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ABSTRACT

Understanding the decision-making process of Graph Neural Networks (GNNs)
is crucial to their interpretability. Most existing methods for explaining GNNs
typically rely on training auxiliary models, resulting in the explanations remain
black-boxed. This paper introduces Graph Output Attribution (GOAt), a novel
method to attribute graph outputs to input graph features, creating GNN explana-
tions that are faithful, discriminative, as well as stable across similar samples. By
expanding the GNN as a sum of scalar products involving node features, edge fea-
tures and activation patterns, we propose an efficient analytical method to compute
contribution of each node or edge feature to each scalar product and aggregate the
contributions from all scalar products in the expansion form to derive the impor-
tance of each node and edge. Through extensive experiments on synthetic and
real-world data, we show that our method not only outperforms various state-of-
the-art GNN explainers in terms of the commonly used fidelity metric, but also
exhibits stronger discriminability, and stability by a remarkable margin. Code can
be found at: https://github.com/sluxsr/GOAt.

1 INTRODUCTION

Graph Neural Networks (GNNs) have demonstrated notable success in learning representations
from graph-structured data in various fields (Kipf & Welling, 2017; Hamilton et al., 2017; Xu et al.,
2019). However, their black-box nature has driven the need for explainability, especially in sectors
where transparency and accountability are essential, such as finance (Wang et al., 2021), health-
care (Amann et al., 2020), and security (Pei et al., 2020). The ability to interpret GNNs can provide
insights into the mechanisms underlying deep models and help establish trustworthy predictions.

Existing attempts to explain GNNs usually focus on local-level or global-level explainability. Local-
level explainers (Ying et al., 2019; Luo et al., 2020; Schlichtkrull et al., 2021; Vu & Thai, 2020;
Huang et al., 2022; Lin et al., 2021; Shan et al., 2021; Bajaj et al., 2021) typically train a secondary
model to identify the critical graph structures that best explain the behavior of a pretrained GNN for
specific input instances. Global-level explainers (Azzolin et al., 2023; Huang et al., 2023) perform
prototype learning or random walk on the explanation instances to extract the global concepts or
counterfactual rules over a multitude of graph samples. While global explanations can be robust,
local explanations are more intuitive and fine-grained.

In this paper, we introduce a computationally efficient local-level GNN explanation technique called
Graph Output Attribution (GOAt) to overcome the limitations of existing methods. Unlike meth-
ods that rely on back-propagation with gradients (Pope et al., 2019; Baldassarre & Azizpour, 2019;
Schnake et al., 2021; Feng et al., 2022) and those relyinig on hyper-parameters or training complex
black-box models (Luo et al., 2020; Lin et al., 2021; Shan et al., 2021; Bajaj et al., 2021), our ap-
proach enables attribution of GNN output to input features, leveraging the repetitive sum-product
structure in the forward pass of a GNN.

Given that the matrix multiplication in each GNN layer adheres to linearity properties and the acti-
vation functions operate element-wise, a GNN can be represented in an expansion form as a sum of
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scalar product terms, involving input graph features, model parameters, as well as activation patterns
that indicate the activation levels of the scalar products. Based on the notion that all scalar variables
Xi in a scalar product term g = cX1X2 . . . XN contribute equally to g, where c is a constant, we
can attribute each product term to its corresponding factors and thus to input features, obtaining the
importance of each node or edge feature in the input graph to GNN outputs. We present case stud-
ies that demonstrate the effectiveness of our analytical explanation method GOAt on typical GNN
variants, including GCN, GraphSAGE, and GIN.

Besides the fidelity metric, which is commonly used to assess the faithfulness of GNN explana-
tions, we introduce two new metrics to evaluate the discriminability and stability of the explanation,
which are under-investigated by prior literature. Discriminability refers to the ability of explana-
tions to distinguish between classes, which is assessed by the difference between the mean expla-
nation embeddings of different classes, while stability refers to the ability to generate consistent
explanations across similar data instances, which is measured by the percentage of data samples
covered by top-k explanations. Through comprehensive experiments based on on both synthetic
and real-world datasets along with qualitative analysis, we show the outstanding performance of our
proposed method, GOAt, in providing highly faithful, discriminative, and stable explanations for
GNNs, as compared to a range of state-of-the-art methods.

2 PROBLEM FORMULATION

Graph Neural Networks. Let G = (V, E) be a graph, where V = {v1, v2, . . . , vN} denotes the set
of nodes and E ⊆ V×V denotes the set of edges. The node feature matrix of the graph is represented
by X ∈ R

N×d, and the adjacency matrix is represented by A ∈ {0, 1}N×N such that Aij = 1 if
there exists an edge between nodes vi and vj . The task of a GNN is to learn a function f(G), which
maps the input graph G to a target output, such as node labels, graph labels, or edge labels. Formally

speaking, for a given GNN, the hidden state h
(l)
i of node vi at its layer l can be represented as:

h
(l)
i = COMBINE(l)

{
h
(l−1)
i ,AGGREGATE(l)

({
h
(l−1)
j , ∀vj ∈ Ni

})}
, (1)

where Ni represents the set of neighbors of node vi in the graph. COMEBINE(l)(·) is a COM-

BINE function such as concatenation (Hamilton et al., 2017), while AGGREGATE(l)(·) are AG-
GREGATE functions with aggregators such as ADD. We focus on GNNs that adopt the non-linear
activation function ReLU in COMBINE or AGGREGATE functions.

Local-level GNN Explainability. Our goal is to generate a faithful explanation for each graph
instance G = (V, E) by identifying a subset of edges S ⊆ E , which are important to the predic-
tions, given a GNN f(·) pretrained on a set of graphs G. We highlight edges instead of nodes as
suggested by (Faber et al., 2021) that edges have more fine-grained information than nodes while
giving human-understandable explanations like subgraphs.

3 METHOD

The fundamental idea of our approach can be summarized as two key points: i) Equal Contribution
of product terms; ii) Expanding the output representation to product terms. Before diving into the
mathematical definitions, we briefly describe them by toy examples as following.

Equal Contribution. Given a product term z = 10A11A12A23, where the variables A11 = A12 =
A23 = 1 indicate that all three edges exist, resulting in z = 10. If any of the edges is missing, i.e., at
least one of A11, A12, A23 is 0, then z = 0. This fact implies that the presence of all edges is equally
essential for the resulting value of z = 0. Therefore, each of the three edges contributes 1/3 to the
output, resulting in an attribution of 10/3.

Expand the output representation. The output matrix of a GNN can be described as the outcome
of a linear transformation involving the input matrices and the GNN parameters. Since the GNNs
are pretrained, the parameters W,B are fixed, hence can be treated as constants. As a result, each
element within the output matrix can be represented as the sum of scalar products that involve
entries from the inputs. Consequently, we can determine the attribution of an edge, by summing its
contribution across all the scalar products in which it participates. For example, if the expansion
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form of an element in the output matrix is y13 = 10A11A12A23 + 8A11A13A33 + 11A12A21A13,
then the attribution of A11 to y13 is 10/3 + 8/3 = 6 since A11 does not participate in the term
11A12A21A13.

The rest of this section begins by presenting our fundamental definition of equal contribution in a
product term. Then, we mathematically present GOAt method for explaining typical GNNs, fol-
lowed by a case study on GCN (Kipf & Welling, 2017). Additional case studies of applying GOAt
to GraphSAGE (Hamilton et al., 2017) and GIN (Xu et al., 2019) are included in Appendix E and D.
The code implementing our algorithm is included in the Supplementary Material of our submission.

3.1 EQUAL CONTRIBUTION

Definition 1 (Equal Contribution). Given a function g(X) where X = {X1, . . . , XM} represents
M variables, we say that variables Xi and Xj have equal contribution to function g at (xi, xj)
with respect to the base manifold at (x′

i, x
′
j) if and only if setting Xi = xi, Xj = x′

j and setting

Xi = x′
i, Xj = xj yield the same manifold, i.e.,

gXi=xi,Xj=x′
j
(X\{Xi, Xj}) = gXi=x′

i,Xj=xj
(X\{Xi, Xj})

for any values of X excluding Xi and Xj .

Lemma 2 (Equal Contribution in a product). Given a function g(X) defined as g(X) =

b
∏M
k=1 Xk, where b is a constant, and X = {X1, . . . , XM} represents M uncorrelated variables.

Each variable Xk is either 0 or xk, depending on the absence or presence of a certain feature. Then,
all the variables in X contribute equally to g(X) at [x1, . . . , xM ] with respect to [0, . . . , 0].

Proofs of all Lemmas and Theorems can be found in the Appendix. Since all the binary variables

have equal contribution, we define the contribution of each variable Xk to g(X) = b
∏M
k=1 Xk for

all k = 1, . . . ,M , as

IXk
=

b
∏M

i=1 xi

M
. (2)

3.2 EXPLAINING GRAPH NEURAL NETWORKS VIA ATTRIBUTION

A typical GNN (Kipf & Welling, 2017; Hamilton et al., 2017; Xu et al., 2019) for node or graph
classification tasks usually comprises 2-6 message-passing layers for learning node or graph repre-
sentations, followed by several fully connected layers that serve as the classifier. With the hidden

state h
(l)
i of node vi at the l-th message-passing layer defined as Equation (1), we generally have the

hidden state H(l) of a data sample as:

H
(l) = σ

(
Φ(l)

((
A+ ǫ

(l)
I
)
H

(l−1)
)
+ λΨ(l)

(
H

(l−1)
))

, (3)

where A is the adjacency matrix, ǫ(l) refers to the self-loop added to the graph if fixed to 1, other-

wise it is a learnable parameter, σ(·) is the element wise activation function, Φ(l) and Ψ(l) can be
Multilayer Perceptrons (MLP) or linear mappings, λ ∈ {0, 1} determines whether a concatenation

is required. If the COMBINE step of a GNN requires a concatenation, we have λ = 1 and ǫ(l) = 1;

if the COMBINE step requires a weighted sum, we have ǫ(l) set trainable and λ = 0. Alternatively,
Equation (3) can be expanded to:

H
(l) = σ

(

AH
(l−1)

K∏

k=1

W
Φ

(l)
k + ǫ

(l)
H

(l−1)
K∏

k=1

W
Φ

(l)
k + λH

(l−1)
Q∏

q=1

W
Ψ

(l)
q

)

, (4)

where K,Q refer to the number of MLP layers in Φ(l)(·) and Ψ(l)(·), and WΦ
(l)
k and WΨ(l)

q are the

trainable parameters in Φ
(l)
k and Ψ

(l)
q .

Given a certain data sample and a pretrained GNN, for an element-wise activation function we can
define the activation pattern as the ratio between the output and input of the activation function:

Definition 3 (Activation Pattern). Denote H(l)′ and H(l) as the hidden representations before and
after passing through the element-wise activation function at the l-th layer, we define activation
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pattern P (l) for a given data sample as

P
(l)
i,j =





H
(l)
i,j

H
(l)′
i,j

, if H
(l)′
i,j 6= 0

0, otherwise

where P
(l)
i,j is the element-wise activation pattern for the j-th feature of i-th node at layer l.

Hence, the hidden state H(l) at the l-th layer for a given sample can be written as

H
(l) = P

(l) ⊙

(

AH
(l−1)

K∏

k=1

W
Φ

(l)
k + ǫ

(l)
H

(l−1)
K∏

k=1

W
Φ

(l)
k + λH

(l−1)
Q∏

q=1

W
Ψ

(l)
q

)

, (5)

where ⊙ represents element-wise multiplication. Thus, we can expand the expression of each output
entry in a GNN f(A,X) into a sum of scalar products, where each scalar product is the multipli-
cation of corresponding entries in A, X , W , and P in all layers. Then each scalar product can be
written as

z = C·
(
P

(1)
α10,β11

. . . P
(L)
αL0,βL1

)(
P (c1)
αL0,γ11

. . . P
(c(M−1))
αL0,γ(M−1)1

)
·

(
A(L)
αL0,αL1

. . . A(1)
α10,α11

)
Xi,j

(
W

(1)
β10,β11

. . .W
(L)
βL0,βL1

)(
W (c1)
γ10,γ11

. . .W (cM )
γM0,γM1

)
,

(6)

where C is a constant, ck refers to the k-th layer of the classifier, (αl0, αl1), (βl0, βl1), (γl0, γl1)
are (row, column) indices of the corresponding matrices at layer l. In a classifier with M MLP

layers, only (M − 1) layers adopt activation functions. Therefore, we do not have P
(cM )
αL0,γM1 in

Equation (6). For scalar products without factors of A, all A’s are considered as constants equal to
1 in Equation (6). Since the GNN model parameters are pretrained and fixed, we only consider A,
X , and all the P terms as the variables in each product term, where A is the dominant one as we
explained in Section 2.

Lemma 4 (Equal Contribution variables in the GNN expansion form’s scalar product). For a
scalar product term z in the expansion form of a pretrained GNN f(·), when the number of nodes
N is large, all variables in z have equal contributions to the scalar product z.

For the purpose of theoretical analysis, in the lemmas, we take the assumption that there are large
number of nodes in the graphs. We demonstrate later in the experiments that “a large number of
nodes” is not required in practical application of GOAt.

Hence, by Equation (2), we can calculate the contribution Iν(z) of a variable ν (i.e., an entry in A,
X and P matrices) to each scalar product z (given by Equation (6)) by:

Iν(z) =
z

|V (z)|
, (7)

where function V (·) represents the set of variables in its input, and |V (z)| denotes the number of
unique variables in z, e.g., V (x2y) = {x, y}, and |V (x2y)| = 2.

Similar to Section 3.1, an entry fm,n(A,X) of the output matrix f(A,X) can be expressed by the
sum of all the related scalar products as

fm,n(A,X) =
∑

C·
(
P

(1)
α10,β11

. . . P
(L)
m,βL1

)
·
(
P

(c1)
m,γ11 . . . P

(c(M−1))
m,γ(M−1)1

)
·
(
A

(L)
m,αL1

. . . A
(1)
α10,α11

)

·Xi,j ·
(
W

(1)
β10,β11

. . .W
(L)
βL0,βL1

)
·
(
W

(c1)
γ10,γ11 . . .W

(cM )
γM0,n

)
,

(8)

where summation is over all possible (αl0, αl1), (βl0, βl1), (γl0, γl1), for message passing layer l =
1, . . . , L or classifier layer l = 1, . . . ,M , as well as all i, j indices for X . By summing up the
contribution of each variable ν among the entries in the A, X and P ’s in all the scalar products in
the expansion form of fm,n(·), we can obtain the contribution of ν to fm,n(·) as:

Iν(fm,n(·)) =
∑

z in fm,n(·) that contain ν

z

|V (z)|
. (9)
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Theorem 5 (Contribution of variables in the expansion form of a pretrained GNN). Given
Equations (7) and (9), for each variable ν (i.e., an entry in A, X and P matrices), when the number
of nodes N is large, we can approximate Iν(fm,n(·)) by:

Iν(fm,n(·)) =
∑

z in fm,n(·) that contain ν

O(ν, z)∑
ρ in z O(ρ, z)

· z, (10)

where O(ν, z) denotes the number of occurrences of ν among the variables of z.

Recall that |V (z)| stand for the number of unique variables in z. Hence the total number of occur-
rences of all the variables

∑
ρ in z O(ρ, z) is not necessarily equal to |V (z)|. For example, if all of

{A(1)
α10,α11 , . . . , A

(L)
αL0,αL1} in z are unique entries in A, then they can be considered as L indepen-

dent variables in the function representing z. If two of these occurrences of variables refer to the
same entry in A, then there are only (L− 1) unique variables related to A.

Although Theorem 5 gives the contribution of each entry in A, X and P ’s, we need to further at-

tribute P ’s to A and X and allocate the contribution of each activation pattern P
(r)
a,b to node features

X and edges A by considering all non-zero features in Xa of node va and the edges within m hops

of node va, as these inputs may contribute to the activation pattern P
(r)
a,b . However, determining the

exact contribution of each feature that contributes to P
(r)
a,b is not straightforward due to non-linear ac-

tivation. We approximately attribute all relevant features equally to P
(r)
a,b . That is, each input feature

ν that has nonzero contribution to P
(r)
a,b will share an equal contribution of I

P
(r)
a,b

(fm,n(·))/|V (P
(r)
a,b )|,

where |V (P
(r)
a,b )| denotes the number of distinct node and edge features in X and A contributing to

P
(r)
a,b , which is exactly all non-zero features in Xa of node va and the adjacency matrix entries within

r hops of node va. Finally, based on Equation (10), we can obtain the contribution of an input feature
ν in X , A of a graph instance to the (m,n)-th entry of the GNN output f(·) as:

Îν(fm,n(·)) = Iν(fm,n(·)) +
∑

P
(r)
a,b

in fm,n(·),with ν inP
(r)
a,b

I
P

(r)
a,b

(fm,n(·))

|V (P
(r)
a,b )|

, (11)

where ν is an entry in the adjacency matrix A or the input feature matrix X , P
(r)
a,b denotes an entry

in all the activation patterns. Thus, we have attributed f(·) to each input feature of a given data
instance.

Our approach meets the completeness axiom, which is a critical requirement in attribution meth-
ods (Sundararajan et al., 2017; Shrikumar et al., 2017; Binder et al., 2016). This axiom guaran-
tees that the attribution scores for input features add up to the difference in the GNN’s output
with and without those features. Passing this sanity check implies that our approach provides a
more comprehensive account of feature importance than existing methods that only rank the top
features (Bajaj et al., 2021; Luo et al., 2020; Pope et al., 2019; Ying et al., 2019; Vu & Thai, 2020;
Shan et al., 2021).

3.3 CASE STUDY: EXPLAINING GRAPH CONVOLUTIONAL NETWORK (GCN)

GCNs use a simple sum in the combination step, and the adjacency matrix is normalized with the
diagonal node degree matrix D. Hence, the hidden state of a GCN’s l-th message-passing layer is:

H(l) = ReLU
(
V H(l−1)W (l) +B(l)

)
, (12)

where V = D− 1
2 (A + I)D− 1

2 represents the normalized adjacency matrix with self-loops added.
Suppose a GCN has three convolution layers and a 2-layer MLP as the classifier, then its expansion
form without the activation functions ReLU(·) will be:

f(V,X) 6P = V
(3)

V
(2)

V
(1)

XW
(1)

W
(2)

W
(3)

W
(c1)W

(c2) + V
(3)

V
(2)

B
(1)

W
(2)

W
(3)

W
(c1)W

(c2)

+ V
(3)

B
(2)

W
(3)

W
(c1)W

(c2) +B
(3)

W
(c1)W

(c2) +B
(c1)W

(c2) +B
(c2),

(13)
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Figure 1: Fidelity performance averaged across 10 runs on the pretrained GCNs for the datasets at
different levels of average sparsity.

where V (l) = V is the normalized adjacency matrix in the l-th layer’s calculation. In the ac-

tual expansion form with the activation patterns, the corresponding P (m)’s are multiplied when-

ever there is a W (m) or B(m) in a scalar product, excluding the last layer W (c2) and B(c2).

For example, in the scalar products corresponding to V (3)V (2)V (1)XW (1)W (2)W (3)W (c1)W (c2),
there are eight variables consisting of four P ’s, one X , and three V ’s. By Equation (10), an ad-

jacency entry Vi,j itself will contribute 1
8 of p(V (3)V

(2)
:i V

(1)
i,j Xj:W

(1)W (2)W (3)W (c1)W (c2)) +

p(V
(3)
:i V

(2)
i,j V

(1)
j: XW (1)W (2)W (3)W (c1)W (c2))+p(V

(3)
i,j V

(2)
j: V (1)XW (1)W (2)W (3)W (c1)W (c2)),

where p(·) denotes the results with the element-wise multiplication of the corresponding activation
patterns applied at the appropriate layers. After we obtain the contribution of Vi,j itself on all the
scalar products, we can follow Equation (11) to allocate the contribution of activation patterns to
Vi,j .

With Equation (13), we find that when both V and X are set to zeros, f(·) remains non-zero and is:

f(0,0) = p(B(3)W (c1)W (c2)) + p(B(c1)W (c2)) +B(c2), (14)

where B(c2) is the global bias, and the other terms have non-zero entries at the activated neurons. In
other words, certain GNN neurons in the 3-rd and c1-th layers may already be activated prior to any
input feature being passed to the network. When we do feed input features, some of these neurons
may remain activated or be toggled off. With Equation (11), we consider taking all 0’s of the X
entries, V entries and P entries as the base manifold. Now, given that some of the P entries in GCN
are non-zero when all X and V set to zeros, as present in Equation (14), we will need to subtract the
contribution of each features on these P from the contribution values calculated by Equation (11).

We let P′ represent the activation patterns of f(0,0), then the calibrated contribution ÎcaliVi,j
(f(·)) of

Vi,j is given by:

Î
cali
Vi,j

(f(·)) = ÎVi,j (f(V,X))−
∑

P
′(r)
a,b

in f(0,0),withVi,j inP
′(r)
a,b

I
P

′(r)
a,b

(f(0,0))

|V (P
(r)
a,b )|

. (15)

In graph classification tasks, a pooling layer such as mean-pooling is added after the convolution
layers to obtain the graph representation. To determine the contribution of each input feature, we
can simply apply the same pooling operation as used in the pre-trained GCN. As we mentioned in
Section 2, we aim to obtain the explanations by the critical edges in this paper, since edges have more
fine-grained information than nodes. Therefore, we treat the edges as variables, while considering
the node features X as constants similar to parameters W or B. This setup naturally aggregates the
contribution of node features onto edges. By leveraging edge attributions, we are able to effectively
highlight motifs within the graph structure.

4 EXPERIMENTS

We evaluate the performance of explanations on three variants of GNNs, which are
GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton et al., 2017) and GIN (Xu et al., 2019).
The experiments are conducted on six datasets including both the graph classification datasets
and the node classification datasets. For graph classification task, we evaluate on a synthetic
dataset, BA-2motifs (Luo et al., 2020), and two real-world datasets, Mutagenicity (Kazius et al.,
2005) and NCI1 (Pires et al., 2015). For node classification task, we evaluate on three syn-
thetic datasets (Luo et al., 2020), which are BA-shapes, BA-Community and Tree-grid. We con-
duct a series of experiments on the fidelity, discriminability and stability metrics to compare

6



Published as a conference paper at ICLR 2024

70 75 80 85 90
Average sparsity (%)

10−3

10−2

10−1

100

101

Di
sc
)i%

in
ab

ilit
y

(a)BA-2Motifs

70 75 80 85 90
Average sparsity (%)

10−1

100

Di
sc
)i%

in
ab

ilit
y

(b)Mutagenicity

70 75 80 85 90
A−e)age s(a)sity (%)

10−2

10−1

100

Di
sc
)i%

in
ab

ilit
y

(c)NCI1

GNNEx(laine)
PGEx(laine)

PGM-Explainer
RG-Explainer

SubgraphX
RCExplainer

DEGREE
GOAt (Ours)

Original

Figure 2: Discriminability performance averaged across 10 runs of the explanations produced by
various GNN explainers at different levels of sparsity. "Original" refer to the performance of feeding
the original data into the GNN without any modifications or explanations applied.

Class 0 Class 1

(a)GNNExplainer (b)PGExplainer (c)PGM-Explainer (d)RG-Explainer

(e)SubgraphX (f)RCExplainer (g)DEGREE (h)GOAt (Ours)

(i) Original

Figure 3: Visualization of explanation embeddings on the BA-2Motifs dataset. Subfigure (i) refers
to the visualization of the original embeddings by directly feeding the original data into the GNN
without any modifications or explanations applied.

our method with the state-of-the-art methods including GNNExplainer (Ying et al., 2019), PGEx-
plainer (Luo et al., 2020), PGM-Explainer (Vu & Thai, 2020), SubgraphX (Yuan et al., 2021), CF-
GNNExplainer (Lucic et al., 2022), RCExplainer (Bajaj et al., 2021), RG-Explainer (Shan et al.,
2021) and DEGREE (Feng et al., 2022). We reran these baselines since most of them are not
trained on GraphSAGE and GIN. We implemented RCExplainer as the code is not publicly avail-
able. As outlined in Section 2, we highlight edges as explanations as suggested by (Faber et al.,
2021). For baselines that identify nodes or subgraphs as explanations, we adopt the evaluation setup
from (Bajaj et al., 2021). As space is limited, we will only present the key results here. Fidelity re-
sults on GIN and GraphSAGE, as well as the results of node classification tasks are in Appendix G
and Appendix I. Discussions on the controversial metrics such as accuracy are also moved to the
Appendix I.

Fidelity (Pope et al., 2019; Yuan et al., 2022; Wu et al., 2022; Bajaj et al., 2021) is the decrease
of predicted probability between original and new predictions after removing important edges,
which are used to evaluate the faithfulness of explanations. It is defined as fidelity(S,G) =
fy(G)−fy(G\S). Similar to (Yuan et al., 2022; Xie et al., 2022; Wu et al., 2022; Bajaj et al., 2021),

we evaluate fidelity at different sparsity levels, where sparsity(S,G) = 1− |S|
|E| , indicating the per-

centage of edges that remain in G after the removal of edges in S. Higher sparsity means fewer edges
are identified as critical, which may have a smaller impact on the prediction probability. Figure 1
displays the fidelity results, with the baseline results sourced from (Bajaj et al., 2021). Our proposed
approach, GOAt, consistently outperforms the baselines in terms of fidelity across all sparsity levels,
validating its superior performance in generating accurate and reliable faithful explanations. Among
the other methods, RCExplainer exhibits the highest fidelity, as it is specifically designed for fidelity
optimization. Notably, unlike the other methods that require training and hyperparameter tuning,
GOAt offers the advantage of being a training-free approach, thereby avoiding any errors across
different runs.

Discriminability. It is also known as discrimination ability (Bau et al., 2017; Iwana et al., 2019),
refers to the ability of the explanations to distinguish between the classes. We define the dis-
criminability between two classes c1 and c2 as the L2 norm of the difference between the

mean values of explanation embeddings h
(L)
S of the two classes: discriminability(c1, c2) =∥∥∥ 1

Nc1

∑
i∈c1

h
(L)
Si

− 1
Nc2

∑
j∈c2

h
(L)
Sj

∥∥∥
2
, where Nc1 and Nc2 refer to the number of data samples
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Figure 4: Coverage of the top-k explanations across the datasets.

in class c1 and c2. The embeddings h
(L)
S used for explanations are taken prior to the last-layer clas-

sifier, with node embeddings employed for node classification tasks and graph embeddings utilized
for graph classification tasks. In this procedure, only the explanation subgraph S is fed into the
GNN instead of G. We show the discriminability across various sparsity levels on GCN, as illus-
trated in Figure 2. When we evaluate the discriminability, we filtered out the wrongly predicted data
samples. Therefore, only when GNN makes a correct prediction, the embedding would be included
in the discriminability computation. Due to the significant performance gap between the baselines
and GOAt, a logarithmic scale is employed. Our approach consistently outperforms the baselines
in terms of discriminability across all sparsity levels, demonstrating its superior ability to generate
accurate and reliable class-specific explanations. Notably, at sparsity = 0.7, GOAt achieves higher
discriminability than the original graphs on the BA-2Motifs and NCI1 datasets. This indicates that
GOAt effectively reduces noise unrelated to the investigated class while producing informative class
explanations. Furthermore, we present scatter plots to visualize the explanation embeddings gener-
ated by various GNN explainers. Figure 3 showcases the explanation embeddings obtained from
different GNN explaining methods on the BA-2Motifs dataset, with sparsity = 0.7. More scatter
plots on Mutagenicity and NCI1 and can be found in the Appendix ??. The explanations generated
by GNNExplainer fail to exhibit class discrimination, as all the data points are clustered together
without any distinct separation. While some of the Class 1 explanations produced by PGExplainer,
PGM-Explainer, RG-Explainer, RCExplainer, and DEGREE are noticeably separate from the Class
0 explanations, the majority of the data points remain closely clustered together. As for SubgraphX,
most of its Class 1 explanations are isolated from the Class 0 explanations, but there is a discernible
overlap between the Class 1 and Class 0 data points. In contrast, our method, GOAt, generates ex-
planations that clearly and effectively distinguish between Class 0 and Class 1, with no overlapping
points and a substantial separation distance, highlighting the strong discriminability of our approach.

Stability of extracting motifs. As we will later show in Section ??, it is often observed that datasets
contain specific class motifs. For instance, in the BA-2Motifs dataset, the Class 1 motif exhibits a
"house" structure. To ensure the stability of GNN explainers in capturing the class motifs across di-
verse data samples, we aim for the explanation motifs to exhibit relative consistency for data samples
with similar properties, rather than exhibiting significant variations. To quantify this characteristic,
we introduce the stability metric, which measures the coverage of the top-k explanations across the

dataset: stability =

∑
Si∈Stopk

NSi

N
, where the explanations Si’s are ranked by the number of data

samples that each explanation can explain, i.e., NSi
, Stopk is the set of the top-k explanations based

on the rank, and N is total number of data samples. An ideal explainer should generate explanations
that cover a larger number of data samples using fewer motifs. This characteristic is also highly
desirable in global-level explainers, such as (Azzolin et al., 2023; Huang et al., 2023). We illustrate
the stability of the unbiased class as the percentage converge of the top-k explanations produced on
GCN with sparsity = 0.7 in Figure 4. Our approach surpasses the baselines by a considerable mar-
gin in terms of the stability of producing explanations. Specifically, GOAt is capable of providing
explanations for all the Class 1 data samples using only three explanations. This explains why there
are only three Class 1 scatters visible in Figure 3.

Qualitative analysis. We present the qualitative results of our approach in Table 1, where we
compare it with state-of-the-art baselines such as PGExplainer, SubgraphX, and RCExplainer. The
pretrained GNN achieves a 100% accuracy on the BA-2Motifs dataset. As long as it successfully
identifies one class, the remaining data samples naturally belong to the other class, leading to a
perfect accuracy rate. Based on the explanations from GOAt, we have observed that the GNN
effectively recognizes the "house" motif that is associated with Class 1. In contrast, other approaches
face difficulties in consistently capturing this motif. The Class 0 motifs in the Mutagenicity dataset
generated by GOAt represent multiple connected carbon rings. This indicates that the presence
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Table 1: Qualitative results of the top motifs of each class produced by PGExplainer, SubgraphX,
RCExplainer and GOAt. The percentages indicate the coverage of the explanations.

BA-2Motifs Mutagenicity NCI1
Class0 Class1 Class0 Class1 Class0 Class1

PGExplainer

C

N

C

C CC C C

C C

C

C

Cl

C

C C C

C C

×2

×2 ×N ×N

4.8% 1.8% 1.2% 1.3% 0.1% 0.5%

SubgraphX
Br

C

H H

C

H

C

N

0.4% 12.8% 0.2% 0.2% 0.2% 0.1%

RCExplainer
C

C C

C

C

C C

"�
$

C

H

C

Br

Br

×N ×N ×N

6.4% 6.2% 0.4% 0.5% 0.05% 0.1%

GOAt

×N
×N

C

C

C

×N

C

C

C

C

C

×N

H

C

×N

H

O

×N ×N

3.8% 3.4% 93.4% 4% 3.5% 2.2% 2.2% 1.2% 3.5% 1.2% 4.3% 4.0%

of more carbon rings in a molecule increases its likelihood of being mutagenic (Class 0), while
the presence of more "C-H" or "O-H" bonds in a molecule increases its likelihood of being non-
mutagenic (Class 1). Similarly, in the NCI1 dataset, GOAt discovers that the GNN considers a higher
number of carbon rings as evidence of chemical compounds being active against non-small cell
lung cancer. Other approaches, on the other hand, fail to provide clear and human-understandable
explanations.

5 RELATED WORK

Local-level Graph Neural Network (GNN) explanation approaches have been developed to
shed light on the decision-making process of GNN models at the individual data instance
level. Most of them, such as GNNExplainer (Ying et al., 2019), PGExplainer (Luo et al., 2020),
PGM-Explainer (Vu & Thai, 2020), GraphLime (Huang et al., 2022), RG-Explainer (Shan et al.,
2021), CF-GNNExplainer (Lucic et al., 2022), RCExplainer (Bajaj et al., 2021), CF2 (Tan et al.,
2022), RelEx (Zhang et al., 2021) and Gem (Lin et al., 2021), TAGE (Xie et al., 2022),
GStarX (Zhang et al., 2022) train a secondary model to identify crucial nodes, edges, or subgraphs
that explain the behavior of pretrained GNNs for specific input samples. Zhao et al. (2023) intro-
duces alignment objectives to improve these methods, where the embeddings of the explanation
subgraph and the raw graph are aligned via anchor-based objective, distributional objective based on
Gaussian mixture models, mutualinformation-based objective. However, the quality of the explana-
tions produced by these methods is highly dependent on hyperparameter choices. Moreover, these
explainers’ black-box nature raises doubts about their ability to provide comprehensive explanations
for GNN models. Approaches like SA (Baldassarre & Azizpour, 2019), Grad-CAM (Pope et al.,
2019), GNN-LRP (Schnake et al., 2021), and DEGREE (Feng et al., 2022), which rely on gradient
back-propagation, encounter the saturation problem (Shrikumar et al., 2017). As a result, these meth-
ods may generate less faithful explanations. SubgraphX (Yuan et al., 2021) combines perturbation-
based techniques with pruning using Shapley values. While it can generate some high-quality sub-
graph explanations, its computational cost is significantly high due to the reliance on the MCTS
(Monte Carlo Tree Search). Additionally, as demonstrated in our experiments in Section 4, existing
methods exhibit inconsistencies on similar data samples and poor discriminability. This reinforces
the need for our proposed method GOAt, which outperforms state-of-the-art baselines on fidelity,
discriminability and stability metrics.

6 CONCLUSION

We propose GOAt, a local-level GNN explainer that overcomes the limitations of existing GNN
explainers, in terms of insufficient discriminability, inconsistency on same-class data samples, and
overfitting to noise. We analytically expand GNN outputs for each class into a sum of scalar prod-
ucts and attribute each scalar product to each input feature. Although GOAt shares similar limitations
with some decomposition methods of requiring expert knowledge to design corresponding explain-
ing processes for various GNNs, our extensive experiments on both synthetic and real datasets,
along with qualitative analysis, demonstrate its superior explanation ability. Our method contributes
to enhancing the transparency of decision-making in various fields where GNNs are widely applied.
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A PROOF OF LEMMA 2

Proof. We prove by contradiction. Suppose Lemma 2 is false, then either of the following shall
hold:

i) There exists two variables {Xi, Xj} ⊂ X, which are not equally contribute to g(X) at
(xi, xj) with respect to (0, 0);

ii) There are two variables Xi, Xj ⊂ X that cannot have Xi = xi and Xj = 0 simultaneously,
or Xi = 0 and Xj = xj simultaneously.

We consider contradiction to each of the above statements separately.

i) According to Definition 1, if there exists two variables {Xi, Xj} ⊂ X, which are not equally
contribute to g(X) at (xi, xj) with respect to (0, 0), we should have at least one assignment of X
except for Xi and Xj such that

gXi=xi,Xj=0(X\{Xi, Xj}) 6= gXi=0,Xj=xj
(X\{Xi, Xj}).

However, since

gXi=xi,Ej=0(X\{Xi, Xj}) = gXi=0,Xj=xj
(X\{Xi, Xj}) = 0,

we have reached a contradiction to the first statement.

ii) As all the variables are uncorrelated, the value assigned to one variable has no impact on how
we choose values for the other variables. Therefore, it is possible to have Xi = xi and Xj = 0
simultaneously or to have Xi = 0 and Xj = xj simultaneously for arbitrary two variables Xi and
Xj . We have reached a contradiction to the second statement.

B PROOF OF LEMMA 4

Proof. To prove Lemma 4, we first prove the following Lemma.

Lemma 6. For a scalar product term z in the expansion form of a pretrained GNN f(·), when the
number of nodes N is large, it is feasible to have both νi = xi and νj = 0 or both νi = 0 and
νj = xj for all possible pairs νi, νj of variables in z, where xi, xj indicate the presence of variables
νi, νj , respectively.

Proof. We first show that in the scenario of a large number of nodes N , an arbitrary variable Pc,e
among the variables in z can take any value within its domain while keeping all other variables in z
fixed to certain values.

We begin with defining notations. For a scalar product term z in the expansion of a pretrained

GNN f(·), we let U = A
(L)
αL0,αL1 . . . A

(1)
α10,α11 denotes the factors involving the adjacency matrix A,

P = P
(1)
α10,β11

. . . P
(L)
αL0,βL1

· P (c1)
αL0,γ11 . . . P

(c(M−1))
αL0,γ(M−1)1

denotes the factors involving the activation
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pattern P , and C = W
(1)
β10,β11

. . .W
(L)
βL0,βL1

·W (c1)
γ10,γ11 . . .W

(cM )
γM0,γM1 stands for “reduced to constant”

denoting the product of the related parameters in f(·), such that each product term can be rewritten
as z = UPXi,jC.

The entries in an activation pattern are determined by the hidden representation before being passed
to the activation function. Similar to Equation (9), the (c, e)-th entry of the hidden representation
at the l-th layer before the activation function can be expressed by the sum of all the related scalar
products as

h(l)′
c,e =

α,β,ρ∑
[(

A(l)
c,αl1

W
(l)
βl0,e

l−1∏

m=1

P
(m)
αm0,βm1

A(m)
αm0,αm1

W
(m)
βm0,βm1

)
Xρm0,ρm1

]
.

When none of the variables in h
(l)′
c,e are constrained, the mathematical range of h

(l)′
c,e is R. Let

c(h
(l)′
c,e , z) be the sum of scalar products involving the variables in z. If the range of (h

(l)′
c,e−c(h

(l)′
c,e , z))

is also R when none of the variables in it is constrained, then Pc,e can take any value within its do-
main while keeping the variables in z fixed to some certain values. In other words, if there is at

least one scalar product in (h
(l)′
c,e − c(h

(l)′
c,e , z)), then Pc,e can take any value within its domain while

holding the variables in z fixed to certain values.

The sum of scalar products involving Xi,j is

c(h(l)′
c,e , Xi,j) =

α,β∑
[(

A(l)
c,αl1

W
(l)
βl0,e

l−1∏

m=1

P
(m)
αm0,βm1

A(m)
αm0,αm1

W
(m)
βm0,βm1

)
Xi,j

]
.

The sum of scalar products involving an arbitrary variable Aa,b in U is

c(h(l)′
c,e , Aa,b) =

α,β,ρ∑
[(

A(l)
c,αl1

W
(l)
βl0,e

l−1∏

m=1

P
(m)
αm0,βm1

A(m)
αm0,αm1

W
(m)
βm0,βm1

)
Xρm0,ρm1

]
,where

at least one of {A(l)
c,αl1

, A(l−1)
α(l−1)0,α(l−1)1

, . . . , A(1)
α10,α11

} isAa,b.

The sum of scalar products involving an arbitrary variable Pg,h in P is

c(h(l)′
c,e , Pg,h) =

α,β,ρ∑
[(

A(l)
c,αl1

W
(l)
βl0,e

l−1∏

m=1

P
(m)
αm0,βm1

A(m)
αm0,αm1

W
(m)
βm0,βm1

)
Xρm0,ρm1

]
,where

one of {P (l−1)
α(l−1)0,β(l−1)1

, . . . , P
(1)
α10,β11

} isPg,h.

Then the number of scalar products in (h
(l)′
c,e − c(h

(l)′
c,e , z)) is

|h(l)′
c,e − c(h(l)′

c,e , z)| ≥ |h(l)′
c,e | − |c(h(l)′

c,e , Xi,j)| − l · |c(h(l)′
c,e , Aa,b)| − (l − 1) · |c(h(l)′

c,e , Pg,h)|,

where |h(l)′
c,e |, |c(h(l)′

c,e , Xi,j)|, |c(h(l)′
c,e , Aa,b)|, |c(h(l)′

c,e , Pg,h)| represents the number of scalar products

in h
(l)′
c,e , c(h

(l)′
c,e , Xi,j), c(h

(l)′
c,e , Aa,b), c(h

(l)′
c,e , Pg,h) respectively. Hence if we can prove |h(l)′

c,e | −
|c(h(l)′

c,e , Xi,j)| − l · |c(h(l)′
c,e , Aa,b)| − (l − 1) · |c(h(l)′

c,e , Pg,h)| ≥ 1, then we will also have

|h(l)′
c,e − c(h

(l)′
c,e , z)| ≥ 1 proved. That is, we should prove

|h(l)′
c,e |

|h(l)′
c,e |

− |c(h(l)′
c,e , Xi,j)|
|h(l)′
c,e |

− l · |c(h
(l)′
c,e , Aa,b)|
|h(l)′
c,e |

− (l − 1) · |c(h
(l)′
c,e , Pg,h)|
|h(l)′
c,e |

≥ 1

|h(l)′
c,e |

.

Equivalently, we should prove

|c(h(l)′
c,e , Xi,j)|
|h(l)′
c,e |

+ l · |c(h
(l)′
c,e , Aa,b)|
|h(l)′
c,e |

+ (l − 1) · |c(h
(l)′
c,e , Pg,h)|
|h(l)′
c,e |

≤ 1− 1

|h(l)′
c,e |

.

Note that the first term

|c(h(l)′
c,e , Xi,j)|
|h(l)′
c,e |

=
1

Nd
.
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Since d ≥ 1 is the feature dimension of X , we have limN→∞
|c(h(l)′

c,e ,Xi,j)|

|h
(l)′
c,e |

= 0.

Now consider the second term l · |c(h(l)′
c,e ,Aa,b)|

|h
(l)′
c,e |

:

l · |c(h
(l)′
c,e , Aa,b)|
|h(l)′
c,e |

= l ·
(
l
1

)
N (l−1) +

(
l
2

)
N (l−2) + · · ·+

(
l
l

)
N0

N (l+1)

= l ·
((

l
1

)

N2
+

(
l
2

)

N3
+ · · ·+

(
l
l

)

N (l+1)

)

= l ·
(

l!

1!(l − 1)! ·N2
+

l!

2!(l − 2)! ·N3
+ · · ·+ l!

l!(l − l)! ·N (l+1)

)

=

(
l

1!N
· l

N

)
+

(
l

2!N
· l

N
· l − 1

N

)
+ · · ·+

(
l

l!N
· l

N
· l − 1

N
. . .

1

N

)
.

Since N ≫ l, we have limN→∞
l
N

= 0. Also, because l
N

> l−1
N

> · · · > 1
N

> 1
1!N > · · · > 1

l!N ,

we then have limN→∞ l · |c(h(l)′
c,e ,Aa,b)|

|h
(l)′
c,e |

= 0.

Now we consider the third term (l − 1) · |c(h(l)′
c,e ,Pg,h)|

|h
(l)′
c,e |

:

(l − 1) · |c(h
(l)′
c,e , Pg,h)|
|h(l)′
c,e |

= (l − 1) · 1

N ld

Since N ≫ l and d ≥ 1, we have limN→∞(l − 1) · |c(h(l)′
c,e ,Pg,h)|

|h
(l)′
c,e |

= 0.

For the terms on the right hand side of the inequality, since 1

|h
(l)′
c,e |

≤ |c(h(l)′
c,e ,Xi,j)|

|h
(l)′
c,e |

, we have

limN→∞
1

|h
(l)′
c,e |

= 0. Hence limN→∞ 1− 1

|h
(l)′
c,e |

= 1.

Since 0 < 1, we have prove that when N is large,
|c(h(l)′

c,e ,Xi,j)|

|h
(l)′
c,e |

+ l · |c(h(l)′
c,e ,Aa,b)|

|h
(l)′
c,e |

+ (l − 1) ·
|c(h(l)′

c,e ,Pg,h)|

|h
(l)′
c,e |

≤ 1 − 1

|h
(l)′
c,e |

. Therefore, in scenarios with a large number of nodes N , an arbitrary

variable Pc,e in P can take any value within its domain while keeping all other variables in z fixed
to certain values.

If the data is properly preprocessed, a feature Xi,j and the unique entries in A should be uncorrelated
with each other. Also, from the above proof we can conclude that when N is large, any arbitrary
variables in z can be freely set to “absence” or “present” without affecting other variables. That is,
in scenarios with a large number of nodes N , it is always feasible to hold

• both Xi,j = 0 and Aa,b = Aa,b, as well as both Xi,j = xi,j and Aa,b = 0;

• both Ak,n = 0 and Aa,b = Aa,b, as well as both Ak,n = Ak,n and Aa,b = 0;

• both Xi,j = 0 and Pc,e = pc,e, as well as both Xi,j = xi,j and Pc,e = 0;

• both Aa,b = 0 and Pc,e = pc,e, as well as both Aa,b = Aa,b and Pc,e = 0;

• both Pc,e = 0 and Pg,h = pg,h, as well as Pc,e = pc,e and Pg,h = 0,

without affecting other variables in z, where Xi,j , Aa,b, Ak,n, Pc,e, Pg,h refers to the variables in z.
Hence we have proved Lemma 6.

Next, we prove by contradiction that for all possible variable pairs (νi, νj) among the unique
variables in z, we have (νi, νj) contribute equally to z at (xi, xj) with respect to (0, 0) , where
νi = xi, νj = xj means the “presence” of the variables.
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Assume there exists two variables (νi, νj) in V (z) that are not equally contribute to z at (xi, xj)
with respect to (0, 0). Then by Definition 1, we should have one assignment of other variables in z,
such that

zνi=xi,νj=0(V (z)\{νi, νj}) 6= zνi=0,νj=xj
(V (z)\{νi, νj}).

However, since

zνi=xi,νj=0(V (z)\{νi, νj}) = zνi=0,νj=xj
(V (z)\{νi, νj}) = 0,

we have reached a contradiction. Hence we have proved Lemma 4.

C PROOF OF THEOREM 5

Proof. If the total number of unique variables in a scalar product equals to the total number of
occurences of all the unique variables, i.e., if |V (z)| =

∑
ρ in z O(ρ, z), we will have Iν(z) =

z
|V (z)| = O(ν,z)·z∑

ρ in z O(ρ,z) . This is because when |V (z)| =
∑
ρ in z O(ρ, z), all the occurrences of

variables are unique variables, and we have O(ν, z) = 1. Consider Iν(fm,n(·)) as the sum of two

components, which are the contribution Iν(f
V=O
m,n (·)) of ν to the scalar products where |V (z)| =∑

ρ in z O(ρ, z) holds, and the contribution Iν(f
V 6=O
m,n (·)) of ν to the scalar products where |V (z)| =∑

ρ in z O(ρ, z) does not hold. That is,

Iν(fm,n(·)) = Iν(f
V=O
m,n (·)) + Iν(f

V 6=O
m,n (·)).

We are not able to have multiple occurrences of X or P in a scalar product, but only able to have
multiple occurrences of A. Considering the scalar products are bounded by a value of c, we have

Iν(f
V 6=O
m,n (·))

Iν(fm,n(·))
≤

c ·
[(
L
2

)
NL−1 + · · ·+

(
L
L

)
N
]

c ·NL+1

=
L!NL−1

2!(L− 2)!NL+1
+ · · ·+ L!N

(L)!0!NL+1

=
L(L− 1)

2!N2
+ · · ·+ 1

NL

≤ L2

N2
+ · · ·+ L2

N2
,

Since N ≫ L, we have

lim
N→∞

Iν(f
V 6=O
m,n (·))

Iν(fm,n(·))
= 0.

Therefore, when N is large, Iν(fm,n(·)) = Iν(f
V=O
m,n (·)). Hence, by Equation (10), we have proved

that when N is large, Iν(fm,n(·)) =
∑
z in fm,n(·) that contain ν

O(ν,z)∑
ρ in z O(ρ,z) · z.

D CASE STUDY: EXPLAINING GRAPH ISOMORPHISM NETWORK (GIN)

GIN adopts weighted sum at the COMBINE step, hence the hidden state of a GIN’s l-th layer is:

H(l) = Φ(l)
(
ÂH(l−1) + ǫ(l)H(l−1)

)
, (16)

where Â = A+ I refers to the adjacency matrix with the self-loops, ǫ(l) is a trainable scalar param-

eter. If Φ(l)(·) is a 2-layer MLP, expanding Φ(l), we have

H(l) = ReLU
(
ReLU

(
ÂH(l−1)WΦ

(l)
1 + ǫ(l)H(l−1)WΦ

(l)
1 +BΦ

(l)
1

)
WΦ

(l)
2 +BΦ

(l)
2

)
. (17)
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Suppose a GIN f(Â,X) has three message-passing layers and a 2-layer MLP as the classifier, then
its expansion form without the activation functions ReLU(·) will be

f(Â,X) 6P = Xǫ
(3)

ǫ
(2)

ǫ
(1)

W
Φ

(1)
1 W

Φ
(1)
2 W

Φ
(2)
1 W

Φ
(2)
2 W

Φ
(3)
1 W

Φ
(3)
2 W

(c1)W
(c2)
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(3)

Â
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(18)

Then similar to the case study on GCN and GraphSAGE, the activation patterns are multiplied to
each of the scalar products. Although Equation (18) may appear complex, we can observe a pattern

that when Â(l) is present in a product term, the corresponding ǫ(l) is not. This observation allows us
to simplify the expression by using for loops to cover all the product terms. The code of explaining
GIN on the graph classification task is in the package of Supplementary Material.

E CASE STUDY: EXPLAINING GRAPHSAGE (SAMPLE AND AGGREGATE)

GraphSAGE adopts concatenation at the COMBINE step, hence the hidden state of a GraphSAGE’s
l-th layer is

H(l) = ReLU
(
AH(l−1)W (l)φ +H(l−1)W (l)ψ +B(l)

)
, (19)

where W (l)φ and W (l)ψ represents the trainable parameters for concatenating the node information
and its neighborhood information. Suppose a GraphSAGE network f(A,X) has three message-
passing layers and a 2-layer MLP as the classifier, then its expansion form without the activation
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functions ReLU(·) will be

f(A,X) 6P = XW
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(20)

Then all the other steps will be identical to the case study of GCN. The code of explaining Graph-
SAGE on the graph classification task is in the package of Supplementary Material.

F HANDLING BATCH NORMALIZATION LAYER

In certain cases, Batch Normalization (BN) may be applied between the message-passing layers. In
this section, we will elaborate on how BN layer is handled to provide explantions with GOAt. The
formula of BN is

y =
x− µ√
δ + ε

·W +B, (21)

where µ is the running mean, δ is the running variance, ε is a prefixed small value, W , B are
learnable parameters. During the evaluation mode of a pretrained GNN, µ, δ, ε, W and B are fixed.

As a result, we can treat the Batch Normalization (BN) layer as a linear mapping y = xW (BN) +
B(BN) while obtaining GNN explanations with GOAt, where

W (BN) =
W√
δ + ε

, B(BN) =
−µ ·W√
δ + ε

+B. (22)

G FIDELITY RESULTS OF EXPLAINING GRAPHSAGE AND GIN
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Figure 5: Fidelity performance averaged across 10 runs on the pretrained GraphSAGE for the
datasets at different levels of average sparsity.
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Figure 6: Fidelity performance averaged across 10 runs on the pretrained GIN for the datasets at
different levels of average sparsity.

H STATISTICS AND IMPLEMENTATION DETAILS

The GNNs are trained using the following data splits: 80% for the training set, 10% for the validation
set, and 10% for the testing set. All experiments are conducted on an Intel® Core™ i7-10700
Processor and NVIDIA GeForce RTX 3090 Graphics Card. The GNN architectures consist of 3
message-passing layers and a 2-layer classifier. The hidden dimension is set to 32 for BA-2Motifs,
BA-Shapes, BA-Community, Tree-grid, and 64 for Mutagenicity and NCI1. The code is available
in the Supplementary Material, provided alongside this Appendix file.

Table 2: Statistics of the datasets used and the classification accuracy of the trained GNNs.

BA- BA- Tree- BA-
Mutagenicity NCI1

Shapes Community Grid 2Motifs

# Graphs 1 1 1 1,000 4,337 4,110
# Nodes (avg) 700 1,400 1,231 25 30.32 29.87
# Edges (avg) 4,110 8,920 3,410 25.48 30.77 32.30
# Classes 4 8 2 2 2 2

Test ACC
GCN 0.97 0.91 0.97 1.00 0.82 0.81
GraphSAGE - - - 1.00 0.80 0.80
GIN - - - 1.00 0.89 0.83

I EXPLANATIONS OF NODE CLASSIFICATION

We utilize scatter plots to visually depict the explanation embeddings produced by GNNExplainer,
PGExplainer, and GOAt, and compare them with the node embeddings in the original graphs. In the
generated figures, we set the value of topk to be 6, 7, and 14 for the BA-Shapes, BA-Community,
and Tree-Grid datasets, respectively. In the case of BA-Shapes and BA-Community, we only plot
the nodes within the house-shape motif, as the other nodes are located far away and may not be
easily discernible in terms of explanation performance.

As presented in Figure 9, the majority of the explanations on the Tree-Grid dataset generated by
GNNExplainer are closely clustered together, and GOAt has fewer overlapped data points than PG-
Explainer. As illustrated in Figure 7 and Figure 8, the explanations generated by GNNExplainer
and PGExplainer fail to exhibit class discrimination on BA-Shapes and BA-Communicty datasets,
as all the data points are clustered together without any distinct separation. In contrast, our method,
GOAt, generates explanations that clearly and effectively distinguish between classes, with fewer
overlapping points and substantial separation distances, highlighting the strong discriminability of
our approach on the node classification task.

Discussion on the AUC/Accuracy metrics. Many existing GNN explanation approaches are eval-
uated using metrics such as AUC or Accuracy. These metrics compare the explanations generated
by the explainers with "ground-truth" explanations that are predetermined by humans. Ground-truth
explanations refer to the underlying evidence that leads to the correct label, rather than the prediction
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Figure 7: Visualization of explanation embeddings on the BA-Shapes dataset. Subfigure (d) refers
to the visualization of the original embeddings by directly feeding the original data into the GNN
without any modifications or explanations applied.
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Figure 8: Visualization of explanation embeddings on the BA-Community dataset. Subfigure (d)
refers to the visualization of the original embeddings by directly feeding the original data into the
GNN without any modifications or explanations applied.

label itself. However, as highlighted by (Faber et al., 2021) there can often be a mismatch between
the ground truth and the GNN. To avoid any potential misunderstandings, we have chosen to directly
present scatter plots of the explanations generated by different explainers.
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Figure 9: Visualization of explanation embeddings on the Tree-Grid dataset. Subfigure (d) refers
to the visualization of the original embeddings by directly feeding the original data into the GNN
without any modifications or explanations applied.

J TIME ANALYSIS

Table 3 presents the average running time per data sample over the six datasets used in our experi-
ments on GCNs. We compared with the outstanding baselines, which are the perturbation-based
method GNNExplainer (Ying et al., 2019), decomposition-based method DEGREE (Feng et al.,
2022), and the search-based method SubgraphX (Yuan et al., 2021). Our approach is much faster
than SubgraphX and GNNExplainer, and runs slightly faster than DEGREE while providing more
faithful, discriminative and stable explanations as demonstrated in Section 4, which showcases the
significance of our method.

Table 3: Average running time per data sample.

BA- BA- Tree- BA-
Mutagenicity NCI1

Shapes Community Grid 2Motifs

GNNExplainer 0.65±0.05s 0.78±0.05s 0.72±0.06s 1.16±0.10s 1.43±0.03s 1.44±0.09s
DEGREE 0.44±0.20s 1.02±0.35s 0.37±0.06s 0.58±0.11s 0.83±0.45s 0.94±0.34s
SubgraphX 81.8±34.9s 138.8±38.3s 56.7±12.1s 95.4±11.7s 419.8±655.6s 541.6±357.0s
GOAt (ours) 0.36±0.00s 0.50±0.00s 0.05±0.00s 0.46±0.00s 0.60±0.22s 0.83±0.39s

K ILLUSTRATIVE EXAMPLE OF GOAT
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Figure 10: Illustrative example of GOAt.
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