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Abstract—Machine learning enters many aspects of our lives 
and brings us great convenience. However, building an 
effective machine learning model for a specific task requires 
not only expertise but also a lot of time and resources. In order 
to solve this problem, more and more research projects focus 
on automated machine learning (AutoML). In this paper, we 
propose an algorithm that can simultaneously optimize the 
space of multiple datasets, multiple models, and multiple 
hyperparameters. We call this an automating multi-element 
subspace exploration algorithm. We first formalize this 
problem as a reinforcement learning problem and then we 
define the state, action and well-designed reward function in 
reinforcement learning system. In addition, we use some skills 
and experience to accelerate the entire optimization process. 
Finally, our experimental results on multiple tasks 
demonstrate that our method is effective. 

Keywords-machine learning; reinforcement learning; 
AutoML; model selection; hyperparameter optimization  

I. INTRODUCTION 
In recent years, as machine learning has succeeded in 

some areas, more and more industries are researching and 
deploying their own machine learning systems, but this 
process is not easy because users not only have an 
understanding of industry knowledge, but also be proficient 
in data preprocessing and choose the right model, features 
and hyperparameters. 

In order to reduce the requirements for industry users, 
new ideas for automating the process of machine learning 
have been proposed, called automated machine learning 
(AutoML). There are many versions of AutoML definitions. 
In general, AutoML should be an end-to-end automated 
process that includes data preprocessing, feature engineering, 
model selection, and model evaluation to solve specific tasks. 
In [1], AutoML is defined as a combination of machine 
learning methods and automated methods. In other words, 
AutoML provides an automated pipeline that enables a class 
of machine learning problems to be solved with a given 
resource.  

Reinforcement learning is an important method in the 
study of AutoML. It is a powerful algorithm that 
continuously optimizes by interacting with the environment 
to maximize long-term returns. For example, the famous 
NAS[2], ENAS[3], are all RL-base algorithms. However, 
NASs in traditional machine learning tasks, such as sales 
prediction, age prediction, etc. are far less effective than CV 
and NLP tasks. 

In this paper, we mainly solve the automatic learning 
problem of a class of traditional machine learning tasks. 
Unlike other problems, the goal of this problem is to solve 
the selection of multi-dataset, multi-model, and multi-
hyperparameter simultaneously which is called the multi-
element subspace optimization problem. The reason why we 
want to solve this multi-element optimization problem 
simultaneously is that the correlation between these factors 
can be fully considered and can be integrated into a common 
framework. The reason why we use reinforcement learning is 
that reinforcement learning is highly scalable and its process 
is very similar to the manual optimization process and it is 
often used to solve the optimization process of complex 
spaces. Our challenge comes from five aspects. First, we 
have multiple datasets, but we don't know which datasets 
might help predict the results. Perhaps when we predict a 
task, only one dataset is helpful for the prediction result, and 
it is also possible that a single dataset does not help the 
prediction result, but the joint characteristics of several 
datasets will greatly help the prediction result. If we use all 
the datasets directly, there are two risks. On the one hand, the 
model has serious over-fitting risk. On the other hand, the 
calculation amount of the model will increase. Second, we 
have a series of base models, such as LR, DeepFM, DCN, 
etc. Some tasks use LR better, some tasks use DCN better, 
we want the algorithm to tell us which model is more 
beneficial to our task. Third, the model's hyperparameters 
also have an impact on the prediction results, such as 
learning rate, regularization coefficient, and so on. Forth, the 
amount of data in multiple datasets is very large, so our 
AutoML algorithm must be able to find the optimal solution 



 

efficiently. Finally, how to integrate the above problems into 
a unified framework. 

 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 1.  General process of reinforcement learning algorithm. 

In summary, we developed an enhanced reinforcement 
learning framework for the multi-element subspace 
exploration problem. Specifcally, our contributions are as 
follows:(i)We integrate the multi-element subspace 
exploration problem into a reinforcement learning 
framework for the first time. In other AutoML systems, these 
parts are always designed separately. (ii) We propose a new 
form of reward, taking into account the accuracy of the 
model and the minimum number of datasets. 

II. RELATED WORK 
In the study of this multi-element subspace exploration 

problem, there are several important directions, i.e. feature 
selection, model selection, hyperparameter optimization. 

A. Feature Selection 
Feature selection can be divided into three types: filter 

method, wrapper method and embedded method[4]. The 
filter method first sorts the features from high to low 
according to the relevance score, and then selects the top 
ranked features. The typical filter methods are feature 
selection based on correlation [5, 6] and feature selection 
based on univariate [7, 8]. The advantage of the filter method 
is that the calculation is simple and fast, so it is effective for 
high-dimensional features. However, they have the 
disadvantage of ignoring the relationship between feature 
selection and subsequent predictors and the dependence 
between features. The wrapper method treats prediction 
performance as an objective function [9]. The most typical 
wrapper method is the branch and bound algorithm [10, 11]. 
The embedded method has the best effect on the combination 
of predictors. Typical embedded methods include decision 
tree [12], LASSO [13]. Feature selection algorithms are also 
widely used in gene chip classification problems. The 
correlation-based feature selection algorithm used in [14] can 
not only improve the efficiency of the algorithm, but also 
improve its accuracy. [15] identified a compact feature set 
that consists of genre discriminative features. 

B. Hyperparameter Optimization  
There are five methods for hyperparameter optimization. 

First, Grid search and random search are the most widely 
used strategies. Grid search [16] – [18] has good scalability, 
convenient parallelism, and good results, but it also has some 
disadvantages. The search space increases exponentially with 
the number of parameters, and it is difficult to determine the 
change interval without knowing which parameter changes 
are more important. If the interval division is too small, the 
speed will be slow, but if the interval division is too large , it 
may miss the optimal solution. Bergstra and Bengio[19] 
show that random search is more practical and efficient than 
grid search. However, random search has a problem that it is 
hard to determine whether the best set of hyperparameters is 
found. As an improvement on this method, Li and Jamieson 
et al. [20] proposed the hyperband, which is a trade-off 
between resource budgets and performance. Second, NAS [2] 
introduced reinforcement learning for the first time, and they 
trained recurrent neural networks (RNN) to automatically 
generate network architectures using reinforcement learning 
(RL) technology. And later ENAS [3] in order to improve 
efficiency. Third, Evolutionary algorithm is a heuristic 
optimization algorithm based on population. Compared with 
calculus-based methods and exhaustive methods, the 
evolutionary algorithm has the advantages of wide 
applicability and strong robustness, and is a global 
optimization algorithm. Fourth, In terms of grid search, 
random search, and evolutionary algorithm, each test is 
independent, that is, it may test multiple times in poorly-
performing regions. Bayesian optimization establishes a 
probability model of the objective function, then uses the 
probability model to select the most promising 
hyperparameters , and uses the real objective function to 
evaluate the selected hyperparameters. Therefore, Bayesian 
optimization uses previous evaluation results to continuously 
update the probability model. Probability model maps 
hyperparameters to probability of score on objective function. 
Bayesian optimization algorithms can be divided into 
Gaussian Processes [21], [22], Tree Parzen Estimators [23], 
and Random Forests [24] according to different probability 
models. Fifth, the previous method needs to evaluate many 
sets of parameters requires amount of time and resources. 
Gradient descent-based methods can reduce much time spent 
searching for hyperparameters, but increase the consumption 
of GPU memory. 

C. Model Selection 
Model selection can be divided into traditional model 

selection and NAS. Traditional model selection refers to 
selecting the best performing one from the base models of 
machine learning. From the perspective of model structure, 
NAS can be divided into four categories: Entire structure 
model, Cell-based structure model, Hierarchical Structure 
model, Network Morphism based structure model, [3] 
belongs to Cell-based structure model. 
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Figure 2.  Framework.The framework consists of two stages. In the training stage, the policy is trained via samples from the memory.  
In the control stage, agent select/deselect a dataset or change a model or increase/decrease a hyperparameter based on the policy. 

III. PROBLEM FORMULATION 
Essentially, the problem is equivalent to how to find an 

optimal subspace in the multi-element space. In other words, 
we study the problem of multi-element subspace exploration, 
which is formulated as a reinforcement learning task. Fig. 1 
shows an overview of reinforcement learning algorithm. 
Specifically, the components of our joint space 
reinforcement learning framework include state, agent, 
reward, and agent action. 

A. State 
In our design, the state is a subspace of the multi-element 

space. It represents the datasets we selected, the model and 
the corresponding hyperparameter values. Whenever an 
agent selects an action, the state changes. 

B. Agent 
Agent is designed to make the selection decision for the 

corresponding state. 

C. Reward 
We designed a measurement to quantify the reward R 

generated by the multi-element subspace, which is defined as 
the weighted sum of (i) the predictive accuracy of the model 
corresponding to this subspace, (ii) the number of selected 
datasets P. 

D. Action 
For the agent, we define three types of actions, the first is 

to select/deselect a dataset, the second is to change a model, 
and the third is to increase/decrease the value of a 
hyperparameter. 

IV. PROPOSED METHOD 
We propose the reinforcement learning framework for 

automated multi-element subspace exploration. Then we 

discuss how to measure the reward function and how to 
accelerate the reinforcement learning process. 

A. Framework Overview 
Fig. 2 shows our proposed framework consists of many 

multi-element subspace exploration steps. Each exploration 
step includes two stage, i.e., agent control stage and model 
training stage. 

In the agent control stage, the agent takes action 
according to its policy network, the input of the policy 
network is the current state, and the output is a long-term 
reward for taking different actions. Then select an action 
based on the greedy-ε method to get the next state. After that, 
we add the resulting triplet <st,at,st+1> to the memory of the 
experience replay. 

In the training stage, there are two training processes. 
The first is to train the base model corresponding to the state 
to get reward, and the second is to train the agent's policy 
network via experience replay. In general, at time t, our 
training process is that we use experience replay memory to  
extract a mini-batch, which is a triplet form <st, at, st+1>, 
indicating the current state of st, the action at, and the next 
state st+1. Then, we train the base model corresponding to 
each state of this mini-batch, get the accuracy of the 
validation dataset ACC and the number of selected datasets P, 
and then we can get reward based on the weight sum 
Equation: 
 R  =  α * ACC  +  β * P. (1) 
α, β are constant weight factor.  

The agent uses its corresponding mini-batch samples and 
the reward to train its Deep Q Network (DQN), in order to 
obtain the maximum long-term reward based on the Bellman 
Equation: 
 Q(st , at |θt ) = Rt + γ * max Q(st+1, at+1|θt+1) (2) 
where θ is the parameter set of DQN, Rt is the instance 
reward at time t, st is the state at time t, at is the the action 
taken at time t, and γ is the discount factor between 0 and 1. 
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TABLE I.  ACCURACY COMPARISON OF DIFFERENT ALGORITHM ON 
DIFFERENT TASKS 

 
 

Task 

OURS Random Search  
Manual 
Search 

 

Top-3 
Average 

Accuracy 
 

Top-10 
Average 

Accuracy 
 

Top-3 
Average 

Accuracy 
 

Top-10 
Average 
Accura

cy 

Baby gender 0.7888 0.7864 0.7834 0.7826 0.7803 

Baby age level 0.6534 0.6509 0.6448 0.6413 0.6435 

Age level 0.6664 0.6647 0.6550 0.6534 0.6562 

Has child 0.9079 0.9068 0.9023 0.9015 0.9004 

Married 0.8518 0.8473 0.8422 0.8382 0.8426 

TABLE II.  ACCURACY COMPARISON OF DIFFERENT REWARD 
FUNCTION ON DIFFERENT TASKS 

 
Task 

Reward Function Based on (1) Reward Function Based on 
Accuracy 

Top-3 
Average 
Accuracy 

 

Top-10 
Average 

Accuracy 
 

Average 
Number 

of 
Selected 
Datasets 

Top-3 
Average 

Accuracy 
 

Top-10 
Average 

Accuracy 
 

Average 
Number 

of 
Selected 
Datasets 

Baby 
gender 0.7888 0.7864 5.7 0.7850 0.7836 9.0 

Baby 
age 

level 
0.6534 0.6509 7.7 0.6473 0.6462 10.0 

 

B. Measuring Reward 
In the control stage, instead of using the quads 

<st,at,st+1,rt> directly like other articles, we use the triples 
<st,at,st+1>. This is because training base model is the most 
time-consuming part of the whole process, and the reward rt 
must be obtained through the trained base model. We 
postpone the rewards until the training stage is sampled, 
saving unnecessary computational costs. 

We use (1) to measure rewards. The first item is that we 
use state st to train a base model and get its accuracy on the 
validation dataset. The main purpose of this item is to make 
the reinforcement learning algorithm optimize the policy 
network in the direction of high accuracy. The second item is 
the number of datasets selected by state st. The main purpose 
of this item is to make the reinforcement learning algorithm 
optimize the policy network in the direction of selecting as 
few datasets as possible. Obviously, the factor of the first 
term should be a positive number and the second factor 
should be a negative number. Their absolute size is the size 
of importance.  

C. Accelerating Training Process 
Accelerating the optimization process of the AutoML 

system, whether in the application of actual business 
scenarios or in the research of this direction, is very 
important. There are two main aspects to accelerate the 
training process. On the one hand, to accelerate the training 
process of the policy network, we mainly use the experience 
replay [25,26].In the experience replay, the agent takes 
samples from its memory that stores different training 
samples to train the policy network. The two advantages of 

doing this are: (i) Deep neural network as a supervised 
learning model, requiring data to satisfy independent and 
identical distributions. (ii) Breaking the correlation between 
data due to timing relationships. On the other hand, to 
accelerate the training process of the base model, we mainly 
use the small model to train on the small dataset, and then 
the method of migrating the optimal model to the big dataset. 
In order to find the optimal configuration, it is usually 
necessary to train hundreds of base models, and training the 
base model is the most time-consuming part, so speeding up 
this part is crucial for the entire optimization process. 

V. EXPERIMENTAL RESULTS 

A. Data Description 
We used a total of 10 different datasets, each with a 

different number of features, ranging from about five 
hundreds to about ten thousands. We tested our method on 
five tasks to verify the robustness of the method and 
applicability. 

B. Overall Performances 
Our criterion is the top-3 and top-10 average accuracy of 

the model in the validation dataset. The input layer of DQN 
is a 14-dimensional state vector. The first layer and the 
second layer have 32 and 16 nodes respectively, and the 
output layer also has 16 nodes. The hidden layers are all 
activated using ReLU. In the experiments, we set mini-batch 
size to 32 and use AdamOptimizer with a learning rate of 
0.001. The training process is to train about 100 base models 
on a 1080ti GPU. The entire optimization process takes 
about 9 hours. Table 1 shows that our method exceed 
random search and manual search in total five tasks.  

C. Reward Function 
We study the impact of the reward function design. We 

compare two cases. One is to use only the accuracy of the 
validation dataset as the reward, and the other is (1). Table 2 
shows that reward function based on (1) is better than just 
using accuracy as the reward function. From the results, we 
can see that not only is average number of selected datasets 
less than the latter, but the average accuracy is also higher 
than the latter. In this experiment, we set α to 1.0 and β to -
0.02. 

VI. CONCLUSION 
In this paper, we study the problem of automated multi-

element subspace exploration. We first integrate this multi-
element subspace exploration problem into a reinforcement 
learning framework. The agent can decide to select or delete 
a dataset, change a base model, increase or decrease one of 
the hyperparameters. The reward function we propose is a 
weighted sum of accuracy and the number of selected 
datasets. In order to accelerate the subspace exploration, we 
use experiments replay and training methods with small 
dataset and small model. Finally, we conducted extensive 
experiments on real datasets to demonstrate the effectiveness 
of the proposed method. 
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