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Abstract
We introduce GATE, a framework which im-
proves conditional average treatment effects
(CATE) estimation in small-sample regimes. Our
framework augments datasets with synthetic coun-
terfactual outcomes using pre-trained generative
models. Doing so addresses the covariate shift
problem when inferring CATE from observational
data. By using pre-trained generative models,
GATE augments downstream CATE models with
knowledge beyond the training data. In particular,
we instantiate GATE with large language models
(LLMs), which we show to work exceptionally
well. LLMs utilize rich contextual information,
such as dataset metadata, to generate outcomes
grounded in real-world contexts. We demonstrate,
both theoretically and empirically, that restricting
augmentation to a carefully chosen subset of the
covariate space can achieve performance gains—
even with imperfect generated outcomes.

1. Introduction
Treatment Effects (CATE) inference is an active area of ma-
chine learning research [41, 63], with critical applications in
healthcare [28], economics [11], and marketing [32]. How-
ever, most modern machine learning methods, including
those developed for CATE estimation [63, 64], are designed
to leverage large datasets. while real-world problems often
lack this luxury. Data scarcity amplifies a second critical
challenge in CATE estimation: covariate shift. Non-random
treatment assignment shifts the covariate distributions of
treated individuals compared to the controlled individuals,
resulting in biased or high-variance treatment effect esti-
mates [40] particularly in small-sample regimes [4].

Existing CATE estimation methods typically entail new
model specifications (e.g. inverse-propensity weighting [1],
representation learning [39, 63], or both [8, 30]). Such meth-
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ods are ill-equipped to handle the challenges of data scarcity
and covariate shift as they suffer from high variance esti-
mates [19]. Instead, we propose a complementary and sim-
ple solution, to be used alongside a CATE learner: address-
ing covariate shift by manipulating the dataset rather than
the model. Augmenting the observational dataset with miss-
ing potential outcomes, sampled from a generative model,
not only increases the sample size but also directly mitigates
the covariate shift. While previous works have proposed
imputing pseudo-outcomes using a GAN model [71], or
local regression methods [6], we note a major difference:
our generative model can rely on information outside of the
observed dataset.

We propose GATE (Generative Augmentation for Treatment
Effect estimation), a flexible and simple data augmentation
framework that leverages pre-trained generative models, in
particular large language models (LLMs). The key advan-
tage of using LLMs as generative models lies in their rich
prior knowledge obtained via extensive pre-training. For
example, LLMs have access to metadata in observational
datasets, these include textual descriptions of covariates
or other contextual information. By utilizing these meta-
data, LLMs can generate potential outcomes grounded in
real-world contexts.

But can LLMs be trusted? There are valid concerns about
the robustness of employing LLMs in the causal setting,
particularly given their propensity for hallucinations. As
such, GATE restricts augmentation to the admissible set, a
carefully selected subset of the covariate space where we
expect the generative model’s predictions to be most reliable.
This is motivated by our theoretical analysis that shows a
trade-off between covariate shift reduction and the accuracy
of the generative model.

In our experiments, we demonstrate that GATE improves the
performance of a range of CATE models on three datasets,
while reducing the performance gap between learners.

2. GATE
2.1. Conditional average treatment effects (CATEs).

Let D(obs) = {(Xi, Ti, Yi)}ni=1 be an observational dataset
such that (Xi, Ti, Yi)

i.i.d.∼ P (X,T, Y ), where Yi ∈ Y is a
continuous or binary outcome, Xi ∈ X ⊂ Rd is a vector of
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Figure 1: Overview. GATE enhances CATE estimation in
the finite-sample regime through selective data augmenta-
tion. For a fixed treatment t, synthetic potential outcomes
for samples with Ti = 1− t are generated using P

(gen)
t,x and

scored via s(x, t) to decide their inclusion in D̃(obs)
t .

covariates and Ti ∈ {0, 1} is a binary treatment assignment.
For conciseness, we ignore the sample subscript i unless
explicitly needed. We assume that there are two possible
potential outcomes: Y (0) (no treatment) and Y (1) (under
treatment) [59]. From D(obs) we aim to estimate the CATE:

τ(x) = E[Y (1)− Y (0) |X = x] = µ1(x)− µ0(x), (1)

where µt(x) = E[Y (t) |X = x]. We make the stan-
dard [59] assumptions of overlap (0 < P(T = 1 |X =
x) < 1 ∀x ∈ X ), ignorability ((Y (1), Y (0)) ⊥ T |X),
and consistency (Y = Y (t) if T = t). We also define
Pt = P (X | T = t) and πt = P(T = t). Based on
eq. 1, we see that it is sufficient to estimate the Condi-
tional Average Potential Outcomes (CAPOs) µ0(x) and
µ1(x) fromD(obs)

0 andD(obs)
1 respectively, whereD(obs)

t =
{(Xi, Yi) ∈ D(obs) |Ti = t}. However, inferring CAPOs
from finite observational data D(obs)

t is challenging for two
main reasons [40]: large variance in small datasets, and
covariate shift, where Pt(X) is typically different from
P1−t(X).

2.2. Data augmentation via potential outcomes
Our key insight is that both model variability and co-
variate shift can be mitigated easily via data augmenta-
tion. Thus we propose GATE, a framework where we
generates the missing potential outcomes for individuals
in D(obs) using a generative model P

(gen)
t,x which al-

lows to sample Y (gen)(t) | X = x ∼ P
(gen)
t,x for all

x ∈ X . We use this model to create an additional sam-
ple (X, 1− T, Y (gen)(1−T )) for every (X,T, Y ) and add
it to D(obs) to create the augmented dataset D̃(obs) (see Fig-
ure 1). A perfect generator fixes the covariate shift problem
completely as the augmented dataset D̃(obs)

t would comprise
the same covariates as D̃(obs)

1−t . Furthermore, we would have
|D̃(obs)

t | = n ≫ πt · n, mitigating the variance problem.
However, realistically, the generator may be inaccurate in at

least some areas of the covariate space X . As such, we need
to balance the bias introduced by P

(gen)
t,x with the benefits

obtained by mitigating the covariate shift. To this end, it
might be better to generate the counterfactual potential out-
comes only in a select subset of the covariate space, which
we call the admissible set Xt. We formalize this intuition
theoretically via a generalization bound on the expected risk
of the CAPOs presented in Appendix C.

The main takeaway is that performance gains can be ob-
tained even in the face of potential inaccuracy of P (gen)

t,x ,

and manipulating Xt for a given generative model P (gen)
t,x

allows to navigate the trade-off between the bias introduced
by the inaccuracy of the generator, and the reduction of
variance and covariate shift achieved via data augmentation.
How to best construct Xt is discussed next.

3. Augmentation with LLMs
We describe an instantiation of GATE using LLMs, which
defines the admissible set Xt using the LLM’s uncertainty.

3.1. LLMs as potential outcome generators

While GATE can be used with generative models trained
exclusively on observational data D(obs)– such as local re-
gression models [6]) –the utility of such solutions is inher-
ently limited as such a setup ultimately utilises the same
information as the downstream CATE model. To overcome
this limitation, we propose to use GATE with foundation
models, such as large language models (LLMs) [13]. Due
to extensive pre-training LLMs encode rich domain knowl-
edge, outside the scope ofD(obs). They can leverage dataset
metadata such as covariate descriptions or the context of
data collection to align their outputs with the specific prob-
lem domain, integrating contextual relationships that may
not be present in D(obs) [57, 65]. Additionally, LLMs excel
at few-shot learning, allowing them to adapt to a given task
when conditioned on D(obs).

Prompting strategies. We guide the extraction of the prior
knowledge of the LLM by including in the prompts infor-
mation such as: natural language descriptions of covariates,
information about the data collection technique, the popula-
tion of the study or more general context of the dataset. We
also exploit the few-shot learning capabilities of the LLM
by conditioning the generation on a randomly chosen subset
of samples from the observational dataset D(obs) to exploit
the LLM’s in-context learning abilities.

Stochastic nature of the LLM. We sample K potential
outcomes from P

(gen)
t,x : Y (gen)

i,k (t) ∼ P
(gen)
t,xi

, k = 1, . . . ,K,
for every Xi that requires augmentation. To improve the
robustness of the generation, we then average these samples
and set Y (gen)

i (t) = Ȳ
(gen)
i,k (t) (see Figure 1).
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3.2. Choosing the admissible set Xt

Constructing Xt can be guided by excluding regions of the
covariate spaceX where the distribution P (gen)

t,x significantly
deviates from the true distribution Pt,x. However, assess-
ing the statistical distance between these two distributions
is challenging as the potential outcomes Y (t) are not all
observed. As such, we propose a scoring function s(x, t),
which is chosen as a proxy for the fidelity of P (gen)

t,x at a
given point x ∈ X .

Choosing the scoring function s for LLMs. For stochastic
models such as LLMs, we propose to rely on the variance
in the generated outcomes to define the admissible set, by
setting s(x, t) := Var

Y (gen)(t)∼P
(gen)
t,x

(Y (gen)(t) |X = x)

(approximated by the empirical variance from K outcomes
sampled per (x, t)). While this scoring function might not
always be optimal, it reflects the heuristic that the accu-
racy of the P

(gen)
t,x might be lower in the areas where the

generative model is less certain about its predictions. In
the context of LLMs, it has been shown that uncertainty
measures such as variance can be used to discriminate be-
tween factually correct and incorrect responses [26, 37],
as well as predict the quality of a response [47] (see Ap-
pendix B.3 for more details). Given a fixed parameter
α ∈ [0, 1], we define an adaptive threshold λ(α,D(obs)) =
Quantileα({s(Xi, Ti) | i ∈ [n]}), corresponding to a
percentile-based threshold to easily control the proportion
of generated potential outcomes across datasets. We finally
define the admissible set Xt as

Xt = {Xi | i ∈ [n], s(Xi, Ti) < λ(α,D(obs))}, (2)

comprising the samples for which the variance in the gener-
ated potential outcomes is below the α-quantile. We provide
a detailed discussion on this definition in Appendix B.3.

4. Numerical Experiments
Data. Evaluating CATE models using observational data
is challenging due to the lack of ground-truth CATE val-
ues. Standard benchmarks like IHDP [33] or News [39]
address this by designing artificial potential outcome func-
tions. However, since we aim to compare generative models
trained onD(obs) with those trained on external (real-world)
datasets, the outcome’s relationship with treatment and co-
variates must be reality-grounded. Consequently, we utilize
the following datasets: Lalonde CPS1 [44]; STAR Project
[3]; and Hillstrom [34]. More details are in Appendix D.

CATE Models. We compare the performance of down-
stream CATE models when trained on the original dataset
D(obs) vs. when trained on the augmented D̃(obs). We use
the S-, T-, X-, R-, IPW- and DR-learner [19, 43]. We also
consider in Appendix F.1 the CFR-Wass, CFR-MMD al-
gorithms [63], TARNet [63], DragonNet [64] and BART
[9].

Instantiating GATE. We use GPT-3.5 Turbo [2] when in-
stantiating GATE with LLMs. In Section 4.2, we compare
the performance GATE with an LLM against a diverse set of
models trained onD(obs): mean model, 1-nearest neighbour
(1-NN), random forest (RF), GAN (following the approach
of GANITE [71]). We also consider TabPFN v2 [35], a
foundation model for tabular data. Detailed descriptions of
the experiments can be found in Appendix D, anonymised
code to reproduce the experiments can be found here.

4.1. Does GATE improve CATE estimation?

Setup. Each CATE model is trained on both the original
dataset and the GATE-augmented dataset, and we compare
the PEHE in each case. (additional parameters such as ar-
chitecture or hyperparameters remain fixed across settings).

Results. Table 1 shows that GATE consistently improves
performance across all the considered CATE models, with
gains across the average PEHE [33] and its standard de-
viation. Furthermore, GATE decreases the performance
gap across CATE learners, making it a model agnostic data
pre-processing step that can aid model selection, usable
with both one-step and two-step learners. Results for other
learners are in Appendix F.1.

4.2. How do LLMs compare to other generative models?
Setup. We train each baseline P

(gen)
t,x on D(obs)

t . Perfor-
mance comparisons are conducted for the DR learner across
three datasets of varying sizes, randomly sampled with pro-
portions ρ ∈ {0.1, 0.5, 1.0} from the original observational
datasets. Each baseline uses the same admissible sets Xt as
the LLM for a fair comparison. Results with Xt = X can
be found in Appendix F.6.

Results. In Figure 2, we present the average
√
ϵPEHE ob-

tained across 3 seeds when instantiating GATE with each
of the generative models. We note that multiple models can
offer performance improvements to the downstream CATE
model, compared to the no-augmentation baseline. Inter-
estingly, the LLM consistently outperforms the baselines
trained on D(obs) only, yielding lower average PEHE. As
predicted, this performance gap is most evident in small
sample regimes (ρ = 0.1), where LLM-derived prior knowl-
edge proves most beneficial. Remarkably, comparing the
PEHE across all three dataset sizes demonstrates that using
GATE with the LLM allows to obtain performance levels
which are close to optimal when using only a fraction of the
original dataset. The performance gap between LLMs and
other generative models is most pronounced in the STAR
dataset, which exhibits high treatment effect heterogeneity.
Conversely, this gap is minimal in the Hillstrom dataset,
where outcome heterogeneity is low (cf. Appendix F.6).
Low heterogeneity explains the strong performance of the
mean imputation model, as the generated constant potential
outcomes effectively regularize the downstream model.

3
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Table 1: GATE improves the performance of different CATE learners across the datasets without data augmentation (✗),
and with data augmentation (✓). Average

√
ϵPEHE and 1std is reported for 3 seeds (↓ is better)

Learner Lalonde CPS1D STAR Hillstrom
✗ ✓ ✗ ✓ ✗ ✓

S-learner 1.09± 0.07 0.95± 0.01 0.78± 0.10 0.56± 0.02 0.32± 0.03 0.25± 0.01
T-learner 1.28± 0.03 0.96± 0.01 0.81± 0.08 0.50± 0.03 0.4± 0.01 0.24± 0.01
X-learner 1.43± 0.10 0.95± 0.01 0.93± 0.05 0.49± 0.02 0.29± 0.01 0.24± 0.01
R-learner. 1.35± 0.42 0.95± 0.00 6.12± 2.57 0.47± 0.01 0.63± 0.21 0.26± 0.02

IPW-learner. 1.12± 0.03 0.95± 0.01 0.57± 0.06 0.47± 0.01 0.29± 0.01 0.25± 0.00
DR-learner 1.29± 0.02 0.95± 0.01 0.60± 0.11 0.48± 0.02 0.41± 0.02 0.25± 0.01
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No aug. RF GAN 1NN Mean TabPFN v2 LLM

Figure 2: Comparison of generative models in GATE. The LLM outperforms the models trained onD(obs) across different
proportions ρ. The error bars mark 1std, computed across 3 seeds.

4.3. Where does the benefit of using LLMs come from?
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No context
With context
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Figure 3: Left: Contextual information helps to achieve
good performance in low-samples. Right: In-context learn-
ing. For both figures, the error bars mark 1std (3 seeds).

Setup. We quantify the influence of prior knowledge by
performing an ablation where we remove all the contextual
information in the prompt given to the LLM and give the
features generic names (e.g. Feature 1). Hence effectively
only the in-context samples are provided. We compare the
performance of this context-deprived LLM with an LLM
which is informed about the context of the dataset and fea-
ture names (see Appendix E for exact prompts). We do this
for a varying number of samples between {15, 30, 100}. We
perform both experiments on the STAR dataset, with the
DR-learner as the learner across varying proportions, ρ.

Results. Figure 3 Left shows substantial performance gains

when using STAR’s meta-data to elicit the prior knowledge
of the LLM, particularly when ρ is small. As ρ increases, the
performance gap between context-informed LLM and the
no-augmentation-baseline naturally becomes smaller. Fur-
thermore, Figure 3 Right demonstrates that including more
in-context samples in the prompt improves the downstream
performance. Results for other datasets are in Appendix F.7.

4.4. Additional results.
In the interest of space, we relegated additional results in
Appendix F, including the impact of augmentation on co-
variate shift reduction, a comparison with other selector
functions and per-dataset results.

5. Discussion
We have presented GATE, a framework which improves
CATE estimation in small-sample regimes using pre-trained
generative models, in particular LLMs. We demonstrate
that using generated potential outcomes is an effective way
to inject prior knowledge beyond the observation data. Al-
though in this work we have focused on binary treatment
assignments, our framework could naturally be extended
to settings with multiple, continuous or even time-varying
treatments. Further work could also be dedicated to devis-
ing statistical methods to obtain confidence intervals for
the CATE estimate, borrowing ideas from the supervised
learning setting [7]. Finally new methods for the assessment
of LLMs generations will naturaly benefit GATE.
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A. Related Works
Methods for CATE estimation. Machine learning methods for CATE estimation can be broadly divided into two
categories: model-specific and model-agnostic methods. Method-specific approaches rely on adjusting specific machine
learning methods to the treatment effect setting. This gives rise to solutions based on neural networks [18, 39, 63, 64],
Gaussian processes [5] or random forests and regression trees [9, 29, 33, 67].

In contrast, model-agnostic methods (so-called ’meta-learners’ [19, 43]) are general learning strategies which can be
instantiated with any base learner (e.g., neural network, random forest). Within the model-agnostic strategies we can
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distinguish the one-step learners, which directly estimate the potential outcome surfaces, µ̂0 and µ̂1, and then obtain the
CATE as: τ̂ = µ̂1 − µ̂0. The alternative two-step learners [19, 42, 54] implicitly rely on ideas from data imputation. In their
first step, two-step learners obtain pseudo outcomes Ỹϕ, which are “proximal” target treatment effect values, composed from
nuisance parameters ϕ = (π, µ0, µ1) estimated from the given observational dataset D(obs) (or a subset of it). In the second
step, the final CATE model is obtained by regressing the pseudo-outcomes Ỹϕ on the covariates X . The pseudo-outcomes
can be obtained using strategies relying on propensity weighting (IPW-learner [36]), regression-adjustment (X-learner [43])
or both of these combined (DR-learner [41]). We note that our framework GATE is a strategy which is complementary to
these standard two-step learners.

How is GATE different from a standard two-step learner?

1. Admissible set: Two-step learners require obtaining the missing potential outcomes for all individuals in the observa-
tional dataset. As we demonstrate, this might introduce excessive bias if the generative model P (gen)

t,x is inaccurate.
As a solution to this problem, in our framework we introduce the concept of an admissible set Xt, which allows to
navigate the trade-off between the reduction of the covariate shift and the introduced bias. In the case where Xt ̸= X ,
GATE does not allow to explicitly obtain treatment effect proxies for all individuals in the dataset, making it different
from a standard two-step learner.

2. External information: A standard two-step learning strategy does not allow to utilise external sources of information
to inform the generation of the pseudo-outcomes, as the nuisance parameters ϕ estimated in the first step are fitted
using the observational data D(obs) only. In contrast, a key defining characteristic of GATE is that it allows to infuse
the downstream CATE estimator with external knowledge, by training the generative model P (gen)

t,x on datasets different
from D(obs).

3. Complementary inductive biases: Considering our method as a pre-processing data augmentation method allows to
aggregate the inductive biases imposed by the generative model P (gen)

t,x and the downstream CATE learner used on the
augmented dataset, τ̂ . Particularly in small sample regimes, when the observational dataset D(obs) does not contain
sufficient information to confidently estimate the CATE function, combining the inductive biases imposed by different
methods might be particularly beneficial. This is why in our experiments (Section 4) we fit two-step learners on top of
the GATE-augmented dataset, demonstrating performance improvements.

As such, GATE can be used as the first step in the meta-learning pipeline, without requiring any change to the standard
meta-learners.

Data augmentation for CATE estimation. Other works have proposed alternative model-specific instantiation of the
two-step learning strategy, relying for example on obtaining the pseudo-outcome using a GAN model [71], or local
regression methods [6]. However, these imputation approaches are constrained by the amount of information present in
the observational datasets. As a result, they are particularly vulnerable to scenarios with covariate shift, where there are
significant differences between the distributions of the control and treated groups. Furthermore, these imputation methods
(GAN and local regression) require large amounts of data to be accurate, which contrasts the small-sample regime tackled
in this work. On the other hand, GATE provides a principled way of leveraging models trained on external data sources,
such as the LLMs, and thus is able to take advantage of the dataset metadata to set the context, leading to helpful data
augmentation as shown in Section 4.1. [52] uses imputation for CATE estimation, however it relies on the differentiability
of the outcome functions with respect to the continuous treatment t, and thus is not directly applicable to our setting. An
orthogonal strand of litterature [22, 56] uses generative models to validate, evaluate, or assess the performance of various
causal inference methods, whereas GATE ’s objective is to improve the performance of CATE learners.

LLMs as sources of prior knowledge for downstream tasks. As large language models (LLMs) have increased in
parameter count and training set size, it has become clear that they are able to act as knowledge bases, showing great
performance across a variety of knowledge-retrieval tasks [15, 31, 46, 55]. As such, LLMs have been proposed as tools for
extracting prior knowledge about the world, which can be used to ground standard data-driven ML models in real-world
contexts and encourage their outputs to be consistent with common-sense reasoning based on the meta-data [16]. Relying on
the inductive biases generated by the LLMs from the task-specific metadata has been demonstrated to improve performance
on tasks as diverse as reinforcement learning [16, 25], tabular learning [62, 73] as well as causal discovery [10, 16, 38, 66].

10



550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Improving Treatment Effect Estimation with LLM-Based Data Augmentation

Furthermore, recent studies demonstrate that LLMs are in principle capable of gaining knowledge about the underlying
causal structure of real-world data generating processes, despite not being explicitly trained to reason ‘causally’ [10, 58, 72?
]. This finding is further supported by empirical research, demonstrating LLMs potential for answering causal queries
[49, 69, 72]. This further motivates the use of LLMs as sources of prior knowledge and relevant inductive biases in causal
inference tasks in particular.

Comparison with domain adaption. Our bound in ?? is related to a series of works studying generalisation theory for
unsupervised domain adaptation [12, 48, 51], but differs in significant ways. These bounds involve the risk in the target
domain (D = 1) using the observed risk in the source domain (D = 0) and the distance between the domains:

RD=1(f) ≤ RD=0(f) + dH(P (X|D = 1), P (X|D = 0)) + λH,

whereH is some function class and λH is a constant. Unique in our bound is the use of the distribution Q to split dH into
the terms IPML(Q,P1−t) and EX∼Q[IPMLX (P (Y (t)|X = x), P (Y (gen)(t)|X = x))] which correspond respectively
to the covariate shift and the bias introduced by the generator. Through this, our bound offers the following novel insights
which we validate experimentally:

1. Insight: Even when the generative model P (gen)
t,x is imperfect, using it to target covariate shift can improve performance.

→ Experiment 6.5.2: We explicitly compare the bias introduced by the generative model P (gen)
t,x against the reduction

of the covariate shift obtained by data augmentation, showing that these two effects can be balanced.
→ Experiment 6.4: We verify this by comparing the performance with and without GATE across three datasets and
multiple CATE models.

2. Insight: Tuning the distribution Q via the admissible set Xt allows to balance the trade-off between the bias introduced
by the generator, and the reduction of variance and covariate shift achieved via data augmentation.

→ Experiment 6.5.2: We verify that modulating Xt allows to navigate this trade-off.

3. Insight: Excluding from the admissible set regions of the covariate space where the generative model is particularly
”incorrect” can improve performance.

→ Experiment 6.5.2: We propose to identify such regions using a proxy measure: the uncertainty in the generated
outcomes. We verify that as we increase the allowed level of uncertainty of P (gen)

t,x , the bias introduced by data
augmentation increases, while the covariate shift decreases.

B. Details on GATE
B.1. Usage with CATE learners

GATE is a data augmentation method, which means that it is agnostic to the choice of the downstream CATE learner
[18, 43]. As such, it can be used both with one-step learners and two-step learners. We illustrate in Algorithm 1 how to use
it in practice.

One-step learners: Examples of one-step learners include the T-learner and the S-learner. For the T-learner, one can estimate

separately each µt using the dataset D̃(obs)
t . For the S-learner, we define the concatenation D̃(obs) = (D̃(obs)

0 , D̃(obs)
1 ) which

shall be used to estimate µ(x, t), the average PO for treatment t and covariate x.

Two-step learners: Two-step learners require the estimation of the nuisance parameters µ0 and µ1 in their first step, which
we propose to estimate on D̃(obs). In addition, some two-step learners (e.g. DR learner) require an estimation of the
propensity score π(x). Such estimator can be obtained by considering either the original dataset D(obs) or the augmented
dataset D̃(obs) (in our empirical experiments, we used the latter option). The second step of these learners does not require
any change as the nuisance estimators are used as plug-in. As such, the pseudo-outcomes should be obtained for the
observational dataset D(obs).

B.2. The question of model selection and hyperparameter tuning

The fundamental problem of causal inference makes the standard approaches to model selection and hyperparameter tuning
not applicable in CATE estimation. Because the ground truth CATE value is unobserved, one cannot simply choose a model
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Improving Treatment Effect Estimation with LLM-Based Data Augmentation

Algorithm 1 Using GATE with CATE meta-learners.

Input: observational dataset D(obs) = {(Xi, Ti, Yi)}ni=1, pretrained generative model P (gen)
t,x , admissible sets X0, X1

Output: CATE estimation model τ̂(x)
1: for t ∈ {0, 1} do
2: D̃(obs)

t ← D(obs)
t

3: for i = 1 to n do
4: if Ti = 1− t and Xi ∈ Xt then
5: sample Y (gen) ∼ P

(gen)
t,Xi

6: D̃(obs)
t ← D̃(obs)

t ∪ {(Xi, Y
(gen))}

7: end if
8: end for
9: end for

10: T-learner: For t = 0, 1, fit µ̂t(x) on D̃(obs)
t , then τ̂(x) = µ̂1(x)− µ̂0(x);

11: S-learner: Fit µ̂(x, t) on (D̃(obs)
0 , D̃(obs)

1 ), then τ̂(x) = µ̂(x, 1)− µ̂(x, 0);
12: Two-step learners: For t = 0, 1, fit µ̂t(x) on D̃(obs)

t and fit π̂(x) on D̃(obs); perform the second step on D(obs) or on a
held-out observational dataset.

which performs best on a held-out validation set. Instead, model selection for CATE estimation has to rely on heuristics,
assumptions on the data generating process and general prior knowledge of the problem at hand [20]. Model selection
procedures for causal inference models remain an active area of research [20, 45, 50, 60, 61].

The challenges of model selection in causal inference also apply to GATE. Deciding which of the available generative
models should be used to augment the observational dataset at hand is non-trivial, and neither is the question of choosing the
admissible set Xt (e.g. by specifying the value of α in our proposed instantiation) for a given generative model.

Choosing the generative model. We provide the following insights which might guide the selection of the generative
model within the GATE framework:

1. LLMs vs other models. The performance gap between the LLM and the models trained on D(obs) seems to depend on
the size of the dataset (with LLMs providing particular performance improvements in smaller datasets, cf. Figure 2),
as well as on the variability in the (standardized) potential outcomes (the Hillstrom dataset – where the performance
gap is particularly small – has V ar(Y (1)) = 0.04 and V ar(Y (0)) = 0.02, while in the STAR dataset – where the
performance gap is particularly large – V ar(Y (1)) = 1.05 and V ar(Y (0)) = 0.93). In scenarios with low outcome
heterogeneity and/or large sample sizes, a simple model such as mean imputation can already perform well.

2. Auditing the outcomes generated with the LLM: Contrasting other generative models, the use of LLMs with
GATE permits to make the generation process more transparent. Beyond producing numerical values, LLMs can also
detail verbal explanations of their generations. Indeed, alternative prompting strategies can be employed to elicit explicit
causal reasoning chains underpinning outcome generation. This capability enables human-in-the-loop applications of
GATE, where domain experts can evaluate the generated data by examining these reasoning traces against their domain
knowledge. As such, we view the use prompting techniques for explicit reasoning, such as chain-of-thought [68] or
tree of thought[70], as a promising direction for future work.

Tuning the hyperparameter α. With these challenges in mind, we propose three complementary strategies which allow
to guide the selection of the value of α to define the admissible set Xt within the GATE framework:

1. As we explain above, relying on the fixed-threshold definition of the admissible set (rather than the percentile-based
definition of the threshold) can allow to guide the selection of α using domain knowledge.

2. We further propose to guide the selection of α by measuring the covariate shift between the sets D̃(obs)
0 and D̃(obs)

1 ,
using for example the sliced Wasserstein distance (an example of such an analysis can be found in our Figure 5, right).
Then, we propose to choose the minimal value of α which allows to achieve significant reduction in a covariate shift

12
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Improving Treatment Effect Estimation with LLM-Based Data Augmentation

(which might correspond to the ‘elbow’ in the graph). While such an ‘elbow’ might not always exist, this criterion
provides additional guidelines in certain circumstances.

3. Finally, the choice of α can be further guided by standard methods for CATE model selection, particularly those
based on comparing the downstream CATE models using a pseudo-outcome surrogate criteria evaluated on a held-out
validation set (see [20] for an overview). In particular, in view of strong covariate shift and small sample regime, we
propose to rely on criteria which do not rely on estimating the propensity score, as these might lead to high variance in
such cases.

Nevertheless, while finding the optimal value of α is non-trivial, our experiments showed the following: (1) Fixing α = 0.5
consistently led to improved dowstream PEHE across the 3 datasets and the 11 CATE learners (cf. Table 1) (2) The strong
effect of the reduction in covariate shift obtained with data augmentation (shown in Figure 5) reduces the sensitivity with
respect to α. Indeed, Figure 5 (middle) highlights that any value α > 0 leads to performance gains compared to α = 0.

B.3. Using variance in the generated outcomes to select the admissible set

Sources of variance. We acknowledge that the variance in the outcomes generated by the LLM, which we use as a proxy
to evaluate the LLM’s uncertainty and hence guide the selection of the admissible set Xt, might capture different types of
uncertainty. Firstly, it might reflect the aleatoric uncertainty, which refers to the irreducible uncertainty of the outcome
distributions. Secondly, it also captures the epistemic uncertainty, which accounts for both the insufficiency of observational
data in some regions of the covariate space and insufficient semantic knowledge of the LLM. Our variance-based selection
mechanism relies on the implicit assumption that the aleatoric uncertainty does not vary significantly across the covariate
space X . This implies that choosing the admissible set Xt based on the variance allows to capture the differences in the
epistemic uncertainty of the LLM across X , where higher epistemic uncertainty may indicate to a higher inaccuracy in the
generated outcomes.

Definition of the admissible sets. We define the admissible sets X0 and X1 in Section 3.2. In our instantiation, these sets
are kept equal. The rationale for this choice is that only samples with relatively low uncertainty should be kept. One can
imagine the situation where the generative model performs significantly worse for one of the groups (i.e. treated or control)
compared to the other one. If the quantile value λ(α,D(obs)) was computed separately for the treated and control groups,
then the same ratio of samples would be kept in the augmented dataset in the two groups, despite the disparities across these
groups. This justifies the computation of the quantile value using all the covariates, as explicited in eq. 2.

Fixed-value threshold for the scoring function. In the instantiation of GATE that we have used in the experiments,
our main focus was to control the number of generated potential outcomes, and as a result we have decided to use a
percentile-based definition of the scoring function s(x, t) (where choosing α = 0.5 guarantees that 50% of missing potential
outcomes are generated, thus allowing to fix the proportion of generated outcomes across datasets).

However, in real-world applications a more optimal strategy might be to let α be a fixed variance threshold instead, the
value of which can be guided by domain-knowledge or exploratory analysis of the data. This would more explicitly
guardrail against the inclusion in the augmented dataset of particularly ’poor’ generated outcomes. Then, we would define
Xt = {Xi | i ∈ [n], s(Xi, Ti) < αt}. We note that this in case, the proportion of generated outcomes depends on the
properties of the generative model. In particular, if the model is particularly bad, no potential outcomes are generated and
our method recovers the baseline performance.

C. Theoretical Results
We focus on augmenting the dataset D(obs)

t for each t ∈ {0, 1}, used to estimate µt. As our goal is estimating CATE using
each µt, we prefer augmentations that are highly informed of the covariate space X . However, as P (gen)

t,x is a pre-trained

model, we cannot assume that P (gen)
t,x is properly adjusted for bias. To avoid introducing too much bias, we would like to use

P
(gen)
t,x only in a selected subset of the covariate space, which we call the admissible set Xt ⊆ X . We theoretically analyze

how the choice of Xt affects the trade-off between accuracy and bias. In what follows, we fix t ∈ {0, 1}.
To formalise the induced changes, we introduce the variables (X ′, Y ′(t), Z), such that the joint distribution over
(X,T, Y,X ′, Y ′, Z, Y (gen)(0), Y (gen)(1)) is as follows: Z ∼ Q (where Q is a distribution supported on Xt) is inde-
pendent of the other random variables, X ′ = 1(T = t)X + 1(T = 1− t)Z and Y ′ = 1(T = t)Y +1(T = 1− t)Y (gen)(t)

13
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Improving Treatment Effect Estimation with LLM-Based Data Augmentation

(where Y (gen)(t) ∼ P
(gen)
t,z and 1(T = t)Y = 1(T = t)Y (t) by consistency). Hence, X ′ = X when T = t, i.e.

X ′ ∼ Pt(X) when T = t (factual distribution), and X ′ ∼ Q when T = 1− t.

Having formalized a data augmentation process with the distribution Q, we now highlight the trade-off associated with
choosing a good Xt (and a good Q supported on this Xt) for CAPO estimation. We do so by deriving a generalization bound
on the expected risk R(ft) = EX,Y (t) [L(Y (t), ft(X))] for a hypothesis ft and a loss function L, building on the bound
presented in [40] to account for the effect of using the augmented dataset D̃(obs)

t = {(X ′
i, Y

′
i (t))}ñt

i=1. Let ft ∈ H denote
the hypothesis used to make the predictions for Y (t), whereH ⊂ {h : X → Y} is a hypothesis class. Let L : Y ×Y → R+

be a loss function (e.g. the squared loss function L(y, y′) = (y − y′)2). We define the following quantities:

• Pointwise loss: ℓft(x) := EY (t)|X=x [L(Y (t), ft(x))],

• Marginal risk: R(ft) := EX [ℓft(X)] = EY (t),X [L(Y (t), ft(X))],

• Marginal risk for the augmented distribution: R̃(ft) := EX′ [ℓft(X
′)] = EY ′(t),X′ [L(Y ′(t), ft(X

′))],

• Factual risk: Rt(ft) := EX|T=t [ℓft(X)] = EY (t),X|T=t [L(Y (t), ft(X))],

• Counterfactual risk: R1−t(ft) := EX|T=1−t [ℓft(X)] = EY (t),X|T=1−t [L(Y (t), ft(X))],

• Empirical risk on the augmented distribution: R̃(emp)(ft) :=
1
ñt

∑ñt

i=1 L(Y
′
i (t), ft(X

′
i)).

In addition to these notations related to the risk, we define the class of functions L ⊂ {x → R+} comprising functions
g : x 7→ EY (t)|X=x [L(Y (t), ft(x))|X = x] for all ft ∈ H. Furthermore, for any x ∈ X , we define a class of functions
Lx ⊂ {Y → R+} comprising the functions lxft : y 7→ L(y, ft(x)) ∈ Lx for all ft ∈ H. Finally, for a class of functions
S and two distributions P and P ′, we write IPMS (P, P ′) = supf∈S |EV∼P [f(V )] − EW∼P ′ [f(W )]| for the Integral
Probability Metric between P and P ′ defined for the class S .

We first recall the statement of the generalization bound:

Theorem C.1. Generalization bound Assume access to an augmented dataset {(X ′
i, Y

′
i (t))}ñt

i=1
i.i.d.∼ P ′(X ′, Y ′(t)) and

assume that 0 < EX′,Y ′∼P ′
[
L2(Y ′, ft(X

′)
]
< +∞. Then with probability at least 1− δ,

R(ft) ≤ R̃(emp)(ft) + (1− πt)EX∼Q

[
IPMLX

(
P (Y (t) | X), P (gen)(Y (gen)(t) | X)

)]
(3)

+ (1− πt)IPML (Q,P1−t) + VP ′
CHñt,δ

ñ
3/8
t

, (4)

where VP ′ = max
(√

EX′,Y ′(t)∼P ′ [L2(Y ′(t), ft(X ′))],
√
EX′,Y ′∼P̂ ′ [L2(Y ′(t), ft(X ′))]

)
, with P̂ ′ denoting the empiri-

cal distribution for P ′, and CHñt,δ
= 25/4(

d log
2eñt

d +log 8
δ

ñt
)

3
8 , with d the pseudo-dimension of {(x, y) 7→ L(y, ft(x)) | ft ∈

H}.

Proof. To prove Theorem C.1 for a given hypothesis ft, our goal lies in obtaining a finite-sample generalisation bound of
the marginal risk R(ft). We further note that:

R(ft) = πtRt(ft) + (1− πt)R1−t(ft).

In this decomposition, Rt(ft) is the factual risk which is identifiable from the observational data under the ignorability
assumption, and as such can be estimated using the empirical risk. However, R1−t(ft) is not identifiable from the
observational data. Thus, bounding the marginal risk is possible only after bounding the counterfactual risk, which requires
accounting for the covariate shift and the variance in the outcomes, as we demonstrate below.

Lemma C.2. Let ft ∈ H. The following inequality holds:

R(ft)− R̃(ft) ≤ (1− πt)
(

IPML (P1−t, Q) + EX∼Q

[
IPMLX

(
P (Y (t)|X), P (gen)(Y (gen)(t)|X)

)])
(5)
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Proof. As stated earlier, R(ft) = πtRt(ft) + (1− πt)R1−t(ft). We obtain a similar decomposition for R̃(ft):

R̃(ft) = EX′,Y ′(t) [L(Y
′(t), ft(X

′))] (6)
= πtEX′,Y ′(t)|A=t [L(Y

′, ft(X
′)] + (1− πt)EX′,Y ′(t)|A=1−t [L(Y

′(t), ft(X
′)] (7)

= πtEX,Y (t)|T=t [L(Y, ft(X)] + (1− πt)EX′,Y ′(t)|A=1−t [L(Y
′(t), ft(X

′)] (8)

= πtRt(ft) + (1− πt)R̃1−t(ft) (9)

where line (10) follows by definition of (A,X ′, Y ′(t)). Hence, R(ft) − R̃(ft) = (1 − πt)
(
R1−t(ft)− R̃1−t(ft)

)
.

We can then bound R1−t(ft)− R̃1−t(ft) as follows:

R1−t(ft)− R̃1−t(ft) (10)
= EX,Y (t)|T=1−t [L(Y (t), ft(X))]− EX′,Y ′|A=1−t [L(Y

′(t), ft(X
′))] (11)

= EX|T=1−t

[
EY (t)|X [L(Y (t), ft(X))|X]

]
− EX′|A=1−t

[
EY ′(t)|X′,A=1−t [L(Y

′(t), ft(X
′))|X ′]

]
(12)

= EX∼P1−t

[
EY (t)|X [L(Y (t), ft(X))|X]

]
− EX′∼Q

[
EY ′(t)|X′,A=1−t [L(Y

′(t), ft(X
′) | X ′]

]
(13)

= EX∼P1−t

[
EY (t)|X [L(Y (t), ft(X))|X]

]
− EX∼Q

[
EY (t)|X [L(Y (t), ft(X)) | X]

]
(14)

+ EX∼Q

[
EY (t)|X [L(Y (t), ft(X))|X]

]
− EX∼Q

[
EY (gen)(t)|X

[
L(Y (gen)(t), ft(X)) | X

]]
(15)

≤ sup
g∈L

∣∣EX∼P1−t [g(X)]− EX∼Q [g(X)]
∣∣ (16)

+ EX∼Q

[
sup

ℓX∈LX

∣∣∣EY (t)|X
[
ℓX(Y (t))

]
− EY (gen)(t)|X

[
ℓX(Y (gen)(t))

]∣∣∣] (17)

= IPML (P1−t, Q) + EX∼Q

[
IPMLX

(
P (Y (t)|X), P (gen)(Y (gen)(t)|X)

)]
(18)

where in line (13) we used the fact that EX′∼Q

[
EY ′(t)|X′,A=1−t [L(Y

′(t), ft(X
′) | X ′]

]
=

EX∼Q

[
EY (gen)(t)|X

[
L(Y (gen)(t), ft(X)) | X

]]
(by definition of Y ′(t)).

Multiplying the sum of the IPM terms by the factor 1− πt then yields the result.

Having bounded the difference in the marginal risk between the original P and the augmented distribution P ′, we now
introduce the empirical risk to bound the marginal risk for P ′.

Lemma C.3. For any ft ∈ H, assume that 0 < EX′,Y ′∼P ′
[
L2(Y ′, ft(X

′)
]
< +∞. Let 0 < δ < 1, and consider an

augmented dataset {(X ′
i, Y

′
i (t))}ñt

i=1
i.i.d.∼ P ′(X ′, Y ′(t)). The following bound then holds with probability at least 1− δ:

R̃(ft) ≤ R̃(emp)(ft) + VP ′
CHñt,δ

ñ
3/8
t

(19)

where VP ′ = max
(√

EX′,Y ′(t)∼P ′ [L2(Y ′(t), ft(X ′))],
√
EX′,Y ′∼P̂ ′ [L2(Y ′(t), ft(X ′))]

)
, with P̂ ′ denoting the empiri-

cal distribution for P ′, and CHñt,δ
= 25/4(

d log
2eñt

d +log 8
δ

ñt
)

3
8 , with d the pseudo-dimension of {(x, y) 7→ L(y, ft(x)) | ft ∈

H}.

Proof. This result directly follows from Corollary 2 in the supplementary material of [17].

By summing the bounds involved in the Theorem C.2 and Theorem C.3, we then obtain Theorem C.1.
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Interpretation. Although Theorem C.1 does not offer a guarantee on downstream performance (as the noise of the generator
is unknown), it illustrates the different mechanisms which can affect the generalization error involved in using generative
models for data augmentation.

Covariate shift and Variance: IPML (Q,P1−t) measures the distance between the distribution Q of the covariates for
which the generative model is used and the counterfactual distribution P1−t. We note that Theorem C.1 considers a simple
setup where a fixed proportion πt = P(T = t) of the augmented dataset consists of factual samples (in practice, this may
vary due to selection). This allows to show that when the generator is perfect, it is optimal to have Q = P1−t. The term
VP ′CH

ñt,δ/ñ
3/8
t quantifies the variance stemming from the finite-sample regime, emphasizing that potential outcome generation

is particularly impacted in the small-sample regime. Both terms can be reduced by performing data augmentation for all the
samples with treatment T = 1− t.

Noise of the generator: While the minimization of the above two terms suggests that we should augment the observational
dataset with as many generated samples as possible, this ignores the impact of the generator’s inaccuracy. This inaccuracy
is highlighted by the term involving IPMLX which quantifies how close the distribution Y (gen)(t) is to the ground-truth
distribution of the potential outcome Y (t), conditioned on the covariates X .

D. Experimental details
D.1. Reproducibility

All our code can be found in the following (anonymised) code-repository: https://anonymous.4open.science/
r/GATE-8849. We note all the hyperparameters of models used in Appendix B and used prompts in Appendix E.

D.2. License for existing assets

The following existing assets were used to produce the experimental results:

• Hillstrom dataset [34]: available from https://blog.minethatdata.com/2008/03/
minethatdata-e-mail-analytics-and-data.html

• STAR Project dataset [3]: CC0 1.0 License

• Lalonde dataset [23, 24, 44]: CC BY-NC 2.0 DEED License

• RealCause python library [53]: MIT License

• CATENets python library [18, 19, 21]: BSD 3-Clause License

• COCOA code [6]: Apache 2.0 license

• TabPFN v2 model [35]: Apache 2.0 license

D.3. Dataset details

• Lalonde [44]: The covariates comprise several demographic variables (e.g. age, degree, marital status). The treatment
corresponds to attending a job training program. The outcome is the real earnings obtained in 1978. We generate the
dataset using the trained models in [53].

• STAR project [3]: The individuals correspond to students, and we use the following covariates: Gender, Race, Birth year,
G3 Surban, G3 Free lunch, G3 Present, Aided class, G3 Teacher gender, G3 Teacher race, G3 Teacher high degree, G3
Teach years of experience, G3 Teacher training, where G3 denotes Grade 3. The treatment corresponds to putting the
student in a small class. In our analysis we have only included students who were assigned to the same treatment group
through all grades K-3. The outcome is the SAT score of the student.

• Hillstrom [34]: The covariates correspond to different customers’ attributes such as the months since last purchase or
the zip code of the customer. The treatment corresponds to sending an email for men’s merchandise. The outcome
corresponds to whether or not the customer visited the website in the following two weeks.

We provide an overview of the datasets’ characteristics in Table 2.
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Table 2: Details on the datasets.

Dataset Type of obs. dataset # Samples (obs.) Covariate dim. Label

Lalonde Semi-synthetic 7279 8 Continuous
STAR project Subsampled from RCT 1429 12 Continuous
Hillstrom Subsampled from RCT 1070 8 Binary

Dataset subsampling. While the Lalonde dataset is semi-synthetic, the STAR and Hillstrom observational datasets used
throughout the experiments in Section 4 are obtained by subsampling from their respective RCT data. We follow the same
procedure as in [27], by defining a biasing function, with the desideratum that this biasing function should introduce a
covariate shift between the treated and control groups. More precisely, given an original dataset {(Xi, Ti, Yi) | i ∈ [n]},
we define an encoder r such that r(x) is the first PCA component score for x, obtained with the set of covariates
{Xi | i ∈ [n]}. Given this encoder, we then compute γ = Median({r(Xi) | i ∈ [n]}). This permits to construct the
datasets S0 = {(Xj , Tj , Yj) | r(Xj) < γ, j ∈ [n]} and S1 = {(Xj , Tj , Yj) | r(Xj) ≥ γ, j ∈ [n]}. Intuitively, these
two groups have a substantial difference in terms of covariates, as is captured by the encoder r. Finally, we obtain the
observational dataset using the subsampling mechanism of [27] and keep the individuals in S0 with treatment equal to 0,
and individuals in S1 with treatment equal to 1, i.e. D(obs) = {(Xj , Tj , Yj) | (Xj , Tj , Yj) ∈ S0, Tj = 0}⋃{(Xj , Tj , Yj) |
(Xj , Tj , Yj) ∈ S1, Tj = 1}.
In Appendix F.2.1, we adjust the biasing intensity to modulate the covariate shift. To do so, we consider a probability
p ∈ [0, 1]. We then define D(obs)(p) = {(Xj , Tj , Yj) | (Xj , Tj , Yj) ∈ S0, Bj ∼ Ber(1 − p), Tj = Bj}

⋃{(Xj , Tj , Yj) |
(Xj , Tj , Yj) ∈ S1, Bj ∼ Ber(p), Tj = Bj}.
Intuitively, higher values of p yields a more pronounced covariate shift. We consider p ∈ [0.5, 0.8, 1] in Appendix F.2.1.

Ground-truth CATE. We fit two random forest models to half of the original and large STAR and Hillstrom datasets,
which permits to estimate the two potential outcome surfaces for each of the datasets. This approach is not biased because
these original datasets are RCTs. Equipped with the fitted potential surfaces, we then take their difference to define the
ground-truth CATE values used for model evaluation. The other half of the datasets is then used to define an observational
dataset (used to train the CATE learners) and a test set (used to evaluate the CATE learners).

D.4. Implementation details for the CATE learners

Hardware. All the experiments were performed on a machine equipped with a 64-Core AMD Ryzen Threadripper and a
NVIDIA RTX A4000. Fitting one CATE learner for one given dataset took in the worst case 3 minutes, and generating the
augmented datasets with the LLM took a maximum of 17 minutes and 43 seconds per dataset and seed.

We now detail the hyperparameters used for the different CATE learners used in Section 4, which use neural networks
backbones.

• TNet: Following [19], each hypothesis function has 3 layers with 200 units. The output head consists of 2 additional
layers with 100.

• SNet: We use 3 layers with 100 hidden units for the shared layers, 2 layers with 100 units for the output head of the
hypothesis functions, and 2 layers with 100 units for the output of the propensity network.

• XNet: First stage: We use the T strategy to estimate the nuisance parameters. We use 3 layers with 100 units for the
representation, 2 layers with 100 units for the output head, Second stage: We use 2 layers with 100 units for the output, 3
layers with 200 units for the representation.

• DRNet: First stage: We use the T strategy to estimate the nuisance parameters. We use 3 layers with 200 units for the
representation, 2 layers with 100 units for the output head, Second stage: We use 2 layers with 100 units for the output, 3
layers with 200 units for the representation.

• CFR-Wass: We use 3 layers with 200 units for the representation layers and 3 layers with 100 units per hypothesis
function. We use the Wasserstein-1 distance for the regularization, with the regularization coefficient α set to 3.

• CFR-MMD: We use 3 layers with 200 units for the representation layers and 3 layers with 100 units per hypothesis
function. We use the MMD for the regularization, with the regularization coefficient α set to 3.
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• RNet: We use 3 layers with 200 units for the representation, 2 layers with 100 units for the output head, for the two stages.
• IPW: First stage: We use the T strategy to estimate the nuisance parameters. We use 3 layers with 200 units for the

representation, 2 layers with 100 units for the output head, Second stage: We use 2 layers with 100 units for the output, 3
layers with 200 units for the representation.

The batch size is set to 500, the learning rate is set to 0.0001 with the Adam optimizer and we use early stopping with a
validation split proportion equal to 0.3.

Hyperparameters for the instanciation of GATE with LLMs. We use GPT-3.5 as the LLM throughout our experiments,
which we access using the API, version 2023-07-01-preview. We use a temperature of 0.9 throughout our experiments.
We define the admissible set Xt with the variance-based criterion (Section 3.2), using a fixed threshold α = 0.5 unless
otherwise stated. We use 100 in-context samples in each prompt, and set K = 10 unless otherwise stated.

D.5. Implementation details for the generative models

The following models perform augmentation by training P
(gen)
0,x on D(obs)

0 and P
(gen)
1,x on D(obs)

1 respectively. In particular:

• Mean imputation: P (gen)
t,x = δ( 1

nt

∑n
i=1 Yi1(Ti = t)), where {Xi, Ti, Yi} ∈ D

(obs)
t

• Random Forest: P (gen)
t,x = δ(f

(RF )
t (x)), where f

(RF )
t is a random forest model trained on D(obs)

t

• Nearest-neighbor: P (gen)
t,x = δ(f

(NN)
t (x)) where f

(NN)
t is a nearest-neighbor predictor trained on D(obs)

t .

The GAN augmentation uses a single model trained on D(obs). We refer to [71] for the details of the method. We use the
following parameters: { hidden dimension: 100, batch size: 256, iteration: 10000, α : 1, learning rate: 0.001 }.
We use the TabPFN v2 model [35] released publicly by the authors, and use the default parameters.

D.6. Metrics

Assessing covariate shift with the sliced Wasserstein distances. In the experiments in Appendix F.2.1 and Appendix F.2.2,
we quantify the covariate shift between the treated and control group using the sliced Wasserstein distance. It is a metric
which can compare two high-dimensional distributions [14]. To compute it, we perform random projections on vectors of
the unit sphere. For two distributions µ1 and µ2, the sliced Wasserstein distance of order p is defined as:

SWp(µ1, µ2) :=

∫
Sd−1

Wp(Pu#µ1, Pu#µ2)du (20)

where Sd−1 denotes the unit sphere in dimension d, Pu(x) = u · x denotes the projection of the vector x on u, Pu#µ is the
push-forward of µ by Pu, and Wp is the Wasserstein distance of order p. In our experiments, we use a Monte-Carlo estimate
by randomly sampling n = 5000 random vectors {ui|i ∈ [n]} in Sd−1 and consider p = 2.

Assessing the inaccuracy of the generated potential outcomes. Let us consider an augmented dataset
{(Oi, X

′
i, T

′
i , Y

′
i )}ñi=1, where T ′

i denotes the observed (factual) treatment, Oi = 0 if Y ′
i is the observed potential out-

come and Oi = 1 if Y ′
i was generated with P

(gen)
t,x . We assess in Appendix F.2.2 the inaccuracy of the generated potential

outcomes in the augmented dataset by computing:

∆ =
1

ñ

ñ∑
i=1

(Y ′
i − E [Yi(1− T ′

i ) | X ′
i])

21(Oi = 1)

PEHE. Our results in Section 4 evaluate the performance of the models on Dtest using the Precision in Estimation of
Heterogeneous Effect (PEHE), defined as ϵPEHE = 1

n

∑n
i=1(E [Yi(1)− Yi(0)|X = Xi]−(µ̂1(Xi)− µ̂0(Xi)))

2. We report
its square root

√
ϵPEHE [33].
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E. LLM Prompts
Prompt design. When instantiating GATE with LLMs, we consider a prompt structure which includes the following
important elements:

• Task context: We include context about the task (CATE estimation). We also provide information about the covariates,
the treatment, and the outcomes.

• Statistics on the outcomes: we provide the average outcomes in both the control and treatment group, as well as the
range of the outcomes to help the LLM generate realistic outcomes.

• In-context samples: we serialize the observational data in their raw format. The covariates are provided as (feature
name, feature value) tuples, followed by (treatment name, treatment value), and (outcome name, outcome value). The
in-context samples are randomly shuffled in the prompt to avoid any generation artifacts stemming from the ordering of
the samples. We use 100 in-context samples per prompt.

The prompt structure is summarized in Figure 4.

You are an expert in causal inference. Your goal is to produce counterfactuals from observational data. I will give you the
covariates, the treatment and the outcome from the observational data. Leverage your knowledge about {Task context:
general}. The covariates consist of {Task context: covariates description} The treatment indicator (binary) corresponds
to { Task context: treatment description}. The outcome is { Task context: outcomes }. To help you, I am providing some
statistics about the data. {Statistics treatment group} {Statistics control group} Your response should only contain the
generated counterfactuals in the format ## outcome ##. {In-context examples}

Figure 4: Prompt structure.

Prompt example. We provide an example of the prompt used for the Lalonde dataset in Listing 1.

Listing 1: Prompt example. On Lalonde dataset.

You are an expert in causal inference. Your goal is to produce
counterfactuals from observational data. I will give you the
covariates, the treatment and the outcome from the
observational data. Leverage your knowledge about job
training and real earnings to produce counterfactuals. The
covariates consist of a number of demographic variables: age,
measured in years; education, measured in years; black,
indicating race (1 if black, 0 otherwise);hispanic,
indicating race (1 if Hispanic, 0 otherwise);married,
indicating marital status (1 if married, 0 otherwise);
nodegree, indicating high school diploma (1 if no degree, 0
otherwise); re74, real earnings in 1974; re75, real earnings
in 1975. The treatment indicator (binary) corresponds to job
training. The outcome is real earnings in the year 1978,
denoted as re78. To help you, I am providing some statistics
about the data. In the presence of the treatment (treat: 1),
the average re78 (outcome) in the observational data is
4576.24, the min re78 is 0.0, the max re78 is 26354.16. In
the absence of the treatment (treat: 0), the average re78 (
outcome) in the observational data is 14868.48, the min re78
is 0.0, the max re78 is 28609.63. Your response should only
contain the generated counterfactuals in the format ##
outcome ##
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Covariates: age: 26.0, education: 11.0, black: 0.0, hispanic:
0.0, married: 1.0, nodegree: 1.0, re74: 25862.32, re75:
16650.0

treat: 0
re78: ## 24058.61 ##
Covariates: age: 23.0, education: 7.0, black: 1.0, hispanic: 0.0,

married: 1.0, nodegree: 1.0, re74: 18350.49, re75: 14967.1
treat: 0
re78: ## 8564.2 ##

...
Covariates: age: 30.0, education: 16.0, black: 0.0, hispanic:

0.0, married: 1.0, nodegree: 0.0, re74: 695.54, re75: 930.97
treat: 1
re78:

No context prompt We provide in Listing 2 the prompt used throughout Section 4.3, where the contextual information is
removed.

Listing 2: Prompt example without contextual information. On Lalonde dataset.

You are an expert in causal inference. Your goal is to produce
counterfactuals from observational data. I will give you the
covariates, the treatment and the outcome from the
observational data. To help you, I am providing some
statistics about the data. In the presence of the treatment (
treat: 1), the average re78 (outcome) in the observational
data is 4576.24, the min re78 is 0.0, the max re78 is
26354.16. In the absence of the treatment (treat: 0), the
average re78 (outcome) in the observational data is 14868.48,
the min re78 is 0.0, the max re78 is 28609.63. Your response
should only contain the generated counterfactuals in the
format ## outcome ##

Covariates: Feature_0: 26.0, Feature_1: 11.0, Feature_2: 0.0,
Feature_3: 0.0, Feature_4: 1.0, Feature_5: 1.0, Feature_6:
25862.32, Feature_7: 16650.0

treat: 0
outcome: ## 24058.61 ##
Covariates: Feature_0: 23.0, Feature_1: 7.0, Feature_2: 1.0,

Feature_3: 0.0, Feature_4: 1.0, Feature_5: 1.0, Feature_6:
18350.49, Feature_7: 14967.1

treat: 0
outcome: ## 8564.2 ##

...
Covariates: Feature_0: 30.0, Feature_1: 16.0, Feature_2: 0.0,

Feature_3: 0.0, Feature_4: 1.0, Feature_5: 0.0, Feature_6:
695.54, Feature_7: 930.97

treat: 1
outcome:

Dataset splitting. Since the LLM context window limits the number of tokens which can be used in the prompt, we cannot
feed all the available observational data into a single prompt. To bypass this issue, we randomly partition the observational
dataset into different groups of in-context samples, each of these groups making one prompt. Each group is populated by
nICL = 100 samples. Having split the observational data into different groups, we construct the prompts as follows. For
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each individual, we identify the group it belongs to, and construct a prompt where the individual appears at the end of the
prompt, with the rest of the group passed as in-context examples above it in a random order to avoid any ordering bias. The
LLM then generates m = 10 outcomes for each individual and its associated constructed prompt.

Memorization risks. A natural question is whether or not the LLM is returning outcomes which have been memorized and
seen during its pretraining stage. We note that this is very unlikely to be the case, since by definition, the LLM is used to
output missing potential outcomes, which are not present in the observational datasets and hence not part of the pretraining
corpora of the LLM. We also remark that the Lalonde dataset is semi-synthetic, meaning that it is also very unlikely that it
has been memorized by the LLM.

Effect of the LLM temperature. The LLM temperature controls the randomness in the generated outcomes. Sampling with
low temperature does not faithfully capture the outcome distribution, as it limits the variability in the generated outcomes
and as such makes it difficult to faithfully estimate the LLM uncertainty to guide the selection of the admissible set. In
contrast, choosing high temperature increases the diversity of the predictions, potentially leading to the generation of outlier
values which can decrease the quality of predictions. In our experiments we consistently set the temperature to 0.9, as initial
tests showed that this leads to optimal performance.

F. Additional results
F.1. Results for other CATE learners

In the interest of space, we put in Table 3 the results of the experiment conducted in Section 4.1 with additional CATE
learners: CFR-Wass, and CFR-MMD [63], TARNet [63], DragonNet [64] and BART [9].

Table 3: GATE improves the performance of different CATE learners across the datasets without data augmentation (✗),
and with data augmentation (✓). Average

√
ϵPEHE and 1std is reported for 3 seeds (↓ is better)

Learner Lalonde CPS1D STAR Hillstrom
✗ ✓ ✗ ✓ ✗ ✓

CFR-Wass. 0.99± 0.03 0.95± 0.02 0.61± 0.15 0.41± 0.01 0.24± 0.0 0.24± 0.0
CFR-MMD 1.00± 0.03 0.95± 0.00 0.64± 0.16 0.44± 0.00 0.24± 0.00 0.24± 0.00

TARNet 1.20± 0.03 0.96± 0.01 0.49± 0.1 0.48± 0.04 0.39± 0.02 0.24± 0.00
DragonNet 0.97± 0.02 0.95± 0.02 0.90± 0.26 0.48± 0.04 0.41± 0.04 0.24± 0.01

BART 1.36± 0.03 1.35± 0.00 0.70± 0.09 0.56± 0.02 0.27± 0.02 0.25± 0.01

F.2. Does GATE conform to the theoretical intuition?

Having shown that GATE can consistently improve CATE estimation, we now further verify whether the empirical results
agree with the theoretical intuition provided in Appendix C. In particular, we investigate whether GATE addresses the
covariate shift problems, and whether the gains from reducing covariate shift counterbalances the potential bias introduced
by a generative model.

F.2.1. HIGH COVARIATE SHIFT SETTINGS

Goal. We investigate the correlation between GATE’s performance gains and the intensity of the covariate shift between the
treated and control groups in D(obs).

Setup. We control the covariate shift’s strength with the biasing intensity in the subsampling mechanism proposed by [27].
This manipulation yields three distinct datasets, derived from the original STAR dataset. We quantify the strength of the
covariate shift with the sliced Wasserstein distance (SW) between the covariates of individuals in D(obs)

0 and D(obs)
1 . For

each dataset, we calculate the relative gain in
√
ϵPEHE obtained with CATE learners trained on D̃(obs) compared to D(obs).

Results. In Figure 5 (left), the performance gain obtained by GATE increases with the SW across models which employ
specialised regularisation techniques (i.e. CFR-Wass and DR-learner). This shows that GATE can be particularly helpful
in strong covariate shift settings. Contrary to other meta-learners, we find that the S-learner is least affected by data
augmentation. We believe this to be due to its data efficiency (using all data for each PO estimate).
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Figure 5: Left: The performance gains offered by GATE increase across the majority of learners as the strength of the
covariate shift increases (the shaded regions denote 95% confidence intervals computed over 30 seeds) Middle: The value
of the hyperparameter α allows to navigate the trade-off involved in data augmentation. Right: The bias introduced by
P

(gen)
t,x is counterbalanced by the reduction in covariate shift obtained when using GATE.

F.2.2. COUNTERBALANCING BIAS THROUGH COVARIATE SHIFT REDUCTION

Goal. We further verify whether, as indicated by Theorem C.1, the benefits obtained from the reduction in covariate shift
can counterbalance the bias potentially introduced by P

(gen)
t,x , thus offering performance benefits to the downstream CATE

model. We also check whether the hyperparameter α allows to navigate the trade-off between the covariate shift reduction
and the bias induced by P

(gen)
t,x .

Setup. We vary the quantile value α used by the selector (eq. 2) across the range (0, 1). For each α, we compute the
performance when using GATE (with LLM) for the different CATE models (Figure 5, middle). Furthermore, we explicitly
quantify the covariate shift in D̃(obs) using SW, and the bias introduced by P

(gen)
t,x by computing the average error in the

potential outcomes in D̃(obs) compared to the ground-truth values (Appendix D.6 for more details). We show how these
quantities vary in α (Figure 5, right). We report averages and 95% confidence intervals for 3 seeds.

Results. Both the middle and right plots in Figure 5 verify our intuition that there exists an optimal choice of α (α ≃ 0.2)
for the Lalonde dataset which allows to balance the gains obtained by addressing the covariate shift with the losses suffered
by introducing bias with P

(gen)
t,x . Figure 5 (middle) also demonstrates that GATE offers performance gains for most choices

of α > 0 when compared to the no-augmentation baseline (α = 0). Further, as we increase the allowed level of uncertainty
of P (gen)

t,x , the average L2 error in potential outcomes over D̃(obs) (quantifying how much noise is introduced by data
augmentation) increases, while the covariate shift decreases.

F.3. Local regression results

We compare GATE with COCOA [6]. As discussed in Appendix A, COCOA employs a local regression model which is
trained on the observational data only. This limitation can make COCOA particularly susceptible to covariate shift scenarios
or when operating in a small-sample regime, where the available data may not sufficiently capture the underlying distribution
of outcomes.

We report the results in Table 4, comparing the LLM-instantiated GATE with COCOA, which shows that the LLM-
instantiated GATE consistently outperforms COCOA across almost all of the datasets and meta-learners. The performance
gap is particularly noticeable for the Lalonde dataset, where the control and treated groups are imbalanced, making the local
regression model in COCOA significantly less useful than the prior-knowledge-empowered LLMs.

F.4. Comparison on the IHDP dataset

We evaluate the benefits of GATE instantiated with an LLM for the IHDP dataset [63]. We note that the outcomes for
this dataset are synthetic. Therefore, the objective of this experiment is to assess the in-context learning abilities of the
LLM, and the importance of covariate shift reduction via data augmentation. We report the results in Table 5, showing that
GATE improves the performance of almost all the CATE learners.
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Table 4: Comparison with COCOA [6]. Performance comparison across the datasets for COCOA and GATE . Average√
ϵPEHE and 1std is reported for 3 seeds (↓ is better).

Learner Lalonde CPS1D STAR Hillstrom
COCOA GATE COCOA GATE COCOA GATE

R-learner 1.66± 0.42 0.95± 0.00 0.58± 0.03 0.47± 0.01 0.30± 0.02 0.26± 0.02
IPW-learner 1.12± 0.05 0.95± 0.01 0.59± 0.07 0.47± 0.01 0.34± 0.11 0.25± 0.00

TARNet 1.26± 0.08 0.96± 0.01 0.45± 0.06 0.48± 0.04 0.27± 0.01 0.24± 0.00
DragonNet 1.04± 0.06 0.95± 0.02 0.51± 0.03 0.48± 0.04 0.27± 0.01 0.24± 0.01
CFR-MMD 1.01± 0.01 0.95± 0.00 0.58± 0.15 0.44± 0.00 0.24± 0.00 0.24± 0.00

BART 1.32± 0.01 1.35± 0.00 0.62± 0.07 0.56± 0.02 0.26± 0.01 0.25± 0.01
T-learner 1.35± 0.06 0.96± 0.01 0.66± 0.08 0.50± 0.03 0.28± 0.03 0.24± 0.01
S-learner 1.04± 0.14 0.95± 0.01 0.88± 0.13 0.56± 0.02 0.28± 0.02 0.25± 0.01
X-learner 1.38± 0.15 0.95± 0.01 0.73± 0.04 0.49± 0.02 0.27± 0.01 0.24± 0.01

DR-learner 1.35± 0.05 0.95± 0.01 0.62± 0.2 0.48± 0.02 0.31± 0.02 0.25± 0.01
CFR-Wass. 0.98± 0.04 0.95± 0.02 0.55± 0.15 0.41± 0.01 0.24± 0.0 0.24± 0.0

Table 5: Comparison on IHDP. Performance comparison for the IHDP dataset, between No augmentation and GATE .
Average

√
ϵPEHE and 1std is reported for 3 seeds (↓ is better).

Learner IHDP
No aug. GATE

S-learner 0.71± 0.10 0.54± 0.03
T-learner 0.70± 0.13 0.40± 0.06
X-learner 0.68± 0.10 0.33± 0.04
R-learner 0.68± 0.04 0.37± 0.01

IPW-learner 0.85± 0.04 0.38± 0.04
DR-learner 0.61± 0.06 0.37± 0.04

TARNet 0.47± 0.03 0.31± 0.04
DragonNet 0.41± 0.02 0.31± 0.04
CFR-MMD 0.29± 0.01 0.27± 0.01
CFR-Wass. 0.28± 0.01 0.29± 0.05

BART 0.56± 0.00 0.59± 0.01

F.5. Sensitivity with respect to α

We complement the results shown in Appendix F.2.2, with Figure 6 and Figure 7, which present the impact of varying the
quantile α used to define the admissible set Xt. We note that the results of the trade-off experiment presented here (Figure 7)
and in the main text (Figure 5) were obtained using the DR-learner. For both the STAR Project and Hillstrom datasets, we
see that incorporating the generated outcomes helps improve the PEHE. However, unlike for the Lalonde dataset, there is no
clear cutoff value for α after which the PEHE starts increasing. This observation can be made more intuitive by examining
Figure 7. Indeed, we notice that the covariate shift reduction obtained by increasing α is less pronounced than in the case of
the Lalonde dataset, while the noise introduced with the generated outcomes increases at a similar rate. This explains why
setting higher values of α is not harmful: the effect of the reduction in covariate shift balances the increased inaccuracy in
the generated potential outcomes.

F.6. Comparison with the baselines under no selection

While the results in Figure 2 used the same LLM-based admissible set for all the augmentation methods for a fair
comparison, in Figure 8 we provide additional results under no selection for all the methods – i.e. we choose the admissible
set X1 = X0 = X . The results show that LLMs outperform baseline methods both with and without selection. Further,
selection improves performance in the Lalonde dataset, which aligns with the results presented in Figure 6. We note that
the results of the comparison experiment presented here (Figure 8) and in the main text (Figure 2) were obtained using the
DR-learner. We notice that the performance gap on the Hillstrom dataset is negligible. This aligns with our observation
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Figure 6: Sensitivity with respect to α
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Figure 7: Tradeoff between covariance shift and potential outcome generation inaccuracy
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Figure 8: Comparison of the LLM with the baselines (no selection)
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Figure 9: Comparison of using DR-learner fitted on the data augmented with GATE, using the LLM prompted with and
without context. The error bars mark 1std computed over 3 seeds.

that the treatment effect is very small for this dataset. Indeed, the Average Treatment Effect, defined as E [Y (1)− Y (0)] is
equal to 0.08. Furthermore, the variability in the outcome is negligible, with Var(Y (1)) = 0.04 and Var(Y (0)) = 0.02,
explaining why the mean imputation baseline performs competitively with respect to the LLM. In contrast, the ATE for
the STAR dataset is equal to 0.15, and Var(Y (1)) = 1.05 and Var(Y (0)) = 0.93 (computed on the normalized outcomes),
where the larger variability explains the performance gap between the LLM and the mean baseline.

F.7. Importance of contextual information

Following the same experimental setup as in Section 4.3, we assess the importance of the contextual information to improve
the potential outcome generation for the Lalonde and Hillstrom datasets. We report the results in Figure 9. We note that the
results of the context experiment presented here (??) and in the main text (Figure 9) were obtained using the DR-learner.
For the Lalonde dataset, we notice that the gains obtained using contextual information are especially noticeable in the
small-sample regime (i.e. ρ = 0.1), echoing the observations made for the STAR Project dataset. The performance gap
narrows down with an increasing ρ, as the increased sample size in factual data makes the CATE learner more robust with
respect to the inaccuracy of the generated potential outcomes. On the other hand, the performance gap on the Hillstrom
dataset is negligible. This aligns with our observation that the treatment effect is very small for this dataset.

F.8. Statistical Tests of Improvements

Experiment setting. In order to assess the statistical significance of the results in Table 1, we conduct two-sample t-tests on
the
√
ϵPEHE obtained with and without GATE (instantiated with LLMs).
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Results. We report the p-values in Table 6, showing that the performance gains obtained with GATE are statistically
significant at the 0.05 level across the majority of CATE learners and datasets.

Table 6: Statistical significance of GATE’s performance gains. We report the p-values of the two-sample t-tests, where
bolded entries represent statistical significance at the 0.05 level.

Learner Lalonde CPS1D STAR Hillstrom

S-learner 3.0× 10−2 2.2× 10−2 1.3× 10−2

T-learner 4.0× 10−5 4.0× 10−3 1.3× 10−5

X-learner 1.3× 10−3 1.5× 10−4 4.1× 10−3

R-learner 1.1× 10−2 1.5× 10−7 4.9× 10−4

IPW-learner 1.0× 10−4 1.9× 10−5 7.4× 10−9

DR-learner 6.8× 10−6 1.3× 10−1 1.4× 10−4

CFR-Wass. 3.7× 10−1 3.4× 10−6 3.8× 10−1

CFR-MMD. 4.9× 10−6 1.6× 10−1 6.0× 10−1

TARNet 1.1× 10−5 2.8× 10−1 3.2× 10−16

DragonNet 1.7× 10−1 7.3× 10−6 1.8× 10−7

BART 1.3× 10−6 6.6× 10−2 3.0× 10−1

F.9. Convergence of CATE models after augmentation

As shown in Table 1, data augmentation reduces the performance gaps between the CATE learners. A key reason is that it
mitigates the covariate shift problem (cf. Figure 7), reducing the importance of regularisation strategies (e.g. balancing
representations in CFR, importance weighting in IPW).

An explanation of why CATE errors do not reach zero after augmentation is that there exists irreducible noise in the
prediction task – uncontrollable in our setting due to the use of real-world (rather than fully synthetic) outcomes. To confirm
this, we evaluate performance using imputed ground truth counterfactuals in Table 7. Even with oracle augmentation and no
covariate shift, errors remain nonzero.

Table 7: Comparison with an oracle augmentation. Average
√
ϵPEHE and 1std is reported for 3 seeds

Learner Lalonde CPS1D STAR Hillstrom
LLM Oracle LLM Oracle LLM Oracle

S-learner 0.95± 0.01 0.91± 0.01 0.56± 0.02 0.29± 0.04 0.25± 0.01 0.24± 0.01
T-learner 0.96± 0.01 0.91± 0.01 0.50± 0.03 0.22± 0.02 0.24± 0.01 0.24± 0.01
X-learner 0.95± 0.01 0.91± 0.01 0.49± 0.02 0.21± 0.02 0.24± 0.01 0.24± 0.01
R-learner. 0.95± 0.00 0.91± 0.01 0.47± 0.01 0.20± 0.01 0.26± 0.02 0.25± 0.01

IPW-learner. 0.95± 0.01 0.91± 0.01 0.47± 0.01 0.22± 0.00 0.25± 0.00 0.24± 0.01
DR-learner 0.95± 0.01 0.92± 0.01 0.48± 0.02 0.20± 0.00 0.25± 0.01 0.24± 0.01
CFR-Wass. 0.95± 0.02 0.91± 0.01 0.41± 0.01 0.23± 0.01 0.24± 0.00 0.24± 0.01
CFR-MMD 0.95± 0.00 0.91± 0.01 0.44± 0.00 0.18± 0.00 0.24± 0.00 0.24± 0.01

TARNet 0.96± 0.01 0.92± 0.01 0.48± 0.04 0.21± 0.01 0.24± 0.00 0.24± 0.01
DragonNet 0.95± 0.02 0.92± 0.01 0.48± 0.04 0.21± 0.01 0.24± 0.01 0.24± 0.01

BART 1.35± 0.00 1.32± 0.00 0.56± 0.02 0.51± 0.05 0.25± 0.01 0.25± 0.01

F.10. Alternative Selection of In-context Samples

Experimental setting. We consider an instantiation GATE with LLM where the in-context samples used in the prompts
are k nearest-neighbours of the samples considered for augmentation. More specifically, given a sample (x, t), we define
Sx,t = NNk(X,D(obs)

1−t ) as the set of in-context samples for (x, t). We set k = 50 and use a DR-learner for downstream
CATE estimation.

Results. As presented in Table 8, our results demonstrate that random sampling of in-context samples from D(obs)
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(encompassing both control and treated groups) consistently yields superior performance compared to the nearest neighbor
baseline. This is intuitive given the covariate shift between the two groups,which inherently limits the utility of nearest-
neighbor information drawn from the opposing treatment group. Random sampling, by contrast, enables the incorporation of
individuals from both groups – a particularly advantageous approach when prior knowledge exists regarding the relationship
between Y 1 and Y 0 (e.g. difference in expectation).

Table 8: Comparison of in-context samples’ selection. Results reported for 3 seeds.

IC sampling Lalonde CPS1D STAR Hillstrom

ρ = 0.1
Nearest neighbor 1.09± 0.12 0.99± 0.08 0.39± 0.06
Random sampling 0.95± 0.02 0.85± 0.04 0.31± 0.01

ρ = 0.5
Nearest neighbor 1.10± 0.04 0.62± 0.09 0.28± 0.02
Random sampling 0.97± 0.05 0.53± 0.07 0.26± 0.01

ρ = 1
Nearest neighbor 1.09± 0.10 0.58± 0.02 0.26± 0.01
Random sampling 0.95± 0.01 0.48± 0.02 0.25± 0.01

F.11. Comparison against Other Selectors

Experimental setting. We compare the variance-based selector used in our LLM instantiation of GATE with two additional
selectors: (1) a selector which selects the samples uniformly at random in the observational dataset (Random) and (2)
a propensity-based selector (Propensity), which defines the score function as s(x, t) = P (T = t|X = x), intuitively
favouring samples exhibiting characteristics similar to those from the opposite treatment group. For all the selectors, we set
α = 0.5, and use a DR-Learner for downstream CATE estimation.

Results. We report the results in Table 9, showing that the variance-based selector achieves optimal performance most
consistently out of the considered selection criteria, with performance gains especially noticeable in the small-sample regime
(ρ = 0.1).

Table 9: Comparison against other selectors. Results reported for 3 seeds.

Selector Lalonde CPS1D STAR Hillstrom

ρ = 0.1
Random 0.95± 0.02 0.90± 0.21 0.35± 0.03
Propensity 0.95± 0.01 0.87± 0.14 0.39± 0.02
Variance 0.95± 0.02 0.85± 0.04 0.31± 0.01

ρ = 0.5
Random 1.00± 0.06 0.54± 0.02 0.25± 0.01
Propensity 1.00± 0.04 0.50± 0.07 0.35± 0.00
Variance 0.97± 0.05 0.53± 0.07 0.26± 0.01

ρ = 1
Random 0.98± 0.01 0.49± 0.03 0.25± 0.01
Propensity 1.02± 0.06 0.47± 0.10 0.33± 0.03
Variance 0.95± 0.01 0.48± 0.02 0.25± 0.01

G. Broader Impacts
In Section 4 we learn that GATE may enable practical adoption of CATE estimation in low-sample settings, possibly
yielding a positive impact in fields where data is costly. Furthermore, GATE helps address problems such as covariate shift
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(particularly in low-sample regimes), further aiding the adoption of CATE inference in practice. However, extra care should
be taken before relying on the LLM to guide decision-making in high-stakes domains.
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