line of existing research on learning networked systems. Here, we present the settings used
in some illustrative papers on learning networked systems that span multiple domains. These references are also cited in the
main paper.

Vertex States Update Scheme Time Scale Interaction Function Venue

Binary Synchronous Discrete Deterministic AAAI-2022 (Conitzer et al., 2022)
Binary Synchronous Discrete Threshold ICML-2022 (Rosenkrantz et al., 2022)
Binary Synchronous Discrete Threshold ICML-2021 (Chen et al., 2021)
Binary Synchronous Discrete Susceptible-Infected ICML-2021 (Dawkins et al., 2021)
Binary Synchronous Discrete Independent Cascade ICML-2021 (Wilinski & Lokhov, 2021)
Binary Synchronous Continuous Probablistic NeurIPS-2020 (He et al., 2020)
Binary Synchronous Discrete Threshold NeurIPS-2020 (Li et al., 2020)
Binary Synchronous Discrete Deterministic ICML-2020 (Conitzer et al., 2020)
Binary Synchronous Discrete Threshold ICML-2019 (Adiga et al., 2019)
Binary Synchronous Discrete Threshold & Independent Cascade NeurIPS-2016 (He et al., 2016)
Binary Synchronous Discrete Threshold & Independent Cascade NeurIPS-2015 (Narasimhan et al., 2015)

Table 2. The problem settings used in some illustrative papers on learning networked systems.

B. Additional Material for Section 3
Duality between OR and AND master functions with respect to learning

The AND and OR master functions can be treated similarly in our context. For the OR master function, the state of a vertex v
is 1 if the interaction function in at least one layer outputs a 1. Similarly, for the AND master function, the state of a vertex v
is 0 if the interaction function on at least one layer outputs a 0. Due to this duality, all our results for OR master functions
carry over to AND master functions.

Proofs in Section 3.2

Recall that τhi (v) and τh
∗

i (v) are the thresholds of v on the ith layer in a learned system (hypothesis) h and in the true system
h∗, respectively. Fix a vertex v and layer i ∈ [k]. For a configuration C ∼ D, let B(C, v) denote the event “the threshold
condition for v is not satisfied in any of the layers under C in the true system h∗”. For an h ∈ H and a configuration C, let
A(C, i, v, h) be the event such that (1) the threshold condition of v on the ith layer is satisfied under C in h, and (2) the event
B(C, v) occurs. Formally, A(C, i, v, h) is the event “Γi[C, v] ≥ τhi (v) for the ith layer and Γj [C, v] < τh

∗

j (v), ∀j ∈ [k]”.

Lemma 3.2. For a v ∈ V ′ and an i ∈ [k], suppose τh
∗

i (v) ≥ 1. Let h ∈ H be a hypothesis learned from a training set T of
size q ≥ 1. For a given α ∈ (0, 1),

(1) Suppose all integer ρi(v) ∈ [0, τh
∗

i (v)) satisfy:

Pr
C∼D

[Γj [C, v] < τh
∗

j (v), ∀j ∈ [k]︸ ︷︷ ︸
Event B(C, v)

and Γi[C, v] ≥ ρi(v)] < α (4)

then PrC∼D[A(C, i, v, h)] < α.

(2) Suppose Condition (1) does not hold; that is, there is a ρi(v) such that

Pr
C∼D

[Γj [C, v] < τh
∗

j (v), ∀j ∈ [k]︸ ︷︷ ︸
Event B(C, v)

and Γi[C, v] ≥ ρi(v)] ≥ α (5)

then the condition PrC∼D[A(C, i, v, h)] ≥ α holds with probability at most (1− α)q over T ∼ Dq .
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Proof. We first consider the case where Pr C∼D[B(C, v) and Γi[C, v] ≥ ρi(v)] < α for all integers ρi(v) ∈ [0, τh
∗

i (v)).
This case implies that

Pr C∼D[B(C, v) and Γi[C, v] ≥ 0] < α (6)

Let h be the hypothesis learned by our algorithm. We now argue that Pr C∼D[A(C, i, v, h)] < α. In particular, note that the
learned threshold τhi (v) is always in the range [0, τh

∗

i (v)]. If τhi (v) = τh
∗

i (v), the event A(C, i, v, h) does not occur. On the
other hand, if τhi (v) < τh

∗

i (v), then the event Γi[C, v] ≥ τhi (v) is contained in the event Γi[C, v] ≥ 0; thus,

Pr C∼D[A(C, i, v, h)] = Pr C∼D[B(C, v) and Γi[C, v] ≥ τhi (v)] (7)
≤ Pr C∼D[B(C, v) and Γi[C, v] ≥ 0] (8)
< α (9)

Now consider the second case as stated in Ineq (5). Let ρi(v) be the maximal integer in [0, τh
∗

i (v)) such that
Pr C∼D[B(C, v) and Γi[C, v] ≥ ρi(v)] ≥ α. We now establish the following claim:

Claim B.1. If ∃ (C, C′) ∈ T s.t. B(C, v) occurs and Γi[C, v] ≥ ρi(v), then the algorithm learns an h ∈ H s.t.
Pr C∼D[A(C, i, v, h)] < α.

Suppose such a pair (C, C′) exists in T . Let h be the hypothesis returned by our algorithm using T . Note that since
Γj [C, v] < τh

∗

j (v), ∀j ∈ [k] (i.e., the event B(C, v) occurs), we must have C′(v) = 0. By the definition of the PAC
algorithm in the main manuscript, it follows that the learned threshold satisfies:

τhi (v) ≥ ρi(v) + 1 (10)

Recall that A(C, i, v, h) is the event “Γi[C, v] ≥ τhi (v) and event B(C, v) occurs”. If ρi(v) = τh
∗

i (v) − 1, then we
learned the true threshold (i.e., τhi (v) = τh

∗

i (v)), and thus the event A(C, i, v, h) does not occur. On the other hand, if
ρi(v) < τh

∗

i (v)− 1, then

Pr C∼D[A(C, i, v, h)] = Pr C∼D[B(C, v) and Γi[C, v] ≥ τhi (v)] (11)
≤ Pr C∼D[B(C, v) and Γi[C, v] ≥ ρi(v) + 1] (12)
< α (13)

where the last inequality follows from the maximality of ρi(v). This establishes the Claim. To complete the argument for the
second case, let η = Pr C∼D[B(C, v) and Γi[C, v] ≥ ρi(v)]. The probability (over T ∼ Dq) that no such configuration C
exists in T is (1− η)q ≤ (1− α)q , where the inequality follows from Eq (5). Therefore, with probability at most (1− α)q ,
it holds that Pr C∼D[A(C, i, v, h)] ≥ α for the learned hypothesis h. This concludes the proof. ■

Theorem 3.3. For any ϵ, δ ∈ (0, 1), with a training set of size q = ⌈1/ϵ · σk · log (σk/δ)⌉, the proposed algorithm learns a
hypothesis h ∈ H such that with probability at least 1− δ (over T ∼ Dq),

Pr C∼D[h(C) ̸= h∗(C)] < ϵ . (14)

Proof. For a vertex v ∈ V ′, an h ∈ H learned by the proposed algorithm, and a configuration C ∼ D, recall that h(C)
denotes the successor of C under the system (hypothesis) h, and h(C)(v) is the state of v in h(C). Let A(C, v, h) be the bad
event where h(C)(v) ̸= h∗(C)(v), that is, the next state of v predicted by h is wrong.

For any layer i ∈ [k], the PAC algorithm in the main manuscript chooses the threshold of vertex v as follows:

τhi (v) = max
(C,C′)∈T :C′(v)=0

{Γi[C, v]}+ 1. (15)

We remark that the learned threshold τhi (v) is at most the value of the true threshold τh
∗

i (v).

We first establish the claim:
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Claim B.2. The event A(C, v, h) occurs if and only if h(C)(v) = 1 and h∗(C)(v) = 0.

The necessity is trivially true. To prove sufficiency, we show that the case where h(C)(v) = 0 and h∗(C)(v) = 1 never
occurs. Note that if h(C)(v) = 0, under OR master functions, the threshold condition of v is not satisfied in any layer under
h. That is, Γj [C, v] < τhj (v), ∀j ∈ [k]. Since τhj (v) ≤ τh

∗

j (v),∀j ∈ [k] , it follows that the threshold condition of v is also
not satisfied in any of the layers under h∗. Therefore, if h(C)(v) = 0, then we must have h∗(C)(v) = 0. This completes the
proof of Claim B.2.

Based on Claim B.2, a useful interpretation of the event A(C, v, h) is that the threshold condition of v is satisfied in at least
one layer under C in h, but in the true system h∗, the threshold condition of v is not satisfied in any of the layers.

To arrive at the result in Ineq (14), we first bound the probability (over T ∼ Dq) of learning a bad h where
Pr C∼D[A(C, i, v, h)] ≥ ϵ/(σk). For a C ∼ D, and a layer i ∈ [k], recall that A(C, i, v, h) is the event “Γi[C, v] ≥ τhi (v)
and Γj [C, v] < τh

∗

j (v), ∀j ∈ [k]”. Note that the event A(C, v, h) occurs if and only if A(C, i, v, h) occurs for at least one
layer i ∈ [k].

For any layer i ∈ [k], if the true threshold τh
∗

i (v) = 0, the event A(C, i, v, h) will never occur as the algorithm always learns
the correct threshold, i.e., τhi (v) = τh

∗

i (v). Now suppose τh
∗

i (v) ≥ 1. We can apply Lemma 3.2 with α = ϵ/(σk) and
conclude that with probability at most (1− ϵ/(σk))q over the choices of q examples T ∼ Dq , the learned h is “bad”; that
is, Pr C∼D[A(C, i, v, h)] ≥ ϵ/(σk). Overall, when considering all the layers in the network, with probability (over T ∼ Dq)
at most k · (1− ϵ/(σk))q , there exists a layer i ∈ [k] such that

Pr C∼D[A(C, i, v, h)] ≥
ϵ

σk
(16)

Next, we bound the probability (over T ∼ Dq) of learning a hypothesis h ∈ H such that Pr C∼D[A(C, v, h)] ≥ ϵ/σ, that is,
the probability of h predicting wrong next state of v is at least ϵ/σ. In particular, note that if Pr C∼D[A(C, v, h)] ≥ ϵ/σ, then
there must exist a layer i ∈ [k] such that Pr C∼D[A(C, i, v, h)] ≥ ϵ/(σk). By our aforementioned argument for Ineq (16), it
follows that with probability (over T ∼ Dq) at most k · (1− ϵ/(σk))q ,

Pr C∼D[A(C, v, h)] ≥
ϵ

σ
(17)

Lastly, we consider the event where h(C) ̸= h∗(C) for a configuration C ∼ D, that is, the successor of C predicted by
the learned hypothesis h is wrong. Note that if Pr C∼D[h(C) ̸= h∗(C)] ≥ ϵ, then there exists a vertex v ∈ V ′ such
that Pr C∼D[A(C, v, h)] ≥ ϵ/σ, which happens with probability (over T ∼ Dq) at most σk · (1 − ϵ/(σk))q. Setting
q = ⌈ 1

ϵ · σk · log (σkδ )⌉, one can verify that σk · (1− ϵ/(σk))q ≤ δ. Overall, when q = ⌈ 1
ϵ · σk · log (σkδ )⌉, with probability

at least 1− δ over the choices of q examples T ∼ Dq , the learned h ∈ H satisfies the condition

Pr C∼D[h(C) ̸= h∗(C)] < ϵ. (18)

This completes the proof. ■

Proofs in Section 3.3

Theorem 3.4. For any given ϵ, δ, β ∈ (0, 1), with a training set T of size q = ⌈1/ϵ · 1/β · k · log (σk/δ)⌉, the proposed
algorithm learns an h ∈ H, such that with probability at least 1− δ over T ∼ Dq , h satisfies the following condition:

Pr C∼D[W (h(C), h∗(C)) ≥ βσ] ≤ ϵ .

Proof. We follow the analysis in Theorem 3.3. Let h ∈ H be the hypothesis learned by the algorithm. Recall that A(C, v, h)
is the “bad” event where h(C)(v) ̸= h∗(C)(v) for a vertex v ∈ V ′ and C ∼ D. Using Lemma 3.2 where we set α = (ϵβ)/k,
with probability (over T ∼ Dq) at most k · (1− (ϵβ)/k)q , we have Pr C∼D[A(C, v, h)] ≥ (ϵβ) for any vertex v ∈ V ′. Thus,
with probability (over T ∼ Dq) at most σk · (1− (ϵβ)/k)q , there exists a vertex v ∈ V ′ such that Pr C∼D[A(C, v, h)] ≥ ϵβ.

Equivalently, with probability (over T ∼ Dq) at least 1− σk · (1− (ϵβ)/k)q, it holds that Pr C∼D[A(C, v, h)] < (ϵβ) for
all v ∈ V ′. Then by the linearity of expectation,

EC∼D[W (h(C), h∗(C))] < ϵβ · σ (19)
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Using Markov Inequality, it follows that with probability (over T ∼ Dq) at least 1− σk · (1− (ϵβ)/k)q , the learned h ∈ H
satisfies

Pr C∼D[W (h(C), h∗(C)) ≥ βσ] ≤ ϵ . (20)

Setting q = ⌈1/ϵ · 1/β · k · log (σk/δ)⌉, we have 1− σk · (1− (ϵβ)/k)q ≥ 1− δ. This completes the proof. ■

C. Additional Material for Section 4
We begin with the standard definition of shattering and then present an alternative interpretation that corresponds to the
definition given in the main paper.

Definition C.1 (Shattering). Given a hypothesis class H, a set R ⊆ X is shattered by H if there exist two functions
g1, g2 : R → X that satisfy both of the following conditions:

• Condition 1: For every C ∈ R, g1(C) ̸= g2(C).
• Condition 2: For every subset R′ ⊆ R, there exists h ∈ H such that ∀C ∈ R′, h(C) = f(C) and ∀C ∈ R \ R′, h(C) =
g(C).

Figure 4. An alternative interpretation of shattering: associated configurations and 2|R| mappings for a set R.

An alternative interpretation of shattering. In our context, equivalent definitions of the two conditions are as follows:

• Condition 1: Each C ∈ R is associated with two configurations, denoted by CA and CB , where CA ̸= CB (i.e., CA = g1(C)
and CB = g2(C)).

• Condition 2: Consider the 2|R| possible mappings from R to the associated configurations, such that in each mapping Φ,
every C ∈ R is mapped to one of its associated configuration (i.e., Φ(C) = CA or Φ(C) = CB). For each such mapping Φ,
there exists a system (hypothesis) hΦ ∈ H that produces Φ. That is, hΦ(C) = Φ(C) for all C ∈ R.

Definition C.2 (Contested Vertices). We call a vertex v contested for a C ∈ R if CA(v) ̸= CB(v).

We use the above definition of shattering in all the proofs. An example of Condition 1 and the 2|R| mappings of Condition 2
for a set R with three configurations are shown in Fig 4.
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Definition C.3 (Landmark Vertices). Suppose the underlying network has a single layer. Given a set R ⊆ X , a vertex
v ∈ V ′ is a landmark vertex for a configuration C ∈ R if Γ[C, v] ̸= Γ[Ĉ, v] for all Ĉ ∈ R \ {C}.

Let W(R) ⊆ V ′ be the set vertices that are landmarks for at least one configuration in R.

Definition C.4 (Canonical Sets). Suppose the underlying network has a single layer. A set R ⊆ X is canonical w.r.t. H if
there exists an injective mapping from R to W(R) s.t. each C ∈ R is mapped to a landmark vertex of C.

Detailed Proofs for Results in Section 4.1

Lemma 4.4. When the underlying network has a single-layer, a set R ⊆ X can be shattered by H if and only if R is
canonical w.r.t. H.

Proof. (⇒) Suppose H shatters R. We want to show that R is canonical. For each configuration C ∈ R, let CA and CB be
the two associated configurations, where CA ̸= CB (i.e., they disagree on the state of at least one vertex). Consider the 2|R|

possible mappings from R to the associated configurations, where in each mapping Φ, each C ∈ R is mapped to one of its
associated configuration (i.e., Φ(C) = CA or Φ(C) = CB). The second condition of shattering implies that for each mapping
Φ defined above, there exists a system hΦ ∈ H such that hΦ(C) = Φ(C) for all C ∈ R.

Recall that a vertex v is contested for a configuration C ∈ R if the state of v in CA is different from its state in CB . An
example of a contested vertex is given in Fig 5. Since CA ̸= CB , each C ∈ R has at least one contested vertex. We argue
that contexted vertices can only be in V ′.

...
...

...
...
...

...

Figure 5. An example of a contested vertex v for a configuration C. In particular,
CA and CB are the two associated configurations of C. The state of v is highlighted
in blue.

Claim C.5. If H shatters R, then contested vertices can only be in the set V ′; that is, only vertices with unknown thresholds
can be contested.

For purposes of contradiction, suppose there exists a vertex v ∈ V \ V ′ whose threshold is known, and v is contested for a
configuration C ∈ R. The second condition of shattering implies that there exist two systems h, h′ ∈ H such that the state
of v is 1 in h(C), and is 0 under h′(C). However, since the threshold of v is fixed, for the same configuration C, the state of v
is always the same in the successor of C regardless of the underlying system in H. Therefore, such h, h′ ∈ H cannot coexist,
which contradicts the fact that H shatters R. This establishes the claim.

Our argument of R being canonical is developed based on this notion of contested vertices. Overall, we want to show the
following two claims: (i) configurations in R do not share contested vertices, and (ii) a contested vertex for a C ∈ R is also
a landmark vertex for C. Then since each C ∈ R has at least one contested vertex, it immediately follows that there exists an
injective (i.e., one-to-one) mapping from R to W(R) where W(R) ⊆ V ′ is the set of vertices that are landmarks for at least
one configuration in R. Then by definition, R is canonical.

We now establish the above two claims. Recall that for a configuration C and a vertex v, Γ[C, v] is the score of v in C, that is,
the number of 1’s in the input provided by C to the interaction function at v.

Claim C.6. If H shatters R, then no two configurations in R can have any common contested vertices.

For purposes of contradiction, suppose v ∈ V ′ is a contested vertex for at least two configurations in R; let Ca and Cb be two
such configurations. We now show that H cannot shatter R. Recall that h(Ca)(v) is the state of v in the successor h(Ca) of
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Ca under a system h ∈ H. By the second condition of shattering, there exists a h ∈ H such that h(Ca)(v) ̸= h(Cb)(v) (i.e.,
h(Ca)(v) = 1 and h(Cb)(v) = 0, or h(Ca)(v) = 0 and h(Cb)(v) = 1).

If Γ[Ca, v] = Γ[Cb, v], then there cannot exist such a system h ∈ H where h(Ca)(v) ̸= h(Cb)(v) since the threshold
condition of v cannot be both satisfied and unsatisfied under the same input to the interaction function. This violates the
second condition of shattering; thus, H fails to shatter R under this case. Now suppose Γ[Ca, v] < Γ[Cb, v]. Then there
cannot exist an h ∈ H such that h(Ca)(v) = 1 but h(Cb)(v) = 0 since if the threshold condition is satisfied under the
smaller score (i.e., Γ[Ca, v]), it must also be satisfied under the larger score (i.e., Γ[Cb, v]). Thus, H fails to shatter R. The
argument for the case where Γ[Ca, v] > Γ[Cb, v] follows analogously. This concludes our proof of Claim C.6.

Claim C.7. If H shatters R, then a contested vertex for a C ∈ R is also a landmark vertex for C.

We want to show that if v ∈ V ′ is contested for C ∈ R, then Γ[C, v] ̸= Γ[Ĉ, v] for all Ĉ ∈ R \ {C}. Suppose there exists
such a Ĉ ∈ R where Γ[C, v] = Γ[Ĉ, v]. Claim C.6 implies that v cannot be contested for Ĉ, that is, the state of v is the same
in the two associated configurations of Ĉ; let sv denote this state value. Given that v is contested for C, the state of v in one
of C’s associated configurations must be different from sv . Since Γ[Ca, v] = Γ[Cb, v], however, there cannot exist an h ∈ H
where h(Ca)(v) ̸= sv because the threshold condition of v cannot be both satisfied and unsatisfied under the same input to
the interaction function, contradicting the second condition of shattering. This concludes our proof of Claim C.7.

Overall, we have shown that configurations in R do not share common contested vertices, and that every contested vertex
for a configuration is also a landmark vertex. it follows that there exists an injective mapping where each C ∈ R is mapped
to a landmark vertex of C. Then by definition, R is canonical.

(⇐) Suppose that R ⊆ X is canonical w.r.t H. To show that H shatters R, we first discuss how the two associated
configurations, CA and CB , of each C ∈ R should be chosen. We then establish that for each of the 2|R| possible mappings
from R to the associated configurations (where C ∈ R is mapped to one of its associated configurations), there exists a
system in H that produces this mapping.

Given that R is canonical, let Υ : R → W(R) be a corresponding injective mapping from R to the set W(R) such that
each C ∈ R is mapped to a landmark vertex of C. For each C ∈ R, we construct two associated configuration CA and CB by
specifying states of each vertex v ∈ V as follows:

• Case 1: Suppose v ∈ V \ V ′, that is, the threshold of v, denoted by τh
∗
(v), is known. Then the state of v in CA and

CB is the same, which is determined by τh
∗
(v) and Γ[v, C]. That is, CA(v) = CB(v) = 1 if Γ[v, C] ≥ τh

∗
(v), and

CA(v) = CB(v) = 0 otherwise.
• Case 2: v ∈ V ′.

- Subcase 2.1: Suppose v = Υ(C). Then we set CA(v) = 0 and CB(v) = 1. That is, v is contested for C.
- Subcase 2.2: Suppose v ̸= Υ(C), and v = Υ(Ĉ) for some other Ĉ ∈ R. Note that the case where Γ[C, v] = Γ[Ĉ, v]
cannot arise since v is a landmark vertex for Ĉ. If Γ[C, v] < Γ[Ĉ, v], then CA(v) = CB(v) = 0. On the other hand, if
Γ[C, v] > Γ[Ĉ, v], then CA(v) = CB(v) = 1.
- Subcase 2.3: Suppose v ̸= Υ(C), and also v ̸= Υ(Ĉ) for any other Ĉ ∈ R. Then CA(v) = CB(v) = 1.

This completes the construction of the two associated configurations CA and CB for each C ∈ R. We now show that H
shatters R under the defined associations.

To begin with, observe that CA ̸= CB for all C ∈ R, as the states of Υ(C) are different in CA and CB . Thus, the first
condition of shattering is satisfied.

Now consider the 2|R| possible mappings from R to the associated configurations, where in each mapping Φ, each C ∈ R is
mapped to one of its associated configuration (i.e., Φ(C) = CA or Φ(C) = CB). To prove the second condition of shattering,
we want to show that for each Φ defined above, there exists a system hΦ ∈ H such that hΦ(C) = Φ(C) for all C ∈ R. Given
a mapping Φ, we characterize hΦ by presenting how the threshold of each vertex is determined:

• Case 1: Suppose v ∈ V \ V ′, then its threshold is already known.
• Case 2: Suppose v ∈ V ′.

- Subcase 2.1: If v ̸= Υ(C) for any C ∈ R, then set v’s threshold to be 0.
- Subcase 2.2: If v = Υ(C) for a C ∈ R. Then set v’s threshold to be Γ[C, v] if Φ(C)(v) = 1. On the other hand,
Φ(C)(v) = 0, then set v’s threshold to be Γ[C, v] + 1.

This completes the specification of hΦ. One can easily verify that hΦ(C) = Φ(C) for all C ∈ R; that is, the second condition
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of shattering is satisfied. Overall, we have shown that H shatters R. This concludes the proof. ■

Theorem 4.5. When the underlying network has a single layer, a shatterable set of size σ can be constructed. Thus, we have
Ndim(H) = σ.

Proof. We show how a canonical set of size σ can be constructed. Then the theorem follows from the equivalence between a
canonical set and a shatterable set. In particular, given any underlying single-layer network G, we present an algorithm to
construct a canonical set R ⊂ X that consists of σ configurations.

Let G′ = G[V ′] be the subgraph induced on V ′; G′ could be disconnected. The algorithm involves a depth-first traversal over
G′, starting from any initial vertex. During the traversal, when a vertex v ∈ V ′ is visited for the first time, a configuration Cv
is constructed. In particular, our algorithm enforces v to be the landmark vertex to which Cv is mapped under the injective
mapping defined for a canonical set.

We now describe the algorithm. The set R is initially empty. Starting from any vertex v1 ∈ V ′, we proceed with a depth-first
traversal on G′, while maintaining a stack K ⊆ V ′ of vertices that are currently being visited. Let vi, i ∈ [σ], denote the ith
vertex that is visited for the first time in the traversal. When vi is visited for the first time, a configuration Cvi is constructed
and added to the set R where Cvi(v) = 1 if v ∈ K and Cvi(v) = 0 otherwise. Note that the states of vertices in V \ V ′

are always 0 in Cvi . The algorithm terminates when all vertices in V ′ are visited (and thus K is empty), and returns R. A
pictorial example of the algorithm is given in Fig 6.

Figure 6. A pictorial example of the algorithm running on a graph of 5 vertices. Vertices in the stack K are highlighted in blue.

Given the resulting set R, Since G′ has σ vertices, |R| = σ. We now show that each vi ∈ V ′ is a landmark vertex of
Cvi ∈ R, thereby establishing that R is canonical. For a vi ∈ V ′, recall that the score vi in a configuration C, denoted by
Γ[C, vi], is the number of state-1 vertices in v’s closed neighborhood in G.

The proof of vi being a landmark vertex for Cvi
proceeds in two steps. First, consider the subset R1 = {Cv1 , ..., Cvi−1

} ⊂ R
of configurations constructed by the algorithm before vi was visited for the first time. (If vi = v1, then R1 is empty.) We argue
that the score of vi in any of the configurations in R1 is different from the score of vi in Cvi . That is, Γ[C, vi] ̸= Γ[Cvi , vi],
∀C ∈ R1. Next, consider the subset R2 = {Cvi+1, ..., Cvσ} ⊂ R of configurations constructed by the algorithm after vi
was visited for the first time; if vi = vσ , then R2 is empty. Similarly, we argue that the scores of vi in configurations in R2

are different from the score of vi in Cvi . We start with the first claim:

Claim C.8. For each i, 1 ≤ i ≤ σ, Γ[C, vi] ̸= Γ[Cvi
, vi], ∀C ∈ R1 where R1 = {Cv1 , ..., Cvi−1

} ⊂ R.

The claim is trivially true if vi = v1 since R1 is empty. Suppose i > 1. Observe that when vi is visited for the first
time, vi gets added to K, and thus Γ[Cvi , vi] = Γ[Cvi−1

, vi] + 1. We now show that before the algorithm visits vi for the
first time, the scores of vi in the sequence of constructed configurations in R1 are non-decreasing. Note that when the
algorithm traverses connected components that do not contain vi, the score of vi is always 0 in the resulting configurations.
Now focus on the connected component containing vi. Recall that in a depth-first traversal, a vertex remains on the stack
if it has at least one unvisited neighbor. It follows that all of vi’s neighbors who were visited before vi will remain on
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the stack K before vi is visited. Since only vertices on the stack have state-1 in each configuration, the score of vi is
non-decreasing in (Cv1 , ..., Cvi−1), that is Γ[Cv1 , vi] ≤ ... ≤ Γ[Cvi−1 , vi]. Since Γ[Cvi , vi] = Γ[Cvi−1 , vi] + 1, it follows that
Γ[C, vi] ̸= Γ[Cvi , vi], ∀C ∈ R1. This concludes Claim C.8.

Now, we establish the second claim:

Claim C.9. For each i, 1 ≤ i ≤ σ, Γ[C, vi] ̸= Γ[Cvi , vi], ∀C ∈ R2 where R2 = {Cvi+1 , ..., Cvσ} ⊂ R.

The claim is trivially true if vi = vσ since R2 is then empty. Suppose i < σ. We show that when a vertex vj ∈ V ′, i < j ≤ σ,
is visited for the first time (and Cvj ∈ R2 is constructed), if vi is on the stack (i.e., vi ∈ K), then Γ[Cvj , vi] > Γ[Cvi , vi]; if
vi is not on the stack, then Γ[Cvj , vi] < Γ[Cvi , vi]. Let Nbef(vi) and Naft(vi) be the set of neighbors that were visited before
and after vi, respectively. Suppose vi ∈ K when vj is visited. Note that all vertices in Nbef(vi) must also be on the stack K.
Further, at least one of vi’s neighbors in Naft(vi) must be on the stack. It follows that Γ[Cvj , vi] ≥ Γ[Cvi , vi]+1 > Γ[Cvi

, vi].
Now suppose vi /∈ K when vj is visited. This means that no neighbors in Naft(vi) are on the stack. It follows that
Γ[Cvj , vi] ≤ Γ[Cvi , vi]− 1 < Γ[Cvi , vi]. Consequently, Γ[C, vi] ̸= Γ[Cvi , vi], ∀C ∈ R2. This establishes the claim.

With Claims C.8 and C.9, we have shown that for any Cvi ∈ R, it holds that

Γ[Cvi
, vi] ̸= Γ[C, vi], ∀C ∈ R, C ̸= Cvi (21)

That is, vi is a landmark vertex of Cvi . This immediately implies the existence of an injective mapping where each Cvi ∈ R
is mapped to vi, i ∈ [σ]. Then by definition, R is canonical. Given the equivalence between a canonical set and a shatterable
set shown in Lemma 4.4, it follows that R is also shatterable by H. This concludes our proof. ■

Detailed Proofs for Results in Section 4.2

Lemma 4.6. Suppose the underlying network has k ≥ 2 layers. Then the size of any shatterable set is at most kσ.

Proof. We first show that for any shatterable set R, each vertex v ∈ V ′ is contested for at most k configurations in R.
Recall that a vertex v is contested for a configuration C ∈ R if CA(v) ̸= CB(v), where CA and CB are the two associated
configurations of C defined by shattering (i.e., CA = g1(C) and CB = g2(C)). It is easy to see that Claim C.5 in Theorem 4.5
carries over to the multilayer case. That is, contested vertices can only be in the set V ′.

For a v ∈ V ′, let Rv ⊆ R be the subset of configurations, with v being one of their contested vertices. W.l.o.g., suppose
Rv ̸= ∅. We establish the following claim:

Claim C.10. For each C ∈ Rv , ∃ i ∈ [k] such that Γi(C, v) > Γi(Ĉ, v), ∀Ĉ ∈ Rv \ {C}.

For contradiction, suppose there exists a C ∈ Rv such that for all layers i ∈ [k], Γi(C, v) ≤ Γi(Ĉ, v) for at least one
Ĉ ≠ C, Ĉ ∈ Rv. We now argue that H cannot shatter Rv (and thus, cannot shatter R). In particular, consider a mapping
Φ (among the 2|R| possible mappings from R to the associated configurations) such that Φ(C)(v) = 1, and Φ(Ĉ)(v) = 0
for all other Ĉ ∈ Rv \ {C}. Suppose there exists a hΦ ∈ H that is consistent with such a mapping Φ, where hΦ(C)(v) = 1
and hΦ(Ĉ)(v) = 0 for all Ĉ ∈ Rv \ {C}. Let τhΦ

i (v) denote the threshold of v in the ith layer under such an hΦ. Since
hΦ(Ĉ)(v) = 0 for all Ĉ ̸= C, we have

τhΦ
i (v) > max

Ĉ∈Rv\{C}
Γi(Ĉ, v) ≥ Γi(C, v),∀i ∈ [k] . (22)

However, the above inequality implies that the threshold condition of v is not satisfied on any of the k layers under C, thereby
contradicting the condition hΦ(C)(v) = 1. Thus, no such hΦ ∈ H exists, and H does not shatter Rv. This establishes the
claim. Overall, Claim C.10 implies that for each v ∈ V ′, the size of Rv is at most k. It immediately follows that |R| ≤ kσ
for any shatterable set R. This concludes the proof. ■

Lemma 4.7. Suppose h∗ is an MSyDS whose underlying network has k ≥ 2 layers. Let ĥ∗ be a single-layer system obtained
from h∗ by using the network in any layer i ∈ [k]. If a set R is shatterable by the hypothesis class of ĥ∗, then it is also
shatterable by the hypothesis class of h∗.

Proof. Given the underlying multilayer network M = {Gi}ki=1 of the true system h∗, let ĥ∗ be a new system with a
single-layer underlying network Gi ∈ M, for a layer i ∈ [k]. The thresholds of vertices on Gi are carried over from h∗ to ĥ∗.
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For our learning context, the set V ′ of vertices with unknown thresholds remains the same between h∗ and ĥ∗. Let Ĥ be the
corresponding hypothesis class of ĥ∗ .

Given a set R that is shatterable by Ĥ, for each C ∈ R, let ĈA and ĈB be the two associated configurations of C. Further, for
each mapping Φ from R to the associated configurations, let ĥΦ ∈ Ĥ be a system that produces Φ; that is, ĥΦ(C) = Φ(C),
for all C ∈ R.

We show that R is also shatterable by H, the hypothesis class of h∗. In particular, for each C ∈ R, let CA and CB be the two
associated configurations under the shatterable condition for H; we choose CA = ĈA and CB = ĈB . Now consider any
of the 2|R| mappings from R to the associated configurations. We argue that for each of such a mapping Φ, there exists a
system hΦ ∈ H where hΦ(C) = Φ(C) for all C ∈ R. Specifically, in hΦ, the threshold of each vertex v ∈ V ′ on each layer
j ∈ [k], denoted by, τhΦ

j (v), is assigned as follows. For each layer j ∈ [k], if j = i (i.e., the layer for which ĥ∗ is defined),
then τhΦ

j (v) equals to the threshold of v in ĥΦ. Otherwise, we set τhΦ
j (v) = degj(v) + 2, where degj(v) is the degree of v

in the jth layer. Note that setting τhΦ
j (v) = degj(v) + 2 makes v’s interaction function on the jth layer to be the constant-0

function. One can easily verify that hΦ(C) = Φ(C), for all C ∈ R and thus R is shatterable by H. ■

Detailed Proofs for Results in Section 4.3

Lemma 4.9. Given a multilayer network M and a subset V ′ of vertices, for each set QM,V′ , there is a shatterable set of
size |QM,V′ | for the corresponding hypothesis class over M where thresholds of vertices in V ′ are unknown.

Proof. Given a k-layer network M with n vertices, let V ′ be any subset of vertices in M. Let H be the threshold dynamical
system over M where the threshold functions of vertices in V ′ are unknown. For a subset QM,V′ of vertex-layer pairs,
we present a method to construct a shatterable set R of size |QM,V′ |. In particular, for each (v, i) ∈ QM,V′ , there is a
corresponding configuration C(v,i) ∈ R, defined as follows:{

C(v,i)(v′) = 1 if v′ ∈ N [v, i]

C(v,i)(v′) = 0 otherwise,

where N [v, i] is the closed neighborhood of v on the ith layer in M.

It is easy to see that |R| = |QM,V′ |. We now show that the resulting set R is shatterable by H. Recall that Γi[C, v] is the
score (i.e., the number of state-1 vertices in v’s closed neighborhood) of v in the ith layer under C. Recall that deg(vi)
denotes the degree of node v in layer i, we first observe the following:

Observation C.11. Γi[C(v,i), v] = deg(v, i) + 1, for all (v, i) ∈ QM,V′ .

Observation C.12. Γi′ [C(v,i), v′] < deg(v′, i′) + 1, for all (v, i), (v′, i′) ∈ QM,V′ , (v, i) ̸= (v′, i′).

The first observation holds by the construction of C(v,i). To see the second observation, recall that QM,V′ is defined where
NM[v′, i′] \NM[v, i] ̸= ∅,∀(v′, i′), (v, i) ∈ QM,V′ , with (v′, i′) ̸= (v, i). This implies that given a C(v,i) ∈ R and a pair
(v′, i′) ∈ Q, at least one vertex in N [v′, i′] is in state 0 under C(v,i). The second observation follows immediately.

The key conclusion from the above two observations is that:

Γi[C(v,i), v] > Γi[C(v,i′), v],∀i′ ̸= i, i′ ∈ [k] . (23)

This allows us to choose v as the contested vertex for C(v,i), i ∈ [k], under the shattering of R. For each (v, i) ∈ QM,V′ ,
we now discuss how the two associated configurations of C(v,i), denoted by CA

(v,i) and CB
(v,i), can be chosen to satisfy the

shattering conditions. In CA
(v,i), the state of v is 1, while the states of all other vertices are 0. On the other hand, CB

(v,i) is the
zero vector. It is clear that CA

(v,i) ̸= CB
(v,i); that is, the first shattering condition is satisfied.

We now show that the second shattering condition also holds. In particular, for each mapping Φ from R to the associated
configurations, by choosing the thresholds of vertices, we prove the existence of a system hΦ that produces the mapping Φ.
For each C(v,i) ∈ R, if CA

(v,i)(v) = 0, then the threshold of v in the ith layer is set to deg(v, i) + 2 in hΦ. On the other hand,
if CA

(v,i)(v) = 1, then then the threshold of v in the ith layer is set to deg(v, i) + 1. By Ineq (23), one can easily verify that
hΦ(C(v,i)) = Φ(C(v,i)), for all C(v,i) ∈ R. This concludes our proof. ■
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Lemma 4.10. Let n ≥ 1, k ≥ 2, and V ′ ⊆ [n], with |V ′| = σ. In the space of all k-layer graphs with n vertices, the
proportion of graphs that admits a set QM,V′ of size kσ is at least 1− 4 · (σk)2 · ( 34 )n.

Proof. Recall that QM,V′ is a set of vertex-layer pairs (v, i), v ∈ V ′, i ∈ [k], such that every (v, i) ∈ QM,V′ satisfies:

NM[v, i] \NM[v′, i′] ̸= ∅, ∀(v′, i′) ∈ QM,V′ , (v′, i′) ̸= (v, i) (24)

where NM[v, i] is the closed neighborhood of v in the ith layer in M.

We use Gn,k,1/2 to denote the space of all k-layer graphs with n vertices. Let M be a graph chosen uniformly at random
from Gn,k,1/2, denoted by M ∼ Gn,k,1/2. Equivalently, M is a random k-layer graph with n vertices where each edge in
each layer is realized with probability p = 1/2. We will use this equivalent definition in the proof.

Fix two vertex-layer pairs, (v, i) and (v′, i′), v′ ∈ V ′, i ∈ [k], (v, i) ̸= (v′, i′). Let A ⊆ V ′, and let {v, v′} ⊆ A, be a subset
of vertices that includes v and v′. Let d = |A|. Recall that N [v, i] denotes the closed neighborhood of v on the ith layer
in M. Suppose v ̸= v′. The probability (over M ∼ Gn,k,1/2) that N [v, i] = A and A ⊆ N [v′, i′] (i.e., Condition (24) is
violated) is given by

PrM∼Gn,k,1/2
[N [v, i] = A and A ⊆ N [v′, i′]]

=
1

2︸︷︷︸
Edge(v,v′)

· (
1

2
)d−2 · (1

2
)n−d︸ ︷︷ ︸

Other neighbors and non-neighbors of v

· (1
2
)d−2 ·

n−d∑
j=0

(
n− d

j

)
(
1

2
)j(

1

2
)n−d−j


︸ ︷︷ ︸

Other neighbors and non-neighbors of v′

= (
1

2
)n+d−3

If v = v′, then one can verify that PrM∼Gn,k,1/2
[N [v, i] = A and A ⊆ N [v′, i′]] = (1/2)n+d−2.

Extending the argument to any such subset A, we then have

PrM∼Gn,k,1/2
[N [v, i] ⊆ N [v′, i′]] ≤

n∑
d=1

(
n

d

)
(
1

2
)n+d−2

< (
1

2
)n−2 · (3

2
)n

= 4 · (3
4
)n

Combining all pairs, the probability (over M ∼ Gn,k,1/2) that there exists a (v, i) and (v′, i′), v ∈ V ′, i ∈ [k] such that
N [v, i] ⊆ N [v′, i′] is at most:

8 ·
(
σk

2

)
· (3

4
)n ≤ 4 · (σk)2 · (3

4
)n

Lastly, with probability at least 1− 4 · (σk)2 · ( 34 )n, Condition (24) holds for all pairs (v, i), v ∈ V ′, i ∈ [k]; that is, there
exists a set QM,V′ of size kσ. This concludes our proof. ■

C.1. Additional Experimental Results

Resources. All experiments were performed on Intel Xeon(R) Linux machines with 64GB of RAM. Our source code (in
C++ and Python), documentation, and selected datasets are available at https://github.com/bridgelessqiu/
Learning-Multilayer-Dynamical-Systems-ICML24.

Additional Results on the Nararajan Dimension

Lemma 4.9 in Section 4.3 can be used to estimate the Natarajan dimension of a dynamical system over a given k-layer graph
in the following manner. Two vertex-layer pairs (v, i) and (v′, i′) satisfy the pairwise non-nested neighborhood (PNN)
property if N [v, i] ̸⊆ N [v′, i′] and N [v′, i′] ̸⊆ N [v, i]. We recall that the Natarajan dimension is lower bounded by the
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cardinality of any set of vertex-layer pairs satisfying the PNN property. Therefore, our objective here is to find a large set of
such pairs. To this end, we construct a graph over vertex-layer pairs, called the PNN graph. We add an edge between two
pairs if they violate the PNN property, i.e., if one of the closed neighborhoods is a subset of another. We apply a greedy
vertex coloring heuristic and then choose the largest subset of vertex-layer pairs assigned the same color. By definition of
vertex coloring, the chosen vertex-layer pairs form an independent set in the PNN graph, which in turn implies that any two
vertex-layer pairs in this set satisfy the PNN property. Hence, the cardinality of this set is a lower bound on the Natarajan
dimension.

The results are shown in Figure 7. Recall that the theoretical results show that with very high probability, any two vertex-layer
pairs satisfy the PNN property, and therefore, the Natarajan dimension is kσ w.h.p, even for the case where σ = n for
suitably large n. Our experiments suggest that this holds for even smaller graphs, where n = 1000. Secondly, our results
indicate that the Natarajan dimension is close to kσ for a large range of edge densities. In the left panel of Figure 7, we
note that only for very small or very large values of edge probabilities, the set size is smaller. For the extreme cases where
the graph is an independent set or is a complete graph in all layers, it can be shown that the Natarajan dimension is σ.
We observe the same behavior for increasing k. In the right panel of Figure 7, we plot separately for very small edge
probabilities to observe the evolution of the lower bound from n to nk. We note that the standard deviation across replicates
is low as well (< 50).
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Figure 7. Experimental estimates for Natarajan dimension for Multi-Gnp graphs with a varying number of layers k and edge probability.
Each graph has 1000 vertices. For each value of k and edge probability, 100 replicates were used. The maximum standard deviation
across replicates is less than 50.

C.2. Additional Remarks and Discussion of Results

Remark on the optimal sample complexity

First, we recall that our paper establishes a lower bound of Ω(1/ϵ · σ + 1/ϵ · log (1/δ)) and an upper bound of O(1/ϵ · σk ·
log (σk/δ)) on the sample complexity, where σ is the number of vertices with unknown interaction functions, and k is the
number of layers in the graph. We now provide an intuitive elaboration regarding the optimal sample complexity in both
theory and practice.

- Practice: The number of layers k in real-world multilayer networks is usually a constant (Dunbar, 1993). In that case,
the lower and upper bounds differ only by a factor O(log (σ)). (Please also see the relevant remark in the main paper
regarding this.). This suggests that for the realistic networks that we encounter, the minimum number of samples needed
to learn the system will usually be at most a factor O(log (σ)) smaller than our upper bound.

- Theory: From a theoretical perspective, without additional assumptions on the sampling distribution, we believe that
the factor kσ in the sample complexity is inevitable. To see this, note that there are kσ unknown interaction functions
to be learned. An adversary may choose a distribution (unknown to the learner) such that each data point only reveals
useful information to infer at most one such unknown function. Consequently, one needs at least kσ samples to infer the
full system. Based on this intuition, one would expect the optimal sample complexity to be at most a factor O(log (kσ))
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smaller than our upper bound. In general, the issue of determining the optimal sample complexity of multiclass learning is
a well-known open problem (Daniely et al., 2011).

Remarks on the difference between learning problems for single-layer vs multi-layer systems

In multilayer dynamics, a state change of a vertex can be caused by the change in the behavior of interaction functions on
any of the layers; however, information regarding exactly which of the interaction functions on the layers triggered the
change is not available in the training set. This issue does not arise when the network has only a single layer as there will be
no ambiguity.

To explain this difference in detail, we provide the following concrete example (Fig 8).

#1's in the input to v’s
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Figure 8. An example of learning a single-layer system vs learing multilayer-system

Consider a single-layer graph G and a multilayer graph M with 3 layers. In both graphs, we focus on a vertex v whose
interaction function(s) are to be learned. Given a pair (C, C′) in the training set, recall that C′ is the successor of C.

Single-layer case: For a system over the single-layer graph G, suppose that under C:

• The number of 1’s in the input to v’s interaction function is 2.
• The state of v changes from 0 (under C) to 1 (under C′).

Without ambiguity, this change of state is caused by the input value 2 to v’s interaction function; there is only one such
function because there is only one layer. So, from this data point (C, C′) alone, one can infer that the threshold of v is at
most 2. This significantly simplifies the learning process.

Multilayer case: Consider a system over the 3-layer graph M . In general, v’s interaction functions (which are unknown)
can be different on different layers. In this example, suppose that under C, the number of 1’s in the input to v’s interaction
function on each layer is as follows:

• 1st layer: the number of 1’s is 2.
• 2nd layer: the number of 1’s is 4.
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• 3rd layer: the number of 1’s is 3.

Suppose the state of v changes from 0 (under C) to 1 (under C′). All one can observe from the data point is the final state of
v in C′, which is jointly affected by the outputs of the three unknown interaction functions. However, we do not have the
actual output values of these (unknown) functions from the training set. So, the difficulty is that we do not know which of
the interaction functions on the three layers triggered the change in v’s state. Thus, one cannot draw a concrete conclusion
on the unknown interaction functions based only on the entry (C, C′). It requires a strategic examination of the samples in
the entire training set. The issue becomes even more complex as the number of layers k increases.

25


