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Palm trees sway in the wind against a cloudy sky... Total 240 frames (30.0s)

Change the helicopter's color to bright red. Total 240 frames (30.0s)

A bustling city street at night…A tree with delicate branches…

A pebble beach at sunset… A tranquil sea under vast sky…

A man and a woman lie on the..

A serene coastal landscape…

A black cat with green eyes…

A black swan with a red beak…

Add a futuristic spaceship.

Change the color to purple.

Remove the man who is calling.

Swap the statue with waterfall. 

Masked 
Video

Original 
Video

Original 
Video

Masked 
Video

Fig. 1. VideoPainter enables plug-and-play text-guided video inpainting and editing for any video length and pre-trained Di�usion Transformer

with masked video and video caption (user editing instruction). The upper part demonstrates the e�ectiveness of VideoPainter in various video

inpainting scenarios, including object, landscape, human, animal, multi-region (Multi), and random masks. The lower section demonstrates the performance

of VideoPainter in video editing, including adding, removing, changing a�ributes, and swapping objects. In both video inpainting and editing, we demonstrate

strong ID consistency in generating long videos (Any Len.). Project page for this paper is at: h�ps://yxbian23.github.io/project/video-painter
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Video inpainting, crucial for the media industry, aims to restore corrupted

content. However, current methods relying on limited pixel propagation or

single-branch image inpainting architectures face challenges with generating

fully masked objects, balancing background preservation with foreground

generation, and maintaining ID consistency over long video. To address

these issues, we propose VideoPainter, an e�cient dual-branch framework

featuring a lightweight context encoder. This plug-and-play encoder pro-

cesses masked videos and injects background guidance into any pre-trained

video di�usion transformer, generalizing across arbitrary mask types, en-

hancing background integration and foreground generation, and enabling
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user-customized control. We further introduce a strategy to resample in-

painting regions for maintaining ID consistency in any-length video inpaint-

ing. Additionally, we develop a scalable dataset pipeline using advanced

vision models and construct VPData and VPBench—the largest video inpaint-

ing dataset with segmentation masks and dense caption (>390K clips) —to

support large-scale training and evaluation. We also show VideoPainter’s

promising potential in downstream applications such as video editing. Exten-

sive experiments demonstrate VideoPainter’s state-of-the-art performance

in any-length video inpainting and editing across 8 key metrics, including

video quality, mask region preservation, and textual coherence.
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Additional Key Words and Phrases: Arti�cial Intelligence Generative Con-

tent, Computer Vision, Video Inpainting, Video Editing
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1 INTRODUCTION

Video inpainting [Quan et al. 2024], which aims to restore the

corrupted video while maintaining coherence, facilitates numer-

ous applications, including try-on [Fang et al. 2024], �lm produc-

tion [Polyak et al. 2024], and video editing [Sun et al. 2024]. Recently,

Di�usion Transformers (DiT) [OpenAI 2024; Peebles and Xie 2023]

have shown promise in video generation, leading to the exploration

of generative video inpainting [Zhang et al. 2024b; Zi et al. 2024].

Existing approaches, as illustrated in Fig. 2, can be broadly cat-

egorized into two types: (1) Non-Generative methods [Lee et al.

2019; Li et al. 2022; Zhou et al. 2023] depend on limited pixel feature

propagation (physical constraints or model architectural priors),

which only take masked videos as inputs and cannot generate fully

segmentation-masked objects. (2) Generative methods [Wang et al.

2024; Zhang et al. 2024b; Zi et al. 2024] extend single-branch im-

age inpainting architectures [Rombach and Esser 2022] to video

by incorporating temporal attention, which struggles to balance

background preservation and foreground generation in one model

and obtain inferior temporal coherence compared to native video

DiTs. Moreover, both paradigms neglect long video inpainting and

struggle to maintain consistent object identity with long videos.

This motivates us to decompose video inpainting into background

preservation and foreground generation and adopt a dual-branch

architecture in DiTs, where we can incorporate a dedicated con-

text encoder for masked video feature extraction while utilizing the

pre-trained DiT’s capabilities to generate semantic coherent video

content conditioned on both the preserved background and text

prompts. Similar observations have been made in image inpainting

research, notably in BrushNet [Ju et al. 2024] and ControlNet [Zhang

et al. 2023]. However, directly applying their architecture to video

DiTs presents several challenges: (1) Given Video DiT’s robust gener-

ative foundation and heavymodel size, replicating the full/half-giant

Video DiT backbone as the context encoder would be unnecessary

and computationally prohibitive. (2) Unlike BrushNet’s pure convo-

lutional control branch, DiT’s tokens in masked regions inherently

contain background information due to global attention, complicat-

ing the distinction between masked and unmasked regions in DiT

backbones. (3) ControlNet lacks feature injection across all layers,

hindering dense background control for inpainting tasks.

To address these challenges, we introduce VideoPainter, which en-

hances pre-trained DiT with a lightweight context encoder compris-

ing only 6% of the backbone parameters, to form the �rst e�cient

dual-branch video inpainting architecture. VideoPainter features

three main components: (1) A streamlined context encoder with just

two layers, which integrates context features into the pre-trained

DiT in a group-wise manner, ensuring e�cient and dense back-

ground guidance. (2) Mask-selective feature integration to clearly

distinguish the tokens of the masked and unmasked region. (3)

A novel inpainting region ID resampling technique to e�ciently

process videos of any length while maintaining ID coherence. By

freezing the pre-trained context encoder and DiT backbone, and

adding an ID-Adapter, we enhance the backbone’s attention sam-

pling by concatenating the original key-value vectors with the in-

painting region tokens. During inference, inpainting region tokens

from previous clips are appended to the current key-value vectors,

ensuring the long-term preservation of target IDs. Notably, our

VideoPainter supports plug-and-play and user-customized control.

For large-scale training, we develop a scalable dataset pipeline

using advanced vision models [OpenAI 2024; Ravi et al. 2024; Zhang

et al. 2024a], constructing the largest video inpainting dataset, VP-

Data, and benchmark, VPBench, with over 390K clips featuring pre-

cise segmentation masks and dense text captions. We further demon-

strate VideoPainter’s potential by establishing an inpainting-based

video editing pipeline that delivers promising results.

To validate our approach, we compare VideoPainter against pre-

vious state-of-the-art (SOTA) baselines and a single-branch �ne-

tuning setup that combines noisy latent, masked video latent, and

mask at the input channel. VideoPainter demonstrates superior per-

formance in both training e�ciency and �nal results.

In summary, our contributions are as follows:

• We propose VideoPainter, the �rst dual-branch video inpainting

framework that supports plug-and-play background controls.

• We design a lightweight context encoder for e�cient and dense

background control, and inpainting region ID resampling for ID

consistency in any-length video inpainting and editing.

• We introduce VPData, the largest video inpainting datasets com-

prising over 390K clips (> 866.7 hours), and VPBench, both

featuring precise masks and detailed video captions.

• Experiments show VideoPainter achieves state-of-the-art perfor-

mance across 8 metrics including video quality, masked region

preservation, and text alignment in video inpainting and editing.

2 RELATED WORK

2.1 Video Inpainting

Video inpainting approaches can be broadly classi�ed into two

categories based on whether they possess generative capabilities:

Non-generative methods. These methods [Hu et al. 2020; Li et al.

2022; Zhang et al. 2022a,b; Zhou et al. 2023] leverage architecture

priors to facilitate pixel propagation. This includes utilizing local
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Task-specific
Models

(a) Non-Generative Models (b) Generative Models (c) VideoPainter

Optical Flow

Image Inpainting
UNet

Temporal 
Attention

Pre-Trained
Video DiT

Context 
EncoderMasked Video Mask Noisy Latent Video

Fig. 2. Framework Comparison. Non-generative approaches, limited to pixel propagation from backgrounds, fail to inpaint fully segmentation-masked objects.

Generative methods adapt single-branch image inpainting models to video by adding temporal a�ention, struggling to maintain background fidelity and

generate foreground contents in one model. In contrast, VideoPainter implements a dual-branch architecture that leverages an e�icient context encoder with

any pre-trained DiT, decoupling video inpainting to background preservation and foreground generation, and enabling plug-and-play video inpainting control.

perception of 3D CNNs [Chang et al. 2019a,b; Hu et al. 2020; Wang

et al. 2019], and exploiting the global perception of attention to

retrieve and aggregate tokens with similar texture for �lling masked

video [Lee et al. 2019; Liu et al. 2021; Zeng et al. 2020; Zhang et al.

2022a]. They also introduce various physical quantities, especially

optical �ow, as auxiliary conditions as it simpli�es RGB pixel in-

painting by completing less complex �ow �elds [Gao et al. 2020;

Kim et al. 2019; Li et al. 2020; Xu et al. 2019; Zhang et al. 2022b,c;

Zou et al. 2021]. However, they are only e�ective for partial object

occlusions with random masks but face signi�cant limitations when

inpaint fully masked regions due to insu�cient contexts.

Generative methods. Recent advances in generative foundation

models [Guo et al. 2023; Rombach et al. 2022] have sparked numer-

ous approaches that leverage additional modules or training strate-

gies to extend backbones’ capabilities for video inpainting [Wang

et al. 2024; Zhang et al. 2024b; Zi et al. 2024]. AVID [Zhang et al.

2024b] and COCOCO [Zi et al. 2024] represent the most related

recent works. Both adopt a similar implementation by augmenting

Stable Di�usion Inpainting [Rombach and Esser 2022] with train-

able temporal attention layers. This architecture includes per-frame

region �lling based on the image inpainting backbone and temporal

smoothing with temporal attention. Despite showing promising

results for both random and segmentation masks due to their gener-

ative abilities, they struggle to balance background preservation and

foreground generation with text caption [Ju et al. 2024; Li et al. 2024]

within the single backbone. AVID also explores any-length video

inpainting by smoothing latent at segment boundaries and using

the middle frame as the ID reference. In contrast, VideoPainter is a

dual-branch framework by decoupling video inpainting into fore-

ground generation and background-guided preservation. It employs

an e�cient context encoder to guide any pre-trained DiT, facilitating

plug-and-play control. Furthermore, VideoPainter also introduces

a novel inpainting region ID resampling technique that enables ID

consistency in any-length video inpainting.

2.2 Video Inpainting Datasets

Recent advances in segmentation [Ravi et al. 2024] have created

many video segmentation datasets [Darkhalil et al. 2022; Ding et al.

2023; Hong et al. 2023; Perazzi et al. 2016; Tokmakov et al. 2023; Xu

Table 1. Comparison of video inpainting datasets. Our VPData is the largest

video inpainting dataset to date, comprising over 390K high-quality clips

with segmentation masks, video captions, and masked region descriptions.

Dataset #Clips Duration Video Caption Masked Region Desc.

DAVIS [Perazzi et al. 2016] 0.4K 0.1h ✗ ✗

YouTube-VOS [Xu et al. 2018] 4.5K 5.6h ✗ ✗

VOST [Tokmakov et al. 2023] 1.5K 4.2h ✗ ✗

MOSE [Ding et al. 2023] 5.2K 7.4h ✗ ✗

LVOS [Hong et al. 2023] 1.0K 18.9h ✗ ✗

SA-V [Ravi et al. 2024] 642.6K 196.0h ✗ ✗

Ours 390.3K 866.7h ✓ ✓

et al. 2018]. Among these, DAVIS [Perazzi et al. 2016] and YouTube-

VOS [Xu et al. 2018] have become prominent benchmarks for video

inpainting due to their high-quality masks and diverse object cate-

gories. However, the existing datasets face two primary limitations:

(1) insu�cient scale to meet the data requirements of generative

models, and (2) the absence of crucial control conditions necessary

for generating masked objects such as video captions. In contrast,

as shown in Tab. 1, we developed a scalable dataset pipeline based

on state-of-the-art vision understanding models [OpenAI 2024; Ravi

et al. 2024; Zhang et al. 2024a], and constructed the largest video

inpainting dataset to date with over 390K clips, each annotated with

segmentation masks and dense video captions.

3 METHOD

Sec. 3.1 and Fig. 3 illustrate our pipeline for building VPData and

VPBench. Sec. 3.2 and Fig. 4 show our dual-branch VideoPainter.

Sec. 3.3 and Sec. 3.4 introduce our inpainting region ID resampling

approach for any-length video inpainting and plug-and-play control.

3.1 VPData and VPBench Construction Pipeline

To address the challenges of limited size and lack of text annotations,

we present a scalable dataset pipeline leveraging advanced vision

models [OpenAI 2024; Ravi et al. 2024; Zhang et al. 2024a]. This

leads to VPData and VPBench, the largest video inpainting dataset

and benchmark with precise masks and video/masked region cap-

tions. As shown in Fig. 3, the pipeline involves 5 steps: collection,

annotation, splitting, selection, and captioning.

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.
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Video Caption: A white ferry with red and blue accents, named ‘COLUNIA 6’, cruises on a 
calm river, its two-tiered structure featuring large windows and a flag, against a backdrop of 
modern and traditional buildings. As it moves, the ferry…
Masked Region Description: White and red passenger ferry boat labeled ""COLONIA 6"" 
with multiple windows, life buoys, and upper deck seating.

Recognize 
Anything Model

Object

Recognition

Grounding DINO

Object

Detection

Object

Segmentation

Scene Split
Video

Caption

Quality

Filtering

Aesthetic Eval

Ugly？

❌

Motion Eval

Static？

❌

… ……

… ……

Fig. 3. Dataset Construction Pipeline. It consists of five pre-processing steps:

collection, annotation, spli�ing, selection, and captioning.

Collection. We chose Videvo and Pexels 1 as our data sources. We

�nally obtained around 450 videos from these sources.

Annotation. For each collected video, we implement a cascaded

work�ow for automated annotation:

➠ We employ the Recognize Anything Model [Zhang et al. 2024a]

for open-set video tagging to identify primary objects.
➠ Based on the detected object tags, we utilize Grounding DINO [Liu

et al. 2023] to detect bounding boxes for objects at �xed intervals.
➠ These bounding boxes serve as prompts for SAM2 [Ravi et al.

2024], which generates high-quality mask segmentations.
➠ Then we employ rigorous �ltering criteria: inter-frame mask area

variation Δ < 20% and frame coverage maintained between 30%−

70% to ensure reliable segmentation masks quality.

Splitting. Scene transitions may occur while tracking the same

object from di�erent angles, causing disruptive view changes. We

utilize PySceneDetect [Castellano 2024] to identify scene transi-

tions and subsequently partition the masks. Then we segmented the

sequences into 10-second intervals and discarded short clips (< 6s).

Selection.We employ 3 key criteria: (1) Aesthetic Quality, evaluated

using the Laion-Aesthetic Score Predictor [Schuhmann et al. 2022];

(2) Motion Strength, predicted by optical �ow measurements using

the RAFT[Teed and Deng 2020]; and (3) Content Safety, assessed

via the Stable Di�usion Safety Checker [Rombach et al. 2022].

Captioning. As Tab. 1 shows, existing video segmentation datasets

lack textual annotations, primary conditions in generation [Betker

et al. 2023; Chen et al. 2023], creating a data bottleneck for applying

generative models to video inpainting. Therefore, we leverage SOTA

VLMs, speci�cally CogVLM2 [Wang et al. 2023] and GPT-4o [Ope-

nAI 2024], to uniformly sample keyframes and generate dense video

captions and detailed descriptions of the masked objects.

3.2 Dual-branch Inpainting Control

We incorporate masked video features into the pre-trained di�usion

transformer (DiT) via an e�cient context encoder, to decouple the

1Videvo: https://www.videvo.net/, Pexels: https://www.pexels.com/

background context extraction and foreground generation. This en-

coder processes a concatenated input of noisy latent, masked video

latent, and downsampled masks. Speci�cally, the noisy latent pro-

vides information about the current generation. The masked video

latent, extracted via VAE, aligns with the pre-trained DiT’s latent

distribution. We apply cubic interpolation to downsample masks,

ensuring dimensional compatibility between masks and latents.

Based on DiT’s inherent generative abilities [OpenAI 2024], the

control branch only needs to extract contextual cues to guide the

backbone in preserving background and generating foreground.

Therefore, instead of previous heavy approaches that duplicate half

or all of the backbone [Ju et al. 2024; Zhang et al. 2023],VideoPainter em-

ploys a lightweight design by cloning only the �rst two layers of

pre-trained DiT, accounting for merely 6% of the backbone param-

eters. The pre-trained DiT weights provide a robust prior for ex-

tracting masked video features. The context encoder features are

integrated into the frozen DiT in a group-wise, token-selective man-

ner. The group-wise feature integration is formulated as follows:

the �rst layer’s features are added back to the initial half of the

backbone, while the second layer’s features are integrated into the

latter half, achieving lightweight and e�cient context control. The

token-selective mechanism is a pre-�ltering process, where only to-

kens representing pure background are added back, while others are

excluded from integration, as shown in the upper right of Fig. 4. This

ensures that only the background context is fused into the backbone,

preventing potential ambiguity during backbone generation.

The feature integration is shown in Eq. 1. n\ (IC , C,�)8 indicates

the feature of the 8-th layer in DiT n\ with 8 ∼ [1, =], where = is

the number of layers. The same notation applies to n+834>%08=C4A

\
,

which takes the concatenated noisy latent IC , masked video latent

I<0B:43

0
, and downsampled mask<A4B8I43 as input. The concatena-

tion operation is denoted as [·].Z is the zero linear operation.

n\ (IC , C,�)8 = n\ (IC , C,�)8 + Z

(

n+834>%08=C4A

\

(

[

IC , I
<0B:43

0
,<A4B8I43

]

, C

)

8//=
2

)

(1)

3.3 Target Region ID Resampling

While current DiTs show promise in handling temporal dynam-

ics [Bian et al. 2024; Kuaishou 2024], they struggle to maintain

smooth transitions and long-term identity consistency.

Smooth Transition. Following AVID [Zhang et al. 2024b], we em-

ploy overlapping generation and weighted average to maintain

consistent transitions. Additionally, we utilize the last frame of the

previous clip (before overlap) as the �rst frame of the current clip’s

overlapping region to ensure visual appearance continuity.

Identity Consistency. To maintain identity consistency in the long

video, we introduce an inpainting region ID resampling method, as

shown in lower Fig. 4. During training, we freeze both the DiT and

the context encoder. Then we add trainable ID-Resample Adapters

into the frozen DiT (LoRA), enabling ID resampling functionality.

Speci�cally, tokens from the current masked region, which contain

the desired ID, are concatenated with the KV vectors, thereby en-

hancing ID preservation in the inpainting region through additional

KV resampling. During inference, we prioritize maintaining ID con-

sistency with the inpainting region tokens from the previous clip,

as it represents the most temporally proximate generated result.

Speci�cally, given current &E

8
,  E

8
, and + E

8
, we concatenate tokens
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Fig. 4. Model overview. The upper figure shows the architecture of VideoPainter. The context encoder performs video inpainting based on concatenation of

the noisy latent, downsampled masks, and masked video latent via VAE. Features extracted by the context encoder are integrated into the pre-trained DiT in a

group-wise and token-selective manner, where two encoder layers modulate the first and second halves of the DiT, respectively, and only the background

tokens will be integrated into the backbone to prevent information ambiguity. The lower figure illustrates the inpainting ID region resampling with the ID

Resample Adapter. During training, tokens of the current masked region are concatenated to the KV vectors, enhancing ID preservation of the inpainting

region. During inference, the ID tokens of the last clip are concatenated to the current KV vectors, maintaining ID consistency with the last clip by resampling.

containing ID information ( 83

8
and + 83

8
) to the current KV pairs

(during training, these are tokens from the current inpainting re-

gion; during inference, from the previous clip’s inpainting region).

This forms new KV-vectors [ E

8
,  83

8
] and [+ E

8
,+ 83

8
] (where [·, ·]

denotes concatenation), enabling the model to sample necessary ID

information and better maintain ID consistency.

3.4 Plug-and-Play Control

Our plug-and-play framework demonstrates versatility across two

aspects: it supports various stylization backbones or LoRAs and

is compatible with both text-to-video (T2V) [NVIDIA 2025; Yang

et al. 2024] and image-to-video (I2V) [Guo et al. 2024; Shi et al.

2024] DiT architectures. The I2V compatibility particularly enables

seamless integration with existing image inpainting capabilities.

When utilizing an I2V DiT backbone, VideoPainter requires only

one additional step: generating the initial frame using any image

inpainting model guided by the masked region’s text caption. This

inpainted frame then serves as both the image condition and the

�rst masked video frame. These capabilities further demonstrate

the exceptional transferability and versatility of VideoPainter.

4 EXPERIMENTS

4.1 Implementation details

VideoPainter is built upon a pre-trained Image-to-Video Di�usion

Transformer CogVideo-5B-I2V [Yang et al. 2024] (by default) and

its Text-to-Video version. In training, we use VPData at a 480 × 720

resolution, learning rate 1 × 10
−5, batch size 1 for both the context

encoder (80, 000 steps) and the ID Resample Adapter (2, 000 steps) in

two stages with AdamW. In training, we randomly sample dilation

and erosion with kernel sizes ∈ [8, 32] to enhance robustness to

mask precision. This also enables our random-mask inpainting.

Benchmarks. In video inpainting, we employ Davis [Perazzi

et al. 2016] as the benchmark for random masks and VPBench for

segmentation-based masks. VPBench consists of 100 6-second videos

for standard video inpainting, and 16 videos with an average du-

ration of more than 30 seconds for long video inpainting. The VP-

Bench includes diverse content including objects, humans, animals,

landscapes, and multi-range masks. For video editing evaluation, we

also utilize VPBench, which includes four fundamental editing oper-

ations (add, remove, swap, and change) and comprises 45 6-second

videos and 9 videos with an average duration of 30 seconds.

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.
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Metrics. We consider 8metrics from three aspects: masked region

preservation, text alignment, and video generation quality.

• Masked Region Preservation.We follow previous works using stan-

dard PSNR [Wikipedia contributors 2024c], LPIPS [Zhang et al.

2018], SSIM [Wang et al. 2004], MSE [Wikipedia contributors

2024b] and MAE [Wikipedia contributors 2024a] in the unmasked

region among the generated video and the original video.
• Text Alignment. We employ CLIP Similarity (CLIP Sim) [Wu et al.

2021] to assess the semantic consistency between the generated

video and its corresponding text caption. We also measure CLIP

Similarity within the masked regions (CLIP Sim (M)).
• Video Generation Quality. Following previous methods, we use

FVID [Wang et al. 2018] to measure the generated video quality.

4.2 Video Inpainting

Quantitative comparisons. Tab. 2 shows the quantitative compar-

ison on VPBench and Davis [Perazzi et al. 2016]. We compare the

inpainting results of non-generative ProPainter [Zhou et al. 2023],

generative COCOCO [Zi et al. 2024], and Cog-Inp [Yang et al. 2024],

a strong baseline proposed by us, which inpaint �rst frame using im-

age inpainting models and use the I2V backbone to propagate results

with the latent blending operation [Avrahami et al. 2023]. In the

segmentation-based VPBench, ProPainter, and COCOCO exhibit the

worst performance across most metrics, primarily due to the inabil-

ity to inpaint fully masked objects and the single-backbone architec-

ture’s di�culty in balancing the competing background preservation

and foreground generation, respectively. In the randommask bench-

mark Davis, ProPainter shows improvement by leveraging partial

background information. However, VideoPainter achieves optimal

performance across segmentation (standard and long length) and

random masks through its dual-branch architecture that e�ectively

decouples background preservation and foreground generation.

Qualitative comparisons. The qualitative comparison with previ-

ous video inpainting methods is shown in Fig. 5. VideoPainter con-

sistently shows exceptional results in video coherence, quality, and

alignment with text caption. Notably, ProPainter fails to generate

fully masked objects because it only depends on background pixel

propagation instead of generating. While COCOCO demonstrates

basic functionality, it fails to maintain consistent ID in inpainted re-

gions ( inconsistent vessel appearances and abrupt terrain changes)

due to its single-backbone architecture attempting to balance back-

ground preservation and foreground generation. Cog-Inp achieves

basic inpainting results; however, its blending operation’s inability

to detect mask boundaries leads to signi�cant artifacts. Moreover,

VideoPainter can generate coherent videos exceeding one minute

while maintaining ID consistency through our ID resampling.

4.3 Video Editing

VideoPainter can be used for video inpainting by employing Vi-

son Language Models [OpenAI 2024; Team et al. 2024] to generate

modi�ed captions based on user editing instructions and source

captions and apply VideoPainter to inpaint based on the modi�ed

captions. Tab. 3 shows the quantitative comparison on VPBench.

We compare the editing results of inverse-based UniEdit [Bai et al.

Table 2. �antitative comparisons among VideoPainter and other

video inpainting models in VPBench for segmentation mask (Stan-

dard (S) and Long (L) Video) and Davis for random mask:

ProPainter [Zhou et al. 2023], COCOCO [Zi et al. 2024], and Cog-Inp [Yang

et al. 2024]. Metrics include masked region preservation, text alignment,

and video quality. Red stands for the best, Blue stands for the second best.

Metrics Masked Region Preservation Text Alignment Video Quality

Models PSNR↑ SSIM↑ LPIPS
×102

↓MSE
×102

↓MAE
×102

↓ CLIP Sim↑CLIP Sim (M)↑ FVID↓

V
P
B
en

ch
-S ProPainter 20.97 0.87 9.89 1.24 3.56 7.31 17.18 0.44

COCOCO 19.27 0.67 14.80 1.62 6.38 7.95 20.03 0.69
Cog-Inp 22.15 0.82 9.56 0.88 3.92 8.41 21.27 0.18
Ours 23.32 0.89 6.85 0.82 2.62 8.66 21.49 0.15

V
P
B
en

ch
-L ProPainter 20.11 0.84 11.18 1.17 3.71 9.44 17.68 0.48

COCOCO 19.51 0.66 16.17 1.29 6.02 11.00 20.42 0.62
Cog-Inp 19.78 0.73 12.53 1.33 5.13 11.47 21.22 0.21
Ours 22.19 0.85 9.14 0.71 2.92 11.52 21.54 0.17

D
a
v
is

ProPainter 23.99 0.92 5.86 0.98 2.48 7.54 16.69 0.12
COCOCO 21.34 0.66 10.51 0.92 4.99 6.73 17.50 0.33
Cog-Inp 23.92 0.79 10.78 0.47 3.23 7.03 17.53 0.17
Ours 25.27 0.94 4.29 0.45 1.41 7.21 18.46 0.09

Table 3. �antitative comparisons among VideoPainter and other

video editing models in VPBench (Standard and Long Video):

UniEdit [Bai et al. 2024], DitCtrl [Cai et al. 2024], and ReVideo [Mou et al.

2024]. Metrics include masked region preservation, text alignment, and

video quality. Red stands for the best, Blue stands for the second best.

Metrics Masked Region Preservation Text Alignment Video Quality

Models PSNR↑ SSIM↑ LPIPS
×102

↓MSE
×102

↓MAE
×102

↓ CLIP Sim↑CLIP Sim (M)↑ FVID↓

S
ta
n
d
a
rd UniEdit 9.96 0.36 56.68 11.08 25.78 8.46 14.23 1.36

DitCtrl 9.30 0.33 57.42 12.73 27.45 8.52 15.59 0.57
ReVideo 15.52 0.49 27.68 3.49 11.14 9.34 20.01 0.42
Ours 22.63 0.91 7.65 1.02 2.90 8.67 20.20 0.18

L
o
n
g

UniEdit 10.37 0.30 54.61 10.25 24.89 10.85 15.42 1.00
DitCtrl 9.76 0.28 62.49 11.50 26.64 11.78 16.52 0.56
ReVideo 15.50 0.46 28.57 3.92 12.24 11.22 20.50 0.35
Ours 22.60 0.90 7.53 0.86 2.76 11.85 19.38 0.11

2024], DiT-based DiTCtrl [Cai et al. 2024], and end-to-end ReV-

ideo [Mou et al. 2024]. For both standard and long videos in VP-

Bench, VideoPainter achieves superior performance, even surpassing

the end-to-end ReVideo. This success can be attributed to its dual-

branch architecture, which ensures excellent background preser-

vation and foreground generation capabilities, maintaining high

�delity in non-edited regions while ensuring edited regions closely

align with editing instructions, complemented by inpainting region

ID resampling that maintains ID consistency in long video. The

qualitative comparison with previous video inpainting methods is

shown in Fig. 5. VideoPainter demonstrates superior performance

in preserving visual �delity and text-prompt consistency.

4.4 Human Evaluation

We conducted a user study on video inpainting and editing tasks

using standard-length video samples from the VPBench inpainting

and editing subsets. Thirty participants evaluated 50 randomly se-

lected cases based on background preservation, text alignment, and

video quality. As shown in Tab. 4, VideoPainter signi�cantly outper-

formed existing baselines, achieving higher preference rates across

all evaluation criteria in both tasks. Detailed experiment settings

and results are provided in the Appendix.
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Frame 0, 65, 130 (0-16.3s) Frame 230, 295 (28.8-36.9s) Frame 400, 465, 530 (50.0-66.3s)

Aerial view of st johns bridge in Portland, Oregon. The sunset casts its glow on the water, reflecting a golden light, while many houses... (66.3s)

C
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Object: A white ferry with red and blue accents cruises on a calm river… Landscape: A lighthouse stands on a cliff, overlooking the blue sea and …

S
o
u
rc
e

Fail to generate fully masked objects!

Fail to preserve background and generate foreground in one model!

Fail to perceive mask boundaries and result in significant artifacts!

Fig. 5. Comparison of previous inpainting methods and VideoPainter on standard and long video inpainting. More visualizations are in the demo video.
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Editing Instruction: Add a rainbow at the base of the waterfall. Total 240 frames (30.0s)

R
eV

id
e
o

Editing Instruction: Add a futuristic spaceship. Remove the man who is calling.

S
ou

rc
e

Poor Background Preservation and Poor Text Alignment!

Poor Background Preservation and Poor Text Alignment!

Too static video and unexpected artifacts!

Fig. 6. Comparison of previous editing methods and VideoPainter on standard and long video editing. More visualizations are in the demo video.

4.5 Ablation Analysis

We ablate on VideoPainter in Tab .5, including architecture, context

encoder size, control strategy, and inpainting region ID resampling.

Based on rows 1 and 5, the dual-branch VideoPainter signi�cantly

outperforms its single-branch counterpart by explicitly decoupling

background preservation from foreground generation, thereby re-

ducing model complexity and avoiding the trade-o� between com-

peting objectives in a single branch. Row 2 to row 6 of Tab. 5 demon-

strate the rationale behind our key design choices: 1 utilizing a

two-layer structure as an optimal balance between performance and

e�ciency for the context encoder, 2 implementing token-selective

feature fusion based on segmentation mask information to prevent

confusion from indistinguishable foreground-background tokens

in the backbone, and 3 adapting plug-and-play control to di�erent

backbones with comparable performance. Furthermore, rows 7 and

8 verify the importance of employing inpainting region ID resam-

pling for long videos, which maintains ID consistency by explicitly

resampling inpainted region tokens from previous clips.

4.6 Plug-and-Play Control Ability

Fig. 7 demonstrates the �exible plug-and-play control capabilities of

VideoPainter in base di�usion transformer selection. We showcase

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.
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Table 4. User Study: User preference ratios comparing

VideoPainter with video inpainting and editing baselines.

For each sample, participants selected only one model that produced the

best results for each criterion. We evaluate performance using the average

proportion of being selected as the best response. For video inpainting, we

compared VideoPainter against ProPainter [Zhou et al. 2023], COCOCO [Zi

et al. 2024], and Cog-Inp [Yang et al. 2024]. For video editing, we compared

VideoPainter against UniEdit [Bai et al. 2024], DitCtrl [Cai et al. 2024], and

ReVideo [Mou et al. 2024]. Detailed results are in the appendix.

Task
Video Inpainting Video Editing

Background Text Video Background Text Video
Preservation Alignment Quality Preservation Alignment Quality

Ours 74.2% 82.5% 87.4% 78.4% 76.1% 81.7%

Table 5. Ablation Studies on VPBench. Single-Branch:We add input

channels to adapt masked video and finetune the backbone. Layer Config-

uration (VideoPainter (*)): We vary the context encoder depth from one

to four layers. w/o Selective Token Integration (w/o Select):: We bypass

the token pre-selection step and integrate all context encoder tokens into

DiT. T2V Backbone (VideoPainter (T2V)):We replace the backbone from

image-to-video DiTs to text-to-video DiTs. w/o target region ID resam-

pling (w/o Resample):We ablate on the target region ID resampling. (L)

denotes evaluation on the long video subset. Red stands for the best result.

Metrics Masked Region Preservation Text Alignment Video Quality

Models PSNR↑ SSIM↑ LPIPS
×102

↓MSE
×102

↓MAE
×102

↓ CLIP Sim↑CLIP Sim (M)↑ FVID↓

Single-Branch 20.54 0.79 10.48 0.94 4.16 8.19 19.31 0.22

VideoPainter (1) 21.92 0.81 8.78 0.89 3.26 8.44 20.79 0.17
VideoPainter (4) 22.86 0.85 6.51 0.83 2.86 9.12 20.49 0.16

w/o Select 20.94 0.74 7.90 0.95 3.87 8.26 17.84 0.25

VideoPainter (T2V) 23.01 0.87 6.94 0.89 2.65 9.41 20.66 0.16

VideoPainter 23.32 0.89 6.85 0.82 2.62 8.66 21.49 0.15

w/o Resample (L) 21.79 0.84 8.65 0.81 3.10 11.35 20.68 0.19

VideoPainter (L) 22.19 0.85 9.14 0.71 2.92 11.52 21.54 0.17

V
id

e
o
P
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in
te

r 
(L

o
R
A
)

V
id

e
o
P
a
in
te

r

Fig. 7. Integrating VideoPainter to Gromit-style LoRA [Cseti 2024].

how VideoPainter can be seamlessly integrated with community-

developed Gromit-style LoRA. Despite the signi�cant domain gap

between anime-style data and our training dataset, VideoPainter’s

dual-branch architecture ensures its plug-and-play inpainting abili-

ties, enabling users to select the most appropriate base model for

speci�c inpainting requirements and expected results.

5 DISCUSSION

In this paper, we introduce VideoPainter, the �rst dual-branch video

inpainting framework with plug-and-play control capabilities. Our

approach features three key innovations: (1) a lightweight plug-and-

play context encoder compatible with any pre-trained video DiTs, (2)

an inpainting region ID resampling technique for maintaining long

video ID consistency, and (3) a scalable dataset pipeline that pro-

duced VPData and VPBench, containing over 390K video clips with

precise masks and dense captions. VideoPainter also shows promise

in video editing applications. Extensive experiments demonstrate

that VideoPainter achieves state-of-the-art performance across 8

metrics in video inpainting and editing, particularly in video quality,

mask region preservation, and text coherence.

However, VideoPainter still has limitations: (1) Generation quality

is limited by the base model, which may struggle with complex

physical and motion modeling, and (2) performance is suboptimal

with low-quality masks or misaligned video captions.
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Fig. 8. More video inpainting results.
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Fig. 9. More video editing results.
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