
Proceedings of Machine Learning Research – nnn:1–14, 2024 Full Paper – MIDL 2024

RADR: A Robust Domain-Adversarial-based Framework for
Automated Diabetic Retinopathy Severity Classification

Sara Mı́nguez Monedero∗1 sara.minguez.monedero@studium.uni-hamburg.de

Fabian Westhaeusser∗2 fabian.westhaeusser@zmnh.uni-hamburg.de

Ehsan Yaghoubi1 ehsan.yaghoubi@uni-hamburg.de

Simone Frintrop1 simone.frintrop@uni-hamburg.de

Marina Zimmermann2 marina.zimmermann@zmnh.uni-hamburg.de
1 Department of Informatics, University of Hamburg, Hamburg, Germany
2 Institute of Medical Systems Biology, Center for Biomedical AI, Center for Molecular Neurobiology,

University Medical Center Hamburg-Eppendorf, Hamburg, Germany

Editors: Accepted for publication at MIDL 2024

Abstract

Diabetic retinopathy (DR), a potentially vision-threatening condition, necessitates accu-
rate diagnosis and staging, which deep-learning models can facilitate. However, in clinical
practice these models often struggle with robustness due to distribution shifts caused by
variations in data acquisition protocols and hardware. We propose RADR, a novel Robust
domain-Adversarial-based deep-learning framework forDR severity classification, aimed at
generalization across diverse datasets and fundus cameras. Our work builds upon existing
research: we combine several ideas to perform extensive dataset curation, preprocessing,
and enrichment with camera information. We then use a domain adversarial training
regime, which encourages our model to extract features that are both task-relevant and
invariant to domain shifts. We explore our framework in its various levels of complexity in
combination with multiple data augmentation policies in an ablative fashion. Experimen-
tal results demonstrate the effectiveness of our proposed method, achieving competitive
performance to multiple state-of-the-art models on three unseen external datasets.

Keywords: Robustness, domain generalization, adversarial training, diabetic retinopathy.

1. Introduction

Diabetic retinopathy (DR) is a medical condition that occurs due to microvascular retinal
complications that are caused by diabetes mellitus. If the disease progresses, the result is
irreversible vision loss, which is why early diagnosis of the disease is of utmost importance.
DR is characterized by the presence of lesions in the eye: microaneurysms, hemorrhages,
and soft and hard exudates. These are made visible on color fundus eye images and form the
basis for evaluation of the severity of the disease by ophthalmologists (Wang and Lo, 2018;
Lechner et al., 2017; Sun et al., 2022). According to the International Clinical Diabetic
Retinopathy (ICDR) scale, five levels of severity can be defined: no DR, mild, moderate,
severe, and proliferative (Wilkinson et al., 2003). Since the lesions are very small, manual
diagnosis of DR is resource-intensive and time-consuming. This makes the development of
algorithms to support the medical experts indispensable (Chen and Chang, 2022; Chetoui

∗ Contributed equally

© 2024 CC-BY 4.0, S.M. Monedero, F. Westhaeusser, E. Yaghoubi, S. Frintrop & M. Zimmermann.

https://creativecommons.org/licenses/by/4.0/


Monedero Westhaeusser Yaghoubi Frintrop Zimmermann

and Akhloufi, 2020). Deep-learning (DL) models have achieved great success in various
tasks in the field of medical image analysis, including DR grading (Li et al., 2021; Ragab
et al., 2023; Litjens et al., 2017). However, real-world clinical data includes many sources
for variations, such as imaging standards, camera brands, and patient demographics, which
lead to different distributions or covariate shifts, like e.g. in the color space (Guan and Liu,
2021). As a consequence, DL models trained on one (or even several) specific domain(s)
usually do not generalize well to other unseen domains, resulting in a lack of robustness for
the application in real-world scenarios (Quinonero-Candela et al., 2008; Wang et al., 2022).
Domain adaptation techniques, which aim at transferring knowledge from the source domain
to the target domain or making models domain-agnostic, have emerged as a promising
solution to this problem studied for various imaging modalities (Aubreville et al., 2023;
Wang and Deng, 2018). Nonetheless, only limited research has been conducted in the
field of domain adaptation for color fundus eye images (see Section 2). Therefore, the
primary objective of this work is to develop a robust model for DR severity classification
that generalizes to unseen domains. Our contributions include:

DR severity classification framework: We introduce RADR, a novel Robust domain-
Adversarial-based DL framework for DR severity classification, aimed to generalize
across diverse datasets and fundus cameras. This builds upon existing research in the
field, by, to the best of our knowledge, combining for the first time extensive dataset
curation based on quality control labels provided by Fu et al. (2019), camera domain
information provided by Yang et al. (2020), data preprocessing as well as domain
adversarial training and data augmentation.

Ablation study: We qualitatively and quantitatively assess the impact of various com-
monly used methods for domain generalization on our curated training dataset, namely
domain adversarial learning, multi-camera (MC) training as well as AugMix and cus-
tom color augmentations, providing novel insights into their effectiveness in this field.

Comparative analysis: We finally conduct a comparative analysis with multiple state-
of-the-art models, demonstrating the effectiveness of our proposed method in achieving
performance comparable to or surpassing existing approaches on three unseen external
datasets.

2. Related Work

To the best of our knowledge, four distinct approaches for domain adaption in the field of
DR grading have been published to date. First, Yang et al. (2020) introduced the Residual-
CycleGAN model for image-to-image translation. They defined camera labels for the images
in the EyePACS dataset and used those cameras as domains. Adapted test images improved
the performance of a classifier trained on a single camera, without retraining it on the tar-
get camera. However, this method requires retraining the CycleGAN for each additional
domain. Additionally, they compared against a domain adversarial training strategy on
camera labels, similar to what is used in our work, though without evaluating on external
data or comparing to the SOTA. The main idea presented by Atwany and Yaqub (2022)
is to use domain gradient variance information as a regularization technique. In addition,
during training of their proposed DRGen model, they search for flat minima in the vali-
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dation loss. For this purpose, their approach combines the Fishr method and stochastic
weight averaging densely. Galappaththige et al. (2024) propose SPSD-ViT, which combines
self-distillation with a prediction softening mechanism in vision transformers. Furthermore,
their study involved retraining existing methodologies on a range of datasets, thereby fa-
cilitating a comprehensive comparative analysis of various SOTA model results. Finally,
the multi-model learning approach presented by Zhang et al. (2022) treats each sample
as a composite derived from multiple source domains. They combine models trained on
different source domains, determining the model weight based on the Euclidean distance
between the source and target models’ features. Pseudo-labels for target images are ob-
tained through feature-level clustering. They achieve over 90% accuracy on unseen data,
though they transformed the five stages of DR into a simpler binary classification problem.
Our work aims to expand this limited field of research, and wherever possible, benchmark
against the existing methods.

3. RADR

In this work, we present RADR, a domain adversarial-based framework for automated dia-
betic retinopathy severity classification aiming for robust performance on unseen datasets.
RADR is derived from the publicly available EyePACS dataset that we preprocess, curate
for image quality and enrich with camera information. Using the camera labels as domains,
we train RADR in an adversarial fashion to extract domain-agnostic features for its severity
prediction. We finally compare our framework on three unseen commonly used DR datasets
to the SOTA and evaluate our training regime in an ablative fashion. Figure 1 depicts the
full pipeline. In the following, our approach is described in more detail.

3.1. Data

We train our model on the EyePACS dataset (Dugas et al., 2015), a publicly available
collection of 88,702 color fundus eye images. These images are classified into five classes,
corresponding to the level of DR severity. We apply multiple steps of preprocessing and
data curation to this dataset. Firstly, roughly 25% of the images in the EyePACS collection
are considered to be ungradable due to the poor quality, artifacts, excessively bright or
dark images, or out-of-focus images (Chetoui and Akhloufi, 2020). Therefore, these poor
quality images were eliminated according to the three-level quality labels provided by Fu
et al. (2019), removing the ‘reject’ category. Additionally, overly dark images were removed
by thresholding on the average pixel value of images converted to grayscale. All images are
cropped and resized into squares of size 512 × 512 pixels, centered around the retina, to
remove noise and redundant image areas. Furthermore, the images of the EyePACS dataset
were acquired using different camera brands. To utilize this inherent known heterogeneity
in our model, we use the camera labels provided by Yang et al. (2020) to create a separate
subdataset for each camera A, B, C, D and E. For aggregated RGB histograms per sub-
dataset, refer to the Appendix. It should be noted that they stated differences between the
provided labels and those employed in their original approach. After applying curation and
preprocessing, in total 62,467 images remain of the EyePACS dataset. We split every cam-
era subdataset by 70/15/15% into train, validation and test sets, stratified by the severity
label to assure equal distribution. In addition to the five camera datasets (A-E), three of
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the most popular publicly available DR grading datasets are used as external datasets to
evaluate the performance on unseen data and distributions. Those datasets are Messidor,
Messidor 2 and APTOS (Abràmoff et al., 2013; Karthik, 2019). This will also allow us
to compare the results obtained in this paper with those obtained by the SOTA models
presented by Atwany and Yaqub (2022) and Galappaththige et al. (2024).

Figure 1: Methodology of the proposed RADR framework for DR severity classification.
The EyePACS dataset is enriched by camera labels, curated for image quality
and preprocessed. Subdatasets A, B and C are used for end-to-end model train-
ing. Images are augmented by geometric transformations, as well as optional
ColorJitter or AugMix transformations, before being fed through a ResNet50-
based encoder. Resulting latent features are forwarded to both the DR staging
head and the domain classifier. The GRL inverts the sign of the gradient of the
domain classification loss LDC in the encoder, promoting domain-invariant fea-
ture representations.

3.2. Model Architecture

In our pursuit to build a robust DR severity classification model, we first derive a single-
camera (SC) baseline model comprised of a ResNet-50-based feature extractor (He et al.,
2016) and a fully connected DR classifier with 5 output nodes. The SC model is trained
only on camera A (source) and tested on each of the remaining subdatasets individually. In
addition, geometric transformations are applied when training the SC model to increase data
variability. These correspond to rotation, vertical and horizontal flipping and cropping. In
the next step, we perform multi-camera (MC) training on the subdatasets from camera A, B
and C. This is expected to increase the data variability that the model sees during training
and therefore to increase performance on the remaining unseen datasets from camera D
and E. In the last step, inspired by Ganin et al. (2016), we add a domain adversarial
(DA) head to our network, composed of a Gradient Reversal Layer (GRL) and the domain
classifier. This represents our final, most advanced model RADR. The domain classifier
comprises two identical blocks, each with a linear layer, ReLu activation and dropout with
probability of 0.5, followed by a final fully connected layer with three output nodes for
domain classification. During backpropagation, the GRL inverts the sign of the gradient
flowing from the domain head into the feature encoder (FE). Through parallel training
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of both classification heads, weights of the FE are adapted to produce domain-agnostic
features that are still predictive for the main task of severity classification. Both the DR
classifier and the domain classifier are optimized using the AdamW optimizer and Cross-
Entropy loss. By utilizing both the severity labels and the domain information of all three
training subdatasets in parallel during training, our framework diverges slightly from the
original DANN implementation, which only used the labels of a single domain for training
the main task. Additionally, a hyperparameter β was introduced to modulate the domain
classification loss’s impact. Therefore, the total loss L of the model can be calculated as
L = LDRC+β ·LDC where LDRC corresponds to the loss computed by the DR classifier and
LDC to the loss computed by the domain classifier. β was empirically set to 0.3. Higher
values tended towards degrading main task performance, while at lower values features
could still be differentiated by the domain discriminator. We further wanted to analyze
the influence of random data augmentations on the robustness of our models. For this,
in addition to the default geometric transforms, we test the application of two different
augmentation policies to the three presented levels of complexities of our pipeline, SC,
MC, and DA training. The first policy employs color transformations, which randomly
adjust the brightness, contrast, and saturation parameters of the images using ColorJitter
of PyTorch’s torchvision transforms (Paszke et al., 2019). As our second policy, we evaluate
AugMix from Hendrycks et al. (2019), which is specifically designed to increase model
robustness. In detail, AugMix creates multiple copies of an image, applies a unique data
augmentation chain to each and then linearly combines them using random weights. For
exact settings used in this work, refer to the Appendix. Finally, to evaluate the results
obtained in classifying DR images, both quantitative and qualitative metrics are used. In
this work, accuracy (ACC) and quadratic weighted kappa (QWK) are used as quantitative
measurements, aligning with standard metrics in the literature to facilitate comparative
analysis of the outcomes. We further utilize uniform manifold approximation and projection
(UMAP) (McInnes et al., 2018) plots to visualize the latent representations before the final
classification layer of all internal and external test data for qualitative analysis of the model.

4. Experiments

4.1. Quantitative Results: Internal Datasets

Table 1 depicts the performance in terms of QWK of all training regimes and data augmen-
tation policies on the EyePACS camera subdatasets. For the corresponding ACC results,
please refer to the Appendix. All variations of the model were trained end-to-end using
AdamW optimizer with hyperparameters tuned individually for best QWK on the vali-
dation splits of the EyePACS camera subdatasets. When comparing the three training
regimes with only their default geometric augmentation and no added color augmentation,
a consistent increase in performance on both seen and unseen datasets can be observed
when using the MC approach over SC approach. Average performance is further enhanced
from 74.2% to 76.2% by applying domain adversarial (DA) training. On camera E, a slight
drop is visible, though on camera D a major improvement of 8.1 percentage points could
be achieved, emphasizing the robustness-conferring influence of the adversarial training on
unseen domains. Remarkably, DA training also increased QWK on the cameras A, B &
C seen during training, hinting at the possibility that the multi-task approach promoted
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Table 1: Performance in terms of quadratic weighted kappa (QWK) (mean ± standard de-
viation) of our models on the test sets of the camera domains in the EyePACS
dataset, trained with five different random seeds. SC: Single-camera training on
camera A, MC: Multi-camera training on cameras A, B and C, DA: Domain ad-
versarial training on cameras A, B and C. Best performing model in bold, second
best underlined.

QWK [%] Camera A Camera B Camera C Camera D Camera E Avg

SC 76.3±0.9 80.4±0.1 64.6±2.3 49.2±4.3 72.4±2.1 68.6

SC ColorAug 73.0±1.3 78.0±1.9 64.4±3.2 40.3±7.7 64.3±5.6 64.0

SC AugMix 74.1±0.8 75.8±1.4 57.0±4.4 34.6±2.4 58.4±2.7 60.0

MC 77.4±1.8 82.6±1.1 77.8±2.6 58.9±6.2 74.1±4.2 74.2

MC ColorAug 71.6±2.5 79.2±2.6 71.0±6.3 52.2±9.9 67.8±1.0 68.4

MC AugMix 76.3±0.9 85.3±1.6 77.6±1.1 68.6±6.0 72.2±1.5 76.0

DA (RADR) 78.1±1.8 84.4±0.6 78.7±1.0 67.0±4.2 72.6±1.6 76.2

DA ColorAug 73.1±3.3 80.9±2.3 74.7±3.9 48.8±1.6 74.5±6.1 70.4

DA AugMix 75.5±0.5 84.1±0.5 76.1±1.5 61.9±1.7 71.4±3.1 73.8

extraction of more predictive features in general. When applying color augmentations based
on ColorJitter, results deteriorate for all training regimes and cameras, except for camera
E under the DA regime. Here, in contrast, camera D performance dropped by 18.2 per-
centage points. Overall, this indicates that the ColoJitter augmentations evaluated by us
contribute negatively to overall performance and robustness. Finally, the application of
the AugMix policy decreased average performance under the SC and DA training regime,
though increasing average performance under the MC training regime by 1.8 percentage
points, achieving comparable performance to our proposed main model RADR. A potential
explanation for the negative influence of the augmentations under the DA training regime is
that it opposes the domain discrimination task by blurring the differences between camera
domains, limiting the potential benefit of the domain adversarial training. However, further
research is required to verify this.

4.2. Quantitative Results: External Datasets and SOTA

We evaluate our top performing model RADR, which employs domain adversarial training
without added color transformations, as well as our second best performing approach us-
ing multi-camera (MC) training with AugMix augmentations on three unseen public DR
datasets, Messidor 1, Messidor 2 and APTOS (Table 2). Here, we also analyze classifica-
tion accuracy besides QWK to enable a comparison to existing SOTA methods. Of our
models, RADR achieves the highest average QWK and accuracy with 76.7% and 65.7%,
respectively, though MC training with AugMix performs slightly better on the APTOS
dataset. Notably, the highly similar scores of RADR on the QWK metric indicate con-
sistent and robust performance across all unseen datasets. For benchmarking our method
against SOTA, we compare against models from Atwany and Yaqub (2022) and Galap-
paththige et al. (2024). We differentiate between approaches only using EyePACS as their
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single source (SS) training dataset and those utilizing a multi-source (MS) leave-one-out
training regime by training on the remaining three datasets when predicting on one out of
EyePACS, Messidor 1, Messidor 2 and APTOS.

Table 2: Performance (mean ± standard devation) of our top-performing models, MC Aug-
Mix and RADR, on the external datasets, trained with five different random seeds.
SS: Single-Source training on EyePACS. MS: Multi-Source training in leave-one-
out fashion on EyePACS, Messidor 1 & 2, as well as APTOS, with prediction on
the remaining dataset. Best performing model in bold, second best underlined.

QWK [%] Messidor 1 Messidor 2 APTOS Avg

RADR (Ours) 77.7±1.9 75.2±2.7 77.2±2.1 76.7

MC AugMix (Ours) 76.1±1.3 71.4±7.0 81.9±1.8 76.5

ACC [%] Messidor 1 Messidor 2 APTOS Avg

SS: RADR (Ours) 65.3±1.3 71.6±2.2 60.2±2.9 65.7

SS: MC AugMix (Ours) 62.8±2.0 69.8±4.4 62.6±1.4 65.1

SS: SPSD-ViT (Galappaththige et al., 2024) 50.5±0.8 62.2±0.4 75.1±0.5 62.5

SS: DRGen (trained by Galappaththige et al. (2024)) 54.6±1.5 65.4± 0.1 61.3±1.9 60.4

MS: SPSD-ViT (Galappaththige et al., 2024) 64.8±0.5 72.4±0.6 51.7±1.2 62.9

MS: DANN (trained by Galappaththige et al. (2024)) 57.0±1.1 58.6±1.7 54.4±0.8 56.7

MS: DRGen (trained by Galappaththige et al. (2024)) 59.1±1.8 65.2±0.6 51.2±2.1 58.5

MS: DRGen (Atwany and Yaqub, 2022) 66.7 70.5 70.3 69.1

Here, the original DRGen method from Atwany and Yaqub (2022) achieved the best average
performance with 69.1%. Our proposed RADR model scored second best with 65.7%. It is
to note though that this comparison favors the DRGen model. By employing a leave-one-out
training and evaluation regime on the four datasets EyePACS, Messidor 1&2 and APTOS,
they not only utilized significantly more training data than us, the reported accuracies per
unseen dataset also stem from different versions of their model, while our results are all from
the same version. When aiming for generalization and robustness, reporting results from
the same model across all unseen datasets should be preferred. Galappaththige et al. (2024)
reproduced the DRGen method under the MS training regime, however, only achieved an
average accuracy of 58.5%. Interestingly, they also evaluated a domain-adversarial network
(DANN), similar to our approach, under the MS training regime. This achieved an average
accuracy of 56.7%, lacking behind our method by 9 percentage points, even though they uti-
lized more training data and multiple instances of their model. This hints at the superiority
of utilizing the camera labels from Yang et al. (2020) as domain indicator for adversarial
training, as in our proposed method, over defining every dataset as an individual domain.
Finally, fair comparisons can only be drawn when comparing methods under the same SS
training regime, only training on the EyePACS dataset and predicting on all others. Here,
RADR outperformed the SPSD-ViT from Galappaththige et al. (2024) by 3.2 percentage
points, as well as an SS re-implementation of the DRGen model by 5.3 percentage points.
This concludes that our proposed framework is able to strongly compete with SOTA models,
even by using less training data, or even surpass them under equal conditions.
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Figure 2: UMAPs for the camera subdatasets of EyePACS and external datasets for our
three training regimes: Single Camera (a), Multi Camera (b) and RADR (c).

4.3. Qualitative Results: UMAP Representations

Figure 2 depicts UMAP visualizations of the latent representations in the output of the
feature extractor of all samples across all datasets used in this work. For the SC (a) and MC
(b) training regime, a high separability of the domain clusters of the camera subdatasets can
be observed, especially for cameras A, C & D. This shows that for these approaches a lot of
domain specific information is still contained after the FE, which isundesirable when aiming
for robustness. When analyzing the external datasets, we observe that data from the same
origin, Messidor 1 & 2, forms a mixed cluster, while APTOS is separate. The UMAP of the
DA training regime of RADR (c) reveals a more entangled latent space, with the different
domains blending into each other. This is especially the case for the EyePACS camera
subdomains and the Messidor data, though APTOS still expresses a high separability from
the remaining data. Overall, the visualization of the latent spaces emphasizes the successful
push towards domain-invariant feature representations and robustness of our method.

5. Conclusion

This paper presented RADR, a deep-learning framework for DR severity classification, which
combines several ideas to perform extensive dataset curation, preprocessing, and enrichment
with fundus camera information with a domain adversarial training regime. We explored
our framework in its various levels of complexity in combination with multiple data augmen-
tation policies in an ablative fashion, showing best performance when only using geometric
transforms during training. Our model achieved competitive or higher performance to mul-
tiple SOTA models on three unseen external datasets, even when using less training data.
We link this mostly to the reduction of noise in the dataset by the extensive preprocessing
and filtering we conduct, which has, to the best of our knowledge, never been done before by
similar approaches aiming for robustness in DR classification. We hypothesize that further
improvements could be achieved by retraining our model on all five camera domains instead
of only three, as well as by employing more advanced data augmentations, specifically aimed
to function in unison with a domain adversarial training regime.

8



RADR

Acknowledgments

We thank Patrick Fuhlert, MSc, and Nico Kaiser, MSc, for their helpful comments.

References
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Adam, Stefan Bonn, and Christoph Schramm. DeePSC: A Deep Learning Model for Au-
tomated Diagnosis of Primary Sclerosing Cholangitis at Two-dimensional MR Cholan-
giopancreatography. Radiology: Artificial Intelligence, 5(3):e220160, May 2023.

10

https://kaggle.com/competitions/aptos2019-blindness-detection
https://kaggle.com/competitions/aptos2019-blindness-detection


RADR

Hong Sun, Pouya Saeedi, Suvi Karuranga, Moritz Pinkepank, Katherine Ogurtsova,
Bruce B. Duncan, Caroline Stein, Abdul Basit, Juliana C.N. Chan, Jean Claude Mbanya,
Meda E. Pavkov, Ambady Ramachandaran, Sarah H. Wild, Steven James, William H.
Herman, Ping Zhang, Christian Bommer, Shihchen Kuo, Edward J. Boyko, and Dianna J.
Magliano. Idf diabetes atlas: Global, regional and country-level diabetes prevalence es-
timates for 2021 and projections for 2045. Diabetes Research and Clinical Practice, 183,
2022.

Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, Tao Qin, Wang Lu, Yiqiang Chen,
Wenjun Zeng, and Philip Yu. Generalizing to unseen domains: A survey on domain
generalization. IEEE Transactions on Knowledge and Data Engineering, 2022.

Mei Wang and Weihong Deng. Deep visual domain adaptation: A survey. Neurocomputing,
312:135–153, 2018.

Wei Wang and Amy CY Lo. Diabetic retinopathy: pathophysiology and treatments. Inter-
national journal of molecular sciences, 19(6):1816, 2018.

Charles PWilkinson, Frederick L Ferris III, Ronald E Klein, Paul P Lee, Carl David Agardh,
Matthew Davis, Diana Dills, Anselm Kampik, R Pararajasegaram, Juan T Verdaguer,
et al. Proposed international clinical diabetic retinopathy and diabetic macular edema
disease severity scales. Ophthalmology, 110(9):1677–1682, 2003.

Dalu Yang, Yehui Yang, Tiantian Huang, Binghong Wu, Lei Wang, and Yanwu Xu.
Residual-cyclegan based camera adaptation for robust diabetic retinopathy screening.
In International Conference on Medical Image Computing and Computer-Assisted Inter-
vention, pages 464–474. Springer, 2020.

Guanghua Zhang, Bin Sun, Zhaoxia Zhang, Jing Pan, Weihua Yang, and Yunfang Liu.
Multi-model domain adaptation for diabetic retinopathy classification. Frontiers in Phys-
iology, page 1071, 2022.

11



Monedero Westhaeusser Yaghoubi Frintrop Zimmermann

Appendix A. Histograms of EyePACS Camera Datasets

Figure A: RGB histograms for aggregated pixels of all images of the EyePACS dataset,
separated by camera label. To filter out the spikes of the black pixels at the
edges, all pixel values < 5 where removed.
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Appendix B. Model Parameters

Training of the SD, MD and DA model was performed for a maximum of 100 epochs with
a batch size of 16. We used AdamW optimizer with a weight decay of 0.0005 and an initial
learning rate of 1e-4. ReduceLROnPlateau scheduler was used with a reduction factor 0.2
and patience of 5 epochs. Early stopping is applied with a patience of 10 epochs. Dropout
probability was set to 0.5. When adding the domain classifier, different learning rates were
explored, however, it was found that using the same starting learning rate of 1e-4 lead to
the best results. Furthermore, we also explored different values for β between 0.1 and 1,
with a final value of 0.3. Figure B depicts the architecture of the fully connected domain
classifier. For the AugMix augmentation policy, both the severity of base augmentation
operators and the number of augmentation chains was set to 3. The stochastic depth of
augmentation chains was set to -1 and alpha to 0.1. The ColorAug policy was implemented
using ColorJitter as provided by the Torchvision Python package. Adaptation ranges for
brightness, contrast, and saturation were set to a range of [-0.3, 0.3]. In total, the ResNet50-
based feature extractor contains 23.5M trainable parameters, the DR severity classifier 10.2k
parameters and the domain classifier 3.1M parameters.

Figure B: Domain Classifier architecture.
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Appendix C. Extension Quantitative Results: Internal datasets

Table A: Performance in terms of accuracy (ACC) (mean ± standard deviation) of our
models on the test sets of the camera domains in the EyePACS dataset, trained
with five different random seeds. SC: Single-camera training on camera A, MC:
Multi-camera training on cameras A, B and C, DA: Domain adversarial training
on cameras A, B and C. All values are percentages. Best performing model in
bold, second best underlined.

ACC [%] Camera A Camera B Camera C Camera D Camera E Avg

SC 75.2±1.1 80.8±1.1 77.7±2.1 67.2±4.5 81.7±0.8 76.5

SC ColorAug 78.7±1.1 81.1±1.4 78.4±1.9 63.3±7.3 80.0±3.3 76.3

SC AugMix 78.9±0.6 78.3±1.2 72.3±2.0 53.9±3.4 74.9±1.7 71.7

MC 79.2±4.1 81.5±2.0 83.3±3.2 67.8±2.7 82.5±2.8 78.8

MC ColorAug 73.0±7.3 77.2±3.5 75.2±1.5 59.1±1.6 76.4±5.7 72.2

MC AugMix 82.1±1.7 85.3±1.1 85.1±1.1 79.7±4.6 83.1±1.1 83

DA (RADR) 81.5±2.1 84.1±1.7 85.4±0.8 79.1±5.0 83.6±1.4 82.7

DA ColorAug 74.5±8.0 80.2±4.4 80.7±5.5 60.5±1.3 78.1±6.1 74.8

DA AugMix 81.2±0.4 84.7±0.3 84.1±0.8 75.4±1.6 82.7±1.3 81.6
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