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Abstract
We present a conformal inference method for
constructing lower prediction bounds for survival
times from right-censored data, extending recent
approaches designed for more restrictive type-I
censoring scenarios. The proposed method im-
putes unobserved censoring times using a ma-
chine learning model, and then analyzes the im-
puted data using a survival model calibrated via
weighted conformal inference. This approach is
theoretically supported by an asymptotic double
robustness property. Empirical studies on simu-
lated and real data demonstrate that our method
leads to relatively informative predictive infer-
ences and is especially robust in challenging set-
tings where the survival model may be inaccurate.

1. Introduction
1.1. Background and Motivation

Survival analysis focuses on time-to-event data, with appli-
cations in many fields including clinical trials, engineering,
and marketing. For example, in a clinical trial, researchers
may aim to predict how long a cancer patient is likely to
survive based on individual characteristics and treatments re-
ceived. Two central goals are modeling the probability that
an event will not occur before a given time and predicting
the actual event time. These tasks are complicated by the
fact that the data are censored—the exact event time may be
unknown due to study limitations or participant withdrawal.

While traditional methods, such as the Kaplan-Meier esti-
mator and parametric models like the Cox proportional haz-
ards model (Cox, 1972), are valued for their interpretability,
they struggle in high-dimensional settings or when their as-
sumptions are violated. As a result, machine learning (ML)
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approaches are gaining popularity (Ishwaran et al., 2008;
Katzman et al., 2018), despite the difficulty of obtaining
uncertainty estimates and statistical guarantees.

A promising approach to providing rigorous statistical in-
ferences for ML models in survival analysis was recently
introduced by Candès et al. (2023) and refined by Gui et al.
(2024). Their conformal inference (Vovk et al., 2005; Lei &
Wasserman, 2014) framework can use any survival model to
compute a lower prediction bound (LPB) for an individual’s
survival time, supported by rigorous statistical guarantees.

LPBs indicate the time beyond which a patient is expected
to survive with at least (1− α) probability, for some fixed
level α ∈ (0, 1). They can be useful in many applica-
tions, including for priorizing treatments under resource
constraints. When the data are limited or the model overfits,
LPBs tend to be conservatively low, reflecting greater un-
certainty. By quantifying uncertainty on an individual basis,
LPBs are potentially able to distinguish between patients
with confidently high survival expectations and those with
greater uncertainty. This can lead to actionable insights
for high-stakes applications, mitigating the risks associated
with over-reliance on potentially inaccurate ML predictions.

1.2. Main Challenges and Contributions

A limitation of the methods proposed by Candès et al. (2023)
and Gui et al. (2024) is their focus on type-I censoring, a sce-
nario not representative of many practical cases. In type-I
censoring, all censoring times need to be observed, includ-
ing for individuals who experienced an event. Observations
are represented as (T̃ , C), where T̃ = min(T,C), with T
as the event time and C as the censoring time. For example,
in a clinical trial with a fixed end date, C is the time from
enrollment to the trial’s end, and patients are either censored
(T > C) or experience the event (T < C).

These methods, however, do not extend to situations where
the censoring times are unobserved for individuals who
experience the event—a more common practical scenario
known as right-censoring. Under right-censoring, we only
observe (T̃ , I[T < C]), where I[T < C] indicates whether
the event occurred before censoring. If T < C, the censor-
ing time C is unknown. For example, in a survival study, T
is the time until death, and C is the time until withdrawal
or the study’s end. If a patient dies (T < C), we observe
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T̃ = T but not C. Conversely, for censored individuals
(T > C), we observe T̃ = C but not T . This incomplete
information complicates conformal inference, requiring a
novel approach.

We address this challenge by introducing a method for con-
structing informative LPBs from right-censored data, appli-
cable to any survival model. This extends the approaches
of Candès et al. (2023) and Gui et al. (2024) using a two-
step process. First, we fit a censoring model to estimate the
conditional probability of censoring and use it to impute un-
observed censoring times, transforming the right-censored
dataset into a semi-synthetic type-I censored dataset. Sec-
ond, we fit a survival model to estimate survival probabilities
and construct LPBs using the imputed dataset.

This method works well in practice and is doubly robust
(Bang & Robins, 2005) in theory, ensuring asymptotically
valid LPBs if either the censoring model or the survival
model is consistently estimated, even if the other is not.

1.3. Related Work

This is not first work extending conformal inference to right-
censored data. Qi et al. (2024) tackled this challenge by
using the Kaplan–Meier estimate to impute the latent sur-
vival times, operating under the assumption that—despite its
lack of covariate adjustment—it can approximate the condi-
tional survival function reasonably well; see Appendix A1.3.
However, this assumption is not always easy to justify. Fur-
ther, unlike ours, their approach is not doubly robust as it
relies entirely on having a good approximation of the condi-
tional survival distribution—the very quantity we are trying
to infer. As we shall see, our method performs similarly to
that of Qi et al. (2024) in easier settings where the survival
model already yields approximately valid LPBs, and is able
to offer more robust coverage in harder scenarios.

This work contributes to a growing literature on confor-
mal inference beyond exchangeability (Barber et al., 2023),
particularly for handling incomplete data. Other works fo-
cused on unobserved counterfactuals (Lei & Candès, 2021),
missing covariates (Zaffran et al., 2023), weak supervision
(Cauchois et al., 2024), and label noise (Feldman et al.,
2023; Sesia et al., 2024; Clarkson et al., 2024).

Borrowing from Candès et al. (2023) and Gui et al. (2024),
we use weighted conformal inference techniques (Tibshi-
rani et al., 2019) to address the challenge that, under right-
censoring, the missing data may not be missing at random.

2. Methods
2.1. Problem Setup and Assumptions

We consider a sample of n individuals, indexed by [n] :=
{1, . . . , n}, drawn i.i.d. from some unknown population.

For each i ∈ [n], let Xi ∈ X ⊆ Rp represent a vector of p
features, Ti > 0 the survival time, and Ci > 0 the censoring
time. Define the event indicator Ei = I(Ti < Ci) ∈ {0, 1}.
The observed time for each individual is T̃i = min(Ti, Ci).

Candès et al. (2023) and Gui et al. (2024) study a type-I
censoring scenario, where the available data are Dt1-c :=
{(Xi, T̃i, Ci)}ni=1, which includes both Ci and T̃i for all n
individuals, along with their features Xi. In that setting,
they construct an LPB for the survival time Tn+1 of a new
random individual, with features Xn+1, from the same pop-
ulation. Their methods are reviewed in Appendix A1.

In the right-censoring scenario considered in this paper, the
data are Dr-c := {(Xi, T̃i, Ei)}ni=1. These data are gener-
ally less informative than those found in a type-I censoring
setting, because they only include the true censoring times
for individuals who did not experience an event. This makes
existing methods not directly applicable.

Given a right-censored data set Dr-c, our goal is to predict the
survival time Tn+1 of a new test individual with covariates
Xn+1, sampled from the same distribution as the previous
data points. Ideally, we would like to construct an LPB
for Tn+1, denoted by L̂(Xn+1;Dr-c), that provides (1− α)
marginal coverage at the desired level α ∈ (0, 1):

P
[
Tn+1 ≥ L̂(Xn+1;Dr-c)

]
≥ 1− α. (1)

However, since exact finite-sample guarantees for survival
analysis are generally unachievable without strong assump-
tions, we instead aim to construct LPBs that are approxi-
mately valid in finite samples. These LPBs are designed to
satisfy a relaxed, asymptotic version of (1), which can be
understood as a form of double robustness: they are asymp-
totically valid as long as at least one of two key population
quantities is estimated consistently, even if the other is not.

We will formally define this double robustness property in
Section 3, but for now, we focus on presenting our method,
starting with its main underlying assumption.

Assumption 2.1. The observed data set Dr-c :=
{(Xi, T̃i, Ei)}ni=1 is generated by applying right-censoring
to a latent data set {(Xi, Ti, Ci)}n+1

i=1 , consisting of covari-
ates, survival times, and censoring times for n+ 1 individ-
uals, sampled i.i.d. from some joint distribution PX,T,C =
PX · PT |XPC|X , where T ⊥⊥ C | X . The features and
true survival time of the test data point, {Xn+1, Tn+1}, are
sampled independently from PX · PT |X .

This setup can be summarized as follows:

(Xi, Ti, Ci)
i.i.d.∼ PX · PT |X · PC|X , ∀i ∈ [n],

Ei = I(Ti < Ci), T̃i = min(Ti, Ci),

(Xn+1, Tn+1)
ind.∼ PX · PT |X .

(2)
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Above, PX , PT |X , and PC|X are arbitrary and unknown.
The assumption T ⊥⊥ C | X , known as “conditional inde-
pendent censoring”, states that T and C are independent
given X . This standard assumption in survival analysis is
also made by Candès et al. (2023) and Gui et al. (2024).

In addition to the calibration dataset Dr-c, our method as-
sumes access to an independent training dataset Dr-c

train, con-
sisting of analogous observations (X, T̃ , E) from a separate
group of individuals. These individuals are typically ex-
pected to come from the same population, though this is not
strictly required for the theoretical results in this paper.

Following a split-conformal inference approach, we use
Dr-c

train to train censoring and survival models, and Dr-c to
transform their outputs into survival LPBs.

2.2. DR-COSARC

2.2.1. METHOD OVERVIEW

We name our method DR-COSARC, which stands for Dou-
bly Robust COnformalized Survival Analysis under Right
Censoring. This method uses two ML models: a survival
model M̂surv approximating PT |X and a censoring model
M̂cens approximating PC|X . As detailed below, M̂surv

guides the construction of a candidate LPB for Tn+1 as
a function of Xn+1. This candidate LPB can be adjusted
either lower or higher via a scalar tuning parameter, cal-
ibrated using Dr-c to (approximately) achieve the desired
coverage level 1 − α. The censoring model M̂cens plays
two key roles. First, it is used to impute the latent censor-
ing times, simulating a type-I censoring scenario. Second,
it helps account for covariate shift in the calibration data,
similar to Candès et al. (2023) and Gui et al. (2024).

2.2.2. TRAINING SURVIVAL AND CENSORING MODELS

The models M̂surv and M̂cens can be trained using any sur-
vival analysis technique, like the standard Cox proportional
hazards model, or more sophisticated ML approaches, in-
cluding random survival forests (Ishwaran et al., 2008).

Both models can be trained on the same right-censored
training set Dr-c

train. For M̂surv, the event indicator is defined
as usual, with a value of 1 indicating that T < C. For
M̂cens, the same techniques can be applied after flipping the
event indicator: a value of 1 now indicates that the event did
not occur before the censoring time (C < T ).

2.2.3. IMPUTING THE MISSING CENSORING TIMES

To simplify the notation, and without much loss of gener-
ality, we assume the conditional distribution of C given
X = x has a continuous density, denoted by fC|X(c | x),
with respect to the Lebesgue measure, for any x ∈ X . Then,
we let FC|X(c | x) denote the corresponding cumulative dis-

tribution function, defined as FC|X(c | x) =
∫ c

0
fC|X(c′ |

x)dc′. Additionally, we assume the pre-trained censoring
model M̂cens provides empirical estimates f̂C|X of fC|X

and F̂C|X of FC|X , as it is typically the case in practice.

For example, if M̂cens is a Cox proportional hazards model,
it estimates the hazard function hC(c | x) = f̂C|X(x |
x)/[1− F̂C|X(c | x)] using a simple formula, from which
f̂C|X can be derived. Alternatively, if M̂cens is a random
survival forest, standard implementations provide a non-
parametric estimate of the conditional survival function 1−
F̂C|X(c | x). This estimate can be smoothly interpolated
and differentiated to obtain f̂C|X . For further details on
computing f̂C|X using standard survival analysis models,
see the software repository accompanying this paper.

Next, leveraging our estimate f̂C|X of fC|X , we will trans-
form the right-censored dataset Dr-c into a synthetic dataset
D̃t1-c, designed to mimic the (unobserved) dataset Dt1-c that
would have been collected under a type-I censoring scenario.

For any i ∈ [n], consider a right-censored random sample
(Xi, T̃i, Ei) from (2). Since Ci is latent, we replace it with a
synthetic “imputed” time, Ĉi, computed as follows. If Ei =
0, we know that Ci < Ti. In this case, the true value of Ci

is observed and equal to T̃i, so we can directly set Ĉi = T̃i.
Otherwise, if Ei = 1, we know that Ci > Ti = T̃i, but the
true value ofCi remains unknown. Fortunately, however, we
have two key pieces of information that allow us to obtain
a sensible “guess” Ĉi of Ci: the property T ⊥⊥ C | X in
Assumption 2.1 and the estimate f̂C|X of fC|X .

Concretely, if Ei = 1, we sample Ĉi from the distribution
of C | X = Xi, T̃i, C > T̃i, independent of everything else.
Thanks to the assumption that T ⊥⊥ C | X , the probability
density of Ĉi, as a function of the dummy variable c ∈ R,
can be written as:

Ĉi ∼
f̂C|X(c | Xi)

Â(Xi, T̃i)
I[c > T̃i], (3)

where

Â(Xi, T̃i) =

∫ ∞

T̃i

f̂C|X(c | Xi)dc. (4)

This procedure, outlined in Algorithm 1, provably leads to a
synthetic sample (Xi, T̃i, Ĉi) that shares the same distribu-
tion as the ideal sample (Xi, T̃i, Ci) that would be obtained
from (2) under type-I censoring, provided that Assump-
tion 2.1 holds and f̂C|X is equal to fC|X .
Proposition 2.2. Under Assumption 2.1, let PX,T̃ ,C denote
the distribution of (Xi, T̃i, Ci), for any i ∈ [n], obtained
from (2) under type-I censoring. Then, Algorithm 1 applied
with f̂C|X = fC|X outputs independent triplets (Xi, T̃i, Ĉi)
whose distribution is PX,T̃ ,C .
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Algorithm 1 Imputation of Latent Censoring Times

input Pre-trained censoring model M̂cens,
right-censored calibration data {(Xi, T̃i, Ei)}ni=1.

1: Using M̂cens, compute an estimate f̂C|X(c | x) of the
probability density fC|X(c | x) of C | X = x.

2: for i = 1 to n do
3: if Ei = 0 then
4: Set Ĉi = Ci.
5: else
6: Randomly generate Ĉi based on (3).
7: end if
8: end for

output Imputed censoring times (Ĉ1, . . . , Ĉn).

Implementing Algorithm 1 requires computing the normal-
ization constant in (3), defined by the one-dimensional inte-
gral in (4). This can be quickly evaluated either analytically
or numerically, depending on the censoring model M̂cens.
Then, sampling Ĉi from (3) can be performed numerically
using inverse transform sampling, which is also computa-
tionally fast. Further implementation details are provided in
the software repository accompanying this paper.

After imputing (Ĉ1, . . . , Ĉn) using Algorithm 1, either the
method of Candès et al. (2023) or Gui et al. (2024) can
be applied by substituting the imputed values Ĉi for the
unobserved Ci. The specific steps for each approach are
detailed in Sections 2.2.4 and 2.2.5, respectively.

We emphasize that, in practice, Algorithm 1 must be ap-
plied using an estimate f̂C|X of fC|X . Nonetheless, as
long as f̂C|X is reasonably accurate, our two-step method
is anticipated to yield approximately valid inferences. This
parallels the expected behavior of the approaches proposed
by Candès et al. (2023) and Gui et al. (2024), which achieve
approximately valid survival LPBs using conformal weights
derived from an estimated censoring model. We will formal-
ize this intuition later in Section 3 by establishing double
robustness results for our method, which are qualitatively
analogous to those derived by Candès et al. (2023) and Gui
et al. (2024) under the simpler type-I censoring scenario.

2.2.4. DR-COSARC WITH FIXED CUTOFFS

We now describe how to implement our method by integrat-
ing Algorithm 1 with the approach of Candès et al. (2023),
originally designed for data with type-I censoring, which
we apply with Ci replaced by Ĉi for all i ∈ [n].

The approach of Candès et al. (2023), outlined by Algo-
rithm A1 in Appendix A1.1, entails three main steps. First,
the focus is shifted from constructing an LPB for Tn+1 to
constructing an LPB for (Tn+1 ∧ c0) := min{Tn+1, c0},
where c0 > 0 is a pre-defined cutoff constant. Second, Dt1-c

is filtered to include only samples where Ci ≥ c0. The
filtered dataset is denoted by Ical = {i ∈ [n] : Ci ≥ c0}.
Third, a standard conformal prediction method for non-
censored data is applied to calibrate an LPB for (Tn+1∧ c0).

In the third step above, the output LPB is obtained by cal-
ibrating a candidate bound denoted as f̂a(Xn+1;M̂surv),
which depends on the survival model M̂surv as well as on
a tunable parameter a. For example, leveraging conformal-
ized quantile regression (CQR) (Romano et al., 2019), one
can use f̂a(x;M̂surv) = q̂α(x;M̂surv)−a, for a ∈ R, where
q̂α(x;M̂surv) is an estimated α-quantile of the conditional
distribution of T | X , given by the model M̂surv.

The main challenge is that the data (Xi, T̃i∧ c0) for i ∈ Ical
are not exchangeable with the test point (Xn+1, Tn+1 ∧ c0)
due to the condition C > c0, which shifts their distribution.
However, Candès et al. (2023) noted that this difference
is a covariate shift, enabling the use of weighted confor-
mal inference (Tibshirani et al., 2019). This adjusts for
the distribution shift by re-weighting the samples based on
an estimate ĉ(x) of the conditional censoring probabilities
c(x) := P [C > c0 | X = x], obtained from M̂cens.

At first sight, it would seem that the method of Gui et al.
(2024) can be directly applied to the imputed dataset
Dimputed output by Algorithm 1. Achieving double robust-
ness, however, requires an additional step. Let L̂′(Xn+1)
denote the survival LPB computed by applying the method
of Gui et al. (2024) to the imputed dataset Dimputed. Instead
of directly outputting L̂′(Xn+1), our method takes the mini-
mum of L̂′(Xn+1) and an uncalibrated estimate q̂α(Xn+1)
of the α-quantile of T | X = Xn+1, provided by the sur-
vival model M̂surv. While this adjustment is important in
theory to ensure the double robustness of our method, it
often has a small impact in practice, as we will show empir-
ically, because it is often true that L̂′(Xn+1) ≤ q̂α(Xn+1).

Algorithm 2 summarizes the main ideas of this implementa-
tion of our method. See Appendix A2.1 and Algorithm A4
therein for further implementation details.

2.2.5. DR-COSARC WITH ADAPTIVE CUTOFFS

A limitation of the method of Candès et al. (2023), inherited
by Algorithm 2, is its sensitivity to the choice of c0. If c0 is
too small or too large, the resulting LPBs tend to be too low
to be informative, with the optimal choice often depending
on the data in a complex manner. While Candès et al. (2023)
provide a heuristic for tuning c0, it is not always guaranteed
that a suitable value of c0 even exists, as noted by Gui et al.
(2024) and confirmed by our numerical experiments.

To address this, Gui et al. (2024) extended the approach of
Candès et al. (2023) by allowing c0 to vary across individu-
als based on their features X . Their approach can also use
quantile regression (Romano et al., 2019) to compute can-
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Algorithm 2 DR-COSARC with Fixed Cutoffs

input Pre-trained censoring model M̂cens,
pre-trained survival model M̂surv,
right-censored data Dr-c = {(Xi, T̃i, Ei)}ni=1,
significance level α ∈ (0, 1), test covariates Xn+1,
fixed threshold c0 > 0.

1: Impute (Ĉ1, . . . , Ĉn) using M̂cens (Algorithm 1).
2: Assemble Dimputed := {(Xi, T̃i, Ĉi)}ni=1.
3: Compute an estimate ĉ(x) of c(x), using M̂cens.
4: Apply Algorithm A1 (Appendix A1.1) using Dimputed,

obtaining a preliminary LPB L̂′(Xn+1).
5: Using M̂surv, compute an estimate q̂α(x) of the α-

quantile of the distribution of T | X = x.
6: Compute L̂(Xn+1) = min{L̂′(Xn+1), q̂α(Xn+1)}.

output A 1− α survival LPB L̂(Xn+1).

didate LPBs in the form f̂a(x;M̂surv) = q̂α(x;M̂surv)− a,
for a ∈ R, where q̂α(x;M̂surv) represents an estimate of the
true conditional α-quantile of the distribution of T | X , al-
though this is not the only choice. Their method, described
in Algorithm A2 in Appendix A1.2, often leads to much
more informative LPBs.

Integrating Algorithm 1 with the approach of Gui et al.
(2024) leads to the implementation of our method described
by Algorithm 3, which often produces more informative
LPBs compared to Algorithm 2. See Appendix A2.2 and
Algorithm A5 therein for further implementation details.

Algorithm 3 DR-COSARC with Adaptive Cutoffs

input Pre-trained censoring model M̂cens,
pre-trained survival model M̂surv,
right-censored data Dr-c = {(Xi, T̃i, Ei)}ni=1,
significance level α ∈ (0, 1), test covariates Xn+1.

1: Impute (Ĉ1, . . . , Ĉn) using Algorithm 1.
2: Assemble Dimputed := {(Xi, T̃i, Ĉi)}ni=1.
3: Apply Algorithm A2 (Appendix A1.2) using Dimputed,

obtaining a preliminary LPB L̂′(Xn+1).
4: Using M̂surv, compute an estimate q̂α(x) of the α-

quantile of the distribution of T | X = x.
5: Compute L̂(Xn+1) = min{L̂′(Xn+1), q̂α(Xn+1)}.

output A 1− α survival LPB L̂(Xn+1).

3. Double Robustness
Although it operates on right-censored data, DR-COSARC
is asymptotically doubly robust as the training and calibra-
tion samples grow, akin to the methods of Candès et al.
(2023) and Gui et al. (2024) under type-I censoring.

While we focus on the asymptotic regime here, Ap-
pendix A5 also provides finite-sample coverage bounds for
both the fixed- and adaptive-cutoff implementations of our

method. Those bounds are valuable in theory to prove the
asymptotic double robustness, but they are too loose to be
practically useful on their own. Nonetheless, despite the
difficulty of finite-sample analyses for this problem, DR-
COSARC performs quite well empirically, especially in its
adaptive-cutoff implementation, as shown in Section 4.

3.1. Double Robustness with Fixed Cutoffs

We begin by studying Algorithm 2. For concreteness, we fo-
cus on the implementation detailed by Algorithm A4, which
uses quantile regression (Romano et al., 2019) to compute
candidate LPBs in the form f̂a(x;M̂surv) = q̂α(x;M̂surv)−
a, for a ∈ R, where q̂α(x;M̂surv) represents an estimate of
qα(x), the true conditional α-quantile of the distribution of
T | X , provided by the pre-trained survival model M̂surv.

Recall that Dtrain denotes the independent training dataset,
with size N = |Dtrain|, used to train M̂surv and M̂cens. To
establish double robustness, we assume that at least one of
these models consistently estimates the relevant quantities.
Assumption 3.1. The following two limits hold:

lim
N→∞

E
[∣∣∣∣ 1

ĉ(X)
− 1

c(X)

∣∣∣∣] = 0,

lim
N→∞
n→∞

n · E

[∫ ∞

T̃

∣∣∣∣∣fC|X(c | X)

A(X, T̃ )
−
f̂C|X(c | X)

Â(X, T̃ )

∣∣∣∣∣ dc
]
= 0.

Assumption 3.1 requires that, with increasing training data,
the censoring model M̂cens consistently estimates the two
closely related relevant quantities: the conditional censor-
ing probabilities c(x) used in the approach of Candès et al.
(2023), and the conditional censoring density fC|X(c | x)
used in Algorithm 1. Importantly, f̂C|X(c | x) must con-
verge to fC|X(c | x) at a rate faster than the growth of the
calibration sample size n, suggesting that a larger portion
of the available data should be allocated for training.
Assumption 3.2. The following two conditions hold:

(i) There exists a constant b > 0 such that, for any ϵ > 0,
P [T ≥ qα(x) + ϵ | X = x] ≥ 1−α−bϵ almost surely
with respect to PX .

(ii) limN→∞ E [|q̂α(X)− qα(X)|] = 0.

Assumption 3.2 requires that the survival model M̂surv

consistently estimates qα(x), the conditional α-quantile of
T | X , while also assuming that the true distribution of
T | X satisfies a relatively mild smoothness condition.
Theorem 3.3. Under Assumption 2.1, if either Assump-
tion 3.1 or Assumption 3.2 holds, the survival LPB L̂(Xn+1)
produced by Algorithm 2, implemented as detailed Ap-
pendix A2.1, has asymptotically valid marginal coverage:

lim
N→∞,n→∞

P
[
Tn+1 ≥ L̂(Xn+1)

]
≥ 1− α.
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Further, under Assumption 3.2, it also has approximate
conditional coverage, in the sense that, for any ϵ > 0,

lim
N→∞

P
[
P
[
Tn+1 ≥ L̂(Xn+1) | Xn+1

]
> 1− α− ϵ

]
= 1.

3.2. Double Robustness with Adaptive Cutoffs

We study Algorithm 3, focusing for concreteness on the
specific implementation detailed in Appendix A2.2.

Now, Assumption 3.1 is replaced by Assumption 3.4, which
is similar. Its first limit says that the function ĉa should be
an accurate estimate (up to a scaling constant) of ca, since
in that case (ca(x)/ĉa(x))/E [ca(X)/ĉa(X)] ≈ 1 for all x.

Assumption 3.4. The following two limits hold:

lim
N→∞

sup
a∈[0,1]

E
[∣∣∣∣ca(Xn+1)/ĉa(Xn+1)

E [ca(X)/ĉa(X)]
− 1

∣∣∣∣] = 0,

lim
N→∞
n→∞

n · E

[∫ ∞

T̃

∣∣∣∣∣fC|X(c | X)

A(X, T̃ )
−
f̂C|X(c | X)

Â(X, T̃ )

∣∣∣∣∣ dc
]
= 0.

Further, some mild technical conditions are needed.

Assumption 3.5. The function f̂a(x) used to compute can-
didate bounds by the approach of Gui et al. (2024) in Algo-
rithm 3 (see Algorithm A5 for details), is continuous in a for
PX -almost all x. Further, for any a, there exists a constant
γ̂a > 0 such that 1/ĉa(x) ≤ γ̂a for PX -almost all x.

Then, we can prove Algorithm 3 is also doubly robust.

Theorem 3.6. Under Assumptions 2.1 and 3.5, if either
Assumption 3.4 or Assumption 3.2 holds, the LPB L̂(Xn+1)
produced by Algorithm 3, implemented as detailed in Ap-
pendix A2.2, has asymptotically valid marginal coverage:

lim
N→∞,n→∞

P
[
Tn+1 ≥ L̂(Xn+1)

]
≥ 1− α.

Further, under Assumption 3.2, it also has approximate
conditional coverage, in the sense that, for any ϵ > 0,

lim
N→∞

P
[
P
[
Tn+1 ≥ L̂(Xn+1) | Xn+1

]
> 1− α− ϵ

]
= 1.

Next, we will verify that the empirical behavior of our
method mirrors this appealing theoretical property.

4. Numerical Experiments
4.1. Setup

Synthetic data. We consider three data-generating distri-
butions, summarized in Table A1 (Appendix A3.1), which
span a range of interesting settings, partly inspired by related
previous works. In each setting, p = 100 covariates X =

(X1, . . . , Xp) are generated independently, while T and C
are sampled independently conditional on X , from a log-
normal distribution—log T | X ∼ N (µ(X), σ(X))—or an
exponential distribution—C | X ∼ Exp(λ(X)).

The three settings are ordered by decreasing difficulty. The
first two simulate challenging scenarios where accurate sur-
vival modeling is difficult, emphasizing the importance of
conformal inference. In contrast, the third setting facili-
tates easier survival model fitting, where raw LPBs from the
model already provide approximately valid coverage.

Design and Performance Metrics. We generate indepen-
dent training, calibration, and test datasets, each with 1000
samples. Right-censoring is simulated by replacing the true
T and C with T̃ = min(T,C) and E = I(T ≤ C). The
censored data are used to fit survival and censoring models,
as specified below. Using these models and the calibration
data, we compute 90% survival LPBs for the test set. Perfor-
mance is evaluated by the average proportion of test points
where the true survival time exceeds the LPB (targeting
90%) and the average LPB value, with larger values indi-
cating more informative LPBs. To standardize comparisons
across distributions, all LPBs are normalized by dividing by
the average oracle lower bound in each setting. All experi-
ments are repeated 100 times, and results are averaged.

Models. We consider four model families for M̂cens and
M̂surv, ensuring consistent comparisons across different cal-
ibration methods. The models are as follows: (1) grf, a
generalized random forest (R package grf); (2) survreg, an
accelerated failure time model (AFT) with a lognormal dis-
tribution (R package survival); (3) rf, a generalized ran-
dom forest (R package randomForestSRC); (4) cox, the
Cox proportional hazards model (R package survival).

Calibration Methods. We compare six methods. Ora-
cle is an idealized “method” that knows PT |X and directly
returns the lower 10% quantile, without using the data. Un-
calibrated outputs the raw 90% LPB produced by M̂surv

without any calibration. Naive CQR applies CQR using
T̃n+1 = Tn+1 ∧ Cn+1 as the target of inference instead of
Tn+1, typically leading to very small LPBs (Candès et al.,
2023). KM Decensoring refers to the method of Qi et al.
(2024), reviewed in Appendix A1.3. DR-COSARC (fixed)
and DR-COSARC (adaptive) are our methods, implemented
as detailed in Appendix A2.1 and A2.2, respectively.

To simplify comparisons, all calibration methods are applied
using the same survival model. While the Uncalibrated ap-
proach could, in principle, benefit from a survival model
trained on a larger dataset, doing so would complicate com-
parisons and does not affect our main conclusions. As
shown in Appendix A3, increasing the training sample size
does not resolve the reliability issues of the Uncalibrated
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method in the challenging settings where this approach fails.

Leveraging Prior Knowledge on PC|X . To examine the
effect of incorporating prior knowledge about the censor-
ing distribution, we fit M̂cens using only the first p1 ≤ p
covariates, assuming C is independent of (Xp1+1, . . . , Xp)
given (X1, . . . , Xp1). In the data-generating distributions
used in these experiments (Table A1), C | X is inde-
pendent of X11, . . . , X100 in all settings. Therefore, for
10 ≤ p1 ≤ p = 100, this prior knowledge helps improve
the censoring model by excluding irrelevant predictors and
mitigating overfitting. We start with p1 = 10 and later evalu-
ate the impact of larger p1, representing weaker prior knowl-
edge. The case p1 = p corresponds to no prior knowledge,
where all covariates are used to fit the censoring model.

4.2. Results

Figure 1 compares the performance of the six methods in
settings 1–3, based on the grf models.

In the first setting, the Uncalibrated method leads to under-
coverage. KM Decensoring provides no improvement in
this case, as the Kaplan-Meier survival curve it uses to
impute T | T > C fails to reasonably approximate the true
distribution of T | T > C,X . In contrast, DR-COSARC
achieves coverage close to the desired 90% level. However,
its coverage is still slightly below the target, and the average
value of its lower bounds is noticeably lower than that of the
oracle, reflecting the high intrinsic difficulty of this setting.

In the second setting, the Uncalibrated method continues
to be invalid, as does KM Decensoring. However, DR-
COSARC performs well, achieving 90% coverage and pro-
viding relatively high (more informative) LPBs, approach-
ing the oracle’s performance. This success is due to its
ability to model the censoring distribution accurately.

In the third setting, all methods except Naive CQR perform
similarly. In this simpler scenario, M̂surv is highly accurate,
making conformal calibration less necessary.

4.3. Impact of the Censoring Model Quality

Figure 2 presents results from experiments similar to those
in Figure 1, using only a subset of the available 1000 train-
ing samples to fit the censoring model. The aim is to ex-
amine how the quality of the censoring model affects the
performance of our method, specifically in the challenging
setting 1. The results indicate that when the censoring model
is trained using fewer samples—leading to lower-quality
imputation—our method fails to provide valid coverage,
performing comparably to the approach of Qi et al. (2024).
However, as the number of training samples increases and
the quality of the censoring model improves, the coverage
of our method approaches the desired 90% level, consistent

with its double robustness property. When the censoring
model is trained with all 1000 available samples, the cov-
erage reaches the target level, and the experimental setup
aligns with that of Figure 1.

4.4. Additional Experiments

Appendix A3.2 presents the results of additional experi-
ments examining the impact of varying the number of train-
ing samples for the censoring model, similar to Figure 2 but
under the relatively easier settings 2 and 3. In those settings,
our method consistently achieves valid coverage, and the
performance of its predictions appears largely unaffected by
the number of training samples for the censoring model.

Appendix A3.3 summarizes the results of experiments sim-
ilar to those in Figure 2, but with both the survival and
censoring models fitted using a varying number of train-
ing samples. These results show that our method tends to
achieve valid coverage as the sample size increases, even
when other approaches either continue to underperform in
terms of coverage or produce overly conservative inferences.

Appendix A3.4 investigates the effect of varying numbers
of covariates used to fit the censoring model. The results
show that our method performs better when the number
of covariates used in the censoring model is not too large,
highlighting the advantage of leveraging accurate prior in-
formation to prevent overfitting.

Appendix A3.5 examines the effect of the calibration sample
size. The results indicate that the average performance of all
methods is generally not heavily influenced by the number
of calibration samples, although larger calibration sizes do
tend to reduce variability.

Appendix A3.6 shows empirically that the double robustness
adjustment in Algorithms 2 and 3 often has a small effect in
practice.

Appendix A3.7 studies the algorithmic stability of our
method with respect to the randomness in the imputation
of latent censoring times. The results show the adaptive
version of our method is more stable than the fixed-cutoff
variant, with stability improving as the calibration set grows.

Appendix A3.8 examines the effect of using different sur-
vival and censoring models. These results show our method
performs robustly across different survival and censoring
models, except for the Cox model, which struggles with
complex censoring patterns in the most challenging cases.

Appendix A3.9 presents the results of additional experi-
ments conducted under different synthetic data settings, bor-
rowed from Candès et al. (2023) and Gui et al. (2024). These
experiments yield similar findings. A complete list of all 10
settings considered is provided in Table A2.
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Figure 1. Performance on synthetic data under three different settings of our method for constructing lower confidence bounds on the true
survival time of a new individual based on right-censored data, compared to existing benchmark approaches. Performance is measured
by empirical coverage, aiming for 90% nominal coverage (dashed red line), and the average value of the lower bound (higher is better,
provided the coverage is valid). The number of training samples available to fit the survival and censoring models is 1000. The three
settings correspond to situations in which fitting an accurate survival model is increasingly easy, with rigorous conformal calibration
being most essential in setting 1 and less crucial in setting 3.
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Figure 2. Performance on synthetic data of our method as a func-
tion of the number of training samples used to fit the censoring
model, compared to other benchmark approaches. The number of
training samples available to fit the survival model is fixed equal
to 1000. These experiments are conducted under setting 1, where
fitting an accurate survival model is most difficult. The results
demonstrate the double robustness property of our method, which
requires only one of the survival or censoring models to be accurate
in order to achieve valid coverage. Other details are as in Figure 1.

5. Application to Real Data
We apply our method to seven publicly available datasets:
VALCT, PBC, GBSG, METABRIC, COLON, HEART, and
RETINOPATHY. These datasets cover a range of study

designs and sizes; Table A3 in Appendix A4 provides details
on the number of observations, covariates, and data sources.

We apply standard preprocessing to each dataset to handle
outliers, missing values, and ensure compatibility with all
learning algorithms. Zero survival times are replaced with
half the smallest non-zero time in the dataset, missing values
are imputed using the median for numeric variables and the
mode for categorical variables, and rare factor levels are
merged into an “other” category or removed for binary fac-
tors. Features with high pairwise correlations are iteratively
filtered, and linearly redundant variables are removed. See
Appendix A4 for additional details about preprocessing.

We compare our method against the same three benchmark
approaches considered in Section 4: Uncalibrated, Naive
CQR, and KM Decensoring. Because the ground truth data
distribution is unknown for these data, the Oracle method
cannot be included. Additionally, as the experiments in Sec-
tion 4 demonstrate that the adaptive-cutoff implementation
of our method consistently outperforms the fixed-cutoff im-
plementation, we focus solely on the adaptive version here,
referring to it simply as DR-COSARC for clarity.

All methods use the same four types of model as in Section 4
to estimate the survival distribution (grf, survreg, rf, and
cox), with the censoring distribution always estimated using
grf. The datasets are split into 60% for training, 20% for
calibration, and 20% for testing, and each experiment is
repeated 100 times using independent random splits.
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We evaluate the performance of the survival LPBs pro-
duced by each method on the test set in terms of esti-
mated average coverage (targeting the nominal 1− α level)
and average LPB value (higher is better). Since the test
data are censored, the true survival times for censored
individuals are unobserved, making exact coverage eval-
uation infeasible. Following the approach of Gui et al.
(2024), we estimate empirical lower and upper bounds for
the average coverage: β̂low = P̂[L̂(Xn+1) ≤ T̃n+1] and
β̂upp = 1 − P̂[L̂(Xn+1) > T̃n+1, Tn+1 ≤ Cn+1]. These
bounds satisfy β̂low ≤ P̂[L̂(Xn+1) ≤ Tn+1] ≤ β̂upp. To
simplify comparisons, we also report a point estimate of the
coverage, defined as the midpoint β̂mid = (β̂low + β̂upp)/2.
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Figure 3. Distribution of average (estimated) coverage of survival
LPBs computed by different methods, across seven real datasets
and four survival models. The nominal coverage level is 90%.

Figure 3 summarizes the distribution of average estimated
coverage across the seven datasets and four models, at level
α = 0.1, with Tables A4–A7 in Appendix A4 reporting
the detailed results obtained in each setting. Figure A18
in Appendix A4 summarizes similar results obtained using
different values of α. Overall, the results indicate that Uncal-
ibrated and KM Decensoring tend to achieve slightly lower-
than-expected coverage, while Naive CQR is overly con-
servative. In contrast, DR-COSARC consistently achieves
average coverage closer to the desired level.

These findings align with the results on synthetic data pre-
sented in Section 4. The relatively modest undercoverage
observed with Uncalibrated and KM Decensoring in Fig-
ure 3 reflects the comparatively simpler nature of these
datasets, where the survival model seems reasonably well
calibrated even without conformal inference, in contrast to
the more challenging synthetic scenarios discussed earlier.
Of course, in practice one would typically not know whether
the fitted survival model is sufficiently accurate, and our con-
formal inference method is precisely designed to offer an
additional layer of protection in those cases.

6. Discussion
This paper introduces a novel conformal inference method
for constructing lower prediction bounds (LPBs) for survival
times from right-censored data, extending recent methods
designed for type-I censoring. The proposed approach is
asymptotically doubly robust in theory and demonstrates
strong empirical performance, producing LPBs that are both
informative and robust compared to alternative methods.

Our numerical experiments revealed two key insights. First,
the adaptive implementation of our method, inspired by Gui
et al. (2024), significantly outperforms the fixed-cutoff ver-
sion (Candès et al., 2023), and we recommend its use in prac-
tice. Second, real data experiments showed that uncalibrated
survival models often produce reasonably well-calibrated
raw LPBs, though they may fail in more complex scenarios.
Our method performs relatively well in these challenging
cases, where conformal inference is most critical.

A limitation of our method is its focus on lower prediction
bounds, similar to Candès et al. (2023) and Gui et al. (2024).
However, Holmes & Marandon (2024) very recently pro-
posed a method for constructing also corresponding upper
bounds, suggesting opportunities for combining these ap-
proaches. Another promising direction for future work is to
extend our method to handle possible data errors, such as in-
accuracies in observed times or mislabeled events, building
on ideas from Sesia et al. (2024).

Finally, future work could explore strategies to reduce the
algorithmic variability of our method, which arises from
both random data splitting and stochastic imputation of
latent censoring times. Potential directions include the use
of e-values (Vovk & Wang, 2021; Bashari et al., 2023) or
adopting a full-conformal approach (Vovk et al., 2005).

Software Availability
A software implementation of the methods described in
this paper is available online at https://github.com/
msesia/conformal_survival.

Acknowledgements
The authors thank the anonymous referees for their helpful
comments on an earlier version of this manuscript.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

9

https://github.com/msesia/conformal_survival
https://github.com/msesia/conformal_survival


Doubly Robust Conformalized Survival Analysis with Right-Censored Data

References
Bang, H. and Robins, J. M. Doubly robust estimation in

missing data and causal inference models. Biometrics, 61
(4):962–973, 2005.

Barber, R. F., Candès, E. J., Ramdas, A., and Tibshirani,
R. J. Conformal prediction beyond exchangeability. The
Annals of Statistics, 51(2):816–845, 2023.

Bashari, M., Epstein, A., Romano, Y., and Sesia, M. De-
randomized novelty detection with FDR control via con-
formal e-values. In Advances in Neural Information Pro-
cessing Systems, volume 36, pp. 65585–65596, 2023.

Blair, A., Hadden, D., Weaver, J., Archer, D., Johnston,
P., and Maguire, C. The 5-year prognosis for vision in
diabetes. The Ulster Medical Journal, 49(2):139, 1980.

Candès, E., Lei, L., and Ren, Z. Conformalized survival
analysis. J. R. Stat. Soc. Ser. B, 85(1):24–45, 2023.

Cauchois, M., Gupta, S., Ali, A., and Duchi, J. C. Predictive
inference with weak supervision. Journal of Machine
Learning Research, 25(118):1–45, 2024.

Clarkson, J., Xu, W., Cucuringu, M., and Reinert, G. Split
conformal prediction under data contamination. In Con-
formal and Probabilistic Prediction with Applications,
volume 230, pp. 5–27. PMLR, 2024.

Cox, D. R. Regression models and life-tables. J. R. Stat.
Soc. Ser. B, 34(2):187–202, 1972.

Crowley, J. and Hu, M. Covariance analysis of heart trans-
plant survival data. Journal of the American Statistical
Association, 72(357):27–36, 1977.

Curtis, C., Shah, S. P., Chin, S.-F., Turashvili, G., Rueda,
O. M., Dunning, M. J., Speed, D., Lynch, A. G., Samara-
jiwa, S., Yuan, Y., et al. The genomic and transcriptomic
architecture of 2,000 breast tumours reveals novel sub-
groups. Nature, 486(7403):346–352, 2012.

Feldman, S., Einbinder, B.-S., Bates, S., Angelopoulos,
A. N., Gendler, A., and Romano, Y. Conformal prediction
is robust to dispersive label noise. In Conformal and
Probabilistic Prediction with Applications, pp. 624–626.
PMLR, 2023.

Gui, Y., Hore, R., Ren, Z., and Barber, R. F. Conformalized
survival analysis with adaptive cut-offs. Biometrika, 111
(2):459–477, 2024.

Holmes, C. and Marandon, A. Two-sided conformalized
survival analysis. arXiv preprint arXiv:2410.24136, 2024.

Ishwaran, H., Kogalur, U. B., Blackstone, E. H., and Lauer,
M. S. Random survival forests. The Annals of Applied
Statistics, 2(3):841 – 860, 2008.

Kalbfleisch, J. D. and Prentice, R. L. The statistical analysis
of failure time data. John Wiley & Sons, 2002.

Katzman, J. L., Shaham, U., Cloninger, A., Bates, J., Jiang,
T., and Kluger, Y. Deepsurv: personalized treatment
recommender system using a Cox proportional hazards
deep neural network. BMC Med. Res. Methodol., 18:
1–12, 2018.

Lei, J. and Wasserman, L. Distribution-free prediction bands
for non-parametric regression. J. R. Stat. Soc. Ser. B, 76
(1):71–96, 2014.

Lei, L. and Candès, E. J. Conformal inference of counter-
factuals and individual treatment effects. J. R. Stat. Soc.
Ser. B, 83(5):911–938, 2021.

Moertel, C. G., Fleming, T. R., Macdonald, J. S., Haller,
D. G., Laurie, J. A., Goodman, P. J., Ungerleider, J. S.,
Emerson, W. A., Tormey, D. C., Glick, J. H., et al. Lev-
amisole and fluorouracil for adjuvant therapy of resected
colon carcinoma. New England Journal of Medicine, 322
(6):352–358, 1990.

Qi, S.-A., Yu, Y., and Greiner, R. Conformalized survival
distributions: A generic post-process to increase calibra-
tion. In Proceedings of the 41st International Conference
on Machine Learning, volume 235, pp. 41303–41339.
PMLR, 2024.

Romano, Y., Patterson, E., and Candès, E. Conformalized
quantile regression. Advances in neural information pro-
cessing systems, 32, 2019.

Sesia, M., Wang, Y. R., and Tong, X. Adaptive conformal
classification with noisy labels. J. R. Stat. Soc. Ser. B, pp.
qkae114, 2024.

Therneau, T. M., Grambsch, P. M., Therneau, T. M., and
Grambsch, P. M. The Cox model. Springer, 2000.

Tibshirani, R. J., Foygel Barber, R., Candès, E., and Ramdas,
A. Conformal prediction under covariate shift. Advances
in neural information processing systems, 32, 2019.

Vovk, V. and Wang, R. E-values: Calibration, combination
and applications. The Annals of Statistics, 49(3):1736–
1754, 2021.

Vovk, V., Gammerman, A., and Shafer, G. Algorithmic
learning in a random world, volume 29. Springer, 2005.

Zaffran, M., Dieuleveut, A., Josse, J., and Romano, Y. Con-
formal prediction with missing values. In Proceedings
of the 40th International Conference on Machine Learn-
ing, volume 202 of Proceedings of Machine Learning
Research, pp. 40578–40604. PMLR, 23–29 Jul 2023.

10



Doubly Robust Conformalized Survival Analysis with Right-Censored Data

A1. Review of Existing Conformal Inference Methods
A1.1. Conformalized Survival Analysis for Type-I Censored Data (fixed)

Algorithm A1 outlines the conformalized survival analysis method proposed by Candès et al. (2023), designed for data
subject to type-I censoring. The method requires several key inputs in addition to the censored calibration data: (1) a
pre-trained survival model that approximates the conditional distribution of T | X; (2) a sequence of functions used to
compute candidate survival lower bounds; (3) a pre-trained censoring model that approximates the conditional distribution
of C | X and is utilized to compute the necessary weights to account for covariate shift (Tibshirani et al., 2019); and (4) a
fixed threshold c0 > 0 for the censoring times. These inputs are typically trained on a separate dataset, independent of the
calibration data (Candès et al., 2023).

Algorithm A1 Conformalized Survival Analysis with Fixed Cutoff (Candès et al., 2023)

Require: Pre-trained survival model M̂surv, sequence of functions {f̂a(x;M̂surv)}a∈[0,1] to compute candidate survival
lower bounds, pre-trained censoring model M̂cens, fixed cutoff c0 > 0, calibration data with type-I censoring
{(Xi, T̃i, Ci)}ni=1, significance level α ∈ (0, 1), test covariates Xn+1.

1: Define the filtered calibration subset I ′
cal = {i ∈ {1, . . . , n} : Ci ≥ c0}.

2: for each i ∈ I ′
cal do

3: Compute the conformity score:
Vi = inf{a ∈ A : f̂a(Xi) ≤ T̃i ∧ c0}.

4: end for
5: Define the function ŵ(x), estimating 1/c(x) := 1/P(C ≥ c0 | X = x) using M̂cens, ∀x.
6: For each i ∈ I ′

cal, compute the weight Wi = ŵ(Xi) ∈ [0,∞).
7: Compute the weights for Xn+1:

p̂i(Xn+1) =
Wi∑

j∈I′
cal
Wj + ŵ(Xn+1)

, p̂∞(Xn+1) =
ŵ(Xn+1)∑

j∈I′
cal
Wj + ŵ(Xn+1)

.

8: Compute:

η(Xn+1) = Quantile

1− α;
∑
i∈I′

cal

p̂i(Xn+1)δVi + p̂∞(Xn+1)δ∞

 .

9: Output the calibrated 1− α lower prediction bound:

L̂(Xn+1) = f̂η(Xn+1)(Xn+1) ∧ c0.

Implementation Details. While Algorithm A1 is quite flexible, allowing the candidate survival lower bounds to be
computed using any set of functions f̂a(x;M̂surv) indexed by a real-valued calibration parameter a ∈ A ⊆ R, in practice, we
adopt one of the simpler implementations proposed by Candès et al. (2023). This approach is inspired by the conformalized
quantile regression method of Romano et al. (2019) and defines f̂a(x;M̂surv) = q̂α(x;M̂surv) − a, for A = R, where
q̂α(x;M̂surv) represents the estimated α-quantile of the conditional distribution of T | X , given by the survival model
M̂surv. In this case, the conformity scores are simply given by Vi = q̂α(Xi)− (T̃i ∧ c0), and the output prediction lower
bound is L̂(Xn+1) = (q̂α(Xn+1)− η(Xn+1)) ∧ c0.

Data-Driven Tuning of c0. Candès et al. (2023) proposed an algorithm for tuning the cutoff parameter c0 adaptively,
using the training data set. In this paper, we apply their method using a simpler approach for tuning c0, which we always set
equal to the median of the observed censoring times. We found this approach to be relatively more stable in practice.
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A1.2. Conformalized Survival Analysis for Type-I Censored Data (adaptive)

Algorithm A2 presents the conformalized survival analysis method proposed by Gui et al. (2024), a follow-up to the work of
Candès et al. (2023). The goal of this more recent approach is to enhance the adaptability of conformal survival analysis for
data subject to type-I censoring by incorporating a more flexible, covariate-dependent threshold for the censoring times. As
demonstrated in Gui et al. (2024) and corroborated by our numerical experiments, the adaptive strategy of Algorithm A2
often leads to more informative lower prediction bounds compared to the original method proposed by Candès et al. (2023).

Similar to Algorithm A1, this method requires the following inputs in addition to the censored calibration data: (1) a
pre-trained survival model that estimates the conditional distribution of T | X; (2) a sequence of functions used to compute
candidate survival lower bounds; and (3) a pre-trained censoring model that approximates the conditional distribution of
C | X , which is used to compute weights for adjusting to covariate shift (Tibshirani et al., 2019). These models are typically
trained on a separate dataset, independent of the calibration data (Candès et al., 2023). Unlike Algorithm A1, however,
Algorithm A2 does not require the specification of a fixed censoring threshold c0 > 0, and this is its main advantage.

Algorithm A2 Conformalized Survival Analysis with Adaptive Cutoffs (Gui et al., 2024)

Require: Pre-trained survival model M̂surv, sequence of functions {f̂a(x;M̂surv)}a∈[0,1] to compute candidate survival
lower bounds, pre-trained censoring model M̂cens, calibration data with type-I censoring {(Xi, T̃i, Ci)}ni=1, significance
level α ∈ (0, 1), test covariates Xn+1.

1: Define the function ŵa(x), estimating 1/ca(x) := 1/P(C ≥ f̂a(x) | X = x) using M̂cens, ∀a, x.
2: Determine A using the computational shortcut from Gui et al. (2024), as detailed in Equation (A6).
3: for each a ∈ A do
4: Compute the estimated miscoverage rate:

α̂(a) =

∑n
i=1 ŵa(Xi)I{T̃i < f̂a(Xi) ≤ Ci}∑n

i=1 ŵa(Xi)I{f̂a(Xi) ≤ Ci}
.

5: end for
6: Compute the threshold:

â = sup{a ∈ A : sup
a′≤a,a′∈A

α̂(a′) ≤ α}. (A5)

7: Output the calibrated 1− α lower prediction bound:

L̂(Xn+1) = f̂â(Xn+1).

Computational shortcut. In general, the threshold â in (A5) can be computed efficiently using the following shortcut,
originally described in Gui et al. (2024), which can also be utilized to implement our Algorithm A5 efficiently. Note that
supa′≤a α̂(a

′) is a non-decreasing piecewise constant function in a, with no more than 2n knots—values of a at which
the indicators I{Ti < f̂a(Xi) ≤ Ci} or I{f̂a(Xi) ≤ Ci} change signs. Denote āi = supa∈[0,1] I{f̂a(Xi) ≤ T̃i} and
ãi = supa∈[0,1] I{f̂a(Xi) ≤ Ci}, and let A1 = {āi : i = 1, . . . , n} and A2 = {ãi : i = 1, . . . , n}. Then, by definition, the
breakpoints of the piecewise constant map a 7→ α̂(a) must all lie in A1 ∪ A2. Therefore, to compute â, we only need to
search through the finite grids

A = A1 ∪ A2 ∪ {0}. (A6)

Implementation Details. Similar to Algorithm A1, Algorithm A2 is quite flexible, allowing the candidate survival
lower bounds to be computed using any set of functions f̂a(x;M̂surv) indexed by a continous calibration parameter
a ∈ [0, 1]. In this paper, we adopt one of the simpler implementations proposed by Gui et al. (2024). This approach defines
f̂a(x;M̂surv) = q̂a(x;M̂surv), for A = [0, 1], where q̂a(x;M̂surv) represents the estimated a-quantile of the conditional
distribution of T | X , given by the survival model M̂surv.
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A1.3. Conformalized Survival Analysis via KM Decensoring

Algorithm A3 presents the conformalized survival analysis method proposed by Qi et al. (2024), which, similar to our paper,
focuses on the analysis of data subject to right censoring.

This approach uses the Kaplan–Meier estimate to impute the latent survival times, and is thus very different from our
method, which imputes the latent censoring times.

Algorithm A3 Conformalized Survival Analysis via KM Decensoring (Qi et al., 2024)

Require: Level α, calibration data Dcal = {(Xi, T̃i, Ci)}ni=1, test features x, functions V (x, y;D) (conformity score),
ŵ(x;D) (weight function), C(D) (threshold selector), right-censored calibration data {(Xi, T̃i, Ei)}ni=1.

1: Phase 1: Imputation of Latent Event Times via KM Sampling
2: Compute the Kaplan-Meier (KM) survival function:

SKM(t) =
∏

i:t̃i≤t

(
1− di

ni

)
,

based on {(T̃i, Ei)}ni=1.
3: for i = 1 to n do
4: if Ei = 0 then
5: Define the conditional KM survival function:

SKM(t | t > Ci) = min

{
SKM(t)

SKM(Ci)
, 1

}
.

6: Set T ′
i equal to a random sample generated with density:

SKM(t | t > Ci)I{t > Ci}.

7: else
8: Set T ′

i = T̃i.
9: end if

10: end for
11: Phase 2: Conformal Prediction with De-Censored Data
12: for i = 1 to n do
13: Compute the conformity score Vi = V (Xi, T

′
i ).

14: end for
15: Compute:

η(x) = Quantile

(
1− α;

n∑
i=1

1

n+ 1
δVi

+
1

n+ 1
δ∞

)
.

16: Compute the lower prediction bound:

L̂(x;Dcal) = inf{y : V (x, y) ≤ η(x)}.

17: Output the calibrated lower prediction bound:
L̂(Xn+1;Dcal).
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A2. Additional Methodological Details
A2.1. DR-COSARC with Fixed Cutoffs

Algorithm A4 provides further details on the implementation of our method sketched by Algorithm 2, which integrates
Algorithm 1 with Algorithm A1 in Appendix A1.1, the approach of Candès et al. (2023) for conformalized survival analysis
under type-I censoring.

Algorithm A4 DR-COSARC with Fixed Cutoffs (detailed implementation)

Require: Pre-trained survival model M̂surv, sequence of functions {f̂a(x;M̂surv)}a∈A to compute candidate survival lower
bounds, pre-trained censoring model M̂cens, right-censored calibration data {(Xi, T̃i, Ei)}ni=1, fixed threshold c0 > 0,
significance level α ∈ (0, 1), test covariates Xn+1.

1: Phase 1: Imputation of Latent Censoring Times
2: Generate (C ′

1, . . . , C
′
n) using Algorithm 1, and define D̃cal = {(Xi, T̃i, C

′
i)}ni=1.

3: Phase 2: Conformal Calibration
4: Define the filtered calibration subset Ical = {i ∈ {1, . . . , n} : C ′

i ≥ c0}.
5: for each i ∈ Ical do
6: Compute the conformity score Vi = inf{a ∈ A : f̂a(Xi) ≤ T̃i ∧ c0}.
7: Compute the weight Wi = ŵ(Xi), where ŵ(x) estimates 1/c(x) := 1/P(C ≥ c0 | X = x) using M̂cens.
8: end for
9: For each i ∈ Ical, compute the weights:

p̂i(Xn+1) =
Wi∑

j∈Ical
Wj + ŵ(Xn+1)

, p̂∞(Xn+1) =
ŵ(Xn+1)∑

j∈Ical
Wj + ŵ(Xn+1)

.

10: Compute:

η(Xn+1) = Quantile

(
1− α;

∑
i∈Ical

p̂i(Xn+1)δVi
+ p̂∞(Xn+1)δ∞

)
.

11: Compute L̂′(Xn+1; D̃cal) = f̂η(Xn+1)(Xn+1) ∧ c0.
12: Phase 3: Adjustment for Double Robustness
13: Extract the function q̂α(x) from M̂surv, an uncalibrated estimate of the α-quantile of T | X = x.
14: Adjust the lower prediction bound:

L̂(Xn+1) = min{L̂′(Xn+1; D̃cal), q̂α(Xn+1)}.

15: Output: A calibrated 1− α lower prediction bound L̂(Xn+1).

Implementation details for Algorithm A4. While Algorithm A4 is quite flexible, allowing the candidate survival lower
bounds to be computed using any set of functions f̂a(x;M̂surv) indexed by a real-valued calibration parameter a ∈ A ⊆ R,
in practice, we adopt one of the simpler implementations proposed by Candès et al. (2023). This approach is inspired by
the conformalized quantile regression method of Romano et al. (2019) and defines f̂a(x;M̂surv) = q̂α(x;M̂surv)− a, for
A = R, where q̂α(x;M̂surv) represents the estimated α-quantile of the conditional distribution of T | X , given by the
survival model M̂surv. In this case, the conformity scores are simply given by Vi = q̂α(Xi) − (T̃i ∧ c0), and the output
prediction lower bound is L̂(Xn+1) = (q̂α(Xn+1)− η(Xn+1)) ∧ c0.
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A2.2. DR-COSARC with Adaptive Cutoffs

Algorithm A5 provides further details on the implementation of our method sketched by Algorithm 3, which integrates
Algorithm 1 with Algorithm A2 in Appendix A1.2, the approach of Gui et al. (2024) for conformalized survival analysis
under type-I censoring.

Algorithm A5 DR-COSARC with Adaptive Cutoffs (detailed implementation)

input Pre-trained survival model M̂surv, sequence of functions {f̂a(x;M̂surv)}a∈[0,1] to compute candidate survival lower
bounds, pre-trained censoring model M̂cens, right-censored calibration data {(Xi, T̃i, Ei)}ni=1, significance level
α ∈ (0, 1), test covariates Xn+1.

1: Phase 1: Imputation of Latent Censoring Times
2: Generate (C ′

1, . . . , C
′
n) using Algorithm 1, and define D̃cal = {(Xi, T̃i, C

′
i)}ni=1.

3: Phase 2: Conformal Calibration
4: Define the function ŵa(x), estimating 1/ca(x) := 1/P(C ≥ f̂a(x) | X = x) using M̂cens, ∀a, x.
5: Determine A using the computational shortcut from Gui et al. (2024), as detailed in Appendix A1.
6: for each a ∈ A do
7: Compute the estimated miscoverage rate:

α̂(a) =

∑n
i=1 ŵa(Xi)I{T̃i < f̂a(Xi) ≤ C ′

i}∑n
i=1 ŵa(Xi)I{f̂a(Xi) ≤ C ′

i}
.

8: end for
9: Compute the threshold:

â = sup{a ∈ A : sup
a′≤a,a′∈A

α̂(a′) ≤ α}.

10: Phase 3: Adjustment for Double Robustness
11: Extract the function q̂α(x) from M̂surv, an uncalibrated estimate of the α-quantile of T | X = x.
12: Adjust the lower prediction bound:

L̂(Xn+1) = min{f̂â(Xn+1), q̂α(Xn+1)}.

13: Output the calibrated 1− α lower prediction bound L̂(Xn+1).

Implementation details for Algorithm A5. In this paper, we implement Algorithm A5 using candidate LPBs in the form
f̂a(x;M̂surv) = q̂α(x;M̂surv)− a, for a ∈ R.

The threshold â in (4) can be computed efficiently as follows. We note that supa′≤a α̂(a
′) is a non-decreasing piecewise

constant function in a, with no more than 2n knots—values of a at which the indicators I{Ti < f̂a(Xi) ≤ Ci} or
I{f̂a(Xi) ≤ Ci} change signs.

Denote āi = supa∈[0,1] I{f̂a(Xi) ≤ T̃i} and ãi = supa∈[0,1] I{f̂a(Xi) ≤ Ci}, and let A1 = {āi : i = 1, . . . , n} and
A2 = {ãi : i = 1, . . . , n}. Then, by definition, the breakpoints of the piecewise constant map a 7→ α̂(a) must all lie in
A1 ∪A2. In the implementation, in order to obtain â, we only need to search through the finite grids

A = A1 ∪A2 ∪ {0}.
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A3. Additional Numerical Results
A3.1. Additional Details on the Experiments of Section 4

Table A1. Summary of three synthetic data generation settings considered in Section 4, listed in decreasing order of intrinsic difficulty.

Setting p Ref. Covariate, Survival, and Censoring Distributions

1 100
X : Unif([0, 1]p)
T | X: LogNormal, µs(X) = (X2 > 1

2 ) + (X3 < 1
2 ) + (1 − X1)

0.25,
σs(X) = 1−X1

10
C | X: LogNormal, µc(X) = (X2 >

1
2 ) + (X3 <

1
2 ) + (1 − X1)

4 + 4
10 ,

σc(X) = X2

10

2 100
X : Unif([0, 1]p)
T | X: LogNormal, µs(X) = X0.25

1 , σs(X) = 0.1
C | X: LogNormal, µc(X) = X4

1 + 4
10 , σc(X) = 0.1

3 100 (Candès et al., 2023)
X : Unif([−1, 1]p)
T | X: LogNormal, µs(X) = log(2) + 1 + 0.55(X2

1 − X3X5), σs(X) =
|X10|+ 1
C | X: Exponential, λc(X) = 0.4

Setting: 1 (hard) Setting: 2 (medium) Setting: 3 (easy)
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Figure A1. Visualization of the synthetic data distribution under the three experimental settings outlined in Table A1. The censoring and
event times (in different colors) are plotted against the first covariate, X1.
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A3.2. Impact of the Censoring Model Quality
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Figure A2. Performance on synthetic data of our method as a function of the number of training samples used to fit the censoring model,
compared to other approaches. The number of training samples available to fit the survival model is fixed equal to 1000. These experiments
are conducted under settings 2 and 3 (see Table A1), where fitting an accurate survival model is easier. Other details are as in Figure 1.

A3.3. Impact of the Total Number of Training Samples

Figure A3 summarizes the results of experiments similar to those in Figure 2, but with both the survival and censoring
models fitted using a varying number of training samples. These results show that our method tends to achieve valid
coverage as the sample size increases, even when other approaches either continue to underperform in terms of coverage or
produce overly conservative inferences. Figure A4 reports analogous experiments conducted under settings 2 and 3, where
our method consistently achieves valid coverage, with its performance remaining largely unaffected by the total number of
training samples.
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Figure A3. Performance of our method (DR-COSARC) as a function of the total number of training samples used to fit the survival and
censoring models, in experiments based on synthetic data under setting 1, similar to Figure 2.
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Setting: 3
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Figure A4. Performance of our method as a function of the number of training samples used to fit both the survival and censoring models,
in experiments based on synthetic data similar to those of Figure A3. These experiments are conducted under settings 2 and 3 (see
Table A1), where fitting an accurate survival model is easier. Other details are as in Figure A3.

A3.4. Impact of the Number of Covariates in the Censoring Model

Figure A5 presents the results of experiments similar to those in Figure 2, but with varying numbers of covariates used to fit
the censoring model, while keeping the number of training and calibration samples fixed at 1000. The results show that
our method performs better when the number of covariates used in the censoring model is not too large, highlighting the
advantage of leveraging accurate prior information to prevent overfitting. Figure A6 reports similar experiments conducted
under the easier settings 2 and 3. In these scenarios, our method consistently achieves valid coverage, and its performance
remains largely unaffected by the number of covariates used to fit the censoring model.
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Figure A5. Performance on synthetic data of our method and benchmark approaches as a function of the number of covariates used to
train the censoring model, with the number of training samples fixed at 1000. The results demonstrate that larger numbers of covariates
may increase overfitting, resulting in less accurate censoring models and lower coverage for our method. Other details are as in Figure 2.
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Setting: 3

Coverage

Setting: 3

Lower Bound

Setting: 2

Coverage

Setting: 2

Lower Bound

10 30 100 10 30 100

10 30 100 10 30 100
0.0

0.5

1.0

1.5

2.0

0.00

0.25

0.50

0.75

1.00

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

Number of covarariates in the censoring model

Method

Oracle

Uncalibrated

Naive CQR

KM Decensoring

DR−COSARC (fixed)

DR−COSARC (adaptive)

Figure A6. Performance on synthetic data of our method and other approaches as a function of the number of covariates used to train
the censoring model, with the number of training samples fixed at 1000. These experiments are conducted under settings 2 and 3 (see
Table A1), where fitting an accurate survival model is easier. Other details are as in Figure A5.

A3.5. Robustness to Small Calibration Samples

Figure A7 presents the results of experiments similar to those in Figure 2, but with varying numbers of calibration samples,
while keeping the number of training samples fixed at 1000. The results indicate that the average performance of all methods
is generally not heavily influenced by the number of calibration samples, although larger calibration sizes do tend to reduce
variability across independent repetitions of the experiment. Figure A8 shows similar results for settings 2 and 3.
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Figure A7. Performance on synthetic data of our method (DR-COSARC) and benchmark approaches as a function of the number of
calibration samples, with the number of training samples fixed at 1000. The results demonstrate notable robustness to small calibration
samples. Other details are as in Figure 2.
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Figure A8. Performance on synthetic data of our method and other approaches as a function of the number of calibration samples, with
the number of training samples fixed at 1000. These experiments are conducted under settings 2 and 3 (see Table A1), where fitting an
accurate survival model is easier. Other details are as in Figure A7.

A3.6. Impact of the Double Robustness Adjustment
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Figure A9. Performance on synthetic data under three different settings of our method for constructing lower confidence bounds on the
true survival time of a new individual based on right-censored data, compared to existing benchmark approaches. Our method is applied
with (default) and without the double robustness adjustment L̂(Xn+1) = min{L̂′(Xn+1), q̂α(Xn+1)}, as explained in Algorithms 2
and 3. Other details are as in Figure 1.
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A3.7. Algorithmic Stability

We evaluate the algorithmic stability of our method and the KM Decensoring approach, both of which rely on random
imputation of unobserved variables. Our goal is to assess how this randomness impacts the stability of the predicted lower
bounds for a fixed dataset and test instance, as a function of the calibration sample size.

To this end, we perform experiments similar to those in Figures A7–A8, varying the calibration set size as a control parameter.
For each configuration of the experiment, we independently apply our method (with both fixed and adaptive cutoff strategies)
and the KM Decensoring method 10 times per data realization, using different random seeds for the imputation step. Each
of these 10 runs uses the same training, calibration, and test sets, and the same trained models. The test set contains 100
points instead of the usual 1000 to reduce the computational cost.

We measure stability by computing the empirical coefficient of variation of the predicted lower bounds across the 10 runs.
This coefficient of variation is then averaged across the 100 test points and over 20 independent data realizations.

Figure A10 presents the resulting average coefficient of variations for each method as a function of the calibration sample
size. Error bars represent two standard errors of the estimated average coefficient of variation, reflecting the uncertainty
in estimating the ideal population coefficient of determination that would be obtained with an infinite number of data
realizations (instead of 20).

The results show that the fixed-cutoff implementation of our method tends to have the highest algorithmic variability, while
the adaptive-cutoff implementation of our method and the KM Decensoring approach are relatively stable and increasingly
become more stable as the calibration sample size grows.
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Figure A10. Average coefficient of variation of predictive lower bounds obtained with different methods across 10 independent imputations,
plotted as a function of the calibration sample size. Results are averaged over 20 independent data realizations. Error bars represent two
standard errors. Lower coefficient of variation indicates greater algorithmic stability. Other details are as in Figures A7–A8.

A3.8. Impact of Different Survival and Censoring Models

We examine here the effect of using different survival and censoring models on the performance of our method and the
benchmark approaches. Figures A11 and A12 present results from experiments similar to those in Figure 1, but with
different survival and censoring models applied to synthetic data generated under setting 1. Similarly, Figures A13 and A14
report results from setting 2, while Figures A15 and A16 show results from setting 3, where fitting an accurate survival
model is relatively easy. Overall, the results are consistent with those presented earlier, empirically demonstrating the double
robustness of our method. Notably, Figure A12 reveals that when using a Cox model for the censoring distribution, our
method fails to achieve the target 90% coverage, even with a training sample size of 1000, underscoring the limitations of
the Cox model in capturing the complex censoring patterns simulated in the particularly challenging setting 1.
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Figure A11. Performance on synthetic data of our method for constructing lower confidence bounds on the true survival time of a new
individual based on right-censored data, compared to existing approaches. These experiments are conducted under setting 1 (see Table A1),
where fitting an accurate survival model is most difficult. Each calibration method is applied with a different type of survival model (fitted
using 1000 training samples) and the grf censoring model (also fitted using 1000 samples). Other details are as in Figure 1.
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Figure A12. Performance on synthetic data of our method for constructing lower confidence bounds on the true survival time of a new
individual based on right-censored data, compared to existing approaches. These experiments are conducted under setting 1 (see Table A1),
where fitting an accurate survival model is most difficult. Each calibration method is applied with a different type of survival model (fitted
using 1000 training samples) and the cox censoring model (also fitted using 1000 samples). Other details are as in Figure A11.
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Figure A13. Performance on synthetic data of our method for constructing lower confidence bounds on the true survival time of a new
individual based on right-censored data, compared to existing approaches. These experiments are conducted under setting 2 (see Table A1),
where fitting an accurate survival model is moderately difficult. Each calibration method is applied with a different type of survival model
(fitted using 1000 training samples) and the grf censoring model (also fitted using 1000 samples). Other details are as in Figure 1.
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Figure A14. Performance on synthetic data of our method for constructing lower confidence bounds on the true survival time of a new
individual based on right-censored data, compared to existing approaches. These experiments are conducted under setting 2 (see Table A1),
where fitting an accurate survival model is moderately difficult. Each calibration method is applied with a different type of survival model
(fitted using 1000 training samples) and the cox censoring model (also fitted using 1000 samples). Other details are as in Figure A11.
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Figure A15. Performance on synthetic data of our method for constructing lower confidence bounds on the true survival time of a new
individual based on right-censored data, compared to existing approaches. These experiments are conducted under setting 3 (see Table A1),
where fitting an accurate survival model is relatively easy and conformal calibration is not crucial. Each calibration method is applied with
a different type of survival model (fitted using 1000 training samples) and the grf censoring model (also fitted using 1000 samples). Other
details are as in Figure A11.
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Figure A16. Performance on synthetic data of our method for constructing lower confidence bounds on the true survival time of a new
individual based on right-censored data, compared to existing approaches. These experiments are conducted under setting 3 (see Table A1),
where fitting an accurate survival model is relatively easy and conformal calibration is not crucial. Each calibration method is applied with
a different type of survival model (fitted using 1000 training samples) and the cox censoring model (also fitted using 1000 samples). Other
details are as in Figure A15.
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A3.9. Numerical Experiments under Additional Settings

Table A2. Summary of synthetic data generation settings considered in addition to those outlined in Table A1.

Setting p Ref. Covariate, Survival, and Censoring Distributions

4 100 (Candès et al., 2023)
X : Unif([−1, 1]p)
T | X: LogNormal, µs(X) = log(2) + 1 + 0.55(X2

1 −X3X5), σs(X) = 1
C | X: Exponential, λc(X) = 0.4

5 1 (Gui et al., 2024)

X : Unif([0, 4]p)
T | X: LogNormal, µs(X) = 0.632×X1, σs(X) = 2
C | X: Exponential, λc(X) = 0.1

6 1 (Gui et al., 2024)
X : Unif([0, 4]p)
T | X: LogNormal, µs(X) = 3(X1 > 2) +X1(X1 < 2), σs(X) = 1

2
C | X: Exponential, λc(X) = 0.1

7 1 (Gui et al., 2024)
X : Unif([0, 4]p)
T | X: LogNormal, µs(X) = 2(X1 > 2) +X1(X1 < 2), σs(X) = 1

2

C | X: Exponential, λc(X) = 0.25 + X1+6
100

8 1 (Gui et al., 2024)
X : Unif([0, 4]p)
T | X: LogNormal, µs(X) = 3(X1 > 2) + 1.5X1(X1 < 2), σs(X) = 1

2

C | X: LogNormal, µc(X) = 2 + 2−X1

50 , σc(X) = 1
2

9 10 (Gui et al., 2024)
X : Unif([0, 4]p)
T | X: LogNormal, µs(X) = 0.126(X1 +

√
X3X5) + 1, σs(X) = 1

2

C | X: Exponential, λc(X) = X10

10 + 1
20

10 10 (Gui et al., 2024)
X : Unif([0, 4]p)
T | X: LogNormal, µs(X) = 0.126(X1 +

√
X3X5) + 1, σs(X) = X2+2

4

C | X: Exponential, λc(X) = X10

10 + 1
20
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Figure A17. Performance on synthetic data under seven additional settings of our method for constructing lower confidence bounds on the
true survival time of a new individual based on right-censored data, compared to existing benchmark approaches. These seven settings
are borrowed from Candès et al. (2023) and Gui et al. (2024), as outlined in Table A2, and correspond to situations in which fitting an
accurate survival model is relatively easy, with rigorous conformal calibration not being as crucial as in settings 1 and 2 of Figure 1. Other
details are as in Figure 1.
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A4. Additional Results from Real Data Applications
A4.1. Data and Pre-Processing

We apply our method to seven datasets: the Veterans’ Administration Lung Cancer Trial (VALCT); the Primary Biliary
Cirrhosis (PBC) dataset; the German Breast Cancer Study Group (GBSG) dataset; the Molecular Taxonomy of Breast
Cancer International Consortium (METABRIC) dataset; the Colon Cancer Chemotherapy (COLON) dataset; the Stanford
Heart Transplant Study (HEART); and the Diabetic Retinopathy Study (RETINOPATHY). Table A3 provides details on the
number of observations, covariates, and data sources.

The datasets were obtained from various publicly available sources. VALCT, PBC, COLON, HEART, and RETINOPA-
THY are included in the survival R package. GBSG was sourced from GitHub: https://github.com/
jaredleekatzman/DeepSurv/. METABRIC was accessed via https://www.cbioportal.org/study/
summary?id=brca_metabric.

Each dataset underwent a pre-processing pipeline to ensure consistency and prepare the data for analysis. Survival times
equal to zero were replaced with half the smallest observed non-zero time. Missing values were imputed using the median
for numeric variables and the mode for categorical variables. Factor variables were processed to merge rare levels (frequency
below 2%) into an “Other” category, while binary factors with one rare level were removed entirely. Dummy variables
were created for all factors, and redundant features were identified and removed using an alias check. Additionally, highly
correlated features (correlation above 0.75) were iteratively filtered.

Dataset Observations (n) Variables (p) Source Citation

VALCT 137 6 survival (Kalbfleisch & Prentice, 2002)
PBC 418 17 survival (Therneau et al., 2000)
GBSG 2232 6 github.com (Katzman et al., 2018)
METABRIC 1981 41 cbioportal.org (Curtis et al., 2012)
COLON 1858 11 survival (Moertel et al., 1990)
HEART 172 4 survival (Crowley & Hu, 1977)
RETINOPATHY 394 5 survival (Blair et al., 1980)

Table A3. Summary of the publicly available survival analysis datasets used in Section 5 of this paper.

A4.2. Additional Results
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Figure A18. Distribution of average (estimated) coverage of survival LPBs computed by different methods, across seven real datasets and
four survival models, using different nominal levels α. Other details are as in Figure 3.
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Table A4. Performance on seven publicly available data sets of different methods for constructing survival LPBs. All methods utilize the
same survival model (grf) and aim for 90% coverage. Since the performance is evaluated on a censored test set, the coverage cannot be
evaluated exactly. Instead, we report empirical lower and upper bounds for the true coverage. Values in parentheses represent twice the
standard error. Coverage point estimates that are more than two standard errors below the nominal level are highlighted in red.

Estimated Coverage

Method Point Lower bound Upper bound LPB

COLON
Uncalibrated 0.91 (0.00) 0.90 (0.00) 0.91 (0.01) 299.15 (3.89)
Naive CQR 0.90 (0.01) 0.90 (0.01) 0.91 (0.01) 296.97 (8.86)

KM Decensoring 0.90 (0.01) 0.90 (0.01) 0.90 (0.01) 306.27 (9.12)
DR-COSARC 0.91 (0.00) 0.91 (0.01) 0.91 (0.00) 286.03 (5.06)

GBSG
Uncalibrated 0.90 (0.00) 0.90 (0.00) 0.91 (0.00) 13.10 (0.11)
Naive CQR 0.91 (0.00) 0.90 (0.01) 0.92 (0.01) 12.80 (0.25)

KM Decensoring 0.89 (0.00) 0.89 (0.01) 0.90 (0.01) 13.70 (0.23)
DR-COSARC 0.91 (0.00) 0.90 (0.00) 0.91 (0.00) 12.98 (0.13)

HEART
Uncalibrated 0.84 (0.02) 0.78 (0.03) 0.90 (0.02) 14.27 (1.40)
Naive CQR 0.94 (0.01) 0.92 (0.02) 0.97 (0.01) 3.58 (0.81)

KM Decensoring 0.84 (0.02) 0.77 (0.04) 0.91 (0.02) 15.06 (2.28)
DR-COSARC 0.88 (0.02) 0.83 (0.03) 0.92 (0.02) 9.74 (1.43)

METABRIC
Uncalibrated 0.90 (0.00) 0.89 (0.01) 0.91 (0.01) 40.86 (0.53)
Naive CQR 0.92 (0.00) 0.91 (0.01) 0.93 (0.01) 37.84 (0.69)

KM Decensoring 0.89 (0.00) 0.88 (0.01) 0.90 (0.01) 42.55 (0.83)
DR-COSARC 0.90 (0.00) 0.89 (0.01) 0.91 (0.01) 40.10 (0.56)

PBC
Uncalibrated 0.92 (0.01) 0.89 (0.01) 0.95 (0.01) 853.89 (24.37)
Naive CQR 0.93 (0.01) 0.91 (0.01) 0.95 (0.01) 784.62 (38.83)

KM Decensoring 0.85 (0.01) 0.81 (0.02) 0.90 (0.01) 1035.49 (32.76)
DR-COSARC 0.92 (0.01) 0.89 (0.01) 0.95 (0.01) 852.27 (24.16)

RETINOPATHY
Uncalibrated 0.88 (0.01) 0.87 (0.01) 0.89 (0.01) 7.58 (0.38)
Naive CQR 0.90 (0.01) 0.89 (0.01) 0.91 (0.01) 6.66 (0.56)

KM Decensoring 0.88 (0.01) 0.86 (0.02) 0.89 (0.01) 8.03 (0.68)
DR-COSARC 0.90 (0.01) 0.89 (0.01) 0.91 (0.01) 6.19 (0.56)

VALCT
Uncalibrated 0.93 (0.01) 0.93 (0.01) 0.93 (0.01) 12.35 (0.69)
Naive CQR 0.94 (0.01) 0.94 (0.02) 0.94 (0.02) 10.66 (1.50)

KM Decensoring 0.90 (0.02) 0.90 (0.02) 0.90 (0.02) 14.47 (1.78)
DR-COSARC 0.94 (0.01) 0.94 (0.01) 0.94 (0.01) 10.17 (0.80)
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Table A5. Performance on seven publicly available data sets of different methods for constructing survival LPBs. All methods utilize the
same survival model (cox) and aim for 90% coverage. Since the performance is evaluated on a censored test set, the coverage cannot be
evaluated exactly. Instead, we report empirical lower and upper bounds for the true coverage. Values in parentheses represent twice the
standard error. Coverage point estimates that are more than two standard errors below the nominal level are highlighted in red.

Estimated Coverage

Method Point Lower bound Upper bound LPB

COLON
Uncalibrated 0.89 (0.00) 0.89 (0.01) 0.89 (0.01) 320.96 (4.88)
Naive CQR 0.90 (0.01) 0.90 (0.01) 0.91 (0.01) 299.68 (9.27)

KM Decensoring 0.90 (0.01) 0.90 (0.01) 0.90 (0.01) 308.78 (9.56)
DR-COSARC 0.91 (0.00) 0.90 (0.01) 0.91 (0.01) 288.30 (9.46)

GBSG
Uncalibrated 0.89 (0.00) 0.89 (0.00) 0.90 (0.00) 12.36 (0.09)
Naive CQR 0.91 (0.00) 0.90 (0.01) 0.92 (0.01) 11.38 (0.20)

KM Decensoring 0.90 (0.00) 0.89 (0.01) 0.90 (0.01) 12.23 (0.18)
DR-COSARC 0.90 (0.00) 0.89 (0.01) 0.91 (0.00) 11.87 (0.17)

HEART
Uncalibrated 0.74 (0.02) 0.64 (0.03) 0.84 (0.02) 28.52 (1.81)
Naive CQR 0.94 (0.01) 0.91 (0.02) 0.97 (0.01) 6.97 (1.17)

KM Decensoring 0.84 (0.02) 0.77 (0.04) 0.91 (0.02) 17.65 (2.54)
DR-COSARC 0.84 (0.02) 0.78 (0.03) 0.90 (0.02) 13.19 (2.40)

METABRIC
Uncalibrated 0.89 (0.00) 0.87 (0.01) 0.90 (0.01) 42.41 (0.50)
Naive CQR 0.91 (0.00) 0.90 (0.01) 0.92 (0.01) 35.02 (1.02)

KM Decensoring 0.89 (0.00) 0.88 (0.01) 0.91 (0.01) 40.55 (1.01)
DR-COSARC 0.90 (0.00) 0.88 (0.01) 0.91 (0.01) 38.79 (1.08)

PBC
Uncalibrated 0.85 (0.01) 0.79 (0.02) 0.90 (0.01) 1198.29 (37.23)
Naive CQR 0.94 (0.01) 0.91 (0.02) 0.96 (0.01) 768.98 (56.89)

KM Decensoring 0.87 (0.01) 0.82 (0.02) 0.91 (0.02) 1110.57 (51.64)
DR-COSARC 0.88 (0.01) 0.85 (0.02) 0.92 (0.01) 1020.75 (66.27)

RETINOPATHY
Uncalibrated 0.87 (0.01) 0.85 (0.01) 0.88 (0.01) 8.77 (0.47)
Naive CQR 0.91 (0.01) 0.90 (0.02) 0.92 (0.01) 6.55 (0.62)

KM Decensoring 0.88 (0.01) 0.86 (0.02) 0.90 (0.02) 8.24 (0.80)
DR-COSARC 0.89 (0.01) 0.88 (0.01) 0.91 (0.01) 6.57 (0.54)

VALCT
Uncalibrated 0.88 (0.01) 0.87 (0.02) 0.88 (0.02) 24.64 (5.55)
Naive CQR 0.94 (0.01) 0.94 (0.02) 0.94 (0.02) 16.36 (5.63)

KM Decensoring 0.89 (0.02) 0.89 (0.03) 0.90 (0.02) 21.93 (5.45)
DR-COSARC 0.91 (0.01) 0.90 (0.02) 0.91 (0.02) 18.05 (4.41)
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Table A6. Performance on seven publicly available data sets of different methods for constructing survival LPBs. All methods utilize the
same survival model (survreg) and aim for 90% coverage. Since the performance is evaluated on a censored test set, the coverage cannot
be evaluated exactly. Instead, we report empirical lower and upper bounds for the true coverage. Values in parentheses represent twice the
standard error. Coverage point estimates that are more than two standard errors below the nominal level are highlighted in red.

Estimated Coverage

Method Point Lower bound Upper bound LPB

COLON
Uncalibrated 0.90 (0.00) 0.90 (0.01) 0.90 (0.01) 369.05 (7.39)
Naive CQR 0.91 (0.00) 0.91 (0.01) 0.91 (0.01) 351.31 (10.46)

KM Decensoring 0.90 (0.01) 0.90 (0.01) 0.90 (0.01) 361.87 (10.75)
DR-COSARC 0.91 (0.00) 0.91 (0.01) 0.91 (0.01) 339.93 (10.70)

GBSG
Uncalibrated 0.90 (0.00) 0.89 (0.00) 0.91 (0.00) 13.43 (0.16)
Naive CQR 0.91 (0.00) 0.90 (0.01) 0.92 (0.00) 12.69 (0.21)

KM Decensoring 0.89 (0.00) 0.88 (0.01) 0.90 (0.01) 13.80 (0.24)
DR-COSARC 0.90 (0.00) 0.89 (0.00) 0.91 (0.00) 13.17 (0.14)

HEART
Uncalibrated 0.83 (0.02) 0.75 (0.03) 0.90 (0.02) 22.72 (2.74)
Naive CQR 0.94 (0.01) 0.91 (0.02) 0.97 (0.01) 8.91 (1.69)

KM Decensoring 0.84 (0.02) 0.77 (0.03) 0.91 (0.02) 20.75 (2.53)
DR-COSARC 0.86 (0.02) 0.81 (0.03) 0.92 (0.02) 14.22 (2.32)

METABRIC
Uncalibrated 0.88 (0.00) 0.87 (0.01) 0.90 (0.01) 46.04 (0.61)
Naive CQR 0.92 (0.00) 0.91 (0.01) 0.93 (0.00) 38.98 (0.86)

KM Decensoring 0.89 (0.00) 0.87 (0.01) 0.91 (0.01) 44.98 (0.94)
DR-COSARC 0.89 (0.00) 0.88 (0.01) 0.91 (0.01) 43.66 (0.80)

PBC
Uncalibrated 0.85 (0.01) 0.79 (0.02) 0.92 (0.01) 1197.47 (41.55)
Naive CQR 0.95 (0.01) 0.92 (0.01) 0.98 (0.01) 738.45 (54.18)

KM Decensoring 0.86 (0.01) 0.79 (0.02) 0.92 (0.01) 1167.58 (40.41)
DR-COSARC 0.87 (0.01) 0.82 (0.02) 0.93 (0.01) 1098.76 (43.67)

RETINOPATHY
Uncalibrated 0.87 (0.01) 0.85 (0.01) 0.88 (0.01) 9.22 (0.49)
Naive CQR 0.91 (0.01) 0.89 (0.02) 0.92 (0.01) 6.93 (0.65)

KM Decensoring 0.87 (0.01) 0.86 (0.02) 0.89 (0.02) 8.79 (0.78)
DR-COSARC 0.89 (0.01) 0.88 (0.02) 0.91 (0.01) 7.13 (0.59)

VALCT
Uncalibrated 0.89 (0.01) 0.89 (0.02) 0.90 (0.02) 21.47 (0.97)
Naive CQR 0.94 (0.01) 0.93 (0.02) 0.94 (0.02) 16.92 (1.92)

KM Decensoring 0.89 (0.02) 0.88 (0.02) 0.89 (0.02) 22.24 (2.15)
DR-COSARC 0.92 (0.01) 0.91 (0.02) 0.92 (0.02) 17.27 (1.67)
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Table A7. Performance on seven publicly available data sets of different methods for constructing survival LPBs. All methods utilize the
same survival model (rf) and aim for 90% coverage. Since the performance is evaluated on a censored test set, the coverage cannot be
evaluated exactly. Instead, we report empirical lower and upper bounds for the true coverage. Values in parentheses represent twice the
standard error. Coverage point estimates that are more than two standard errors below the nominal level are highlighted in red.

Estimated Coverage

Method Point Lower bound Upper bound LPB

COLON
Uncalibrated 0.90 (0.00) 0.89 (0.01) 0.91 (0.01) 403.71 (9.60)
Naive CQR 0.91 (0.01) 0.90 (0.01) 0.91 (0.01) 379.64 (9.90)

KM Decensoring 0.89 (0.01) 0.89 (0.01) 0.90 (0.01) 406.86 (10.83)
DR-COSARC 0.91 (0.00) 0.90 (0.01) 0.91 (0.01) 379.60 (12.36)

GBSG
Uncalibrated 0.89 (0.00) 0.88 (0.01) 0.90 (0.00) 14.48 (0.13)
Naive CQR 0.91 (0.00) 0.90 (0.01) 0.92 (0.01) 13.43 (0.26)

KM Decensoring 0.89 (0.00) 0.88 (0.01) 0.90 (0.01) 14.55 (0.25)
DR-COSARC 0.90 (0.00) 0.89 (0.01) 0.91 (0.00) 14.05 (0.19)

HEART
Uncalibrated 0.83 (0.02) 0.76 (0.03) 0.90 (0.02) 18.26 (1.93)
Naive CQR 0.95 (0.01) 0.93 (0.02) 0.97 (0.01) 4.55 (1.08)

KM Decensoring 0.83 (0.02) 0.77 (0.04) 0.90 (0.02) 17.58 (2.45)
DR-COSARC 0.87 (0.02) 0.82 (0.03) 0.93 (0.02) 11.45 (1.69)

METABRIC
Uncalibrated 0.89 (0.00) 0.88 (0.01) 0.91 (0.00) 43.21 (0.59)
Naive CQR 0.91 (0.00) 0.90 (0.01) 0.93 (0.00) 39.45 (0.75)

KM Decensoring 0.89 (0.00) 0.87 (0.01) 0.90 (0.01) 44.67 (0.81)
DR-COSARC 0.90 (0.00) 0.88 (0.01) 0.91 (0.01) 42.22 (0.70)

PBC
Uncalibrated 0.88 (0.01) 0.82 (0.01) 0.94 (0.01) 1057.31 (31.32)
Naive CQR 0.95 (0.01) 0.91 (0.01) 0.98 (0.01) 662.76 (54.81)

KM Decensoring 0.86 (0.01) 0.79 (0.02) 0.92 (0.01) 1117.82 (42.77)
DR-COSARC 0.88 (0.01) 0.83 (0.02) 0.94 (0.01) 1012.21 (49.52)

RETINOPATHY
Uncalibrated 0.88 (0.01) 0.86 (0.02) 0.89 (0.01) 9.75 (0.62)
Naive CQR 0.91 (0.01) 0.89 (0.01) 0.92 (0.01) 7.90 (0.63)

KM Decensoring 0.88 (0.01) 0.86 (0.02) 0.90 (0.01) 9.78 (0.67)
DR-COSARC 0.89 (0.01) 0.88 (0.01) 0.91 (0.01) 8.19 (0.61)

VALCT
Uncalibrated 0.90 (0.01) 0.90 (0.02) 0.90 (0.02) 33.90 (9.67)
Naive CQR 0.94 (0.01) 0.94 (0.02) 0.94 (0.02) 19.12 (6.61)

KM Decensoring 0.91 (0.02) 0.91 (0.02) 0.91 (0.02) 29.50 (8.73)
DR-COSARC 0.93 (0.01) 0.93 (0.01) 0.93 (0.01) 21.33 (6.13)
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A5. Mathematical Proofs
A5.1. Proof of Proposition 2.2

Proof of Proposition 2.2. Since PX,T̃ ,C = PX,T̃ · PC|X,T̃ , it suffices to demonstrate that Ĉ is a random sample from

PC|X,T̃ . This is immediately true when T̃ > C, as in those cases, we have Ĉ = C. Therefore, it remains to show that Ĉ is a

random sample from PC|X,C>T̃ ,T̃ when Ĉ > T̃ .

To see this, we apply the definition of conditional probability along with the assumption of conditionally independent
censoring, T ⊥⊥ C | X . The distribution of C given (X = x, T < C, T = t) for any x and t can be written as:

pC|X,C>T̃ ,T̃ (c | x, t) = p(C = c | X = x, T < C, T = t)

= p(C = c | X = x,C > t, T = t)

∝ p(C = c, C > t | X = x, T = t)

∝ p(C = c, C > t | X = x) (since T ⊥⊥ C | X)

=
fC|X(c | x)
A(x, t)

I(c > t),

where A(x, t) =
∫∞
t
fC|X(c | x)dc is a normalizing constant.

If f̂C|X = fC|X , this matches the procedure used in Algorithm A4 to sample Ĉ when C > T̃ , completing the proof. For
clarity, note that the subscripts for probability density functions p have been omitted where possible, to simplify the notation
without introducing ambiguity.

A5.2. Auxiliary Theoretical Results

Lemma A1. Let {(Xi, Ti, Ci)}ni=1 be i.i.d. random samples from some distribution PX,T,C = PX · PT |X · PC|X , under
Assumption 2.1. For each i ∈ [n], define T̃i = Ti ∧ Ci and Ei = I(Ti < Ci). Let C1, . . . , Cn denote the set of
imputed censoring times output by Algorithm 1, based on the data {(Xi, T̃i, Ei)}ni=1 and any fixed censoring model
M̂cens. Then, the total variation distance between the distributions of {(Xi, T̃i, Ci)}ni=1 and {(Xi, Ti, C

′
i)}ni=1, denoted as

dTV(P(X,T̃ ,C)n , P(X,T̃ ,C′)n), satisfies

dTV(P(X,T̃ ,C)n , P(X,T̃ ,C′)n) ≤
n

2
E(X,T̃ )∼PX,T̃

[∫ ∞

T̃

∣∣∣∣∣fC|X(c | X)

A(X, T̃ )
−
f̂C|X(c | X)

Â(X, T̃ )

∣∣∣∣∣ dc
]
,

where PX,T̃ denote the joint distribution of (X, T̃ ), for (X,T,C) ∼ PX,T,C and T̃ = T ∧ C.

Proof of Lemma A1. Note that

dTV(P(X,T̃ ,C)n , P(X,T̃ ,C′)n) ≤ n · dTV(PX,T̃ ,C , PX,T̃ ,C′)

= n · E(X,T̃ )∼PX,T̃

[
dTV(PC|X,T̃ , PC′|X,T̃ )

]
= n · E(X,T )∼PX,T

[
dTV(PC|X,T̃ ,C>T̃ , PC′|X,T̃ ,C>T̃ )

]
=
n

2
· E(X,T̃ )∼PX,T̃

[∫ ∞

T̃

∣∣∣∣∣fC|X(c | X)

A(X, T̃ )
−
f̂C|X(c | X)

Â(X, T̃ )

∣∣∣∣∣ dc
]
,

where the first equality follows directly from the definition of the total variation distance, and the second equality follows
from the fact that C ′ = C almost surely if C < T .

Theorem A2. Consider a random sample (X,T ) from some distribution PX,T = PX · PT |X . For any x ∈ X , let q̂α(x)
denote an estimate of the α quantile of the conditional distribution of T | X = x. Assume the function q̂α : X 7→ R+

depends on a training data set independent of (X,T ). Assume also that
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(A.A2.1) There exist a constant b > 0, and a function qα : X 7→ R+, such that, for any ϵ > 0,

P [T ≥ qα(x) + ϵ | X = x] ≥ 1− α− bϵ, almost surely with respect to PX .

For any x ∈ X , define E(x) := |q̂α(x)− qα(x)|. Then, for any constant ℓ > 0,

P [T ≥ q̂α(X)] ≥ 1− α− (b+ 1)
(
E
[
Eℓ(X)

])1/(1+ℓ)
, (A7)

and, for any β ∈ (0, 1), with probability at least 1− β,

P [T ≥ q̂α(X) | X] ≥ 1− α− b

(
E
[
Eℓ(X)

])1/ℓ
β1/ℓ

. (A8)

Proof of Theorem A2. Define E(x) = |q̂α(x)− qα(x)|. Note that

P [T ≥ q̂α(x) | X = x]

≥ P [T ≥ qα(x) + ϵ+ q̂α(x)− qα(x)− ϵ | X = x]

≥ P [T ≥ qα(x) + ϵ+ |q̂α(x)− qα(x)| − ϵ | X = x]

≥ P [T ≥ qα(x) + ϵ | X = x]− I [E(x) > ϵ]

≥ 1− α− bϵ− I [E(x) > ϵ] ,

(A9)

where the last inequality follows from Assumption A.A2.1. Therefore, by Markov’s inequality, for any ℓ > 0,

P [T ≥ q̂α(X)] ≥ 1− α− bϵ−
E
[
Eℓ(X)

]
ϵℓ

.

Consider now the choice

ϵ =
(
E
[
Eℓ(X)

])1/(1+ℓ)
,

which leads to:

P
[
T ≥ q̂α(X; D̃cal)

]
≥ 1− α− (b+ 1)

(
E
[
Eℓ(X)

])1/(1+ℓ)
,

This completes the proof of the unconditional result (A7).

We will now prove the conditional result (A8). For any β ∈ (0, 1), consider

ϵ =

(
E
[
Eℓ(X)

])1/ℓ
β1/ℓ

,

which, through Markov’s inequality, leads to

P
[
Eℓ(X) > ϵ

]
≤

E
[
Eℓ(X)

]
ϵℓ

= β.

Combined with Equation (A9), this implies that, with probability at least 1− β,

P [T ≥ q̂α(x) | X] ≥ 1− α− b

(
E
[
Eℓ(X)

])1/ℓ
β1/ℓ

.
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A5.3. Double Robustness of Algorithm A4

A5.3.1. NON-ASYMPTOTIC THEORY

We begin by establishing a non-asymptotic theory for the double robustness of Algorithm A4. To achieve this, we present
two key results: Theorem A3 and Theorem A4, each addressing one side of double robustness. The first result focuses on
the validity of Algorithm A4 when the censoring model is accurately estimated, while the second addresses its validity when
the survival model is accurately estimated, leveraging the auxiliary result stated in Theorem A2.

Robustness when the censoring model is accurate

Theorem A3. Let {(Xi, Ti, Ci)}ni=1 be i.i.d. random samples from some distribution PX,T,C = PX · PT |X · PC|X , under
Assumption 2.1. Let fC|X(c | x) be the probability density of PC|X . Consider an independent random test sample
(Xn+1, Tn+1) ∼ PX · PT |X . Let L̂(Xn+1; D̃cal) indicate the lower bound output by Algorithm A4, based on input
calibration data {(Xi, T̃i, Ei)}ni=1 with T̃i = Ti ∧ Ci and Ei = I(Ti < Ci). Then, this lower bound satisfies:

P
[
Tn+1 ∧ c0 ≥ L̂(Xn+1; D̃cal)

]
≥ 1− α− 1

2
E
[∣∣∣∣ 1

ĉ(X)
− 1

c(X)

∣∣∣∣]− ψ
(
fC|X , f̂C|X

)
,

where

ψ
(
fC|X , f̂C|X

)
=
n

2
· E

[∫ ∞

T̃

∣∣∣∣∣fC|X(c | X)

A(X, T̃ )
−
f̂C|X(c | X)

Â(X, T̃ )

∣∣∣∣∣ dc
]
.

Above, the expectation is taken with respect to a random sample (X, T̃ ), for (X,T,C) ∼ PX,T,C and T̃ = T ∧ C.

Intuitively, Theorem A3 tells us that the finite-sample coverage achieved by our method depends on how well we can estimate
the censoring distribution, PC|X . In the special case where fC|X(c | x) = f̂C|X(c | x) for all c, x, which corresponds to
statistically exact imputation, then ψ(fC|X , f̂C|X) = 0 and the finite-sample bound given by Theorem A3 becomes the
same as the bound obtained by Candès et al. (2023) under type-I censoring.

Proof of Theorem A3. The high-level idea of this proof is to connect the lower bound output by Algorithm A4 to the
imaginary lower bound which would be obtained by applying Algorithm A1, the approach originally proposed by Candès
et al. (2023), to an imaginary data set sampled from the same distribution but subject to type-I instead of right censoring.
We know from Proposition 2.2 that, if the imputation phase of Algorithm A4 utilizes an accurate survival model, the two
aforementioned methods become equivalent, and thus the desired result should follow from Theorem B.1 in Candès et al.
(2023). We will now make this intuition precise.

Let Dcal denote the ideal calibration data set containing the true censoring times Ci along with the corresponding values of
Xi and T̃i; i.e.,

D∗
cal =

{
(Xi, T̃i, Ci)

}n

i=1
.

Let L̂∗(Xn+1;D∗
cal) denote the imaginary output that one would obtain by applying Algorithm A4 using D∗

cal instead of D̃cal

in the calibration phase. Equivalently, L̂∗(Xn+1;D∗
cal) is the lower bound that would be produced under type-I censoring by
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Algorithm A1, the approach originally proposed by Candès et al. (2023). Then,

P
[
Tn+1 ∧ c0 < L̂(Xn+1; D̃cal)

]
≤ P

[
Tn+1 ∧ c0 < L̂∗(Xn+1;D∗

cal)
]

+ P
[
Tn+1 ∧ c0 < L̂(Xn+1; D̃cal)

]
− P

[
Tn+1 ∧ c0 < L̂∗(Xn+1;D∗

cal)
]

≤ P
[
Tn+1 ∧ c0 < L̂∗(Xn+1;D∗

cal)
]
+ dTV(P(X,T̃ ,C)n , P(X,T̃ ,C′)n)

(1)

≤ α+
1

2
EX∼PX

[∣∣∣∣ 1

ĉ(X)
− 1

c(X)

∣∣∣∣]+ dTV(P(X,T̃ ,C)n , P(X,T̃ ,C′)n)

(2)

≤ α+
1

2
EX∼PX

[∣∣∣∣ 1

ĉ(X)
− 1

c(X)

∣∣∣∣]+ n

2
· E(X,T̃ )∼PX,T̃

[∫ ∞

T̃

∣∣∣∣∣fC|X(c | X)

A(X, T̃ )
−
f̂C|X(c | X)

Â(X, T̃ )

∣∣∣∣∣ dc
]
,

where dTV(P(X,T̃ ,C)n , P(X,T̃ ,C′)n) denotes the total variation distance between the distributions of Dcal and D∗
cal, the

inequality (1) follows directly from Theorem B.1 in Candès et al. (2023) applied with w(x) = 1/c(x) and ŵ(x) = 1/ĉ(x),
and the inequality (2) follows from Lemma A1.

Robustness when the survival model is accurate
Theorem A4. Consider a random sample (X,T ) from some distribution PX,T = PX · PT |X . Let L̂(X; D̃cal) indicate the
corresponding survival lower bound output by Algorithm A4. For any x ∈ X , let q̂α(x) denote the estimate of the α quantile
of the conditional distribution of T | X = x utilized in the final phase of Algorithm A4, with the function q̂α : X 7→ R+

depending only on M̂surv. Assume also that there exist a constant b > 0, and a function qα : X 7→ R+, such that, for any
ϵ > 0,

P [T ≥ qα(x) + ϵ | X = x] ≥ 1− α− bϵ, almost surely with respect to PX .

Then, for any constant ℓ > 0,

P
[
T ≥ L̂(X; D̃cal)

]
≥ 1− α− (b+ 1)

(
E
[
Eℓ(X)

])1/(1+ℓ)
. (A10)

and, for any β ∈ (0, 1), with probability at least 1− β,

P
[
T ≥ L̂(X; D̃cal) | X

]
≥ 1− α− b

(
E
[
Eℓ(X)

])1/ℓ
β1/ℓ

. (A11)

Proof of Theorem A4. The proof of this result is an immediate consequence of Theorem A2, since by design Algorithm A4
leads to L̂(x; D̃cal) ≤ q̂α(x) almost surely for any x ∈ X .

A5.3.2. ASYMPTOTIC THEORY

Proof of Theorem 3.3. We begin by proving the unconditional result. For this, we consider two cases separately, relying on
Theorems A3 and A4 respectively.

• Suppose Assumption 3.1 holds. In this case, the result follows immediately from Theorem A3, which tells us that, for
any fixed n and N ,

P
[
Tn+1 ≥ L̂(Xn+1; D̃cal)

]
≥ P

[
Tn+1 ∧ c0 ≥ L̂(Xn+1; D̃cal)

]
≥ 1− α− 1

2
E
[∣∣∣∣ 1

ĉ(X)
− 1

c(X)

∣∣∣∣]− n

2
· E

[∫ ∞

T̃

∣∣∣∣∣fC|X(c | X)

A(X, T̃ )
−
f̂C|X(c | X)

Â(X, T̃ )

∣∣∣∣∣ dc
]
.

The proof is then completed by noting that the asymptotic limit of the right-hand-side term above, for N,n→ ∞ is
1− α under Assumption 3.1.
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• Suppose Assumption 3.2 holds. In this case, we can obtain the desired result by applying Theorem A4 with ℓ = 1,
which tells us that

P
[
Tn+1 ≥ L̂(X; D̃cal)

]
≥ 1− α− (b+ 1) (E [E(X)])

1/2
.

The proof is then completed by noting that the asymptotic limit of the right-hand-side term above, for N → ∞ is 1−α
under Assumption 3.2.

Let us now turn to proving the conditional result. Under Assumption 3.2, applying Theorem A4 with ℓ = 1 tells us that, for
fixed N and any β ∈ (0, 1),

P
[
P
[
T ≥ L̂(X; D̃cal) | X

]
≥ 1− α− b

E [E(X)]

β

]
≥ 1− β.

In particular, choosing β =
√
E [E(X)] completes the proof, because

P
[
P
[
T ≥ L̂(X; D̃cal) | X

]
≥ 1− α− b

√
E [E(X)]

]
≥ 1−

√
E [E(X)].

A5.4. Double Robustness of Algorithm A5

A5.4.1. NON-ASYMPTOTIC THEORY

Robustness when the censoring model is accurate

Theorem A5 (Adapted from Theorem 3 in Gui et al. (2024)). Let {(Xi, Ti, Ci)}ni=1 be i.i.d. random samples from some
distribution PX,T,C = PX · PT |X · PC|X , under Assumption 2.1. Assume that f̂a(x) is continuous in a and that there
exists some constant γ̂a > 0 such that 1/ĉa(x) ≤ γ̂a for PX -almost all x. Consider an independent random test sample
(Xn+1, Tn+1) ∼ PX ·PT |X . Let L̂(Xn+1;D∗

cal) indicate the lower bound output by Algorithm A2, based on input calibration
data D∗

cal = {(Xi, T̃i, Ci)}ni=1 with T̃i = Ti ∧ Ci. Then, this lower bound satisfies:

P
[
Tn+1 ≥ L̂(Xn+1;D∗

cal)
]

≥
(
1− 1

n

)1− α− sup
a∈[0,1]

E
[∣∣∣∣ ca(Xn+1)

ĉa(Xn+1)π̂a
− 1

∣∣∣∣]+
√√√√1 +

γ̂2
a

π̂2
a
+max

(
1, γ̂a

π̂a
− 1
)2

n
log(n)


 ,

where, for any a ∈ [0, 1], we define

π̂a = E
[
ca(X)

ĉa(X)

]
.

Proof of Theorem A5. Under the same assumptions, Theorem 3 in Gui et al. (2024) says that for any δ ∈ (0, 1), with
probability at least 1− δ over D∗

cal,

P
[
Tn+1 ≥ L̂(Xn+1;D∗

cal) | D∗
cal

]

≥ 1− α− sup
a∈[0,1]

E
[∣∣∣∣ ca(Xn+1)

ĉa(Xn+1)π̂a
− 1

∣∣∣∣]+
√√√√1 +

γ̂2
a

π̂2
a
+max

(
1, γ̂a

π̂a
− 1
)2

n
log

(
1

δ

) .

Our result is then simply obtained by setting δ = 1/n and marginalizing over D∗
cal.
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Theorem A6. Let {(Xi, Ti, Ci)}ni=1 be i.i.d. random samples from some distribution PX,T,C = PX · PT |X · PC|X , under
Assumption 2.1. Let fC|X(c | x) be the probability density of PC|X . Assume that f̂a(x) is continuous in a and that
there exists some constant γ̂a > 0 such that 1/ĉa(x) ≤ γ̂a for PX -almost all x. Consider an independent random test
sample (Xn+1, Tn+1) ∼ PX · PT |X . Let L̂(Xn+1; D̃cal) indicate the lower bound output by Algorithm A5, based on input
calibration data {(Xi, T̃i, Ei)}ni=1 with T̃i = Ti ∧ Ci and Ei = I(Ti < Ci). Then, this lower bound satisfies:

P
[
Tn+1 ≥ L̂(Xn+1; D̃cal)

]

≥
(
1− 1

n

)1− α− sup
a∈[0,1]

E
[∣∣∣∣ ca(Xn+1)

ĉa(Xn+1)π̂a
− 1

∣∣∣∣]+
√√√√1 +

γ̂2
a

π̂2
a
+max

(
1, γ̂a

π̂a
− 1
)2

n
log(n)




− n

2
· E

[∫ ∞

T̃

∣∣∣∣∣fC|X(c | X)

A(X, T̃ )
−
f̂C|X(c | X)

Â(X, T̃ )

∣∣∣∣∣ dc
]
.

Above, the expectation is taken with respect to a random sample (X, T̃ ), for (X,T,C) ∼ PX,T,C and T̃ = T ∧ C.

Intuitively, Theorem A6 tells us that the finite-sample coverage achieved by our method depends on how well we can estimate
the censoring distribution, PC|X . In the special case where fC|X(c | x) = f̂C|X(c | x) for all c, x, which corresponds to
statistically exact imputation, the finite-sample bound given by Theorem A6 becomes the same as the bound obtained by
Gui et al. (2024) under type-I censoring, as reported in Theorem A5.

Proof of Theorem A6. The high-level idea of this proof is similar to that of Theorem A3: we connect the lower bound output
by Algorithm A5 to the imaginary lower bound which would be obtained by applying Algorithm A2, the approach originally
proposed by Gui et al. (2024), to an imaginary data set sampled from the same distribution but subject to type-I instead of
right censoring.

Let Dcal denote the ideal calibration data set containing the true censoring times Ci along with the corresponding values of
Xi and T̃i; i.e.,

D∗
cal =

{
(Xi, T̃i, Ci)

}n

i=1
.

Let L̂∗(Xn+1;D∗
cal) denote the imaginary output that one would obtain by applying Algorithm A5 using D∗

cal instead of D̃cal

in the calibration phase. Equivalently, L̂∗(Xn+1;D∗
cal) is the lower bound that would be produced under type-I censoring by

Algorithm A2, the approach originally proposed by Gui et al. (2024). Then,

P
[
Tn+1 < L̂(Xn+1; D̃cal)

]
≤ P

[
Tn+1 < L̂∗(Xn+1;D∗

cal)
]

+ P
[
Tn+1 < L̂(Xn+1; D̃cal)

]
− P

[
Tn+1 < L̂∗(Xn+1;D∗

cal)
]

≤ P
[
Tn+1 < L̂∗(Xn+1;D∗

cal)
]
+ dTV(P(X,T̃ ,C)n , P(X,T̃ ,C′)n),

where dTV(P(X,T̃ ,C)n , P(X,T̃ ,C′)n) denotes the total variation distance between the distributions of Dcal and D∗
cal. Finally,

the proof is completed by bounding P
[
Tn+1 < L̂∗(Xn+1;D∗

cal)
]

with Theorem A5 and dTV(P(X,T̃ ,C)n , P(X,T̃ ,C′)n) with
Lemma A1.

Robustness when the survival model is accurate

Theorem A7. Consider a random sample (X,T ) from some distribution PX,T = PX · PT |X . Let L̂(X; D̃cal) indicate the
corresponding survival lower bound output by Algorithm A5. For any x ∈ X , let q̂α(x) denote the estimate of the α quantile
of the conditional distribution of T | X = x utilized in the final phase of Algorithm A4, with the function q̂α : X 7→ R+
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depending only on M̂surv. Assume also that there exist a constant b > 0, and a function qα : X 7→ R+, such that, for any
ϵ > 0,

P [T ≥ qα(x) + ϵ | X = x] ≥ 1− α− bϵ, almost surely with respect to PX .

Then, for any constant ℓ > 0,

P
[
T ≥ L̂(X; D̃cal)

]
≥ 1− α− (b+ 1)

(
E
[
Eℓ(X)

])1/(1+ℓ)
. (A12)

and, for any β ∈ (0, 1), with probability at least 1− β,

P
[
T ≥ L̂(X; D̃cal) | X

]
≥ 1− α− b

(
E
[
Eℓ(X)

])1/ℓ
β1/ℓ

. (A13)

Proof of Theorem A7. The proof of this result is an immediate consequence of Theorem A2, since by design Algorithm A5
leads to L̂(x; D̃cal) ≤ q̂α(x) almost surely for any x ∈ X .

A5.4.2. ASYMPTOTIC THEORY

Proof of Theorem 3.6. This proof follows the same strategy as that of Theorem 3.3, but relying on Theorems A6 and A7
instead of Theorems A3 and A4.

We begin by proving the unconditional result. For this, we consider two cases separately, relying on Theorems A6 and A7
respectively.

• Suppose Assumption 3.4 holds. In this case, the result follows immediately from Theorem A6, which tells us that, for
any fixed n and N ,

P
[
Tn+1 ≥ L̂(Xn+1; D̃cal)

]

≥
(
1− 1

n

)1− α− sup
a∈[0,1]

E
[∣∣∣∣ ca(Xn+1)

ĉa(Xn+1)π̂a
− 1

∣∣∣∣]+
√√√√1 +

γ̂2
a

π̂2
a
+max

(
1, γ̂a

π̂a
− 1
)2

n
log(n)


 .

The proof is then completed by noting that the asymptotic limit of the right-hand-side term above, for N,n→ ∞ is
1− α under Assumption 3.4.

• Suppose Assumption 3.2 holds. In this case, we can obtain the desired result by applying Theorem A7 with ℓ = 1,
which tells us that

P
[
Tn+1 ≥ L̂(X; D̃cal)

]
≥ 1− α− (b+ 1) (E [E(X)])

1/2
.

The proof is then completed by noting that the asymptotic limit of the right-hand-side term above, for N → ∞ is 1−α
under Assumption 3.2.

Let us now turn to proving the conditional result. Under Assumption 3.2, applying Theorem A7 with ℓ = 1 tells us that, for
fixed N and any β ∈ (0, 1),

P
[
P
[
T ≥ L̂(X; D̃cal) | X

]
≥ 1− α− b

E [E(X)]

β

]
≥ 1− β.

In particular, choosing β =
√
E [E(X)] completes the proof, because

P
[
P
[
T ≥ L̂(X; D̃cal) | X

]
≥ 1− α− b

√
E [E(X)]

]
≥ 1−

√
E [E(X)].
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