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Abstract

Series Section Electron Microscopy (ssEM) has emerged as a pivotal technol-
ogy for deciphering nanoscale biological architectures. Three-dimensional (3D)
registration is a critical step in ssEM, tasked with rectifying axial misalignments
and nonlinear distortions introduced during serial sectioning. The core scientific
challenge lies in achieving distortion mitigation without erasing the natural morpho-
logical deformations of biological tissues, thereby enabling faithful reconstruction
of 3D ultrastructural organization. In this study, we present a paradigm-shifting
optimization framework that rethinks 3D registration through the lens of mani-
fold trajectory optimization. We propose the first continuous trajectory dynamics
formulation for 3D registration and introduce a novel optimization strategy. Specif-
ically, we introduce a dual optimization objective that inherently balances global
trajectory smoothness with local structural preservation, while developing a solver
that combines Gauss-Seidel iteration with Neural ODEs to systematically inte-
grate biophysical priors with data-driven deformation compensation. Extensive
experiments on multiple datasets spanning diverse tissue types demonstrate our
method’s superior performance in structural restoration accuracy and cross-tissue
robustness.

1 Introduction

Series Section Electron Microscopy (ssEM) has emerged as a powerful technology for nanoscale
Three-dimensional (3D) visualization of biological systems. Its impact spans diverse domains includ-
ing neuroscience connectomics [84, 79], developmental biology [19, 43], and clinical diagnostics
[29]. Recently, MICrONS project [1, 13, 15, 4] utilizes ssEM as the fundamental method for neural
circuit reconstruction. The ssEM workflow typically involves a series of computational steps, in-
cluding two-dimensional (2D) stitching [21], 3D registration [53, 82], and 3D segmentation [40, 47].

∗Co-First Authors.
†Corresponding Authors.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



…… ……

Noisy Trajectory Smoothed Trajectory

Y

Z

这里加一些术语，说明我们是从生物物理运动
出发的

这个是像素偏移的分布密度图。0-10px的有多
少，10-30px的有多少？>30px的有多少

Noisy TrajectorySmoothed Trajectory

Time Time

Time Time

P
o

si
ti

o
n

S
p

ee
d

A
cc

el
er

at
io

n

C
u

rv
at

u
re

(a) (b)

Y

Z

Orgin Side View Distorted Side View

P
ix

el
 T

ra
je

ct
o

ry
 

T
ra

ck
in

g

T
ra

je
ct

o
ry

 I
n

v
er

si
o

n
 

Im
ag

e 
R

eg
is

tr
at

io
n

T
ra

je
ct

o
ry

 

O
p

ti
m

iz
at

io
n

Our Method

… W
ar

p

Previous Method

G
lo

b
al

 T
ra

je
ct

o
ry

 
O

p
ti

m
iz

at
io

n

Lo
ca

l S
e

q
u

e
n

ti
al

 
R

e
gi

st
ra

ti
o

n

×

√

Figure 1: Trajectory analysis and inspiration: Left: Previous methods is limited to adjacent
registration, while our method achieves a paradigm shift by global trajectory optimization. Right: The
upper-right demonstrates position/velocity/acceleration/curvature comparisons between smoothed
and noisy 1D trajectories. The lower-right displays the side view of the original and distorted
data. This inspires us to explore the inner link between trajectory curvature mutation and nonlinear
distortion from the perspective of biophysical motion.

Among these, 3D registration is particularly critical, as it corrects axial misalignments and nonlinear
distortions, ultimately determining the accuracy and reliability of the final 3D structure.

The fundamental challenge stems from the topological entanglement of biological signal and technical
noise – specifically, the indistinguishability between natural cellular morphological deformation and
nonlinear distortion induced by sample preparation [76, 51]. Furthermore, state-of-the-art equipment
now generates TB-scale image data daily [77]. The massive data volume and error accumulation in
long sequences [36] greatly complicate fast and accurate 3D registration.

Several effective methods have been developed [56, 80, 86, 76, 42, 82]. However, these methods
often fail to account for natural deformations between slices, and prioritizing pixel-level similarity
may erase biologically meaningful changes, compromising the reconstructed structure. Recently,
Zhang et al. [82] decouple natural deformation from nonlinear distortion by modeling them as low
and high-frequency components. This insight motivated us to investigate the intrinsic characteristics
of nonlinear distortion through the lens of biological motion coherence. We discovered that nonlinear
distortion is essentially a sudden change in local curvature. As shown in Figure 1(b), anatomical
structures inherently exhibit smooth manifold properties, maintaining evolutionary consistency in
morphological changes. Mechanical sectioning, however, disrupts this continuity, introducing abrupt
curvature mutations that contradict tissue biomechanics.

Building upon this, we propose a noval optimization framework, NeuroTrajReg, which redefines
3D registration as a motion trajectory optimization problem. We establish a continuous trajectory
dynamics formulation for ssEM, integrating spatiotemporal constraints to effectively eliminate
nonlinear distortions while preserving the natural evolution of tissue morphology. We introduce a
dual optimization objective that inherently balances global trajectory smoothness and local structural
preservation, while developing a solver that combines Gauss-Seidel iteration with Neural ODEs to
systematically integrate biophysical priors with data-driven deformation compensation. Extensive
experiments spanning diverse tissue types demonstrate NeuroTrajReg’s superior performance in
structural restoration accuracy and robustness across different tissue types. The main contributions of
this paper are summarized as follows:

• We analyze the nonlinear distortions from the perspective of biological motion coherence.
Based on this analysis, we redefine 3D registration as a continuous manifold trajectory
optimization problem and propose the first continuous trajectory dynamics formulation.

• We propose a novel framework that integrates biophysical priors with data-driven deforma-
tion compensation, achieving a theory-guided yet data-corrected approach.

• Extensive experiments demonstrate that NeuroTrajReg achieves superior performance in
accurately and faithfully reconstructing biological 3D structures while maintaining cross-
tissue robustness.
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2 Related works

3D registration for series section electron microscopy. Several software packages have been
developed for 3D registration [39, 38, 66]. Among them, TrakEM2 [56] is one of the most widely
used tools, performing 3D registration by iteratively optimizing a spring-connected particle system.
Recently, deep learning-based methods have emerged as promising alternatives for 3D registration
[80, 86, 42]. SEAMLeSS [53] improves robustness through vector voting and achieves global
registration via combined attenuation transformations. Recently, Zhang et al. [82] proposed a
Gaussian filter-based 3D registration method that approaches the problem from a frequency-domain
perspective.

Medical image registration. Medical image registration [85, 48, 24, 16], closely related to 3D
registration, has achieved notable progress [85, 52, 5, 83, 20, 22]. Existing methods are typically
categorized by their transformation models. Dense models [2, 9, 37, 8] estimate voxel-wise mappings
to form dense deformation fields, whereas interpolation-based models [30, 70, 58, 61] approximate
deformations using basis functions (e.g., B-splines) over spatial grids. Despite their success, these
approaches mainly address image pairs. In contrast, 3D registration demands handling nonlinear
distortions while maintaining axial continuity.

Neural ordinary differential equations. Neural Ordinary Differential Equations (Neural ODEs)
[6] integrate differential equation solvers into neural networks, enabling continuous representations
with adaptive computation and enhanced parameter efficiency. Formally, given hidden state h(t), a
Neural ODEs defines its dynamics through a parameterized function fθ:

dh(t)

dt
= fθ(h(t), t), (1)

and the final state is obtained by solving h(t1) = h(t0) +
∫ t1
t0

fθ(h(t), t)dt. Numerous variants
of Neural ODEs have emerged to capture more complex transformations [57, 75, 49, 44, 35, 27].
Neural ODEs have been widely applied across various fields [50, 31, 55, 68]: Vid-ODE [50] enables
continuous-time video synthesis, NODEO [74] adapts it for deformable image registration, and Latent
ODE [55] models continuous-time sequences.

Reference line smoothing algorithms. In autonomous driving [81, 65], the reference line smooth-
ing algorithm [12, 60, 17] geometrically optimizes global paths to generate smooth trajectories with
curvature continuity, kinematic feasibility, and minimal deviation from the original reference. Its
primary role involves eliminating curvature discontinuities between discrete waypoints, constraining
maximum curvature within vehicle kinematic limits. The loss function is formulated as:

J =

n−1∑
i=2

∥pi−1 − 2pi + pi+1∥2︸ ︷︷ ︸
Smoothness

+λ

n∑
i=1

∥pi − qi∥2︸ ︷︷ ︸
Fidelity

+

n∑
i=1

δ(|κi| ≤ κmax)︸ ︷︷ ︸
Constraints

, (2)

where the first term penalizes curvature variation via second-order differencing, the second enforces
proximity to original waypoints qi with adaptive weight λ, and the third applies indicator function δ(·)
to enforce maximum curvature κmax. Optimization strategies include convex quadratic programming
(QP) for real-time computation, sequential QP (SQP) for nonlinear constraint handling [12, 17],
spline curves [72, 14], and mass-spring physical simulation [34, 23].

3 Proposed method: NeuroTrajReg

For the problem of 3D registration, we propose a dynamics-based nonlinear distortion correction
framework for ssEM image sequences. Given a stack of microscopic images {Iz}N−1

z=0 affected by
complex nonlinear distortions, our objective is to reconstruct a 3D structure that faithfully preserves
the biological morphology by establishing a registration model with biophysical priors. The core
challenge lies in dynamically balancing two conflicting demands: on the one hand, eliminating
nonlinear spatial distortions induced by external factors, and on the other hand, preserving the
intrinsic morphological characteristics of the biological specimen, such as tissue deformation and
developmental topological changes.
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Figure 2: (a) The overall pipeline of NeuroTrajReg. Our approach can be divided into three
main components: 1) Pixel trajectory tracking, 2) Dynamics-based trajectory optimization, and
3) Trajectory inversion and image registration. (b) Illustration of the trajectory tracking module. (c)
The network architecture of fθ (Neural ODEs) in dynamics-based trajectory optimization module.

3.1 Problem formulation

In this section, we introduce the concept of pixel-wise motion trajectory tracking and smoothing.
Drawing inspiration from the classical Laplace equation [7] and the reference line smoothing al-
gorithms [12], we formulate the 3D registration as a continuous manifold trajectory optimization
problem. Specifically, each pixel pi ∈ R2 is treated as a particle within a continuum medium,
whose displacement along the slice axis z ∈ [z0, zN−1] generates a parameterized trajectory Pi.
While this trajectory ideally follows natural morphological variations, nonlinear distortions induce
local curvature abruptions. To address this, we establish spatiotemporal smoothness constraints on
pixel trajectories, transforming traditional 3D registration into a physically interpretable continuous
trajectory optimization problem. NeuroTrajReg is grounded in three key principles: 1) physical
motion coherence in biological tissues; 2) Laplace-based trajectory smoothing; 3) spatiotemporal
continuity in microscopy imaging. We model pixel-wise motion from individual dynamics to global
trajectory constraints with strict mathematical consistency.

Single-particle dynamics. Let Pi denote the parameterized trajectory. We formulate the single-
particle optimization problem as follows:

min
Pi

{∫ zN−1

z0

∥Pi(z)− P(0)
i (z)∥2dz︸ ︷︷ ︸

Data fidelity

+λ

∫ zN−1

z0

∥∇2Pi(z)∥2dz︸ ︷︷ ︸
Laplacian smoothness

}
, (3)

where P(0)
i denotes the observed origin trajectory, ∇2 is the axial Laplacian operator, and λ > 0

controls the regularization strength. The Laplacian term enforces second-order temporal smoothness
by penalizing acceleration discontinuities, effectively filtering biologically implausible instantaneous
acceleration changes.

Holistic trajectory constraint. For image stack {Iz}N−1
z=0 , we formulate the holistic optimization:

min
{Pi}

M∑
i=1

[∫ zN−1

z0

∥Pi(z)− P(0)
i (z)∥2dz + λ

∫ zN−1

z0

∥∇2Pi(z)∥2dz + µSi

]
, (4)

where M is the total number of trajectories, corresponding to the number of pixels in image Iz , and
the spatial coherence term Si is defined as:

Si :=
∑

j∈N (i)

∫ zN−1

z0

∥Pi(z)− Pj(z)∥2dz, (5)
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and weighted by µ > 0 for preserving local topologies within each slice, where N (i) denotes the set
of spatial neighbors of point i within the same slice. This dual regularization strategy embeds two
fundamental biological principles:

• Temporal smoothness. It preserves smooth and stable tissue morphology evolution by
constraining axial acceleration discontinuities through Laplacian regularization, preventing
unreliable instantaneous trajectory changes.

• Spatial consistency. It maintains the local topology between slice pixels by ensuring the
consistency of trajectory smoothing for neighboring pixels.

3.2 Trajectory optimization for 3D registration

Our approach, as shown in Figure 2(a), mainly consists of three components: 1) pixel trajectory
tracking, 2) dynamics-based trajectory optimization, and 3) trajectory inversion and image registration.
Specifically, we perform trajectory tracking for each pixel in the image stack. Then, we apply our
proposed trajectory optimization algorithm to obtain smooth pixel trajectories. Afterward, we
compute the trajectory displacements and invert them back to the pixel grid to generate a deformation
field, which is then used to register the image stack. We will now elaborate on the implementation
and contributions of each component.

Pixel trajectory tracking. Given image stack {Iz}N−1
z=0 ∈ RN×1×H×W , our goal is to track the

trajectory of each pixel over time, accounting for subpixel displacements. We use the network shown
in Figure 2(b) for estimating the displacement field uz−1,z ∈ RH×W×2 in x-axis and y-axis between
adjacent slices. To model the temporal trajectory of every pixel, we introduce a trajectory volume
P ∈ RN×H×W×2, where P(z) stores the spatial coordinate in slice z. This trajectory is initialized
as:

P(0, y, x) = (y0, x0), (6)

indicating that the trajectory of each pixel starts from its position in the first slice. Here, P(z, y, x)
denotes the displacement vector at index (y, x) in slice z.

We recursively propagate the position using the displacement field from the previous slice. But the
pixel location P(z − 1, y, x) may not be aligned with the discrete grid of uz−1,z , as accumulated
displacements often lead to non-integer coordinates. As a result, bilinear interpolation of uz−1,z is
required to accurately estimate the flow at subpixel positions. Formally, the trajectory propagation is
governed by the transport equation:

P(z, y, x) = P(z − 1, y, x) + ũz−1,z(P(z − 1, y, x)), (7)

where ũz−1,z(·) denotes the interpolated displacement field.

Dynamics-based trajectory optimization. According to Eq. (3), we model trajectory smoothing
as the weighted minimization of discrete curvature energy and deviations from the original trajectory.
To solve this optimization objective, we employ the Gauss-Seidel method [18] to iteratively smooth
the trajectory. The Gauss-Seidel method is a classical algorithm for solving linear systems. Its
key characteristic lies in accelerating convergence by immediately incorporating the most recently
updated values. The corresponding Gauss-Seidel iteration is given by:

P(k+1)(z) =
P(k+1)(z − 1) + P(k)(z + 1) + λP(0)(z)

2 + λ
, z = 1, . . . , N − 1. (8)

with boundary values fixed as P(k)(0) ≡ P(0)(0) and P(k)(N −1) ≡ P(0)(N −1). In each iteration
k, the internal positions z are updated from the 1 to the N−1, where each P(k+1)(z) is computed
using the most recent value of its predecessor P(k+1)(z−1) and the previous value of its successor
P(k)(z+1). A detailed derivation is provided in the supplementary material.

While the Gauss-Seidel method provides a theoretically grounded approach for solving linear sys-
tems through explicit point-wise updates with guaranteed convergence, its practical effectiveness is
inherently limited by discrepancies between idealized theoretical models and real-world scenarios.
Contrastingly, Neural ODEs [6] excel in learning continuous dynamical systems through implicit
dynamic modeling, effectively capturing complex nonlinear deviations.
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Given the exceptional capability of Neural ODEs in modeling continuous dynamic systems [69,
31, 46], we use Neural ODEs to reformulate trajectory smoothing as the dynamic evolution of a
continuous trajectory. The network architecture of fθ in Neural ODEs is shown in Figure 2(c). The
trajectory constraints are enforced through integration of velocity field V = {vz}N−1

z=1 satisfying:

V(t) =
dP(t)

dt
= fθ

(
P(t), t

)
, P(tk+1) = P(tk) +

∫ tk+1

tk

V(t)dt, (9)

where fθ is a neural network with trainable parameters θ.

Inspired by Universal Differential Equations (UDEs) [54], we propose a dynamically adaptive
optimization system that synergistically combines the explicit iterative convergence of Gauss-Seidel
with the implicit dynamic modeling capabilities of Neural ODEs:

P(tN ) = (1− α) G(P(t0))︸ ︷︷ ︸
Gauss-Seidel core

+αODESolver
[
fθ,P(t0), [t0, tN ]

]︸ ︷︷ ︸
Neural compensator

, (10)

where G(·) denotes the Gauss-Seidel operator, which takes the initial trajectory at time t0 as input
and outputs a smoothed trajectory at time tN . ODESolver[·] represents the neural dynamic correction
over time interval [t0, tN ]. The adaptive weight α ∈ [0, 1] evolves through:

α = σ

(
β ·

(
1− ∆(tN )

∆(t0)

))
, (11)

where σ(·) denotes the sigmoid activation ensuring smooth transitions, β controls the adaptation rate
sensitivity, and ∆(tk) = ∥G(P(tk))− P(tk)∥ quantifies theoretical operator progress.

Therefore, our architecture follows a theory-guided, data-corrected approach, incorporating an
adaptive blending module that automatically balances theoretical components and corrective terms.
It takes advantage of Gauss-Seidel for rapid initial convergence, ensuring numerical stability and
accelerating optimization. Neural ODEs are then employed to capture higher-order nonlinear effects
and compensate for the gaps between the model and reality.

Trajectory inversion and image registration. After trajectory optimization, we obtain the resulting
trajectories P(tN ) ∈ RN×H×W×2, where each element P(tN )

i (z) ∈ R2 represents the evolved
coordinate of the i-th trajectory P(tN )

i at slice z. Based on this, the displacement ϕ ∈ RN×H×W×2

can be computed by comparing it with the observed original trajectory P(0):

ϕ = P(tN ) − P(0). (12)

The displacement ϕ encodes the offset information of P(tN ). However, it is important to note that this
does not exactly correspond to the displacement of pixel grid points, as the coordinates in P(tN ) are
not necessarily integers. Therefore, inspired by the surface splatting [87, 33] in computer graphics,
we propose an efficient bilinear splatting to invert the trajectories and obtain accurate displacements
at pixel grid locations (detailed in the supplementary material):

{Φz}N−1
z=0 = Ibs(P(tN ), ϕ), (13)

where Ibs means bilinear splatting and {Φz}N−1
z=0 ∈ RN×H×W×2 represents the deformation fields

corresponding to the image stack {Iz}N−1
z=0 . These deformation fields are subsequently used to register

the image stack:
Iz = Φz ◦ Iz, z = 0, . . . , N − 1, (14)

where ◦ denotes the warping operation.

3.3 Loss functions

The trajectory tracking network is optimized using a composite unsupervised loss function comprising
a normalized cross-correlation (NCC) data fidelity term and a diffusion regularizer applied to the
displacement fields, with balancing coefficient λ. The loss function is formally expressed as:

Ltraj = NCC (Iz, Iz−1 ◦ uz−1,z) + λ∥∇uz−1,z∥22, (15)

6



where ◦ indicates the spatial warping operator, and ∇ computes first-order spatial gradients via finite
difference approximation.

According to Eq. (4), the Neural ODEs training objective is formulated as a composite unsupervised
loss function comprising three components:

L =

M∑
i=1

( zN−1∑
z=z0

∥Pi(z)− P(0)
i (z)∥2︸ ︷︷ ︸

Data fidelity term

+λ

zN−1∑
z=z0

∥∇2Pi(z)∥2︸ ︷︷ ︸
Trajectory smoothness term

+µ

zN−1∑
z=z0

∑
j∈N (i)

∥Pi(z)− Pj(z))∥2︸ ︷︷ ︸
Spatial consistency term

)
,

(16)
where P(0)

i denotes the observed origin trajectory. The trajectory smoothness term, weighted by
λ > 0, penalizes acceleration discontinuities through the temporal Laplacian operator ∇2, discretized
with second-order differences. The spatial consistency term, weighted by µ > 0, preserves local
topological relationships within each slice.

4 Experiments

4.1 Datasets

We evaluate our algorithm on six publicly available datasets from the OpenOrganelle platform [77],
covering a variety of mouse tissues such as heart, kidney, liver, skin, and pancreas. These allow for a
comprehensive evaluation of NeuroTrajReg’s applicability and robustness across diverse tissue types.
For real-world data, we utilized the female fruit fly brain neural dataset (FemFlyBrain) [63]. More
details can be found in the supplementary material.

4.2 Implementation details

We implement our method using PyTorch, and all experiments are conducted on an NVIDIA A800
GPU with 80GB of memory. For the pixel trajectory tracking, we employ a 2D U-Net architecture to
capture the displacements between adjacent slices. Neural ODEs employ a 3D U-Net architecture
to parameterize fθ. The network takes pixel trajectories P as input and generates a time-dependent
velocity field V . More details can be found in the supplementary material.

4.3 Results

In Table 1, we compare NeuroTrajReg with advanced 3D registration techniques, including EMReg
[42], EFSR [76], TrakEM2 [56], SEMLeSS [53], and GaussReg [82], using synthetic datasets
spanning six diverse tissue types. Our approach, along with the supervised GaussReg method,
demonstrates superior performance due to consideration of natural deformations, which other methods
typically overlook. Methods overly focused on pixel-level similarity can neglect biologically relevant
movements such as cellular dynamics, as shown in Figure 7. Moreover, compared to the supervised-
manner GaussReg, our method uniquely benefits from global trajectory optimization, enabling the
computation of a single interpolation deformation across slices. Conversely, GaussReg is constrained
by a local receptive field, necessitating multiple interpolation steps. For the performance on real-
world datasets, we selected several volumetric samples from the FemFlyBrain dataset [63]. The
registration results are visualized in Figure 5, where we employed the interpolation and visualization
tools provided by FIJI [59] to display the side views of the image stacks. Although GaussReg reduces
nonlinear distortions, it also erroneously removes some structural textures, leading to a noticeable
deviation from the original data. In contrast, our method not only effectively corrects the nonlinear
distortions in the image stacks but also better preserves local structural details.

To further evaluate our approach, Figure 3 compares the error accumulation across approximately
1000 slices for SEMLeSS [53], GaussReg [82], and our method. SEMLeSS suffers significantly from
error accumulation over long sequences. Although GaussReg performs reasonably well, it exhibits
lower precision and higher variance compared to our method, indicating less stable performance. Our
method achieves superior average SSIM accuracy and demonstrates substantially greater stability ,
maintaining consistent performance without noticeable degradation even after 1000 slices. Additional
results are provided in the supplementary material.
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Table 1: The performance of different 3D registration methods in six synthetic datasets [77].
Mus Heart Mus Kidney Mus Liver-3 Mus Liver Mus Pancreas Mus Skin

EMReg [47]
MI 0.73 ± 0.14 0.65 ± 0.16 0.89 ± 0.17 0.79 ± 0.18 0.76 ± 0.14 0.66 ± 0.18

SSIM 0.55 ± 0.03 0.44 ± 0.04 0.52 ± 0.04 0.43 ± 0.03 0.43 ± 0.02 0.50 ± 0.07

NCC 0.90 ± 0.03 0.81 ± 0.05 0.86 ± 0.05 0.78 ± 0.05 0.81 ± 0.03 0.87 ± 0.04

EFSR [76]
MI 1.15 ± 0.10 1.26 ± 0.15 1.45 ± 0.14 1.36 ± 0.16 1.33 ± 0.13 1.03 ± 0.20

SSIM 0.67 ± 0.04 0.63 ± 0.05 0.65 ± 0.04 0.56 ± 0.04 0.57 ± 0.04 0.60 ± 0.07

NCC 0.98 ± 0.00 0.97 ± 0.01 0.97 ± 0.00 0.95 ± 0.01 0.95 ± 0.01 0.97 ± 0.01

TrakEM2 [56]
MI 1.01 ± 0.03 1.24 ± 0.10 1.48 ± 0.07 1.47 ± 0.08 1.48 ± 0.06 1.08 ± 0.15

SSIM 0.57 ± 0.02 0.61 ± 0.03 0.66 ± 0.03 0.61 ± 0.03 0.65 ± 0.03 0.64 ± 0.06

NCC 0.98 ± 0.00 0.97 ± 0.00 0.98 ± 0.00 0.97 ± 0.00 0.97 ± 0.00 0.98 ± 0.01

SEMLeSS [53]
MI 1.00 ± 0.12 1.07 ± 0.14 1.35 ± 0.17 1.29 ± 0.19 1.18 ± 0.15 0.89 ± 0.18

SSIM 0.58 ± 0.04 0.52 ± 0.04 0.61 ± 0.05 0.52 ± 0.06 0.50 ± 0.05 0.51 ± 0.07

NCC 0.97 ± 0.01 0.96 ± 0.01 0.97 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.96 ± 0.01

GaussReg [82]
MI 1.43 ± 0.05 1.54 ± 0.11 1.83 ± 0.07 1.83 ± 0.08 1.76 ± 0.06 1.40 ± 0.16

SSIM 0.83 ± 0.02 0.78 ± 0.03 0.82 ± 0.02 0.80 ± 0.02 0.80 ± 0.02 0.82 ± 0.03

NCC 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99± 0.00 0.99 ± 0.00

Ours
MI 1.47 ± 0.08 1.67 ± 0.14 1.88 ± 0.11 1.85 ± 0.21 1.81 ± 0.12 1.52 ± 0.17

SSIM 0.87 ± 0.02 0.85 ± 0.02 0.87 ± 0.01 0.84 ± 0.15 0.86± 0.18 0.86 ± 0.03

NCC 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00

MI

Slice Number

SSIM

NCC

Slice Number

Slice Number

Mouse Liver-3

Figure 3: Error accumulation comparison on Mus Liver-3 dataset.

4.4 Ablation study

Loss Terms. We tested the impact of different components of the loss function (Eq. 16) on the results.
The results are shown in Table 2, where TS, DF, and SC correspond to the Trajectory Smoothness
term, Data Fidelity term, and Spatial Consistency term, respectively. Removing the Data Fidelity
term decreases SSIM, as this leads to the trajectory deviating excessively from the original, with
a risk of over-smoothing. Removing the Spatial Consistency term results in a decrease in SSIM,
as failing to preserve local topology can lead to local pixel distortions. As for the TS term, it is
key to trajectory smoothing, as it imposes constraints on the trajectory’s acceleration, preventing
unreasonable instantaneous variations. In conclusion, all components are essential and work together
to ensure optimal performance.

Hyperparameters. We tested the impact of different hyperparameters λ and µ in Eq. (16) on
registration accuracy. λ controls the smoothness of the trajectory to filter unreasonable instanta-
neous velocity changes, while µ regulates the local consistency of the displacement field to ensure
topological consistency before and after registration. λ has an important impact on registration
performance; if it is too small, it fails to eliminate noise completely, while if it is too large, it may
cause excessive deviation of the trajectory. In contrast, µ is more robust and has a lesser effect on
registration performance.
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Figure 4: 3D visualization of registration results on the Mus Kidney and Mus Heart datasets.

Table 2: The ablation study of different loss
terms.

TS Loss term DF Loss term SC Loss term SSIM

Mus Heart

✔ ✘ ✘ 0.721
✔ ✔ ✘ 0.855
✔ ✘ ✔ 0.793
✔ ✔ ✔ 0.872

Mus Kidney

✔ ✘ ✘ 0.698
✔ ✔ ✘ 0.822
✔ ✘ ✔ 0.774
✔ ✔ ✔ 0.851

Table 3: The ablation study of different hyper-
parameter in the loss.

SSIM λ\µ 0.0001 0.001 0.01 0.1

Mus Heart

0.001 0.775 0.782 0.771 0.762
0.01 0.795 0.806 0.783 0.779
0.1 0.852 0.872 0.841 0.822
1 0.811 0.819 0.805 0.787

Mus Kidney

0.001 0.754 0.762 0.752 0.741
0.01 0.781 0.794 0.772 0.766
0.1 0.833 0.851 0.821 0.815
1 0.768 0.773 0.758 0.743

Table 4: Ablation study on the number of iterations in the Gauss-Seidel method.
SSIM\Iterations 50 100 150 200 250 300

Mus Heart 0.719 0.802 0.855 0.872 0.874 0.874
Mus Kidney 0.713 0.796 0.828 0.851 0.851 0.851
Mus Liver 0.695 0.774 0.811 0.842 0.844 0.844
Mus Skin 0.682 0.788 0.842 0.864 0.868 0.866

Number of Iterations. Table 4 investigates the effect of varying the number of iterations in the
Gauss-Seidel method. From 0 to 200 iterations, the registration performance improves significantly
and then gradually converges. Considering the trade-off between accuracy and efficiency, we select
200 iterations in practice to achieve a good balance.

Module Analysis. Our method can be decomposed into two main modules: the Gauss-Seidel method
and Neural ODEs. The Gauss-Seidel method achieves fast convergence through iterative updates,
while Neural ODEs effectively capture complex nonlinear distortions by modeling implicit dynamics.
As shown in Table 5, we analyze the contribution of these key components in the trajectory smoothing
scheme, and the results demonstrate the necessity and effectiveness of both modules.

Different Solver. Table 6 further studies the effect of different solvers for Neural ODEs. To
avoid additional computational overhead, we adopt the Euler solver to balance performance and
computational cost. More ablation experiments are provided in the supplemenatry material.
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Figure 5: Side views of the original data, the registration results of GaussReg [82], and our method
on two sampled volumes from the FemFlyBrain dataset [63].

Table 5: Ablation study of the components in
our method.

Gauss-Seidel Neural ODEs SSIM

Mus Heart
✔ ✘ 0.847
✘ ✔ 0.835
✔ ✔ 0.872

Mus Kidney
✔ ✘ 0.833
✘ ✔ 0.827
✔ ✔ 0.851

Table 6: Ablation study of different solvers for
Neural ODEs.

Euler Dopri5 RK4

Time SSIM Time SSIM Time SSIM
Mus Heart 2.45 0.872 8.33 0.877 7.68 0.876

Mus Kidney 2.41 0.851 8.52 0.855 7.66 0.854
Mus Liver 2.5 0.842 8.71 0.848 7.72 0.847
Mus Skin 2.46 0.864 8.39 0.869 7.25 0.868

5 Conclusion

In this paper, we present a noval 3D registration method for series section electron microscopy.
We analyze the inherent characteristics of nonlinear distortion from the perspective of biological
motion coherence, and reconsider 3D registration from the viewpoint of trajectory optimization.
We introduce a dual optimization objective that balances global trajectory smoothness and local
structural preservation, and we develop a solver that combines Gauss-Seidel iteration with Neural
ODEs. Extensive experiments demonstrate that our method excels in structural restoration accuracy
and cross-tissue robustness.
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• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in the Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This paper does not involve theoretical proofs.
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Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: This paper explicitly details the algorithm reproduction and dataset specifics in
the appendix. In the future, we will release the code after the paper is accepted.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide the code in the supplementary material and offer detailed instruc-
tions on how to reproduce the algorithm in the appendix.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all the training and test details in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We present the error ranges of the evaluation metrics in the tables of both the
main text and the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the details of experiments compute resources in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Twe discuss both potential positive societal impacts and negative societal
impacts in the Appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes. All external assets used in the paper, including code, datasets, and models,
are properly credited. Their licenses and terms of use have been explicitly mentioned and
strictly respected in accordance with their respective guidelines.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A1 Dataset Details and Metrics

A1.1 Dataset Details

We selected six publicly available datasets from the OpenOrganelle platform [77] for simulation
experiments. These datasets encompass high-resolution electron microscopy images of various
mouse tissues, including the heart, kidney, liver, skin, and pancreas. The availability of ground-truth
annotations in these datasets provides strong support for validating the applicability and robustness
of our method across different types of biological tissues. For real-world data, we utilized the female
fruit fly brain neural dataset (FemFlyBrain) [63]. These extensive datasets enabled us to validate the
robustness of our method against real-world data.

P7 Mouse Heart. This dataset consists of heart tissue extracted from a wild-type C57BL/6J mouse at
postnatal day 7. The experimental procedure followed IACUC guidelines for animal anesthesia. The
tissue was fixed via perfusion with glutaraldehyde and sectioned using a vibratome. Subsequently,
the sample underwent low-temperature reducing OTO staining, dehydration through a graded ethanol
series, infiltration with Durcupan resin, and polymerization in an oven at 60°C.

Mouse Kidney. This dataset consists of kidney tissue extracted from an 8-week-old wild-type
C57BL/6 mouse. The tissue was perfused with glutaraldehyde fixative and sectioned using a
vibratome. After staining with reducing OTO at room temperature, the sample underwent dehydration,
infiltration with a graded ethanol series, and Durcupan resin. Finally, the sample was polymerized in
an oven at 60°C.

P7 Mouse Liver. This dataset comprises liver tissue collected from a wild-type, postnatal day 7
C57BL/6J mouse. Following anesthesia in accordance with IACUC guidelines, the sample was
perfused with glutaraldehyde fixative and sectioned using a vibratome. After low-temperature
reducing OTO staining, the tissue underwent dehydration, infiltration with graded ethanol and
Durcupan resin, and was subsequently polymerized in a 60°C oven.

Mouse Liver. This dataset contains liver tissue from a wild-type, 8-week-old C57BL/6 mouse. The
sample was fixed via perfusion with glutaraldehyde and sectioned using a vibratome. Subsequently,
reducing OTO staining was performed at room temperature. The sample was then dehydrated,
infiltrated with graded ethanol and Durcupan resin, and polymerized in a 60°C oven.

P7 Mouse Skin. This dataset includes skin tissue from a wild-type, postnatal day 7 C57BL/6J mouse.
Mouse anesthesia was performed in accordance with IACUC guidelines, followed by perfusion
fixation using glutaraldehyde and vibratome sectioning. The sample underwent low-temperature
reducing OTO staining, dehydration, infiltration with graded ethanol and Durcupan resin, and was
polymerized in a 60°C oven.

P7 Mouse Pancreas. This dataset consists of pancreas tissue from a wild-type, postnatal day 7
C57BL/6 mouse. The sample was fixed via perfusion with glutaraldehyde and sectioned using a
vibratome. It underwent low-temperature reducing OTO staining, followed by dehydration, infiltration
with graded ethanol and Durcupan resin, and polymerization in a 60°C oven.

Female Fruit Fly Brain Neural Dataset. FemFlyBrain [63] consists of the right hemisphere of a
wild-type Oregon R female fruit fly brain. The brain was continuously sectioned at a thickness of 40
nanometers, covering regions including the medulla and downstream neuropils. The sections were
imaged at a magnification of 35,000. The connectome within the medulla includes 379 neurons and
8,637 chemical synaptic contacts.

Full Adult Fly Brain Dataset. Full Adult Fly Brain Dataset (FAFB) [84] covers the entire depth
of an adult fruit fly brain (approximately 250 µm). From the optimized sample, 7,062 consecutive
sections of about 40 nm thickness were collected, optimized for high membrane contrast and fine
ultrastructural preservation. A total of 7,050 sections (99.8%) were successfully imaged.

Mouse Cortical Dataset. The Mouse Cortical Dataset [32] provides a saturated reconstruction of a
mouse neocortical sub-volume, in which all cellular elements (axons, dendrites, and glia) and various
subcellular components (synapses, vesicles, spines, postsynaptic densities, and mitochondria) are
fully annotated.
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Table 7: Details of the synthetic datasets for testing phase.

Datasets Shape Numbers URL

P7 Mouse Heart 1184×1184 1000 https://openorganelle.janelia.org/datasets/jrc_mus-heart-1

Mouse Kidney 1184×1184 1000 https://openorganelle.janelia.org/datasets/jrc_mus-kidney

P7 Mouse Liver 1184×1184 1127 https://openorganelle.janelia.org/datasets/jrc_mus-liver-3

Mouse Liver 1184×1184 558 https://openorganelle.janelia.org/datasets/jrc_mus-liver

P7 Mouse Pancreas 1184×1184 898 https://openorganelle.janelia.org/datasets/jrc_mus-pancreas-4

P7 Mouse Skin 1184×1184 1231 https://openorganelle.janelia.org/datasets/jrc_mus-skin-1

FemFlyBrain 1024×1024 1299 https://neurodata.io/data/takemura13/

FAFB 1024×1024 700 https://temca2data.org/

Mouse Cortex 1024×1024 700 https://neurodata.io/data/kasthuri15/

A1.2 Metrics

To quantitatively evaluate the performance of our method, we calculated several metrics, including
Normalized Cross-Correlation (NCC), Mutual Information (MI), and Structural Similarity Index
(SSIM) between the registrated image series and the ground truth (GT). These metrics provide a
comprehensive evaluation of the accuracy of our alignment and registration results from different
perspectives. Specifically, NCC measures the similarity between the result images and the GT, MI
reflects the mutual information between the two, and SSIM evaluates the accuracy based on structural
information. Dice is a set similarity metric commonly used to measure the similarity between two
samples. Here, we use the Dice score to evaluate the segmentation accuracy of 3D segmentation
results on the registered data.

A2 Experimental Details

A2.1 Dataset Setup

For training the trajectory tracking module, we split the original image data into 3000 image pairs
{I0, I1}, where I0 and I1 represent adjacent images. These images are cropped to a size of 1184
× 1184. During training, the data is normalized to the range of [-1, 1]. The training-validation
split is set to 0.95. Additionally, we randomly select one of the images from {I0, I1} and apply
random elastic deformation to simulate nonlinear distortions. Specifically, we first generate a random
deformation field Drand, which indicates the pixel displacement matrix. This matrix is then smoothed
using a Gaussian filter, and the resulting deformation is applied to create the deformed images. The
deformation process is described by the following formulas:{

ϕi = α · size(Ii) · Gauss(Drand, σ · size(Ii)),
Ii = ϕi ◦ Ii,

(17)

where ϕi represents the random deformation field applied to image Ii, ◦ denotes the deformation
operation, Drand is the generated random displacement field, Gauss(·) is the 2D Gaussian filter
operator, α controls the displacement magnitude, and σ determines the smoothing extent. In our
experiments, we set σ = 0.08 and α = 1.0.

During the testing phase, we cropped all six datasets into image stacks of size 1184 × 1184 × N ,
where N denotes the number of slices. Additionally, we applied random elastic deformations to all
images except the first one to simulate nonlinear distortions. The deformation parameters were set to
σ = 0.08 and α = 1.0. Detailed information regarding the datasets can be found in Table 7. Our test
data consists of several hundreds to around 1000 samples, which fully demonstrates our method’s
capability in handling long sequences and addressing the challenge of error accumulation.
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A2.2 Network Architecture and Training Details

The trajectory tracking network adopts a 2D U-Net architecture with residual multi-kernel fusion,
consisting of 1) a cascaded feature encoder with hybrid convolutional blocks, and 2) a dense feature
decoder with transposed upsampling. The encoder progressively reduces spatial resolution through
four strided convolutions (stride=2), doubling the number of channels from an initial 8 to 64.
Specifically, the encoder is composed of four convolutional layers with output channels of 8, 16,
32, and 64, respectively. Each convolutional layer includes two convolution operations: the first
convolution uses a 3×3 kernel, followed by a second convolution with a larger 7×7 kernel to expand
the receptive field, similar to the approach in LKUnet [28]. The decoder consists of four layers and
reconstructs dense predictions using four transposed convolutions (kernel size = 2, stride = 2), halving
the number of channels from 64 to 2. Skip connections concatenate the encoder features with the
corresponding decoder layers to facilitate hierarchical feature fusion. The final displacement field is
generated through dual 3× 3 convolutions with a Softsign activation. To enable spatial warping, a
Spatial Transformer Network (STN) [25] is employed for image registration. The model is optimized
using the ADAM optimizer with parameters β1 = 0.5 and β2 = 0.999. The learning rate is set to
1× 10−4, and training is performed for 500 epochs with a batch size of 16. For the regularization
term in the loss function, we set λ = 1.5 to encourage smoothness in displacement field.

Neural ODEs employ a 3D U-Net architecture to parameterize fθ. The number of network layers and
the number of channels per layer are kept consistent with the 2D U-Net used in the trajectory tracking
module, but large convolutional kernels are avoided to reduce memory consumption. For training,
we use the ADAM optimizer with parameters β1 = 0.5 and β2 = 0.999. The learning rate is set to
1× 10−4, and training is conducted for 500 epochs with a batch size of 4. For the loss function, we
set λ = 0.1 and µ = 0.005. For the Gauss-Seidel method used in trajectory smoothing, we set the
number of iterations to 200 and λ = 0.1. For Neural ODEs, we use the simple Euler solver, with all
other parameters kept at their default settings.

A2.3 Training and Testing on Real Data

A key advantage of our method lies in its unsupervised learning paradigm, which is particularly
valuable for real-world datasets that lack reliable ground-truth correspondences. The training process
on real data is divided into two stages: training of the trajectory tracking module and training of the
trajectory smoothing module. We begin by cropping a small spatiotemporal block of size H×W ×T
from the real dataset. Training samples are then constructed following the procedure described in
Section A2.1, except that no additional elastic deformation is applied. The trajectory tracking network
is subsequently trained in an unsupervised manner, identical to the approach used for synthetic data.
For training the trajectory smoothing module, we first apply the previously trained network to obtain
estimated trajectories. These are then used for the unsupervised training of the smoothing module,
again following the same procedure as used for synthetic data.

For testing on real data, the networks trained on cropped data blocks can be directly applied to the
full image stack. We adopt a sliding-window registration strategy to perform registration across
the entire long image sequence. Specifically, given the full real image stack {Ii}N−1

i=0 , we define
a receptive field of moderate size (about 100 slices). Within each windowed region, the trajectory
tracking network is used to estimate the displacement trajectories. These trajectories are then refined
by the trajectory smoothing module. Subsequently, inverse warping is applied based on the smoothed
trajectories to perform image registration. The registered image block is then placed back into its
corresponding location in the full stack. The window is shifted along the sequence, and the procedure
is repeated until the entire image stack has been registered.

A3 Supplementary Mathematical Derivations

A3.1 Background of the Gauss-Seidel Method

The Gauss-Seidel method [18], a classical iterative solver for linear systems Ax = b, that leverages
the most recent updates to accelerate convergence, particularly in sparse, tridiagonal systems. This
system can be equivalently written as a symmetric tridiagonal linear system:

Ap = b, (18)
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where: - p = [P(1), . . . ,P(N − 1)]T is the unknown trajectory, - b = [λP(0)(1), . . . , λP(0)(N −
1)]T , - and A ∈ R(N−1)×(N−1) is a tridiagonal matrix with structure:

A =


4 + λ −2

−2 4 + λ −2
. . .

. . . . . . . . .
−2 4 + λ −2

−2 4 + λ

 . (19)

Applying the Gauss-Seidel method to this system, the general update rule for the i-th variable is:

x
(k+1)
i =

1

Aii

bi −
∑
j<i

Aijx
(k+1)
j −

∑
j>i

Aijx
(k)
j

 . (20)

For our tridiagonal matrix, each row z only has nonzero entries at z − 1, z, and z + 1. Substituting
these into the general Gauss–Seidel formula, the update rule for P(z) becomes:

P(k+1)(z) =
1

Azz

(
λP(0)(z)−Az,z−1P(k+1)(z − 1)−Az,z+1P(k)(z + 1)

)
, (21)

where: - Azz = 4 + λ, - Az,z−1 = Az,z+1 = −2.

Substituting these in yields:

P(k+1)(z) =
1

4 + λ

(
2P(k+1)(z − 1) + 2P(k)(z + 1) + λP(0)(z)

)
. (22)

For simplicity, we divide both numerator and denominator by 2, resulting in the final explicit
Gauss-Seidel update:

P(k+1)(z) =
P(k+1)(z − 1) + P(k)(z + 1) + λ

2P
(0)(z)

2 + λ
, z = 1, . . . , N − 1. (23)

A3.2 Derivation of the Gauss-Seidel Iteration Update Formula

For our trajectory smoothing method, the Gauss-Seidel iteration can be adapted by introducing a
fidelity constraint. Below is the detailed derivation of the iteration formula. Specifically, to minimize
the energy function:

E(u) = λ

N−1∑
i=0

(ui − u
(0)
i )2 +

N−2∑
i=1

(ui−1 − 2ui + ui+1)
2, (24)

we take the partial derivative of E with respect to each ui and set it to zero to obtain the optimality
condition.

The fidelity term contributes a derivative of:

∂

∂ui

(
λ(ui − u

(0)
i )2

)
= 2λ(ui − u

(0)
i ). (25)

The smoothing term consists of a sum of squared second-order differences, where each point ui

appears in multiple overlapping terms, together with ui−1 and ui+1. For clarity, we focus on a
representative term where ui is the center, to illustrate how the smoothness constraint acts locally on
the trajectory:

∂

∂ui
(ui−1 − 2ui + ui+1)

2 = −4(ui−1 − 2ui + ui+1). (26)

Combining the derivatives of both terms, we obtain the total gradient:

∂E

∂ui
= 2λ(ui − u

(0)
i )− 4(ui−1 − 2ui + ui+1) = 0. (27)
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Figure 6: Regular grid sampling and Bilinear splatting. Grid sampling is used to obtain trajectory
coordinates at sub-pixel resolution. For trajectory inversion, bilinear splatting is used to estimate the
displacement at pixel grid locations.

Expanding and rearranging terms gives:

2λ(ui − u
(0)
i )− 4ui−1 + 8ui − 4ui+1 = 0. (28)

Solving for ui, we derive the following linear equation:

(2λ+ 8)ui = 2λu
(0)
i + 4ui−1 + 4ui+1. (29)

This leads to the Gauss-Seidel iteration update formula:

u
(k+1)
i =

1

2λ+ 8

(
2λu

(0)
i + 4u

(k+1)
i−1 + 4u

(k)
i+1

)
, (30)

Simplifying further, we obtain

u
(k+1)
i =

1

λ+ 2

(
λu

(0)
i + u

(k+1)
i−1 + u

(k)
i+1

)
, (31)

where λ is halved from its original value. We use the updated u
(k+1)
i−1 from the current iteration and

the old u
(k)
i+1 from the previous iteration to update u

(k+1)
i .

A4 Algorithmic Details of Bilinear Splatting

The goal of bilinear splatting is to map discrete feature points onto a regular grid using bilinear
interpolation. Given a set of normalized coordinates and their associated feature vectors, we need to
compute the grid values using the surrounding grid points. The coordinates are normalized to the
range [0, H) and [0,W ), where H and W are the height and width of the target grid. The feature
vectors are associated with these coordinates and are projected to the grid using bilinear interpolation,
as shown in Figure 6.

Let the coordinates of the discrete points be represented as coords = {(y1, x1), . . . , (yN , xN )},
where each (yi, xi) is a 2D coordinate within the normalized range. The corresponding feature
vectors for each point are denoted by values = {v1, . . . , vN}, where vi ∈ RC is the feature vector
for point i, and C is the feature dimension.

To perform bilinear splatting, we begin by identifying the four nearest grid points that surround each
continuous coordinate (yi, xi). These grid points form the corners of the smallest axis-aligned square
in the discrete grid that encloses the given coordinate. Specifically, we obtain them by applying the
floor and ceiling operations to both the y- and x-coordinates:{

yfloor = ⌊yi⌋, xfloor = ⌊xi⌋,
yceil = ⌊yi⌋+ 1, xceil = ⌊xi⌋+ 1.

(32)

These points form the basis for distributing the value at (yi, xi) across the surrounding pixels based
on their bilinear interpolation weights.
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Next, the weights for bilinear splatting are calculated based on the fractional parts of the coordinates.
Let ∆y = yi − ⌊yi⌋ and ∆x = xi − ⌊xi⌋ represent the fractional parts of the coordinates. The four
interpolation weights are given by:

{
w1 = (1−∆x)(1−∆y), w2 = (1−∆x)∆y,

w3 = ∆x(1−∆y), w4 = ∆x∆y.
(33)

These weights represent the contribution of each neighboring grid point to the interpolated value
at the target coordinate (yi, xi). Now, we distribute the feature values to the corresponding grid
locations based on these weights. For each coordinate (yi, xi), we update the feature grid by adding
the weighted value of the point to the grid locations corresponding to the four neighboring points.
This is done using the following scatter operation:


Grid[yfloor, xfloor] = Grid[yfloor, xfloor] + vi · w1,

Grid[yceil, xfloor] = Grid[yceil, xfloor] + vi · w2,

Grid[yfloor, xceil] = Grid[yfloor, xceil] + vi · w3,

Grid[yceil, xceil] = Grid[yceil, xceil] + vi · w4.

(34)

The grid values are accumulated at the corresponding grid positions, and the sum of the weights at
each grid location is also accumulated for normalization purposes.

Finally, to ensure proper averaging when multiple points contribute to the same grid position, we
normalize the resulting grid by the sum of the weights:

Grid[y, x] =
∑

vi · wi∑
wi

(35)

To avoid division by zero in case of no contribution to a grid location, a small epsilon ϵ = 1e− 8 is
added to the denominator during the normalization step. Thus, the bilinear splatting operation effi-
ciently interpolates the feature values from discrete points to the target grid, with smooth interpolation
properties ensured by the bilinear weights.

A5 Limitations and Future Work

Our approach can be divided into three main modules: 1) pixel trajectory tracking, 2) dynamics-based
trajectory optimization, and 3) trajectory inversion and image registration. For each module, we
conducted a simple exploration in the ablation study (see Sec.B.1) to evaluate its effect on registration
performance, including the influence of complex scenarios such as high-noise artifacts and wrinkles
that may affect trajectory-tracking accuracy. Future work may investigate 3D registration methods
that are robust to artifacts and wrinkles, as well as explore the use of more advanced architectures
architectures for improving registration accuracy and generalizability. Furthermore, Table 11 presents
the registration accuracy and execution time on the Mus Liver-3 dataset, where the test slice resolution
is set to 1024 × 1024. Our method achieves the highest SSIM, demonstrating superior accuracy
compared to other approaches. However, due to the computational demands of the ODE solver, it
does not achieve the fastest runtime.

To further investigate runtime efficiency, we conducted additional experiments focusing on two
optimization strategies: (i) sparse trajectory sampling (every 2/3/4 pixels); and (ii) resolution reduction
by downsampling followed by upsampling. Table 9 shows that sparse sampling substantially reduces
runtime (from 2.46s to 0.95s) while maintaining state-of-the-art accuracy, with SSIM only slightly
decreasing from 0.874 to 0.831. Table 10 demonstrates that reducing the resolution also improves
efficiency (from 2.46s to 0.91s), though at the cost of accuracy (SSIM drops from 0.874 to 0.827).
Nevertheless, the performance remains superior to the GaussReg baseline. We attribute the observed
degradation primarily to the use of a simple bilinear upsampling strategy. We argue that could achieve
a more favorable balance between runtime and accuracy.
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Table 8: Execution time and performance.
TrakEM2 [56] EFSR [76] EMReg [42] SEMLeSS [53] GaussReg [82] Ours

Time(s) 3.92 3.44 0.28 27.11 0.92 2.46
SSIM 0.66 0.52 0.65 0.61 0.82 0.87

Table 9: Ablation study of sparse sampling.

All pixels 1/2 pixel 1/3 pixel 1/4 pixel

SSIM 0.874 0.866 0.842 0.831
Time(s) 2.46 1.35 1.12 0.95

Table 10: Ablation study of resolution reduction.

Full resolution 1/2 resolution 1/4 resolution

SSIM 0.874 0.845 0.827
Time(s) 2.46 1.12 0.91

A6 Broader Impacts and Discussion

Our work focuses on 3D registration for Series Section Electron Microscopy (ssEM). One of the key
advantages of our approach is its fully unsupervised training, which eliminates the reliance on ground
truth and makes it applicable to real-world ssEM scenarios. For ssEM applications [79, 13, 15],
this is particularly important for the increasingly complex and diverse electron microscopy image
datasets [15, 77], as acquiring comprehensive ground truth across various tissue and cell types is
challenging. Our method can be applied to the modeling and analysis of biological cell tissues,
assisting researchers in exploring the structure and function of cellular tissues.

For other downstream tasks in ssEM, such as 3D segmentation [40, 41, 47], our method provides
well-structured image data that aligns with natural biological morphology. By improving the axial
continuity of the raw image data while preserving the structural integrity of superstructural details,
our approach can enhance the performance of downstream tasks.

For the design of 3D registration algorithms, we propose a novel paradigm from the perspective of
trajectory optimization. Our approach can be divided into three main components: 1) pixel trajectory
tracking, 2) dynamics-based trajectory optimization, and 3) trajectory inversion and image registration.
These three modules are decoupled and interchangeable. In theory, each module can be replaced with
a more efficient algorithm. For example, more efficient feature point tracking algorithms [11, 10] or
optical flow estimation algorithms [62, 78] can be used for trajectory tracking. Low-pass filtering [26]
and convex quadratic programming (QP) [12, 17] can be used for trajectory smoothing. Radial basis
function interpolation [73] and other splatting techniques [3] can be used for trajectory inversion.
This helps researchers explore more efficient 3D registration methods based on this paradigm.

Due to time and resource constraints, we were unable to validate the performance of our method
on larger-scale scenarios, particularly on ultra-high-resolution image data. The challenges posed by
computational complexity in larger environments and the variability of data noise remain. In future
work, we will refine our approach and adapt it into a microscopy image processing tool suitable for
large-scale real-world datasets.
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Table 11: Performance of different registration methods on downstream segmentation tasks across six
datasets. We evaluate segmentation accuracy using the Dice score (Avg %).

EMReg [42] EFSR [76] SEMLeSS [53] TrakEM2 [56] GaussReg [82] Ours

Mus Heart 0.35 ± 0.06 0.82 ± 0.02 0.65 ± 0.05 0.68 ± 0.03 0.89 ± 0.01 0.88 ± 0.01

Mus Kidney 0.41 ± 0.07 0.75 ± 0.02 0.67 ± 0.02 0.75 ± 0.02 0.82 ± 0.01 0.84 ± 0.01

Mus Liver-3 0.41 ± 0.08 0.90 ± 0.02 0.86 ± 0.02 0.90 ± 0.02 0.95 ± 0.01 0.94 ± 0.01

Mus Liver 0.57 ± 0.09 0.89 ± 0.04 0.86 ± 0.05 0.92 ± 0.04 0.94 ± 0.03 0.94 ± 0.03

Mus Pancreas 0.46 ± 0.04 0.87 ± 0.02 0.79 ± 0.02 0.90 ± 0.01 0.94 ± 0.01 0.93 ± 0.01

Mus Skin 0.50 ± 0.07 0.87 ± 0.03 0.76 ± 0.04 0.90 ± 0.02 0.94 ± 0.01 0.94 ± 0.03

Table 12: Evaluation of the diffeomorphic property of deformation fields using the Folds metric (%
of |Jφ| ≤ 0).

% of |Jϕ| ≤ 0 TrakEM2 [56] EFSR [76] EMReg [42] SEMLeSS [53] GaussReg [82] Ours

Mus Heart / 0.188 0.243 0.135 0.099 0.0171
Mus Kidney / 0.206 0.379 0.24 0.174 0.0098
Mus Liver / 0.193 0.31 0.155 0.106 0.0124
Mus Skin / 0.171 0.252 0.102 0.091 0.0095

B Additional Quantitative Results and Visualization

B.1 More Experimental Results

Robustness to Error Accumulation. In practical applications, serial section electron microscopy
(ssEM) datasets often contain hundreds or even thousands of images. This large number of slices
poses a challenge for long-sequence registration, as cumulative errors can easily arise, eventually
leading to substantial sequence drift and compromising the accurate reconstruction of the biological
specimen’s true 3D structure. To systematically evaluate the ability of our method to suppress such
cumulative errors, we conducted comparative experiments on six long-sequence datasets listed in
Table 7, focusing on the robustness of our method versus GaussReg [82] and SEMLeSS [53].

Specifically, Figures 12 illustrate how the registration accuracy changes as the number of slices
increases. The results show that our method consistently achieves higher average registration
accuracy across the entire sequence, with smaller fluctuations in the accuracy curve. This indicates
superior stability and robustness when handling long sequences. Moreover, Figures 7 and 8 present
the 3D reconstruction results on the remaining four datasets. It is evident that our method accurately
recovers the spatial structures of various biological tissues, further demonstrating its generalizability
and robustness across different types of data.

Performance on 3D Segmentation Tasks. 3D segmentation [40, 41] is a important task in serial
section electron microscopy (ssEM) and has been widely applied in various biological image analysis
domains [19, 43]. High-quality 3D registration plays a crucial role in segmentation tasks, as it can
significantly mitigate artifacts caused by structural deformation, scale variations, and differences
in imaging modalities, thereby improving segmentation accuracy. To comprehensively evaluate the
applicability of our method in 3D segmentation, we conducted experiments on six datasets involving
various organelles, including nuclei and mitochondria. Specifically, we employed a segmentation
network [67] to perform segmentation on the images registered by each method. The segmentation
performance was quantified by computing the Dice similarity coefficient between the predicted results
and the ground-truth (GT) label stacks.

Table 11 summarizes the Dice scores for 3D segmentation results across the six datasets. As shown,
our method achieves the best performance on three datasets and the second-best on the remaining
three, with overall results slightly below those of the supervised method GaussReg (with differences
no greater than 0.01). This discrepancy may be attributed to the segmentation model’s sensitivity
to subtle misalignments, while our method focuses on global trajectory optimization and may have
limitations in handling local details. For instance, as illustrated in Figure 8 for the Mus Liver-3
dataset, minor local misalignments can still be observed in our registration results. Nevertheless, our
method attains accuracy comparable to that of the supervised GaussReg. Furthermore, Figs. 9, 10,
and 11 present 3D visualizations of the segmentation results on multiple datasets. These visual results
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Table 13: Sensitivity analysis of the hyperparameter λ.
λ(SSIM) 0.15 1.5 4.5 7.5 10

Mus Heart 0.855 0.872 0.87 0.864 0.83
Mus Kidney 0.827 0.851 0.855 0.843 0.809

Table 14: Impact of different network architectures on trajectory tracking performance.
SSIM RAFT [64] GAFlow [45] SEA-RAFT [71]

Mus Heart 0.892 0.917 0.909
Mus Kidney 0.894 0.933 0.925
Mus Liver 0.871 0.928 0.918
Mus Skin 0.92 0.943 0.932

Table 15: Effect of large deformations on registration performance.
GaussReg (α=1.0) Ours (α=1.0) GaussReg (α=1.5) Ours (α=1.5) GaussReg (α=2.0) Ours (α=2.0)

Mus Heart 0.832 0.872 0.811 0.867 0.772 0.856
Mus Kidney 0.781 0.851 0.763 0.843 0.739 0.823
Mus Liver 0.805 0.842 0.782 0.836 0.758 0.817
Mus Skin 0.827 0.864 0.797 0.851 0.763 0.838

Table 16: Effect of noise levels on registration performance.
GaussReg (5%) Orgin (5%) GaussReg (10%) Orgin (10%) GaussReg (15%) Orgin (15%)

Mus Heart 0.815 0.851 0.788 0.832 0.748 0.771
Mus Kidney 0.762 0.833 0.734 0.822 0.715 0.759
Mus Liver 0.779 0.814 0.74 0.784 0.72 0.714
Mus Skin 0.804 0.837 0.751 0.803 0.728 0.742

demonstrate that our method can reliably reconstruct the correct 3D structure of biological tissues,
leading to clearer and more consistent segmentation boundaries, further validating its practicality in
downstream tasks.

In addition, we report the Folds metric in Table 12 to further evaluate the diffeomorphic property
of the deformation fields. The results demonstrate that our method consistently achieves the lowest
Folds values, remaining around 0.01, whereas most baseline methods report values greater than 0.1.
This indicates that our approach substantially reduces grid folding in the generated deformation fields,
thereby better preserving topological consistency compared to existing baselines.

Results on Real-World Data. To further evaluate the performance of our method on real-world
datasets, we present the registration results on three datasets, FemFlyBrain, FAFB3, and the Mouse
Cortical Dataset, as shown in Figures 13-17. The results demonstrate that our method achieves
accurate and consistent alignment across diverse biological samples, effectively handling complex
morphological variations and imaging artifacts.

More Ablation Experiments To gain a deeper understanding of our method, we conducted
additional ablation studies. Table 13 presents a sensitivity analysis of the key hyperparameter λ,
which primarily controls the smoothness term in the loss function of the trajectory tracking module.
Table 14 investigates the impact of adopting more advanced network architectures on the performance
of the trajectory tracking module. As shown, replacing the baseline with a more sophisticated network
slightly improves the registration accuracy, demonstrating the modular flexibility of our framework
and its compatibility with advanced architectures. Tables 15 and 16 further compare registration
performance under more challenging conditions, including large deformations and high noise levels.
The results indicate a gradual performance degradation as deformation or noise intensity increases,
suggesting promising directions for extending our approach to more complex real-world scenarios.

3Due to FAFB data acquisition, only our registration results are shown.
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B.2 Explainable Visualization Study

To better understand the performance and explainability of our new paradigm, we conducted a
visualization analysis of the intermediate trajectories. Specifically, we performed trajectory tracking
on data with nonlinear distortions, ground truth data, and registration results, ensuring consistency
between the trajectories across different datas. The visualization results are shown in Figure 18. It is
evident from the figure that the trajectories of the nonlinear distorted data exhibit irregular noise jitter,
leading to abrupt changes in local curvature, which reflect the impact of distortion on the motion
trajectory. In contrast, the trajectory of the ground truth data maintains the natural evolutionary pattern
of the organism’s movement, exhibiting smooth and continuous changes. Our method successfully
overcame abnormal physical deformations in the registration results, faithfully and precisely restoring
the natural motion trajectory.

B.3 Failure Cases

We observe that our method is to some extent dependent on the accuracy of the trajectory tracking
module. When the tracking is suboptimal, the subsequent image registration performance may be
affected. This issue becomes particularly prominent when handling real-world anisotropic data, where
the axial resolution is often significantly lower than the lateral (XY) resolution. Substantial structural
and textural differences arise between adjacent slices (as shown in Figure 19). Moreover, real datasets
often suffer from high noise levels, imaging artifacts, and missing slices, further complicating reliable
trajectory estimation. In Figure 20, we illustrate several representative failure cases, in which the axial
resolution of the image stacks is approximately one-tenth of the lateral resolution, with noticeable
noise and missing slices. Although our method is still capable of performing registration under such
challenging conditions, the visual quality may degrade due to the aforementioned interfering factors.
We hope future research will explore more robust and efficient trajectory tracking modules, as well as
3D registration methods that are better suited for anisotropic and noisy real-world data.
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Figure 7: More 3D visualization of registration results on Mus Pancreas and Mus Skin datasets.
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Figure 8: More 3D visualization of registration results on Mus Liver and Mus Liver-3 datasets.
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Figure 9: 3D segmentation visualizations of registration results using various methods on the Mus
Heart and Mus Liver-3 datasets.
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Figure 10: 3D segmentation visualizations of registration results using various methods on the Mus
Liver and Mus Pancreas datasets.
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Figure 11: 3D segmentation visualizations of registration results using various methods on the Mus
Kidney and Mus Skin datasets.
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Figure 13: Side views of the original data, the registration results of GaussReg [82], and our method
on the FemFlyBrain dataset [63].
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Figure 14: Side views of the original data, the registration results of GaussReg [82], and our method
on the FemFlyBrain dataset [63].
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Figure 15: Side views of the original data, the registration results of GaussReg [82], and our method
on the Mouse cortical dataset [32].
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Figure 16: Side views of the original data, the registration results on the FAFB dataset [84].
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Figure 17: Side views of the original data and the registration results on the FAFB dataset [84].

40



Orgin Data GT Ours

M
o

u
se

 H
ea

rt
M

o
u

se
 L

iv
er

-3
M

o
u

se
 K

id
n

ey
M

o
u

se
 L

iv
er

M
o

u
se

 P
an

cr
ea

s
M

o
u

se
 S

k
in

Figure 18: Trajectory visualization of the original data, ground truth, and registration results.
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Figure 19: Four examples showing texture structure differences between adjacent slices of anisotropic
data.

Orgin Ours Orgin Ours

Orgin Ours Orgin Ours

y

z

Figure 20: Four failure cases from the FemFlyBrain dataset. These examples are affected by low
axial resolution, missing slices, and high noise.
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