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ABSTRACT

Plane-wave density functional theory is a computational quantum mechanical
modeling method used to investigate the electronic structure of solids. It employs
plane-waves as the basis set for representing electronic wave functions and lever-
ages density functional theory to compute the electronic structure properties of
many-body systems. Traditionally, the Self-Consistent Field (SCF) method is pre-
dominantly adopted for optimization in current DFT computations. However, this
method encounters notable convergence and computational challenges, and its itera-
tive nature obstructs the incorporation of emergent deep learning enhancements. To
address these challenges, we introduce a fully differentiable optimization method
tailored to resolve the intrinsic challenges associated with the optimization of plane-
wave density functional methods. This methodology includes a direct total energy
minimization approach for solving Kohn-Sham equations in periodic crystalline
systems, which is coherent with deep learning infrastructures. The efficacy of our
approach is illustrated through its two applications in solid-state physics: electron
band structure prediction and geometry optimization. Our enhancements poten-
tially pave the way for various gradient-based applications within deep learning
paradigms in solid-state physics, extending the boundaries of material innovation
and design. We illustrate the utility and diverse applications of our method on real
crystal structures and compare its effectiveness with several established SCF-based
packages, demonstrating its accuracy and robust convergence property.

1 INTRODUCTION

Kohn-Sham density functional theory (KS-DFT) (Kohn & Sham, 1965) has become the primary tool
for quantum mechanical electronic structure analysis in solid-state physics and materials science,
garnering substantial interest in both academic and industrial settings in recent decades (Pribram-
Jones et al., 2015). Analyses of the usage of supercomputing resources substantiate that KS-DFT often
constitutes a predominant consumer of computational time within numerous research facilities (Austin
et al., 2020). Within the framework of KS-DFT, plane-wave methods enable researchers to explore
and predict diverse solid-state material properties, including magnetism, superconductivity, and
thermal conductivity, with satisfying accuracy. These approaches facilitate a thorough understanding
of the various attributes of materials, spurring advancements in the development of innovative
materials and their applications in fields such as superconductors (Oliveira et al., 1988), energy
storage (Spotte-Smith et al., 2022), and nanotechnology (Frink et al., 2002), among many others.

The Self-Consistent Field (SCF) method is widely used in solving density functional theory methods.
It typically commences by initializing an electron density—usually a superposition of atomic densi-
ties—from which an effective potential is deduced. This deduced potential is iteratively leveraged to
solve the Kohn-Sham equations, resulting in a set of orbitals that are then used to calculate a new
electron density. This iterative process continues until the electron density converges within a set tol-
erance, thus determining the system’s ground state energy through the attainment of self-consistency.
However, this methodology is computationally demanding, especially for systems characterized by
numerous electrons or complex electron interactions, with the attainment of convergence presenting
notable challenges and often requiring the implementation of advanced mixing or damping strategies,
or failing to find a stable solution altogether (Yang et al., 2007; Lehtola et al., 2020; Cances et al.,
2021; Schlegel & McDouall, 1991). Furthermore, the optimization of other system parameters, such
as atom geometry and lattice, as well as direct optimization with respect to crystal property metrics,
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poses additional challenges in SCF methods. These challenges are attributable to the intricate imple-
mentation routines and the requirement to address eigendecomposition problems in every iteration.
As a result, conventional practices necessitate the repetitive execution of SCF calculations following
each update, which is a procedure that is not only resource-intensive but also susceptible to numerical
instability (Yang et al., 2009).

With the advancement of deep learning, a multitude of innovative optimization methods and infras-
tructures have emerged in the past years, providing diverse and efficient solutions for solving various
models and algorithms. To solve the Kohn-Sham equations, the iterative nature of the prevalent SCF
optimization method, extensively applied in computational physics and materials science, presents
significant challenges to enhance the DFT methods with deep learning techniques (e.g. requiring back
propagation of a derivative method through an SCF loop that must reach convergence without failure,
as in (Kasim & Vinko, 2021)). In this paper, we propose a fully differentiable optimization approach,
specifically designed to overcome the inherent challenges associated with solving plane-wave density
functional methods, allowing for a more harmonious integration with contemporary deep learning
techniques and infrastructures.

In this study, we introduce a novel direct optimization strategy, aiming to circumvent the necessity of
solving the conventional SCF loop within the plane-wave DFT framework. We illustrate this approach
through its application to differentiable and direct total energy optimization and demonstrate a direct
optimization method for attaining the Kohn-Sham eigenvalues. These eigenvalues construct the
electron band structure, unveiling the intricate electronic properties of materials. Further, we develop
a gradient-based algorithm for geometry optimization, which is also fully differentiable. To validate
the effectiveness of our proposed methodology, we implement our approach with deep learning
framework JAX (Bradbury et al., 2018), and conduct experiments on realistic crystals and draw
comparisons with existing implementations of density functional theory in solid states. Additionally,
we furnish a detailed convergence analysis, contrasting gradient-based optimizers with the SCF
approach, to underscore the comparative merits of our methodology.

The main contributions of this study are as follows:

* We present a fully differentiable approach for direct total energy minimization to solve the Kohn-
Sham equations in periodic solid-state systems. This approach makes it possible to leverage recent
developments in deep learning, including auto-differentiability and a plethora of well-established
gradient-based optimizers.

* We put forth a direct optimization technique in two important applications in material science, the
electron band structure prediction and geometry optimization. Experiments on realistic systems
demonstrate the effectiveness of our approach.

* This research presents the potential for bridging the existing divide between the emerging deep-
learning infrastructures and scientific computing approach in the realms of solid-state physics
and material science.

2 DIFFERENTIABLE OPTIMIZATION OF TOTAL ENERGY IN KOHN-SHAM DFT

Density Functional Theory (DFT) is a quantum mechanical formalism based on the fact that ground-
state electronic density determines a system’s wave function and energy, as per the Hohenberg-Kohn
theorem (Hohenberg & Kohn, 1964). Being able to solve electronic structures with only density make
it cheaper than wavefunction theories makes it a key tool for studying electronic structures.

Kohn-Sham DFT However, since the exact form of the universal density functional in HK for-
malism is not known, most practical DFT applications relies on the Kohn-Sham formalism (Kohn
& Sham, 1965), which is a mean-field wavefunction theory that uses the single Slater determinant
formed by orthonormal single-particle wave functions {1;(r)}!_, as ansatz. The electronic den-

sity is then given by p(r) = Zle |4;(r)|?, and the ground state density can then be obtained by
minimizing the total electronic energy subject to the orthonormal constraint:

min Eel[{wi}] = Ekm[{'l/%}] + Eexl[p] + Ehar[p] + Exc [P]>
{wi} )
st (Wslhy) = bij.
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where FEkin, Fext, Fhars Exe denote the kinetic energy, external potential energy, Hartree energy, and
the exchange-correlation energy. This constraint optimization problem can be solved via the Lagrange
multiplier method, and the first order condition of the Lagrangian gives the Kohn-Sham equation

H®[plp; = et )

where HXS[p] is the KS Hamiltonian that depends on the electronic density p(r), and ¢; are the KS
eigenvalues. The KS equation is usually solved via SCF. Further details are provided in Appendix D.

Periodic crystalline system Crystalline systems are usually simulated by solving Schrodinger’s
equation in a Bravais lattice, which captures the periodic structure of the material by tiling a par-
allelepiped (unit cell) defined by lattice constants a; € R3,i € {1,2,3} in space. The lattice is
subjected to periodic boundary condition (PBC), which means the lattice itself is infinitely tiled in
space. We denote the number of unit cell in the lattice as M = M; x Ms x M3, and each cell in
the lattice can be indexed by m := (my, mg, mg) where m; = 0,1,--- | M; — 1 for: € {1,2,3}.
The external potential is periodic in the lattice , so by Bloch’s theorem (Bloch, 1929), the electronic
wavefunction only differs by a phase shift between different cells, i.e.

3
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where u,,, is a function periodic in the lattice, b; are the reciprocal lattice vector. The wavevectors
k.., takes discrete values due to the PBC.

DFT in periodic systems If KS formalism is applied to a periodic system, the electronic density
will be distributed among different wavevector k., :

I
pr) =D Wim (). @)

m =1

Eq. 1 and 2 still holds and the only difference is that we now have I x M orbitals {¢; », }. By Eq. 3,
the orthonormal constraint simplifies to W%,m ij,m/> = §; ; since orbitals with different wavevector
are automatically orthogonal, and the KS equation decouples into M equations

HES [0)1i,m (1) = W, (7)E1m )

which can be solved separately for each k,,,. The KS eigenvalues ¢; ,,, here determines the band
structure of the material.

Direct optimization in plane-wave basis There are many ways to parameterize u; ,,, (), and the
most commonly used method is via Fourier basis. Define the mesh of the Fourier basis with size

N = N;j x Ny x N3 within the confines of the unit cell, then at each lattice point 7, = Zle %ai

where n := (ny,n2,n3) and n; = 0,1,..., N; — 1, the value of u; n,, (ry,) can be represented by a
linear combination of plane-waves
Ui, m, (rn) = Z Cim,n’ €XP (iG;Lr’rn) (6)
n/

where G,, = Z?:l n;b; lies on the reciprocal FFT-mesh, and ¢; o, n/ are the Fourier coefficients of
U m. With this parameterization, we can use the technique proposed in (Li et al., 2023) to perform
direct optimization of Eq. 1. Specifically, to enforce the constraint (1; m, [¢j.m’) = J; ;, for each m
we have

Cm = [Ci,m,n]i,n =Q0R (Wm) S (CIXN @)

where QR is a function that returns the orthogonal part from a QR decomposition, W,,, € CI*N is
the learnable parameter. The integrals in the energy functional Ee[{%); m, }] (Eq. 1) has analytical
formulae in Fourier space, and the detailed derivation can be found in the appendix.

Computational graph A differentiable computational graph of our method is presented in Fig. 1.
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Figure 1: The computational graph shows the methodology for total energy minimization. Within
this graph, arrows symbolize the sequence of forward computations. Every operation within this
computational graph is differentiable, facilitating the gradient backpropagation.

3  DIRECT OPTIMIZATION OF ELECTRONIC BAND STRUCTURE

The electronic band structure represents a cornerstone in the domain of solid-state physics, instrumen-
tal in delineating the electronic behavior within crystalline solids. Serving as a holistic representation,
the band structure imparts pivotal information regarding a material’s intrinsic properties. It describes
whether a material exhibits conductive, insulating, or semiconducting behavior. Additionally, it
provides insights into the material’s optical properties, magnetic tendencies, and thermal conductivity
attributes, thereby offering a comprehensive understanding vital for diverse technological applications.
This section introduces a fully differentiable direct optimization method tailored for the computation
of the electronic band structure.

Method For a fixed k-point k,,,, the KS Hamiltonian in Eq. 5 represented in the Fourier basis
|k + Gr) = exp (i(km + Gpn) 'r) isa N x N matrix F,,,, where the matrix element is given by

Fon[p7] = (km + Gul Hpl [0 ) [km + G1,) @®)
Using the Fourier coefficient C,,, € C'*Y, we can write the KS equation in matrix form
Fu[p"]C, = Cleim, ©)

which require us to diagonalize a N x N matrix for each sampled k,,,. However, we are only
interested in the lowest I eigenvalues of this matrix. To extract these, we simply minimize the sum of
the eigenvalues of the smaller I x I matrix Cp, Fy, [p*]C],, i.e., calculate

2. (CnFairich)
where the coefficients C,,, are obtained from the QR decomposition of W,,, as described in Eq.
7. There are two main advantages of this approach: (1) The orthogonality constraint is seamlessly
converted to an unconstrained form using the QR reparameterization trick, which makes the band
structure optimization problem a direct optimization process that aligns well with the deep learning
paradigm; (2) Typically, I < N, so by only storing the I x I matrix Cy,, Fyn[p*]C},, we drastically
reduce the memory requirement.

In summary, our method is comprised of the following steps:

* Select k-mesh size M7 x Mo x M3, then run the direct optimization process to obtain the ground
state electron density p*, as described in section 2.

* For each k,, in the k-path, use the ground state density p* to construct the matrix representation
of the KS Hamiltonian Fy, [p*]. Then obtain coefficients C,, by solving Eq. 10.

* Perform a one-step diagonalization of C,y, Fy, [p*]C], to obtain KS eigenvalues €; ,,,, which
represent the electronic band structure.

Fine-tuning along the k& path Although in the above algorithm, the calculation for each k,,
can be parallelized, when running on hardware with limited memory we have to process each k,,
sequentially. Instead of randomly initializing the parameters W, for each k,,,, we use the parameter
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Figure 2: An illustration of the fine-tuning process for band structure calculation on the diamond
structure using LDA functionals. Top: the band structure optimized via our direct optimization method
is shown. The valence and conduction bands are represented by red and blue lines, respectively. A
distinct band gap is highlighted in the grey area. Bottom: we present the training curve corresponding
to the minimization process. For optimization, we employed the Adam optimizer (Kingma & Ba,
2015). We use 4000 iterations for the first k£ point and 100 for fine-tuning the subsequent k points.

W, obtained from the previous step as an initial guess and fine-tune it to determine the parameters
for the subsequent k-point. Given the continuity of the band structure, only a few fine-tuning iterations
are needed, as shown in Figure 2. This method significantly cuts down computation time without
demanding additional computational resources.

4 DIFFERENTIABLE GEOMETRY OPTIMIZATION

Differentiability is especially useful for jointly optimizing other parameters in the system as in the task
of geometry optimization. The problem of geometry optimization is to find the equilibrium geometry,
which is atom configuration R = {7} that minimizes the total electronic and ionic energy of the
system Fiot(C, R) = Eq(C, R) + En..(R), where C is the basis coefficients of the electronic
wavefunction and is subjected to the orthonormal constraint, and F,, is the nuclear repulsion energy

L L
1 qeqe
FEouc(R) = = _— 11
SEREPIPI DI Hrs = o
where 7, are atomic positions, gy are the corresponding charge distributions, indexed by ¢ =
1,2,..., L, where L represents the total number of atoms within the unit-cell, and Z;_n allows

consideration of interactions beyond the primitive cell where m = (m1,ma, ms3) represents an
integer translation of the lattice vectors, we exclude the terms where £ = ¢/. Geometry optimization
is an important problem since equilibrium geometry provides a fundamental understanding of a
material. An accurate atomic structure, obtained through optimization, is essential to precisely
compute electronic structure, and other properties of the material like mechanical, thermal, and
vibrational properties.

From the problem definition, the most natural way to solve geometry optimization is to perform
constraint minimization of the total energy Eio(C, R) by varying the wavefunction C' and geometry
R at the same time, i.e.
min Etot (C, R),
C.R (12)
st. CJ,Cm =1.
However, when using the SCF approach, to ensure convergence the update in C' is usually dampened,
i.e. history-dependent, and interleaving geometry update will disrupt the convergence of SCF.
Therefore when using SCF, the force method (Pulay, 1969) is usually used, which is usually given by
the Hellman-Feynman theorem (Feynman, 1939) (derivation in Appendix H.1)

dEo(R) / Vet (r; R)  OBnuc(R)
ar )P —R oR

Fiyp = — . (13)

The comparisons between the two methods are outlined in Algorithms 1 and 2.
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Algorithm 1 SCF Geometry Optimization Algorithm 2 Direct Geometry Optimization
Input: learning rate w Input: learning rate w

1: Initialize geometry R and parameter C; 1: Initialize geometry R and parameter C

2: while not converged do 2: while not converged do

3: update C' by performing SCF; 3: update C <+ C + w - 0E,1/0C ;

4: update R + R + wFur(R, C); 4: update R + R+ w - 0E,/0R;

5: end while 5: end while

6: return R 6: return R

Our approach is fully differentiable, allowing us to directly perform joint optimization of Eq. 12
utilizing gradient descent. It is important to note that the nuclear repulsion indicated in Eq. 11 is not
straightforwardly evaluable in real space due to its slow convergence. Consequently, the employment
of a technique known as Ewald summation (Ewald, 1921) is needed. For the Ewald summation,
we follow the derivation in (Tsili et al., 2023) and (Baroni et al., 2001). The detailed equations are
provided in Appendix H.2.

5 EXPERIMENTS

In this section, we assess our methodology through experiments conducted on real-world crystals and
materials. Our evaluation is primarily centered on three subtasks: electronic band structure prediction,
geometry optimization and convergence analysis.

We implement our approach with the deep learning framework JAX (Bradbury et al., 2018). All the
experiments of our approach are conducted on an NVIDIA A100 GPU with 40GB memory. All
remaining experiments with other implementations are conducted on a server powered by an Intel
Xeon CPU @ 2.10GHz and furnished with 64GB of memory.

5.1 ELECTRON BAND STRUCTURE PREDICTION

In this section, we assess the accuracy and efficacy of our direct optimization method by comparing it
to existing implementations in the context of electron band structure prediction, which is a crucial
step for uncovering the electronic properties of materials. We conduct tests on four distinct crystal
structures: lithium (Wyckoff, 1963), aluminum (Mulder et al., 2010), with crystal structures obtained
from the Open Crystallographic Database (OCD) (Grazulis et al., 2012), and carbon (diamond), and
silicon, with crystal structures obtained from the critic2 (Otero-de-la Roza et al., 2014) library.

Baselines We conduct comparisons with several packages, including Quantum ESPRESSO (QE)
(Giannozzi et al., 2009), Fritz Haber Institute ab initio materials simulation (FHIaims) package (Blum
et al., 2009), and GPAW (Enkovaara et al., 2010). QE conducts DFT calculations using plane-wave
basis sets and pseudopotentials to represent electron-ion interactions. As we use a plane-wave only
basis, in order to make the closest comparison possible with an established method, in some cases
we will reduce the number of electrons contained in the pseudo-potential to zero to approximate
an all-electron plane-wave basis (we note that this is not the intended application of QE and we
conduct this purely for validation purposes). Where we use unmodified pseudopotentials they are
generated from the pslibrary (Dal Corso, 2014). We will note pseudopotential usage where relevant.
FHI-aims implements numerical atomic orbital basis sets and provides the option to use periodic
boundary conditions. All FHIaims calculations in this work use tight basis settings. GPAW utilizes
a plane-wave basis with the pseudopotentials for which we use the recommended defaults. All
calculations presented in this work use the LDA functional (Dirac, 1930; Bloch, 1929; Kohn & Sham,
1965; Perdew & Zunger, 1981).

Results The results of the lithium and carbon band structures are illustrated in Figure 3 and
aluminium and silicon band structures are illustrated in Figure 6. The band structure indicates
whether a crystal is an insulator, semiconductor, or conductor. A substantial, clear band gap suggests
that the crystal primarily exhibits insulating properties. Our results, aligning consistently with existing
implementations, reveal no band gap for lithium and aluminum, suggesting metallic characteristics.
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Figure 3: A Comparative illustration of band structures (part A). (a, ¢): a comparative analysis of the
valence/conduction bands with QE, FHIaims, and GPAW, implemented on various crystals. (b, d): An
exhibition of the comprehensive band structures, encompassing the core bands. In these calculations
alx 1 x 1 k-point mesh is used. A cut-off energy of 200 Hartree is used for lithium, 400 for carbon
for both our approach and QE, GPAW uses a cut-off energy of 400 Hartree. We adopt adam as the
optimizer. QE uses an empty pseudopotential in all cases, and cold smearing (Marzari et al., 1999)
with a smearing temperature of 0.01 Ry for lithium, fixed occupations for diamond.

In contrast, a significant band gap is observable for carbon, indicative of insulating properties for
diamond, while a small band gap for silicon implies semiconductor behavior. This large band gap of
diamond means that, at room temperature, there are no available energy states for electrons in the
conduction band, and thus, no electrical current can flow through, rendering diamond an excellent
insulator, whereas for metals, the valence band and the conduction band overlap, meaning there
are always available energy states for electrons to move to. The conclusions drawn from our study
confirm the conventional understanding of these materials and align with the theoretical predictions
provided by other established implementations.

As an all-electron plane-wave method, our approach illustrates the complete band energy level
spectrum of crystals, encompassing the core band. The examination of core bands is pivotal for
achieving complete representation of a material’s electronic structure, which, in turn, facilitates the
understanding of various associated physical and chemical properties of the materials. The illustrative
results of this analysis are depicted in Figure 3(b, d) and 6(b, d), with the bands names annotated
based on the atomic orbital of origin on the right side for reference. The comparison reveals that
our method exhibits a high degree of alignment with QE, yielding a congruent band spectrum. This
congruence underscores the reliability and accuracy of our approach in analyzing and representing
the intricate features of band structures, inclusive of the core bands.

5.2 GEOMETRY OPTIMIZATION

Experimental setting We examine the structure of a primitive unit cell from a diamond-structured
carbon crystal, which consists of two carbon atoms. In our experiments, one carbon atom is anchored
at the origin, and we seek to ascertain the position of the second carbon atom. This atom is moving
along the plane highlighted in red, as depicted in Figure 4(d). The corresponding potential energy
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Figure 4: Illustration on the geometry optimization. The PES shown in (a-c) is computed by moving
the atom in the centre of the unit-cell in (d) around the highlighted plane in a regular 50 x 50 grid.
‘yogi’, ‘adam’, and ‘sgd’ highlight optimization paths by the respective optimization method from
their starting points as shown in (b, ¢). The global minimum is highlighted with a black star, and the
geometry of the crystal at point A is given in (e), and consistent with the known structure of diamond.
The geometry of the local minima at point B to which the sgd method converges to is presented in (f),
which can be seen to approach the known structure of graphite. The different band structures of A
and B are shown in (g). Images (d-f) generated using xcrysden (Kokalj, 2003).

surface (PES) is computed and illustrated in Figure 4(a). The optimum is denoted by the star
point, accurately representing the experimentally known diamond structure. Observations reveal the
presence of multiple local optima and saddle points interspersed across the PES, underscoring the
complexity of the energy landscapes typically found in atomic systems.

In the experiment, a cut-off energy of 40 Hartree is employed along with a 24 x 24 x 24 FFT-mesh
grid, and a 2 x 2 x 2 k-point mesh. We implement three distinct optimizers: SGD, Adam (Kingma &
Ba, 2015), and Yogi (Zaheer et al., 2018), with a learning rate at 1 x 10~%.

Results The results of optimizations with varied initializations are illustrated in Figure 4(b, c¢). In
Figure 4(b), both the Yogi and Adam algorithms successfully reach the global optimum, while the
SGD optimizer lands at a local minimum. Figure 4(c) demonstrates situations where both Yogi and
SGD become stuck at the saddle point, whereas Adam locates the global optima in the adjacent
unit cell, reflected back in the plot. This local minimum is appears to be approaching a graphite-
like atomic structure, showcased in Figure 4(f). To emphasise the types of material analysis that
geometry optimization can allow, we show that band structure of (e)-diamond and (f)-graphite-like
in (g). In particular, there is a clear band gap in (g) A indicating insulator-like properties, while the
disappearance of a band gap in (g) B implies metallic properties.

5.3 CONVERGENCE ANALYSIS

In this task, our attention is divided between two sub-tasks: firstly, analyzing the performance of
different optimizers, and secondly, contrasting direct optimization with the SCF approach.

Convergence of Different Optimizers. We conducted tests using a variety of optimizers within
our optimization framework, focusing on lithium and carbon crystal structures. All the optimizers
employed the same initialization and a learning rate of 1 x 10~°. Each optimizer was run ten times,
with the average and 95% confidence interval displayed in Figure 5. Note that the energy we have
presented is shifted and is depicted in a logarithmic scale.
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Figure 5: The convergence curves of various optimizers on lithium and carbon (diamond) crystals.
The y-axis represents the logarithmic scale of the shifted total energy.

The results illustrate that Yogi consistently outperforms the other optimizers in terms of achieving
lower energy, even though it does not exhibit the most rapid decrease. It is also observable that some
optimizers, particularly those incorporating a momentum mechanism, are prone to experiencing
bounces, manifesting as an initial faster decrease in energy, followed by an increase, before resuming
the decrease. Additionally, fluctuations are more pronounced in the convergence patterns of Adam,
AdaBelief, and Adamax, showcasing a higher degree of variability as they approach convergence.

Convergence of SCF and direct optimization As discussed further below convergence to a stable
solution using SCF methods can sometimes be challenging, something we do not expect to encounter
using direct optimization. This test attempts to reproduce the PES generated in Figure 4 using static
computational settings in QE and GPAW. As above a cut-off energy of 40 Hartree is used with a
48 x 48 x 48 FFT-mesh, 2 x 2 x 2 k-point mesh. QE begins all computations with an ‘atomic+random’
initial guess, is allowed a maximum of 300 SCF steps, and a two-electron n-kjpaw pseudopotential
is used, all other settings remaining default. Where not mentioned above, GPAW calculations use
program default settings.

Where we report 100% convergence of all points on the PES using our method, this test reveals
88.3% convergence for QE and 99.1% convergence for GPAW. We show the specific points the SCF
calcualtions fail for in Figure 9. Note that it is expected that expert users of QE and GPAW should be
capable of finding settings that allow for reliable convergence of the full PES, but that can be time
consuming, and not ideal for large scale computation.

6 CONCLUSION

In this study, we have presented a fully differentiable method for addressing the Kohn-Sham Density
Functional Theory (KS-DFT) utilizing a plane-wave basis. Unlike the conventional self-consistent
field (SCF) approach, our methodology, enriched by emerging deep learning frameworks and the
advancements in gradient-based optimizers, showcases robust convergence performance. We have
substantiated the efficacy of our method through its application in two pivotal domains of solid-state
physics: band structure prediction and geometry optimization. This methodology serves as a potential
intermediary, bridging computational material science theory with the rapid advancements in deep
learning infrastructures. It is our aspiration that this research will propel the pursuit of new material
discoveries by leveraging computation-intensive approaches.
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A  MORE EXPERIMENTAL RESULTS

A.1 MORE RESULTS ON THE BAND STRUCTURE
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Figure 6: A Comparative illustration of band structures (part B). (a, ¢): a comparative analysis of the
valence/conduction bands with QE, FHIaims, and GPAW, implemented on various crystals. (b, d): An
exhibition of the comprehensive band structures, encompassing the core bands. In these calculations
a1l x 1 x 1k-point mesh is used. A cut-off energy of 800 Hartree for our method and QE, GPAW uses
a cut-off energy of 400 Hartree. We adopt adam as the optimizer. QE uses an empty pseudopotential
in all cases, and cold smearing (Marzari et al., 1999) with a smearing temperature of 0.01 Ry for

aluminium, fixed occupations for silicon.
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A.2 MORE RESULTS ON THE CONVERGENCE ANALYSIS

A.2.1 PES orF DIAMOND

(a) SCF convergence

e

0

(b) Our direct optimization approach with Adam (Kingma & Ba, 2015).

Figure 7: An example of the failure of SCF in calculating 50 x 50 grid Potential Energy Surface
(PES). A cut-off energy of 40 Hartree is used with a 48 x 48 x 48 FFT-mesh, 2 x 2 x 2 k-point mesh.
QE begins all computations with an *atomic+random’ initial guess, is allowed a maximum of 300
scf steps, and a two electron n-kjpaw pseudopotential is used, all other settings remaining default.
Where a calculation was unable to converge the energy is set to zero, and falls outside the scale of the
colormap. The SCF convergence is conducted with Quantum ESPRESSO.
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A.2.2 PES OF LITHIUM FLUORIDE

(a) SCF convergence

(b) Our direct optimization approach with Adam (Kingma & Ba,
2015).

Figure 8: An example of the failure of SCF in calculating 50 x 50 grid Potential Energy Surface (PES).
A cut-off energy of 40 Hartree is used with a 1 x 1 x 1 k-point mesh. QE begins all computations with
an ’atomic+random’ initial guess, is allowed a maximum of 300 scf steps, and a two electron n-kjpaw
pseudopotential is used, all other settings remaining default. Where a calculation was unable to

converge the energy is set to zero, and falls outside the scale of the colormap. The SCF convergence
is conducted with Quantum ESPRESSO.
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A.2.3 PES OF BERYLLIUM

(a) SCF convergence

(b) Our direct optimization approach with Adam (Kingma & Ba, 2015).

Figure 9: An example of the failure of SCF in calculating 50 x 50 grid Potential Energy Surface (PES).
A cut-off energy of 40 Hartree is used with a 1 x 1 x 1 k-point mesh. QE begins all computations with
an ’atomic+random’ initial guess, is allowed a maximum of 300 scf steps, and a two electron n-kjpaw
pseudopotential is used, all other settings remaining default. Where a calculation was unable to

converge the energy is set to zero, and falls outside the scale of the colormap. The SCF convergence
is conducted with Quantum ESPRESSO.
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B MORE DISCUSSIONS

B.1 RELATED WORK

Machine learning for material science Numerous studies have employed deep learning techniques
in the realm of material science. Some utilize supervised neural networks, leveraging data sourced
from simulations or empirical observations. The prediction targets range from ground state energy
(Gilmer et al., 2017), XC functional (Dick & Fernandez-Serra, 2021), (Kirkpatrick et al., 2021),
(Kasim & Vinko, 2021), kinetic functional (Alghadeer et al., 2021), interatomic potential (Zeng
et al., 2023), (Chmiela et al., 2017), local density of states Fiedler et al. (2023). Some are ab-initio
calculations that use neural networks directly as ansatz for solving the fermionic Schrodinger equation
in both atomistic and solid state settings, like Choo et al. (2020), Pfau et al. (2020), Scherbela et al.
(2021), Schiitt et al. (2017), Li et al. (2022), Gao & Giinnemann (2022), Hermann et al. (2020),
Yoshioka et al. (2021), Carleo & Troyer (2017), Pescia et al. (2022).

Differentiable DFT for materials Kasim & Vinko (2021) and Zhang & Chan (2022) studied the
differentiability of the Self-Consistent Field (SCF) concerning the parameters in density functional
theory. Instead of traditional Lagrange multipliers, direct optimization method, introduced in (Head-
Gordon & Pople, 1988), uses orthonormal basis functions (OBFs) and parameterizes the search over
electronic density as unitary rotations of the OBFs, thus converting the constrained optimization
to an unconstrained one. This method has undergone various enhancements, employing different
parameterization techniques such as Givens rotation, Cayley transformation, and Cholesky QR
factorization, cited in (Wen & Yin, 2012), (Zhang et al., 2014), and (Li et al., 2023). The adaptation
of direct minimization in solid-state systems has also been significant, with approaches developed to
model semiconductors and insulators, focusing on the parameterization of orthogonal planewaves
coefficients and their updates, as evidenced in (Teter et al., 1989), (gtich et al., 1989), and (Kresse
& Furthmiiller, 1996). Extensions of these methods to metallic systems have considered finite
temperature and k-point occupations, with notable advancements made by (Marzari et al., 1997),
(Freysoldt et al., 2009), and (Ivanov et al., 2021), elucidating diverse methodologies in direct energy
minimization and calculations of excited states.

B.2 POTENTIAL APPLICATIONS OF THIS WORK

We outline two examples of how our work could facilitate advanced analyses and the development of
novel chemical models:

* Vibrational Analysis of Systems: Our method significantly simplifies the implementation of
advanced vibrational analysis techniques. Typically, vibrational analyses use the harmonic
approximation, which is limited to quadratic potentials and double derivatives. However,
for a more comprehensive understanding, especially in anharmonic systems, higher-order
derivatives are required. The inherent capability of our approach to handle such complex
derivative calculations more efficiently makes it ideally suited for extended vibrational
analyses, including anharmonic vibrations. By enabling easier implementation of methods
requiring triple derivatives and beyond, our work could pave the way for more accurate
and detailed vibrational studies of complex materials. Other examples of properties include
polarisability, dipole, quadrupole and octupole moments, Raman spectroscopy methods, and
SO on.

* Development of Advanced Chemical Models: Many chemical models, particularly in density
functional theory (DFT), rely heavily on derivatives of properties of the chemical system.
Standard density functionals typically require the density, its gradient, and Laplacian, among
other derivative quantities. Our work provides a robust framework that can facilitate the
testing and development of new density functionals that require novel derivatives. The ease
of implementing and testing these new functionals within our framework could significantly
accelerate the advancement of DFT methods and lead to more accurate models for predicting
material properties.
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B.3 DIFFERENCES BETWEEN MOLECULAR AND PLANE-WAVES BASIS
Here are some different aspects between the molecular and plane-wave basis set.

1. Assumption of System Boundaries:

* Molecular Bases: These are typically used for finite chemical systems and utilize atom-
centered basis functions, such as Gaussian type orbitals (GTOs). Implementing DFT in
this context requires specifically written integral packages such as libint, tailored to
these finite systems.

* Plane-Wave Bases: In contrast, plane-wave bases assume periodic boundary conditions,
allowing us to access and model technically infinite crystal systems. This requires a
significantly different mathematical framing, including the definition of energy space
(k-space), integration techniques, and band structure analyses.

2. Technical Implementation and Mathematical Framing: The use of a plane-wave basis neces-
sitates a distinct approach in defining energy space, integrating over this space, analyzing
band structures, and considering electron occupation across energy bands. This complexity
is distinct from the challenges faced in a molecular basis.

3. Efficiency and Accuracy Considerations: While molecular calculations can approximate
crystal systems (and vice versa), such approaches are generally less desirable due to effi-
ciency and accuracy concerns. Our method, by focusing on the plane-wave basis, addresses
these challenges more directly and effectively for crystal systems.

4. Specialization in Computational Chemistry Modeling: The differences between these bases
are so pronounced that most computational chemistry modeling tools specialize in either
a molecular basis (e.g., Q-Chem, Gaussian, ORCA) or a plane-wave basis (e.g., VASP,
Quantum Espresso). This specialization underscores the distinct challenges and approaches
required for each basis type.

20



Under review as a conference paper at ICLR 2024

C NOTATIONS

C.1 DIRAC NOTATION
The Dirac notation (or “bra-ket” notation) is commonly used in quantum mechanics to abstractly
representing quantum states and operators, without relying on a particular basis.

Quantum states are written as “ket” |¢), which are column vectors of the Hilbert space of quantum
states H. The dual vectors (linear functionals) are written as “bra” (y|. In finite dimensional case
bras are just the conjugate transpose of |). The inner product between two quantum states |p), |1))
can be written as (|v), and similarly the outer product can be written as | )¢)|.

Once a concrete complete orthogonal basis {|b;)} is chosen, one can express the abstract object
defined above as computable expression. When the basis is discrete, like in the case of planewave
expansion, the ket can be expanded as [¢)) = >, 1; |b;) where ¢; = (b;[¢)) is the expansion
coefficient. When the basis is continuous, like when dirac delta basis |r) is used, the summation
becomes an integral: [ dr ¢ (r)|r), where the expansion coefficient is the function evaluation
Y(r) = (r|y). Correspondingly, the inner product (p|v)) can be written as

(plep) = Z%m (14)
in the discrete case, and in the continuous case we have

mwz/wwmww (15)

Operators are linear maps between kets in the Hilbert space 7, analogous to matrices. Suppose an
operator O maps [¢) to |1, we write O [¢)) = ‘Ow> = |¢"). Under a discrete basis {|b;)} one can

write out the matrix element as O;; = (b;|O|b;), and the linear transformation of kets can be written
as a matrix-vector multiplication:

Ui =Y Oijth; (16)
J

In the continuous case we write the matrix element as a kernel O(7/,7) = (/|O|r), and the linear
transformation becomes an integral

Wﬂszowmwm am

The expectation of observable O under wavefunction |¢)) is defined as (1)|O[¢)). Under a discrete
basis it is the quadratic form

(WOf) = > v; 04515 (18)
j
and under a continuous basis it is the double integral

<w|O\w>://dr'dr W (#)O @, PY(r). (19)

When an operator is local, like in the case of the kinetic energy operator, it can be written as
O(r',r) = O(r)é(r’ — 7), and the expectation becomes a single integral

(WIOf) = //www <>wuwwm=/wwwmmwm. (20)
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C.2 NOTATION TABLE

We list frequently-used notations used in this paper in the next Table 1.

Table 1: Notation used in this paper

Notation Meaning

R real space

C complex space

T Hermitian conjugate

r a coordinate in R?

1 number of orbitals

P single-particle wave function / molecular orbitals
U periodic part of Bloch wavefunction

p electronic density

€ KS eigenvalue

Ciommn,Cm

W

M = M, x My x M,
N = N; x Ny x N3
H*S[g]

Ee, Exin, -+
/

R, T

qe

L

Fourier coefficient of u; m,
learnable parameter

size of the direct lattice

size of the FFT-mesh

KS Hamiltonian under density p
matrix representation of the KS Hamiltonian under density p
lattice vector

reciprocal lattice vector

cell index

lattice vector

k point

FFT-mesh index

FFT-mesh lattice point
reciprocal FFT-mesh lattice point
energy functionals

atom index

atom configuration / coordinate
atom charge

number of atoms in the unit cell
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D INTRODUCTION OF KOHN-SHAM DENSITY FUNCTIONAL THEORY

D.1 KOHN-SHAM EQUATION

In practical applications of DFT, there is a significant reliance on the Kohn-Sham equation as
outlined by Kohn and Sham in (Kohn & Sham, 1965). Notably, while the original Hohenberg-Kohn
formulation is based solely on electronic density, the Kohn-Sham approach is a wavefunction theory.
It uses the single Slater determinant ansatz with orthonormal single-particle wave functions ; ()

(Vi) = i 21
Under this ansatz the electronic density can be written as:
I

p(r) = [ei(r). (22)

=1

where the index [ includes spin and electron index. The ground state density can then be obtained by
minimizing the total electronic subject to the orthonormal constraint:

I
p(r

min  Eq[{¢; Z—fv2+vex 3 /dr/d’
min  Eal{¢:}] ; (il thva) + l,_r,| Belll 3

st (WslYy) = 6ij.
where the exchange-correlation (XC) energy functional Ex.[p] captures the one-body exact exchange
and the correlation energy. This constraint optimization problem can be solved via Lagrange
multipliers. The Lagrangian is

£ = Bal{w] = % | [ witryvstryir -5, 24)

where \;; is a Hermitian / x I matrix of Lagrange multipliers. Its first order variation with respect to
any ¢; forve =1,2,--- [ I1is

3L V2 p(r') 0 Exelp] y
= —=r+ [ ar Ves 228 i(r) — Y Mgty
o 2 Jr/ " |r — 7/ HVex(r) + Sp(r) vilr) Zl i%i(r)
Y- = (25)
—VH( ) =Vie(r)
_HKS Z )\” w]
Then, the first order condition for the Lagranglan = 0 gives the Kohn-Sham equation
Hp Z Aijthy (v (26)

Note that the Kohn-Sham Hamiltonian HKS[p] depends on the ground state density p due to the
Hartree and XC term.

D.2 KOHN-SHAM EIGENVALUES

Note that the solution to Eq. 26 is not unique since the Slater determinant and the density formed by
the orbitals {t; }; is the same as { _, ¥, Uy, }; where U is any unitary matrix.

If we choose the U that diagonalizes the Lagrange multipliers \;;, i.e. ) Kl k)\klUl = €;0;; where
the eigenvalues ¢; are known as the Kohn-Sham eigenvalues, then we have

H5S[p] (Z WUm) = ZZ¢kUki/\zj 27
k Jj k
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right multiply both side by UT and we obtain the Kohn-Sham equation in the standard form

H*S[p] (Z wkUkiUiTz> =2 hlUidigUJ,
ki

Jj kj
. (28)
H[p] (Z ¢k5kl> = trerd
k K
H*S[plihy =ty

From this, we see that the eigenstates of HKS [p], also called the Kohn-Sham orbital, solve the KS Eq.
26, and any unitary rotation U give rise to a particular \;; that equivalently solves the KS Eq. 26 in
the sense that it gives the same total energy.

This also implies that if the energy minimization is solved directly, we still need to diagonalize the
Kohn-Sham Hamiltonian H*S[p] to find the Kohn-Sham eigenvalues.

For a more detailed derivation of the above that considers the issue of occupation, see Lehtola et al.
(2020).

D.3 SELF-CONSISTENT FIELD (SCF) METHOD
The SCF method for solving the standard form of KS Eq. 28 is an iterative process

1. starts with an initial guess of KS orbitals {¢; }
2. calculate density p using current guess of KS orbitals

3. diagonalize the Kohn-Sham Hamiltonian HXS [p] at current density p to obtain its eigenstates
{vi}
4. If {4} } are sufficiently different from {4;}, go back to step (2), otherwise return {1); }.
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(b)
(@) l f :
Face centered cubic (FCC) Body centered cubic (BCC)

©

Bravais lattice reciprocal space lattice

Figure 10: Review of some basic concepts of crystallography. (a) Unit cell: the illustration depicts a
2d diamond crystal lattice containing a grid of 2 x 2 unit cells. The pale orange backdrop delineates
the extent of a single unit cell, with the illustration featuring two lattice vectors, denoted as a1 and a.
(b) Crystal structure: Two typical crystal structures: face-centered cubic (FCC) and body-centered
cubic (BCC). (c) Bravais and reciprocal lattices: relationship between the two types of lattices.
The transform is defined by Eq. 51. The green solid circle represent an atom in the 2d real space.
The intersection points of the mesh, depicted by dotted lines, represent the R vectors , whereas (d):
Brillouin zone and k-path sampling: This depicts a Brillouin Zone of a face-centered cubic (FCC)
structure. The black dots are the high-symmetry points. A k-path in the Brillouin zone is shown in a
green line.

E INTRODUCTION TO CRYSTALLOGRAPHY

Crystal structure The crystal structure of a material delineates the ordered arrangement of atoms,
ions, or molecules within a crystalline solid. This arrangement bestows translational symmetry upon
the material, resulting in periodic repetition throughout the atomic configuration. Various crystalline
materials are known to manifest distinct crystal structures. For instance, metals such as copper and
aluminum adopt a face-centered cubic (FCC) arrangement, while iron and tungsten predominantly
exhibit a body-centered cubic (BCC) structure. These intrinsic crystal structures govern the distinctive
properties and behaviors of different crystals, playing a pivotal role in the disciplines of materials
science and solid-state physics.

Bravais lattice Bravais (direct) lattices serve as a foundational framework for categorizing and
detailing the periodic arrangements of atoms or molecules in crystalline materials. Typically, given the
representation of a crystal lattice vector a1, as, a3 € R3, the Bravais lattice of size M; x My x M;
is described by:

Ry, = mia) + maaz + maas, (29)
where m1, ms, mg are integers and m := (mq,my, m3), and m; = 0,1,--- ,M; — 1 fori =1,2,3.
The illustration of the lattice vector and Bravais lattice is shown in Figure 10. By considering Bravais

lattice, we reduce the complexity of the massive atoms in the crystal and just focus on the fundamental
repeating unit, which is usually called the unit cell.
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Reciprocal space Reciprocal space is commonly used in crystallography and solid-state physics. It
represents the spatial frequencies associated with the periodicity of a crystal lattice. In reciprocal
space, vectors correspond to the wavevectors of plane-waves, which can represent electrons, X-rays,
or other probing waves when they interact with the crystal lattice. The reciprocal lattice, a counterpart
of the crystal lattice, is used to describe the diffraction patterns produced when these probing entities
interact with the crystal. The mathematical definition of reciprocal lattice can by given as follows.
Let’s consider a real-space lattice vector (ay, as, a3) . The reciprocal lattice is then defined by

as X as
|chll‘ ’

a] X as
|chll‘ ,

a] X as

b, =27 et iAet)
! |chll‘

b2 =27 b3 =27 (30)

where x denotes the cross product of two vectors, and the volume is given by |Qcen| = | (a1 xasz)-as |
. The relationship between the real-space crystal lattice vector, and reciprocal lattice vector is that,

for any ¢, j, there is
biaj = 271'(51']'. (31)

FFT mesh and the Reciprocal lattice An FFT mesh of size N; X N5 x N3 can be defined within
the confines of the unit cell as:
ni

Up) ns
n = — — —asg. 32
T Maﬁ—6m+j%% (32)

where n1, na, n3 are arbitrary integers and n := (nq,no,ng),andn; = 0,1,--- N;—1fori = 1,2, 3.

The reciprocal lattice is the discrete Fourier transform of the FFT mesh, defined within the crystal’s
real-space unit cell. Hence it also has the size N; x N2 x N3. The reciprocal lattice vector G is
defined by,

G, = n1b; + naby + nabs, (33)

It’s worth noting that the product of a reciprocal lattice vector and a real-space lattice vector is an
integer multiple of 27:

G,—nrRm = 27r(n1m1 —+ nomso —+ 'fL3WL3)7 (34)

and similarly, for the FFT mesh we have

(35)

! Vi !
GTr ) — o (nlnl nanl n3n3>
nT'n — .

N N N,

This relationship is deeply connected to the properties of discrete Fourier transform. When we deal
with a periodic structure, its Fourier transform will yield non-zero values only at the reciprocal lattice
points. This discrete nature simplifies calculations significantly.

Brillouin zone and k-point sampling The Brillouin zone is the Wigner-Seitz primitive cell in the
reciprocal lattice of a crystalline material. It defines the range of wave vectors in a crystal’s reciprocal
space that provide a comprehensive representation of its electronic properties.The periodic nature of a
crystal lattice leads to a periodicity in the reciprocal space as well. As a result of this periodicity, the
electronic properties of a crystal within any Brillouin zone are equivalent to those in the first Brillouin
zone. Thus, by focusing solely on the first Brillouin zone, one can comprehensively understand and
describe the electronic properties of the crystal.

The term k-points references specific locations within the Brillouin zone in the reciprocal space.
Given that electron behavior in a periodic crystal spans the entire Brillouin zone, there’s a requisite
to sample this space to encompass all potential electron momenta. However, the combination of
periodicity and symmetry negates the need to assess properties at every position within the zone.
Instead, a valid chosen subset of k-points provides an efficient sampling mechanism.

Over the years, various k-point sampling techniques have been developed and utilized in the realm
of computational research. Notable methodologies include the Monkhorst-Pack grids Monkhorst &
Pack (1976), the tetrahedron method Blochl et al. (1994), the Chadi-Cohen method Chadi & Cohen
(1973), and quasi-random sampling Umrigar & Gonze (1994). Among these, the Monkhorst-Pack
method has emerged as the most predominant choice in many applications.
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F DENSITY FUNCTIONAL THEORY FOR SOLID-STATE PHYSICS

F.1 BLOCH’S THEOREM

In this section we derive the form of electron wavefunction under periodic boundary condition (PBC)
by considering the eigenfunctions of the Hamiltonian. When modeling periodic system, we usually
assume a periodic potential:

Vir+ Rpy) =V(r), VRpm. (36)
So the full Hamiltonian is = K + V.

Define the translation operator Ty = TAm1 ,ma,mg aS
Tt () = ¥(r + miar + maas + msas) = Y(r + Ry,) (37)

where a; are the direct lattice vectors. Any T, commutes with the kinetic energy operator since
kinetic energy is invariant when translated by lattice vectors:

[AT, Tm} (1) = Apth(r + Rn) — T (Apb(1)) = 0. (38)
The same holds for the potential operator since it is periodic:

[V Bon | 6(0) = V) (r+- R =Ton (V (1) (1)) = V (14 Rog U (r+-Ban) =V (74 Ro ) (r+- o) = 0.

(39)
Therefore the Hamiltonian H in the periodic system commutes with all T,,, which means any
eigenstate ¢ of H is also a simultaneous eigenfunction for all T,,. Now we write the eigenvalue
equation for each direct lattice vector. Consider TLQ()Z

T o0t (r) = w(r +a1) = e®™y(r), k€ [-m,7] (40)
We can write the eigenvalue of T; as e'2™%i gince T} is unitary by definition. Note that this also
defines the eigenvalue of T}, .o for any m; since

T 0,00(1) = Tho0- - Tio00(r) = 2R (r) 41
—_——
Xmi1

Define ks, k3 similarly. Now using the k; from these eigenstates we can create a special point in the
reciprocal lattice

3 3
=1 =1

This k defines the eigenvalue of any T,:

. . . A ; 3k ik
1;[}(7' + Rm) = me(r) = Tm1,O,OTO,mz,OTO,O,msw(T) = GZQW(ZiZI mzkl)w(,r) = e’k le/}(’l’)
4 (43)
Then the function ug (1) = e~*"4)(r) has the same periodicity as the direct lattice: for any R,,, we
have

U (r 4+ Rom) = * TR0 4 R, o
e R (g R 1) 5)
=Ug ('r') (46)

This means that for any ug () periodic over the lattice, the wavefunction
Yr(r) = e uk(r) 47)

is an eigenstate of H. The above result is the famous Bloch theorem Bloch (1929). We also have the
physically interpretation of k: it define the phase of eigenvalue of unit translation. Hence the number
of k is naturally determined by the direct lattice dimension.
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F.2 BRILLOUIN ZONE

Up to now, there is no restriction on the value allowed for k. To make sure that i () respect PBC,
i.e. the supercell itself is periodic, we must have

¢k(?‘ + Miai) _ (eik~r X eik-]VL:ai) Uk:("’) — wk(r) = eik-Mi(li =1 (48)

fori € {1,2,3}, where M, is the direct lattice dimension in a; direction. Since k - a; = 27k;, we

m;

must have k; = 37+, m; € Z. In other words, PBC quantizes the reciprocal space into grids of size

1 1 1
M N X M-

Furthermore, k within the first Brillouin zone (FBZ), i.e.
ki€ [-|(M; —1)/2],...,[(M;)/2]] := FBZ (49)

gives all the eigenvalues due to the degeneracy induced by periodicity in the reciprocal space: for
k € ¥FBZ,and,j € {1,2,3} we have

Tiwk+bj (r)

—!(ktbs)(rtai) 0 (r + a;)
J

_oikai _ ibja; ,ei(k+bj)-ru,c+bj (r) (50)

=1
=ity g, ().

That is, g4, (in general Y for any reciprocal vector G) and 9, has the same eigenvalue so
they are in fact the same eigenstate. In this sense the reciprocal space is really a lattice where each
cell contains the same data. This makes k different from the regular linear momentum, since any
k + G represent the same state. We call k the crystal momentum.

Since given a direct lattice of size My x My x Ms, the number of valid b within the FBZ is finite,
we can index all these k-points. Let
le—Ml—l 2m2—M1—1 2m37M1—1
k., = b b bs, 51
20, 1+ oM, 2 + oM, 3 (51
where m := (m1, ma, mg) are sets of three integers taking values m; = 1,2,--- , M;. With this
index we can write

P (1) = e*m T, (r). (52)
F.3 K-SPACE DECOUPLING VIA BLOCH’S THEOREM

Under PBC, electronic density is distributed among different wavevector k:

I I
P =D pm(r) =D [Wim(r)? =D luim(r). (53)

m =1 m =1

and the orthonormal constraint becomes

(Yim|¥jm) = 0i,j0m,ms (54)
The standard form KS equation (28) is
H*S [p]thi.m =i, mEi.m (55)

which is a I x M; x My x M3-dimensional eigendecomposition problem. The Kohn-Sham eigenvalues
here €; », are used to produce band structure, where at k,,, point of the reciprocal space, €; m,, =
1,..., I are the band values.

Since the KS orbital takes the form

Yim(r) = e* Tuim(r), i=1,..1, (56)
due to Bloch’s theorem, the KS equation can be decoupled for different k-points. Let
X ik A _— Ve +km)?
H§M=e*m-H“MwW1=—L27ﬂl+wm+mam+m&) (57)
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Then by inserting equation 56 into equation 55 we have
a*s [p]eikm.rui,m(r) zeikm-Tui,m(r)gi,m (58)
IA{EE [plui,m(r) =tim(T)eim

This allow us to solve the original problem for each k,,, separately, and for each k,,, we only need to
solve an eigendecomposition problem of dimension I.

It is a common practice to approximate the ground state density p with a coarser k-mesh My x My x M3
than the one used for band structure calculation.

F.4 PLANEWAVE ANSATZ

Since u; 4 has the same periodicity as the direct lattice, it has discrete Fourier decomposition
Uim(r) = Zci,m’ne’cn"’, Cimn € C, (59)
n
so the KS orbital has form

Gim(r) = e*m T up (1) = i el BTG (60)
n

The orthonormal constraint Now we consider the constraint in equation 54. The orthogonality of
Bloch wave functions with distinct wave vectors k,,, # k., is ensured by the mathematical identity

<wi,m|wj,m’> = Z C;m,ncj,m’,n /exp(i(km - k;n)Tr)dr = 0. (61)
n
We only need to enforce the constraint between orbitals with the same wavevectors, i.e.
<¢i,m|¢j,m> = Z C;‘k,m,ncj,m,n = 5ij) vkm (62)
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G IN-DEPTH INTRODUCTION OF THE COMPUTATIONAL METHODOLOGY.

G.1 MATHEMATICAL FUNDAMENTALS ON FOURIER TRANSFORM

Parseval’s theorem on finite space. Consider a periodic function f on a cell 2. The discrete
Fourier transform is defined by

exp IG'T ) (63)

=L e

exp 71GT ) (64)

&)= 10

The Parseval theorem of two periodic functions f and g applies

/ frgdr =Y f1(G)G(G) (65)
Q G

This result shows that the discrete Fourier transform maintain the inner product of two functions.

Discrete Fourier Transform. Consider a sequence of points {a;;x} where ¢ = 0,1,...,I — 1,
j=0,1,...,J—1,and k=0,1,..., K — 1.

The 3-D discrete Fourier transform of {a,. } is defined by,

(il gm kn
Almn Z ik €XP {_271—2 (I + 7 K> } (66)
i3,k
and the 3D inverse FFT is defined by,
(i omj  nk

l,m,n

The Shift Theorem Let f'(r) = f(r + a), where a is a constant independent of . Then the
Fourier transform of f can be written as,

(@) =eC* (@) (68)
G.2 CONSTRUCTING THE WAVE FUNCTION

Constructing the density via Fourier transform The density function in the reciprocal space can

be written as:
= Z Z Z C:,m,n’ci,Tn,nJrn’ (69)

i m n/
The derivation of this equation can be find in the appendix. It can be seen that the Fourier transform
of the density function can be expressed as the discrete convolution of coefficients. A typical way of
such convolution requires O(N?) steps of computation. To reduce the complexity, we implement
this density function via Fourier transform.

Consider the plane-wave function defined in Eq. 59 and we evaluate it at the lattice point r,, =
%al + ]’\%ag + %03, we have,

niny  nhne  nhns
() = 3 Cimt & (GRa) = 3 i X <2m( Lm0 ) ()
n/

N TN, TN

This equation inherently adopts the structure of inverse discrete Fourier transform applied to the
sequence of coefficients, represented as:

ui,m(rn) = 1FFT ({Ci,m,n/}) (71)
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Subsequently, the density function corresponding to individual KS orbitals can be calculated by

Piom(Tn) = |tim(rn) |2~ (72)
The Fourier transform of the density function can be directly calculated via fast Fourier transform:
ﬁi,m(Gn) =FFT [pi,m(rn)] (73)

The fast Fourier transform (Cooley & Tukey, 1965) has the complexity of O(N log N), which is
faster than that of the convolution operation.

G.3 CALCULATION OF THE ENERGIES

Total energy minimization In the present study, we employ the total energy minimization approach
previously outlined in Li et al. (2023). Our target is to minimize the subsequent objective function:
min Ekin + Eext + Ehar + Exc

Ci,m,n

74
st Zcz,m,ncj,m,n:@j, V. (74)
n

In this section we furnish the explicit expressions for each constituent component of the total energy.
While we refrain from delving into the underlying derivations within the main text, a comprehensive
derivation is meticulously detailed in the appendix for interested readers. The constituent energies
are given by,

1 " 2
Eiin = 5 zl: ; Zn: Ci7m,nci,m,n”km + Gn” (75)
5 2
B =21 Y |p(gi")2| (76)
=, 1G]
Eext = —4r Z ﬁ(Gn) Z eiGnTg qu B) (77)
P : 1G]
Proof. of Eq. 75
First we have,
Vf, exp (iGTr) = Vf, ( COS(GTT‘) +1i sin(GTr)) (78)
=V,G' ( —sin(G'r) + icos(GTr)> (79)
= ||GH2( - COS(GT’F) - isin(GTr)) (80)
= —||G|? exp(iG ' r) (81)
Thus the kinetic energy can be calculated in the following manner.
1
<¢1ﬁ,m("n) - sz wzm(r)> (82)
1
:2< Z Cimon €Xp(i(km + Gn) - T) Z | K + Gnll*cim.n exp(i(km + Gp) - r)> (83)
1
25 Z Hkm + G'n.| 20;m7nci7m,n (84)
Therefore,
Lo
FEiin = Z; <1/1i,m(7’) - §V1‘ 1/Ji,m(7’)> (85)

- % Z Z Z c:,m,nci,m,nnkm + (;n”2 (86)

(2 m

31



Under review as a conference paper at ICLR 2024

Proof. of Eq. 76

The non-interacting Coulomb potential can be written as,

!/
r) = / L),dr’ (87)
ollr—r|
Consider the Yukawa’s potential,
n,—allr—r'||
ol (r) = / e T (88)
Q |7 — |

The Fourier transformation of the Yukawa’s potential can be written as,

e—alr—r'] .
/ / A e G Ty (89)
IIT — 7

—allr—r||
// ||1°—1°’|| B TG Tdrdr! (90)

. , —allr]|
(shift theorem) = /e*ZGTT p(r')/ c

The inner integral can be simplified using spherical coordinate (the z-axis points along the direction

G lpdr’ 91)

7

of G):
e—elrll . r 2 pm o0 ,—ar e 0
/ e’ 7'clr:/ / / = e UGl eos 0,2 6iny Odrdfde (92)
]| o Jo Jo r
= 277/ / re= e MGl cos 0 gin Odrde (93)
(u:=cosh) = 277/ / e G gp gy 94)
=2 / —‘”[ _”Gm] d 95)
=27 re r
0 illGlr |,
21 oo . .
_ o —ar( il|G|r _ _—i|G|r d 96
iy J, (e e e ar 0
4
=— 97
G + a2 o7
Therefore,
47T ~T
~1 G) = —iG'r /d / 08
1(6) = rgraas [ e 99)
17i(G)
_ 99
[GI? + a2 &
Further,
- drp(G)  4rp(G)
G) = li = 100
w&) = M er a2 = eP (100
Applying Parseval’s theorem, we have
1 1 -
By — §/v(r)p(r)dr = Y@@ e Y oA HGH? (101)
G G+£0
O
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Proof. of Eq. 110

Let ¢ be the index of the nuclei in the unit cell. 7, is the coordinate of the /-th atom in a unit cell. The
external potential can be written as,

1 Ncell Nalom
Ve (T) = S wlr =7 — Ry) (102)
cell n (=1
(103)
The Fourier Transformation, with the shift theorem, can be written as,
1 Ncel] Natom )
Tt (G) = GG (104)
t( ) Ncell n Zz:; [( )
Nalom
= Si(G)u(G) (105)
=1

where S¢(G) and 7 (G) are referred to as the structure factor and the form factor, respectively,
defined by

S4(Q) := 'CTe (106)
5(G) == / A —iGr gy, (107)
Qeent ||’I°||
4mqy
- (108)
|G|

where ¢y is the point charge of the /-th atomic nucleus.

The overall external energy can be written as,

B~ — Y Teu(G)p(G) (109)
G0

= —dr Y }(Gn) Y G I (110)

O

The exchange-correlation energy is dependent on the selection of a specific functional. Potential
choices for the exchange-correlation functionals encompass the local density approximation, the
generalized gradient approximation, hybrid functionals, among others. Typically, the exchange-
correlation energy is computed in real space utilizing numerical integration over a real-space grid,
which can be written as,

N ‘chll|
Fre = /Qccu Exe(r)p(r)dr = N zn:@xc('rn)p(rn) (111)

The jax-xc package (Zheng & Lin, 2023) is among those offering differentiable exchange-
correlation functionals, which are crucial for enabling gradient-based optimization in density func-
tional theory simulations.

Besides providing an elegant alternative to the conventional iterative solution of the KS equation
and allowing easy differentiation with respect to physical parameters, our approach has a crucial
advantage: it can be easily applied to the minimization of energy functionals that are given as explicit
functionals of the orbitals, but not of the density. Such functionals, of which there are many examples,
such as hybrids of exchange and local exchange, meta-GGAs etc., have gained traction in recent years
as they tend to produce better results in critical areas such as the calculation of band gaps and the
treatment of static correlation. The implementation of these functionals within the conventional Kohn-
Sham scheme is an extremely demanding numerical task, which requires calculating the functional
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derivatives of the orbitals with respect to the density in order to to construct the proper local effective
potential. Even if this can be done, there is no guarantee that the true optimal orbitals can be generated
by a local potential and therefore the resulting energy may not be a true minimum. On the other hand,
our direct optimization will continue to work for these functionals with no significant increase in
complexity and will continue to yield the true minimum.
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H DETAILS FOR GEOMETRY OPTIMIZATION

H.1 HELLMANN-FEYNMAN THEOREM

Also called the force theorem, the Hellmann-Feynman theorem Feynman (1939) describes how to
take the derivative of the total energy with respect to any system parameter. Here we focus on the

case of atom coordinates R = {7,}. Denote the ground state total electronic energy as E.1. Fora
fixed geometry R, the exact ground state electronic wavefunction VU is extremal with respect to any
variation, so 8 R = 0 and

LA — (Sl (S )= (9185 ) = (9[55]3) = far i Pl
(112)

where p(r) is the ground state density. Note that the last equality comes from the fact that the only
term dependent on R in the electronic Hamiltonian is the external potential.

H.2 EWwWALD SUMMATION

The main issue with evaluating the nuclear repulsion energy is that the couloumbic interaction %
decays slowly in real space. This means the direct lattice needs to be very large in order to correctly
model it. The main idea of Ewald summation is to introduce a fast decaying function f, then split
L'into a short-range term f(\r)/r that decays quickly in real space, and a slow-decaying term

1 — f(Ar))/r that still decay slowly in real space but decays quickly in the Fourier space. The slow
decaying can be avoided by summing the short-range term in real space and the slow-decaying term
in the Fourier space. The parameter A controls the rate of decay.

Specifically, the decay function used in Ewald summation is the complementary error function,
defined as

erfe(r) =1 —erf(r), erf(r / dt e’ (113)
f
The summation of the short-range term in real space is
!/
o fe(A o+ R
ZZZ“W““T+m“ (114
- T8 — Ta + Rml|

The summation of the slow-decaying term in the Fourier space is given by (derivation omitted)

1 L
ﬁZZanqﬁuG” p( ”4A! ) os(G- (1o —75))  (115)

B G0

We also need to remove the spurious self-interaction in equation 115, which is

L
A
= o —. 116
Eaj 4= (116)
Thus the nuclear repulsion energy evaluated with the Ewald summation method is given by
En.(R)=FE"(R)+ E(R) — E°. (117)
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