

Automating Multi-element Subspace Exploration via Reinforcement Learning

Yi Sun
School of Software

Xi'an Jiaotong University
Xi’an, China

e-mail: xwrong@stu.xjtu.edu.cn

YinXiao Liu
Data Technology and Product Department

Alibaba Group
Hangzhou, China

e-mail: yinxiao.lyx@alibaba-inc.com

ZhongYao Wang
Data Technology and Product Department

Alibaba Group
Hangzhou, China

e-mail: zhongyao.wangzy@alibaba-inc.com

BaoLong Niu
School of Software

Xi'an Jiaotong University
Xi’an, China

e-mail: bugdragon@stu.xjtu.edu.cn

Abstract—Machine learning enters many aspects of our lives
and brings us great convenience. However, building an
effective machine learning model for a specific task requires
not only expertise but also a lot of time and resources. In order
to solve this problem, more and more research projects focus
on automated machine learning (AutoML). In this paper, we
propose an algorithm that can simultaneously optimize the
space of multiple datasets, multiple models, and multiple
hyperparameters. We call this an automating multi-element
subspace exploration algorithm. We first formalize this
problem as a reinforcement learning problem and then we
define the state, action and well-designed reward function in
reinforcement learning system. In addition, we use some skills
and experience to accelerate the entire optimization process.
Finally, our experimental results on multiple tasks
demonstrate that our method is effective.

Keywords-machine learning; reinforcement learning;
AutoML; model selection; hyperparameter optimization

I. INTRODUCTION
In recent years, as machine learning has succeeded in

some areas, more and more industries are researching and
deploying their own machine learning systems, but this
process is not easy because users not only have an
understanding of industry knowledge, but also be proficient
in data preprocessing and choose the right model, features
and hyperparameters.

In order to reduce the requirements for industry users,
new ideas for automating the process of machine learning
have been proposed, called automated machine learning
(AutoML). There are many versions of AutoML definitions.
In general, AutoML should be an end-to-end automated
process that includes data preprocessing, feature engineering,
model selection, and model evaluation to solve specific tasks.
In [1], AutoML is defined as a combination of machine
learning methods and automated methods. In other words,
AutoML provides an automated pipeline that enables a class
of machine learning problems to be solved with a given
resource.

Reinforcement learning is an important method in the
study of AutoML. It is a powerful algorithm that
continuously optimizes by interacting with the environment
to maximize long-term returns. For example, the famous
NAS[2], ENAS[3], are all RL-base algorithms. However,
NASs in traditional machine learning tasks, such as sales
prediction, age prediction, etc. are far less effective than CV
and NLP tasks.

In this paper, we mainly solve the automatic learning
problem of a class of traditional machine learning tasks.
Unlike other problems, the goal of this problem is to solve
the selection of multi-dataset, multi-model, and multi-
hyperparameter simultaneously which is called the multi-
element subspace optimization problem. The reason why we
want to solve this multi-element optimization problem
simultaneously is that the correlation between these factors
can be fully considered and can be integrated into a common
framework. The reason why we use reinforcement learning is
that reinforcement learning is highly scalable and its process
is very similar to the manual optimization process and it is
often used to solve the optimization process of complex
spaces. Our challenge comes from five aspects. First, we
have multiple datasets, but we don't know which datasets
might help predict the results. Perhaps when we predict a
task, only one dataset is helpful for the prediction result, and
it is also possible that a single dataset does not help the
prediction result, but the joint characteristics of several
datasets will greatly help the prediction result. If we use all
the datasets directly, there are two risks. On the one hand, the
model has serious over-fitting risk. On the other hand, the
calculation amount of the model will increase. Second, we
have a series of base models, such as LR, DeepFM, DCN,
etc. Some tasks use LR better, some tasks use DCN better,
we want the algorithm to tell us which model is more
beneficial to our task. Third, the model's hyperparameters
also have an impact on the prediction results, such as
learning rate, regularization coefficient, and so on. Forth, the
amount of data in multiple datasets is very large, so our
AutoML algorithm must be able to find the optimal solution

efficiently. Finally, how to integrate the above problems into
a unified framework.

Figure 1. General process of reinforcement learning algorithm.

In summary, we developed an enhanced reinforcement
learning framework for the multi-element subspace
exploration problem. Specifcally, our contributions are as
follows:(i)We integrate the multi-element subspace
exploration problem into a reinforcement learning
framework for the first time. In other AutoML systems, these
parts are always designed separately. (ii) We propose a new
form of reward, taking into account the accuracy of the
model and the minimum number of datasets.

II. RELATED WORK
In the study of this multi-element subspace exploration

problem, there are several important directions, i.e. feature
selection, model selection, hyperparameter optimization.

A. Feature Selection
Feature selection can be divided into three types: filter

method, wrapper method and embedded method[4]. The
filter method first sorts the features from high to low
according to the relevance score, and then selects the top
ranked features. The typical filter methods are feature
selection based on correlation [5, 6] and feature selection
based on univariate [7, 8]. The advantage of the filter method
is that the calculation is simple and fast, so it is effective for
high-dimensional features. However, they have the
disadvantage of ignoring the relationship between feature
selection and subsequent predictors and the dependence
between features. The wrapper method treats prediction
performance as an objective function [9]. The most typical
wrapper method is the branch and bound algorithm [10, 11].
The embedded method has the best effect on the combination
of predictors. Typical embedded methods include decision
tree [12], LASSO [13]. Feature selection algorithms are also
widely used in gene chip classification problems. The
correlation-based feature selection algorithm used in [14] can
not only improve the efficiency of the algorithm, but also
improve its accuracy. [15] identified a compact feature set
that consists of genre discriminative features.

B. Hyperparameter Optimization
There are five methods for hyperparameter optimization.

First, Grid search and random search are the most widely
used strategies. Grid search [16] – [18] has good scalability,
convenient parallelism, and good results, but it also has some
disadvantages. The search space increases exponentially with
the number of parameters, and it is difficult to determine the
change interval without knowing which parameter changes
are more important. If the interval division is too small, the
speed will be slow, but if the interval division is too large , it
may miss the optimal solution. Bergstra and Bengio[19]
show that random search is more practical and efficient than
grid search. However, random search has a problem that it is
hard to determine whether the best set of hyperparameters is
found. As an improvement on this method, Li and Jamieson
et al. [20] proposed the hyperband, which is a trade-off
between resource budgets and performance. Second, NAS [2]
introduced reinforcement learning for the first time, and they
trained recurrent neural networks (RNN) to automatically
generate network architectures using reinforcement learning
(RL) technology. And later ENAS [3] in order to improve
efficiency. Third, Evolutionary algorithm is a heuristic
optimization algorithm based on population. Compared with
calculus-based methods and exhaustive methods, the
evolutionary algorithm has the advantages of wide
applicability and strong robustness, and is a global
optimization algorithm. Fourth, In terms of grid search,
random search, and evolutionary algorithm, each test is
independent, that is, it may test multiple times in poorly-
performing regions. Bayesian optimization establishes a
probability model of the objective function, then uses the
probability model to select the most promising
hyperparameters , and uses the real objective function to
evaluate the selected hyperparameters. Therefore, Bayesian
optimization uses previous evaluation results to continuously
update the probability model. Probability model maps
hyperparameters to probability of score on objective function.
Bayesian optimization algorithms can be divided into
Gaussian Processes [21], [22], Tree Parzen Estimators [23],
and Random Forests [24] according to different probability
models. Fifth, the previous method needs to evaluate many
sets of parameters requires amount of time and resources.
Gradient descent-based methods can reduce much time spent
searching for hyperparameters, but increase the consumption
of GPU memory.

C. Model Selection
Model selection can be divided into traditional model

selection and NAS. Traditional model selection refers to
selecting the best performing one from the base models of
machine learning. From the perspective of model structure,
NAS can be divided into four categories: Entire structure
model, Cell-based structure model, Hierarchical Structure
model, Network Morphism based structure model, [3]
belongs to Cell-based structure model.

Reinforcement
Learning

Controller

Select an Action

Generate
Next

Subspace(State)

Train a Base Model
and Evaluate on
Predictive Task

Figure 2. Framework.The framework consists of two stages. In the training stage, the policy is trained via samples from the memory.
In the control stage, agent select/deselect a dataset or change a model or increase/decrease a hyperparameter based on the policy.

III. PROBLEM FORMULATION
Essentially, the problem is equivalent to how to find an

optimal subspace in the multi-element space. In other words,
we study the problem of multi-element subspace exploration,
which is formulated as a reinforcement learning task. Fig. 1
shows an overview of reinforcement learning algorithm.
Specifically, the components of our joint space
reinforcement learning framework include state, agent,
reward, and agent action.

A. State
In our design, the state is a subspace of the multi-element

space. It represents the datasets we selected, the model and
the corresponding hyperparameter values. Whenever an
agent selects an action, the state changes.

B. Agent
Agent is designed to make the selection decision for the

corresponding state.

C. Reward
We designed a measurement to quantify the reward R

generated by the multi-element subspace, which is defined as
the weighted sum of (i) the predictive accuracy of the model
corresponding to this subspace, (ii) the number of selected
datasets P.

D. Action
For the agent, we define three types of actions, the first is

to select/deselect a dataset, the second is to change a model,
and the third is to increase/decrease the value of a
hyperparameter.

IV. PROPOSED METHOD
We propose the reinforcement learning framework for

automated multi-element subspace exploration. Then we

discuss how to measure the reward function and how to
accelerate the reinforcement learning process.

A. Framework Overview
Fig. 2 shows our proposed framework consists of many

multi-element subspace exploration steps. Each exploration
step includes two stage, i.e., agent control stage and model
training stage.

In the agent control stage, the agent takes action
according to its policy network, the input of the policy
network is the current state, and the output is a long-term
reward for taking different actions. Then select an action
based on the greedy-ε method to get the next state. After that,
we add the resulting triplet <st,at,st+1> to the memory of the
experience replay.

In the training stage, there are two training processes.
The first is to train the base model corresponding to the state
to get reward, and the second is to train the agent's policy
network via experience replay. In general, at time t, our
training process is that we use experience replay memory to
extract a mini-batch, which is a triplet form <st, at, st+1>,
indicating the current state of st, the action at, and the next
state st+1. Then, we train the base model corresponding to
each state of this mini-batch, get the accuracy of the
validation dataset ACC and the number of selected datasets P,
and then we can get reward based on the weight sum
Equation:
 R = α * ACC + β * P. (1)
α, β are constant weight factor.

The agent uses its corresponding mini-batch samples and
the reward to train its Deep Q Network (DQN), in order to
obtain the maximum long-term reward based on the Bellman
Equation:
 Q(st , at |θt) = Rt + γ * max Q(st+1, at+1|θt+1) (2)
where θ is the parameter set of DQN, Rt is the instance
reward at time t, st is the state at time t, at is the the action
taken at time t, and γ is the discount factor between 0 and 1.

Reward
Function

Train and Evaluate
Base Model

Memory State
Representation Action

Change
a Model Agent

Increase/Decrease
a HyperParameter

Select/Deselect
a Dataset

Selected
Model

Hyperparameters
value

Selected
Datasets

.

.

.

<S1,A1,S2>

Store Mini-Batch
(Batch Size m)

Sample

 Base Model 1

Base Model m

Train
DQN

Reward 1

Reward 2

Reward m

DQN

Control

<S2,A2,S3>

<Sn,An,Sn+1>

Base Model 2

Policy

. . .

. . .

TABLE I. ACCURACY COMPARISON OF DIFFERENT ALGORITHM ON
DIFFERENT TASKS

Task

OURS Random Search
Manual
Search

Top-3
Average

Accuracy

Top-10
Average

Accuracy

Top-3
Average

Accuracy

Top-10
Average
Accura

cy

Baby gender 0.7888 0.7864 0.7834 0.7826 0.7803

Baby age level 0.6534 0.6509 0.6448 0.6413 0.6435

Age level 0.6664 0.6647 0.6550 0.6534 0.6562

Has child 0.9079 0.9068 0.9023 0.9015 0.9004

Married 0.8518 0.8473 0.8422 0.8382 0.8426

TABLE II. ACCURACY COMPARISON OF DIFFERENT REWARD
FUNCTION ON DIFFERENT TASKS

Task

Reward Function Based on (1) Reward Function Based on
Accuracy

Top-3
Average
Accuracy

Top-10
Average

Accuracy

Average
Number

of
Selected
Datasets

Top-3
Average

Accuracy

Top-10
Average

Accuracy

Average
Number

of
Selected
Datasets

Baby
gender 0.7888 0.7864 5.7 0.7850 0.7836 9.0

Baby
age

level
0.6534 0.6509 7.7 0.6473 0.6462 10.0

B. Measuring Reward
In the control stage, instead of using the quads

<st,at,st+1,rt> directly like other articles, we use the triples
<st,at,st+1>. This is because training base model is the most
time-consuming part of the whole process, and the reward rt
must be obtained through the trained base model. We
postpone the rewards until the training stage is sampled,
saving unnecessary computational costs.

We use (1) to measure rewards. The first item is that we
use state st to train a base model and get its accuracy on the
validation dataset. The main purpose of this item is to make
the reinforcement learning algorithm optimize the policy
network in the direction of high accuracy. The second item is
the number of datasets selected by state st. The main purpose
of this item is to make the reinforcement learning algorithm
optimize the policy network in the direction of selecting as
few datasets as possible. Obviously, the factor of the first
term should be a positive number and the second factor
should be a negative number. Their absolute size is the size
of importance.

C. Accelerating Training Process
Accelerating the optimization process of the AutoML

system, whether in the application of actual business
scenarios or in the research of this direction, is very
important. There are two main aspects to accelerate the
training process. On the one hand, to accelerate the training
process of the policy network, we mainly use the experience
replay [25,26].In the experience replay, the agent takes
samples from its memory that stores different training
samples to train the policy network. The two advantages of

doing this are: (i) Deep neural network as a supervised
learning model, requiring data to satisfy independent and
identical distributions. (ii) Breaking the correlation between
data due to timing relationships. On the other hand, to
accelerate the training process of the base model, we mainly
use the small model to train on the small dataset, and then
the method of migrating the optimal model to the big dataset.
In order to find the optimal configuration, it is usually
necessary to train hundreds of base models, and training the
base model is the most time-consuming part, so speeding up
this part is crucial for the entire optimization process.

V. EXPERIMENTAL RESULTS

A. Data Description
We used a total of 10 different datasets, each with a

different number of features, ranging from about five
hundreds to about ten thousands. We tested our method on
five tasks to verify the robustness of the method and
applicability.

B. Overall Performances
Our criterion is the top-3 and top-10 average accuracy of

the model in the validation dataset. The input layer of DQN
is a 14-dimensional state vector. The first layer and the
second layer have 32 and 16 nodes respectively, and the
output layer also has 16 nodes. The hidden layers are all
activated using ReLU. In the experiments, we set mini-batch
size to 32 and use AdamOptimizer with a learning rate of
0.001. The training process is to train about 100 base models
on a 1080ti GPU. The entire optimization process takes
about 9 hours. Table 1 shows that our method exceed
random search and manual search in total five tasks.

C. Reward Function
We study the impact of the reward function design. We

compare two cases. One is to use only the accuracy of the
validation dataset as the reward, and the other is (1). Table 2
shows that reward function based on (1) is better than just
using accuracy as the reward function. From the results, we
can see that not only is average number of selected datasets
less than the latter, but the average accuracy is also higher
than the latter. In this experiment, we set α to 1.0 and β to -
0.02.

VI. CONCLUSION
In this paper, we study the problem of automated multi-

element subspace exploration. We first integrate this multi-
element subspace exploration problem into a reinforcement
learning framework. The agent can decide to select or delete
a dataset, change a base model, increase or decrease one of
the hyperparameters. The reward function we propose is a
weighted sum of accuracy and the number of selected
datasets. In order to accelerate the subspace exploration, we
use experiments replay and training methods with small
dataset and small model. Finally, we conducted extensive
experiments on real datasets to demonstrate the effectiveness
of the proposed method.

REFERENCES
[1] Yoshua Bengio et al. 2009. Learning deep architectures for AI.

Foundations and trends® in Machine Learning 2, 1 (2009), 1–127.
[2] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement

learning.” [Online]. Available: http://arxiv.org/abs/1611.01578
[3] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Efficient

neural architecture search via parameter sharing,” vol. ICML.
[Online]. Available: http://arxiv.org/abs/1802.03268

[4] Xiucai Ye, Kaiyang Ji, and Tetsuya Sakurai. Unsupervised feature
selection with correlation and individuality analysis. International
Journal of Machine Learning and Computing, 6(1):36–41, 2016.

[5] Mark A Hall. 1999. Feature selection for discrete and numeric class
machine learning. (1999)

[6] Lei Yu and Huan Liu. 2003. Feature selection for high-dimensional
data: A fast correlation-based flter solution. In Proceedings of the
20th international conference on machine learning (ICML-03). 856–
863.

[7] George Forman. 2003. An extensive empirical study of feature
selection metrics for text classifcation. Journal of machine learning
research 3, Mar (2003), 1289– 1305

[8] Yiming Yang and Jan O Pedersen. 1997. A comparative study on
feature selection in text categorization. In Icml, Vol. 97. 412–420.

[9] Dihua Guo, Hui Xiong, Vijay Atluri, and Nabil Adam. 2007.
Semantic feature selection for object discovery in high-resolution
remote sensing imagery. In Pacifc-Asia Conference on Knowledge
Discovery and Data Mining. Springer, 71– 83.

[10] Ron Kohavi and George H John. 1997. Wrappers for feature subset
selection. Artifcial intelligence 97, 1-2 (1997),

[11] Patrenahalli M. Narendra and Keinosuke Fukunaga. 1977. A branch
and bound algorithm for feature subset selection. IEEE Transactions
on computers 9 (1977), 917–922.

[12] V Sugumaran, V Muralidharan, and KI Ramachandran. 2007. Feature
selection using decision tree and classifcation through
proximalsupport vector machine for fault diagnostics of roller bearing.
Mechanical systems and signal processing 21, 2 (2007), 930–942.

[13] Robert Tibshirani. 1996. Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society. Series B
(Methodological) (1996), 267–288.

[14] Al-Batah MS, Zaqaibeh BM, Alomari SA, Alzboon MS. Gene
Microarray Cancer Classification using Correlation Based Feature
Selection Algorithm and Rules Classifiers. International Journal of

Online and Biomedical Engineering (iJOE). International Association
of Online Engineering (IAOE); 2019 May 14; 15(08):62.
https://doi.org/10.3991/ijoe.v15i08.10617

[15] J. Yoon, H. Lim, D. Kim, "Music Genre Classification Using Feature
Subset Search", International journal of Machine Learning and
Computing, 2016.

[16] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio,
“An empirical evaluation of deep architectures on problems with
many factors of variation,” in Proceedings of the 24th international
conference on Machine learning. ACM, 2007, pp. 473–480.

[17] H. H. Hoos, Automated Algorithm Configuration and Parameter
Tuning, 2011.

[18] I. Czogiel, K. Luebke, and C. Weihs, Response surface methodology
for optimizing hyper parameters. Universitatsbibliothek Dortmund, ¨
2006.

[19] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization,” p. 25.

[20] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Hyperband: A novel bandit-based approach to hyperparameter
optimization.” [Online]. Available: http://arxiv.org/abs/1603.06560

[21] J. Gonzalez, “Gpyopt: A bayesian optimization framework in
python,” http://github.com/SheffieldML/GPyOpt, 2016.

[22] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian
optimization of machine learning algorithms,” in Advances in neural
information processing systems, 2012, pp. 2951–2959.

[23] J. Bergstra, D. Yamins, and D. D. Cox, “Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for
vision architectures,” p. 9.

[24] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model
based optimization for general algorithm configuration,” in Learning
and Intelligent Optimization, C. A. C. Coello, Ed. Springer Berlin
Heidelberg, vol. 6683, pp. 507–523. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-25566-3 40

[25] Long-Ji Lin. 1992. Self-improving reactive agents based on
reinforcement learning, planning and teaching. Machine learning 8, 3-
4 (1992), 293–321.

[26] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu,
Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller,
Andreas K Fidjeland, Georg Ostrovski, et al. 2015. Human-level
control through deep reinforcement learning. Nature 518, 7540 (2015),
529.

http://arxiv.org/abs/1611.01578
http://arxiv.org/abs/1802.03268
https://doi.org/10.3991/ijoe.v15i08.10617
http://arxiv.org/abs/1603.06560
http://link.springer.com/10.1007/978-3-642-25566-3%2040

