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ABSTRACT

Pairwise models like the Ising model or the generalized Potts model have found
many successful applications in fields like physics, biology, and economics. Closely
connected is the problem of inverse statistical mechanics, where the goal is to infer
the parameters of such models given observed data. An open problem in this
field is the question of how to train these models in the case where the data
contain additional higher-order interactions that are not present in the pairwise
model. In this work, we propose an approach based on Energy-Based Models
and pseudolikelihood maximization to address these complications: we show that
hybrid models, which combine a pairwise model and a neural network, can lead to
significant improvements in the reconstruction of pairwise interactions. We show
these improvements to hold consistently when compared to a standard approach
using only the pairwise model and to an approach using only a neural network.
This is in line with the general idea that simple interpretable models and complex
black-box models are not necessarily a dichotomy: interpolating these two classes
of models can allow to keep some advantages of both.

1 INTRODUCTION

An important class of distributions used in the modeling of natural systems is the exponential family
of pairwise models. Commonly investigated in the statistical physics community, pairwise models
are a popular method for the analysis of categorical sequence data. Examples of data on which they
have been successfully applied include protein sequence data (Morcos et al., 2011; Marks et al.,
2012; Cocco et al., 2018), neuronal recordings (Roudi et al., 2009; Tkačik et al., 2014), magnetic
spins (Fisher & Huse, 1986), economics and social networks (Stauffer, 2008; Sornette, 2014; Hall &
Bialek, 2019).

One main advantage of these models is their relative simplicity: The probability assigned to a
sequence s of binary or categorical variables is of the form p(s) ∝ exp(−E(s)), where E is a
simple function of s, meaning that it consists of terms that depend on only one or two variables. The
parameters quantifying the pairwise interactions are typically called couplings.

Given this simple form, the parameters can often be given a direct interpretation in terms of the un-
derlying system. Especially the couplings have been shown to contain highly non-trivial information
in many cases: The couplings in the so-called Potts Models for protein sequence data can be seen
as a measure for the strength of co-evolutionary pressure between parts of the sequence and can
be used for the prediction of structural features (Morcos et al., 2011); the couplings in models for
neuronal recordings can be seen as the functional couplings between neurons (Roudi et al., 2009); the
couplings in magnetic systems of interacting spins can be seen as describing their physical interaction
strength.

While pairwise models have been surprisingly successful in many fields, they have clear limitations:
If the data generating process contains important interactions that cannot be described as pairwise
interactions, the models might fail to capture important variability. Even worse, if such interactions
are strong enough, the pairwise models might even stop to describe the pairwise interactions properly
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since they might contain effective pairwise interactions that try to include the variability of the
higher-order interactions. In fact, it is known in literature that for example some variability in protein
sequences is due to higher-order epistasis, including more than 2 residues (Waechter et al., 2012).

Several methods have been proposed to address such problems, for example the ‘manual’ addition
of higher-order interaction terms based on a close look at the data (Feinauer et al., 2014), or the
addition of complete sets of higher-order interactions, for example all terms involving triplets of
variables (Schmidt & Hamacher, 2018).

In this paper, we propose a combination of these two approaches: We develop a strategy for keeping
the simple model with its advantages in place, but add a neural network model to help with the more
complex patterns in the data. This approach seems sensible in cases where we suspect or know that a
simple model is able to capture most of the variability in the data, but that it might fail to capture
some additional aspects or even gets confused by them. We implement this idea defining a new
energy function

E(s) = Epw(s) + Enn(s), (1)

where Epw is a pairwise model and Enn is a neural network that maps a configuration s to a real
number. We then look at cases where the data generating process contains a simple part, corresponding
to another pairwise model, and a more complicated part, corresponding to higher-order interactions.
The hope is that the neural network picks up these higher-order interactions and thus helps the
pairwise model in matching the pairwise interactions of the generative process.

We will focus on the so-called inverse problem of statistical physics, that is reconstructing the pairwise
couplings of a generative model containing also some unknown higher-order interaction terms.

2 METHODS

2.1 PAIRWISE MODELS AND ENERGY-BASED MODELS

We consider a probability distribution p(s) over all possible configurations of N binary variables,
{−1,+1}N . Any such distribution with support over the whole space can be written in the form

p(s) = exp(−E(s))/Z, (2)

where E : s → R is the so called energy function and Z is a normalization constant called the
partition function. Denoting, with I the power set of {1, . . . , N}, the energy can be uniquely
expressed by the expansion

E(s) = −
∑
I∈I

ξI
∏
i∈I

si, (3)

where ξI ∈ R is the interaction coefficient for the term containing the variables specified by I . Such
expansions are known in theoretical computer science and Boolean algebra as Fourier expansions,
and the corresponding parameters ξI are called Fourier coefficients (O’Donnell, 2014). Determining
specific coefficients from a black-box function E can be done efficiently through sampling techniques
(see Section 2.2) and coefficients larger than a given threshold can be determined using the Goldreich-
Levin algorithm (O’Donnell, 2014). This is useful in our setting, since these techniques also apply
when the energy E is parametrized using an arbitrary neural network.

The class of models where ξI = 0 if |I| > 2 are called pairwise models, defined by the energy

Epw(s) = −
∑
i

hisi −
∑
i<j

Jijsisj . (4)

The coefficients hi are called external fields and the coefficients Jij are called couplings. Such
models have a long history of statistical physics and have been exported to various fields. In a
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typical application, the model is fitted to a dataset D = {sm}Mm=1 consisting of M configurations
sampled from the system under study, and can be afterwards either used as a generative model or
insights about the system can be gained from examining the fitted parameters J and h. However,
if we assume the existence of a generating distribution pG(s) that includes important interactions
involving more than two variables, the pairwise distribution might fail to describe the variability in
the dataset (see Section 4) and the inferred couplings and fields might not correspond to the ones in
the generating distribution. If such a case is suspected, one is tempted to use a more complicated
function to describe the energy E. Given the flexibility of neural networks in approximating arbitrary
input-output dependencies, a promising choice could be a multi-layer perceptron with L layers, where
the operations in each layer are a matrix multiplication followed by the addition of a bias and the
application of a possibly non-linear activation function (Goodfellow et al., 2016).

Models that use a neural network for parameterizing the energy are commonly called Energy-Based
Models (EBMs) (LeCun et al., 2006) and have been applied recently with success for example in
the field of image generation (Du & Mordatch, 2019b). Apart from the appealing similarity to
models used in statistical physics since more than a hundred years, they present several advantages in
comparison to other model classes like Generative Adversarial Networks (Goodfellow et al., 2014) or
Variational Autoencoders (Kingma & Welling, 2013). The most important ones related to the present
work are their relative uniformity and simplicity and their composionality (both also mentioned
in (Du & Mordatch, 2019b)).

2.2 HYBRID MODELS AND EXTRACTION OF COEFFICIENTS

The models we use in this work are hybrid models of the form

E(s) = Epw(s) + Enn(s) = −
∑
i<j

Jijsisj + Enn(s). (5)

For simplicity and since we want to focus on the more complex problem of reconstructing the
couplings, we do not explicitly consider external fields hi in this work, although they could be easily
accounted for. Enn(s) is a neural network with one hidden layer with tanh activations. While we
could also test networks with more than one layer, there is evidence that in similar settings the most
important characteristic is still the size of the first hidden layer, while the depth is of minor importance
(Morningstar & Melko, 2017). Since adding depth would also add the problem of finding the optimal
architecture, we restrict ourselves to a single layer in this work, and also leave the exploration of
other methods like self-attention (Vaswani et al., 2017) or autoregressive architectures (Wu et al.,
2019) for further research.

One interpretation of these models is that we model the pairwise terms in the expansion Eq. equation 3
explicitly, while we use a neural network for describing all other interactions (see Fig. 6). For the
neural network part Enn, the general expansion in Eq. equation 3 can contain in principle interactions
of all orders. For small system sizes, we can extract the corresponding interaction parameters by
observing from Eq. equation 3 that for a generic energy E(s) we have

ξI = −Es

[
E(s)

∏
i∈I

si

]
, (6)

where the expectation is according to the uniform distribution over all possible 2N configurations.
Since we do not limit the capacity of the neural network, Enn(s) can also contain significant pairwise
interactions. Therefore, we may have Es[E(s)sisj ] 6≈ −Jij . We show below that this can be indeed
observed in specific situations and approach the problem as follows: we reconstruct the couplings
from E = Epw +Enn using Eq. equation 6. We refer to these effective couplings as reconstructed
couplings

Ĵij = −Es [E(s) sisj ] , (7)

as opposed to the explicit couplings J in the trained model equation 5. The reconstruction is
performed only at the end of the training, and approximated for large systems with 106 Monte Carlo
samples in our experiments. As an alternative, in SM Section E, we show that it can be also done
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during training, which effectively limits the pairwise interactions in the hybrid model to the pairwise
part.

We use the same reconstruction method for extracting coefficients in models consisting only of the
neural network, without the explicit pairwise part, to understand whether using an explicit pairwise
term in model equation 5 brings any advantage. While we do this here only for comparison and
use only simple multi-layer perceptrons (MLP), we note that it would be an interesting avenue of
research to use more advanced neural network models and see if the extracted couplings can be used
in applications where pairwise models are typically used.

2.3 EXPERIMENTAL SETTING: GENERATING DISTRIBUTIONS

In this work, the experimental setting is given by a data generating distribution pG(s) ∝ exp(−EG(s))
over the configurations {−1,+1}N , where EG(s) contains a pairwise part and an additional number
of higher-order interactions:

EG(s) = EG
pw(s) + EG

ho(s) = −
∑
i<j

JG
ij sisj −

√
γ
∑
I∈IG

ξGI
∏
i∈I

si. (8)

Details on the various terms appearing in generator above are given in Appendix A.

3 TRAINING PROCEDURE

The difficulties in evaluating the normalization constant in energy-based models make density
evaluation intractable, and efficient sampling becomes problematic as well. Many techniques have
been proposed for the challenging task of training EBMs, the most commonly used ones being
contrastive divergence with Langevin dynamics (Hinton, 2002; Du & Mordatch, 2019a), noise-
contrastive estimation (Gutmann & Hyvärinen, 2010), and score matching (Hyvärinen, 2005). In
this work, we use pseudolikelihood maximization to train the parameters of the model given the
data (Besag, 1977). This method is very popular for the training of pairwise models (Aurell &
Ekeberg, 2012; Ekeberg et al., 2013; Decelle & Ricci-Tersenghi, 2014) and is furthermore very
similar to the method of training for state-of-the-art neural network models summarily called self-
supervised learning, which transforms the task of unsupervised learning of unlabeled data into a
supervised learning task by training the model to predict an artificially masked part of the data from
the unmasked part. This technique is for example used when training the self-attention based Bert
models (Devlin et al., 2018). Given a single mini-batch {sb}Bb=1 with B training configurations, we
use the negative pseudo-likelihood loss function

L = − 1

B

B∑
b=1

N∑
i=1

log p(sbi |sb/i), (9)

where the quantity p(sbi |sb/i) corresponds to the probability of observing sbi given the other variables in
sb, excluding sbi . This loss function can be calculated for a generic energy model over configurations
using 2N forward passes. For a pairwise model instead, we can use more efficient calculation
schemes. For implementation details see Appendix D. It is worth mentioning that the interaction
screening approach of Ref. (Vuffray et al., 2020) provides an alternative with well understood sample
complexity guarantees to the pseudolikelihood framework used here. Interaction screening has been
recently used for graphical models’ learning in Ref. Jayakumar et al. (2020).

We train the models by standard stochastic gradient descent with batch size B = 1024 and a learning
rate of 0.02. We did not find consistent improvements for the hybrid models when applying an L2

regularization and do not apply it in this work. We did find, however, a slight improvement for models
containing only the pairwise energy Epw, as explained in detail below. We trained all models for 250
epochs.
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4 RESULTS

4.1 RECONSTRUCTING PAIRWISE INTERACTIONS WITH NEURAL NETWORKS

We analyse the effect that additional higher-order interactions in the generating process might have on
the reconstruction of the pairwise couplings by training the same models on data from generators with
different higher-order strength γ. We call the criterion that we adopt to measure the reconstruction
performance the reconstruction error ε. It is a relative measure of the deviation of the inferred
couplings Ĵij from the true ones JG

ij :

ε =

√√√√√√√
∑
i<j

(
JG
ij − Ĵij

)2

∑
i<j

(
JG
ij

)2 . (10)

We expect that the additional interactions will have little to no effect for small values of γ in the
generative model equation 8. In this case, we can expect that training a purely pairwise model
will lead to satisfactory results. When increasing γ, however, the generating distribution deviates
significantly from a pairwise model, and an increase in the reconstruction error can be expected using
a purely pairwise model.

For the experiments in this section, the generators contained N uniformly sampled triplet interactions
(|I| = 3 ∀I ∈ IG). Other details of the data generation process are given in Sec. A, while the training
procedure is the one outlined in Sec. 3. We generated M = 5 · 104 training configurations for system
size N = 64, and M = 104 for N = 16. The neural network part of the hybrid model, Enn, was an
MLP with one hidden layer of 128 units and tanh activations. For the hybrid model, we evaluated
both the explicit couplings in Epw and the reconstructed couplings obtained at the end of the training
from Eq. equation 7.

We compare the reconstruction based on the hybrid model against two other methods: The first is the
commonly used regularized pseudolikelihood inference, which amounts to training only the pairwise
part Epw of the hybrid model. In this setting, the possibilities of model mismatch and overfitting are
often addressed by adding an L2 regularization, which we therefore also add in our experiments for
this model type. We found that a relatively low regularization strength λ = 0.01 lead indeed to a
slight improvement for a large range of γ and used this value for all our experiments.

The second model we compare against is the energy-based model containing only the neural network
part Enn.

In Fig. 1 we show the error in the inferred couplings with respect to the couplings in the generator.
While for all models the reconstruction degrades as γ grows, the hybrid approach performs substan-
tially better than models containing only the pairwise part Epw or only the neural network part Enn.
The explicit and the reconstructed couplings for the hybrid model yield similar result, meaning that
the learned Enn(s) function is approximately orthogonal to the pairwise family in this experiment. It
is interesting to note that the neural network with 128 hidden neurons is insufficient to reconstruct the
couplings. This confirms the idea that the explicit pairwise model is useful in training. However, we
will later show that using networks with much larger capacity, the MLP only model can approach the
hybrid model performance in some of the settings explored.

4.2 SPECIFICITY OF THE INFERRED INTERACTIONS

Using the same experimental setting as in the previous section, we investigate in detail how closely
the trained hybrid model matches the generator.

In Fig. 2 (left) we compare the reconstructed interaction parameters from the hybrid model through
Eqs. equation 6 and equation 7 to the corresponding ones in the generator. The interaction parameters
that we estimate are all pairwise interactions, theN triplet interactions that are present in the generator
and N random triplet interactions not present in the generator. Pairwise interactions are well fitted,
as well as the strongest triplet interactions in the generator. Some weaker triplet interactions in the
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Figure 1: Reconstruction error for different system sizes N and different models as a function of
higher-order strength γ in the data generator. The data is generated by a pairwise model with N
additional interactions involving only 3 variables (see Eq. equation 8). We show means and standard
deviations over 5 runs. The reconstructed couplings for the Hybrid and the MLP only model are
calculated using Eq. equation 7. Both the hybrid and the MLP only model had a single layer of 128
hidden neurons.

Figure 2: Inferred versus true interactions for system size N = 64. The generator includes N triplet
interactions and γ is set to 1.0. (Left) Blue points refer to pairwise interactions, orange points to all
64 triplet interactions present in the generator and green to 64 random triplet interactions not present
in the generator. (Center and Right) Relation of the energies between the submodels of the generator
(pairwise and higher-order) and the trained model (pairwise and neural network). The color intensity
is proportional to the density of points. The hybrid model contained a single hidden layer with 128
hidden neurons. All interactions were estimated using Eq. equation 6 using 106 samples.
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generator are underestimated instead. The triplet interactions not contained in the generator are close
to 0 in the hybrid model. These results indicate that the hybrid model does not only learn an effective
model of the generator, but extracts the true interactions in the underlying system.

In Fig. 2 (center and right) we show that the energies calculated from the pairwise part in the generator
are strongly correlated with the energies from the pairwise part in the trained model and the energies
calculated from the trained neural network are strongly correlated with the energies coming from
the higher-order interactions in the generator. See also Fig. 8 for the same experiment on a smaller
system.

4.3 OTHER EXPERIMENTS

Other experiments where we vary the networs size and the interaction order in the generator are
reported in Appendix B and C.

5 DISCUSSION

In this work we have shown that adding neural networks to pairwise models can improve the quality
of reconstruction of pairwise interactions if the distribution underlying the data generating process
contains additional higher-order interactions, as it typically occurs in natural data. While both
the explicitly pairwise part and the neural network part of the hybrid model may contribute to the
reconstructed couplings in general, we showed that in certain settings the neural network and the
pairwise model specialize in fitting the separate parts of the generating model.

There are many directions for future investigations. Systematic exploration of the neural architecture
employed, which we did not pursue at great length in this work, could yield significant improvements.
Different training methods for energy based models could be applied, possibly speeding up simu-
lations or giving more robust predictions. We also did not check the quality of the trained models
when used as generative distributions, which might be an important factor when applying similar
methods for example to protein design. In addition, constraining the neural network to account only
for higher-order interactions in a more sophisticated way might lead to further improvements.

The next immediate step, however, would be to screen the current application domains of pairwise
models and translate the improvements observed in the well-controlled settings in this work to
real-world data.
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A EXPERIMENTAL SETTING: GENERATING DISTRIBUTIONS

In this work, the experimental setting is given by a data generating distribution pG(s) ∝ exp(−EG(s))
over the configurations {−1,+1}N , where EG(s) contains a pairwise part and an additional number
of higher-order interactions:

EG(s) = EG
pw(s) + EG

ho(s) = −
∑
i<j

JG
ij sisj −

√
γ
∑
I∈IG

ξGI
∏
i∈I

si. (11)

IG is a set of sets of indices determining the higher-order interactions of the generator. Since we
are interested in the effect of additional higher-order interactions, we restrict ourselves to cases
where |I| ≥ 3. In order to model the situation where a pairwise distribution is probably a good
approximation, we will keep these higher-order interactions sparse and choose only a small subset of
the 2N possible interactions, mostly only N . The factor γ, which we call higher-order strength, is
used to weight the two terms against each other (see below). The specific interacting sets I ∈ IG
are independently and randomly chosen either as only triplets or as interactions of order 3 to 10,
according to the different settings we present in the following sections.

The interaction parameters ξGI and the couplings JG
ij are independently sampled from Gaussian

distributions. In order to ensure that none of the two parts of the generator completely dominates the
distribution, we fine tune their relative strength for each sample as follows. For a system size of N ,
we generate Gaussian i.i.d couplings for the pairwise part of the generator, JG

ij ∼ N (0, 1/N). We
call σ2

G,pw the variance of the induced pairwise energy across uniformly distributed configurations,
σ2
G,pw = Var[EG

pw] =
∑

i<j(J
G
ij )2. Next, we generate i.i.d. parameters ξ̂GI ∼ N (0, 1), compute the

induced higher-order energy variance across uniformly sampled configurations, σ2
G,ho =

∑
I(ξ̂GI )2,

and finally set ξGI = (σG,pw/σG,ho) ξ̂GI . We can then use γ to set the ratio between the two variances:
Var[EG

ho] /Var[EG
pw] = γ. We note that this procedure is not meant to balance the two terms perfectly

for γ = 1, but rather to give a well-defined starting point for the exploration of different values of
γ. The idea of this work is to explore situations in which a pairwise model describes the variability
in the generator well, but not perfectly. We therefore evaluate different values of γ in terms of how
it affects the training of a purely pairwise model on data from the generator and use this metric to
decide which values of γ are interesting.

We generate configurations independently sampled from the generator as follows. For N < 20, it
is feasible to calculate the probabilities involved exactly. We therefore calculate the energies for all
possible sequences, exponentiate and normalize them, and then sample sequences using a standard
numeric library (Harris et al., 2020). For larger N , we resort to the standard Metroplis-Hastings
algorithm, which we parallelized on the GPU by running the energy evaluations on all sequences as
one batch. We used N · 104 MC update steps for sampling.

B VARYING NEURAL NETWORK SIZES

In order to evaluate the impact of the neural architecture used in the hybrid model equation 5, we
repeat the experiments with different sizes for the hidden layer of the MLP. As in the previous section,
we keep the higher-order interactions in the generator restricted to N triplets, where N is the system
size. We vary the number of hidden neurons between 2 and 16384 in powers of 2. The results in
Fig. 3 indicate that size of the neural network has only a small effect on the error above a certain
threshold (around 128 in this specific case). While using a pure pairwise model for training leads to a
quickly increasing reconstruction error (as already visible in Fig. 1), the addition of a single layer
neural network with even a small number of hidden neurons (on the order of the system size N ) leads
to a significantly better reconstruction of the pairwise couplings in the generator.

Varying the number of hidden neurons allows us also to test the hypothesis that a sufficiently large
neural network on its own is enough for inferring the pairwise couplings. In this setting, the models
containing only an MLP approach the performance of the hybrid model only for N = 16 and for
very wide networks, while a large gap remains at N = 64. We note that where models based only
on a neural network perform well in terms of the reconstruction error, the hybrid model obtains
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Figure 3: Reconstruction error of couplings in presence of triplet interactions in the generator, for
varying number of hidden neurons in the trained model and different values of γ. We used M = 104

training samples for N = 16 and M = 5 · 104 training samples for N = 64. Shown are means and
standard deviation over 5 independent samples.

comparable results with two orders of magnitude less parameters. It is also to be said, however, that
this comparison is not completely fair since the hybrid model contains an inductive prior by design,
which the pure neural network model lacks. Still, we take this observation as evidence that adding a
pairwise part in the trained model is sensible if the generating distribution is expected to contain a
significant pairwise part.

C VARYING THE INTERACTION ORDERS IN THE GENERATOR

In the preceding sections we restricted ourselves to triplet interactions in the generator. In order to
probe the limits of our approach, we repeat the experiments with generators that contain N higher-
order interactions up to order 10, leaving all other characteristics like training set size and training
approach the same. The order of each interaction is chose from a uniform distribution between 3 and
10, and the variables involved in each interaction are a random subset of all variables.

We note that this is a very ambitious test: our hope is that the neural network picks up the higher-order
interactions in the generator, which are of the type ξ

∏I
i=1 si, where I is the interaction order and ξ

the corresponding parameter. This means that we try to fit a combination of overlapping sparse parity
problems of up to 10 inputs. While constructing a solution to a single instance of such a problem
is easy using a single hidden layer with continuous weights (see e.g. (Franco & Cannas, 2001)),
parity functions are generally considered among the hardest functions to learn from data (Tesauro
& Janssens, 1988). While we might be able to alleviate this problem by adding more layers to the
neural network, we consider this to be out of scope for the current work and note that in a realistic
application the size of the underlying interactions is often not known. Even in this hard case, however,
one could expect that the neural network gives a contribution to the quality of training by fitting at
least some of the variability due to the higher-order interactions.

While also in this setting we report generally better performance of the hybrid approach over the
pairwise only and neural network only approaches, the gain is not as large as in the case of triplet
interactions of the last sections (see Fig. 7). Moreover, in this setting the explicit couplings of the
hybrid model significantly deviate from the couplings reconstructed using Eq. 7 at the end of training,
as can be seen in Fig. 4. While the additional reconstruction step is computationally cheap, these
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Figure 4: Reconstruction error of couplings in presence of higher-order (3 to 10) interactions in the
generator as a function of the training epoch. The higher-order interaction strength γ was set to 1.5,
the system size is N = 64, and we used M = 5 · 104 training samples. (Left) Reconstruction error
for 20 independent systems using only a pairwise model for training. The system corresponding
to the colored lines are also used in the 3 right panels. (Right 3 panels) Reconstruction error given
by pairwise only models (solid lines), and by hybrid models using either explicit or reconstructed
couplings. The hybrid models contained a single hidden layer with 256 hidden units.

observations suggest that additional constraints for keeping the pairwise interactions in the neural
network small might lead to further improvements. In Appendix E we present a rough way of doing
this and speculate about more sophisticated approaches.

D USING PSEUDOLIKELIHOODS FOR TRAINING EBMS

Pseudolikelihoods are often used as an alternative to an intractable or at least computationally
expensive likelihood Besag (1977). It has been applied successfully to pairwise models Hyvärinen
(2006); Aurell & Ekeberg (2012); Ekeberg et al. (2013); Decelle & Ricci-Tersenghi (2014). We show
here how it can be applied to a generic Energy-Based Model, and add some considerations specific
to pairwise models. We note that while maximum pseudolikelihood is a widely applied method for
training simple Energy-Based Models, to the best of our knowledge this is the first time it has been
used for training deep feed-forward neural networks.

We assume the data that we want to model to consist of configurations (s1, . . . , sN ) of categorical
variables of length N and we will use q to denote the number of categories. A common method for
fitting a probability distribution pΘ(s) with parameters Θ to a training set of sequences {sm}Mm=1 is
to find the Θ∗ for which

Θ∗ = argmax
Θ

M∑
m=1

log pΘ(sm), (12)

which corresponds to a maximum-likelihood solution. For an Energy-Based Model (EBM) pΘ(s) =
e−EΘ(s)

ZΘ
, where EΘ(s) is the energy function, this would correspond to solving

Θ∗ = argmax
Θ

1

M

M∑
m=1

[−EΘ(sm)− logZΘ] , (13)

for example by gradient descent methods. The general problem in this approach is that the normaliza-
tion constant ZΘ =

∑
s
e−EΘ(s), where we sum over all possible configurations s, contains qN terms.

This is intractable even for modest N and in the case of binary variables, where q = 2. The idea of
pseudolikelihoods is to replace the likelihood objective by
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Θ∗ = argmax
Θ

1

M

N∑
i=1

M∑
m=1

log pΘ

(
smi |sm/i

)
, (14)

where pΘ

(
smi |sm/i

)
is the probability of symbol smi in sequence m, given the other symbols. We

therefore train the distribution by using it for predicting a missing symbol from the other symbols.

Other variations are possible, for example to discard the sum over i and find a maximum set of Θ∗i
for every i independently. We found the approach with the sum to be conceptually easier and in the
applications known to us, the performance seems to be the same Ekeberg et al. (2013). While it can
be shown that this new objective has the same maximum as the original likelihood under certain
conditions Mozeika et al. (2014), this is for example not generally true if the training samples come
from a different model class than pΘ, which is true in our case. In this work, we are interested in
whether we can make training using this objective work in practice and refrain from further theoretical
analysis.We note that we have not restricted the form of EΘ. In the models we analyse in this work,
the energy is calculated by a sum of the energy of a pairwise model and a neural network.

Neglecting the sum over i and m for the time being, we can write the quantity log pΘ(si|s/i) for an
EBM as

log pΘ(si|s/i) = log
pΘ(s)

pΘ(s/i)
= log

pΘ(s)∑q
ŝi=1 pΘ(ŝi, s/i)

, (15)

where we used the notation (ŝi, s/i) for the configuration s after si has been replaced with ŝi. Since
the normalization constant ZΘ appears in the both the numerator and denominator, it cancels and we
are left with

log pΘ(si|s/i) = log
e−EΘ(s)∑q

ŝi=1 e
−EΘ(ŝi,s/i)

= − log

1 +
∑
ŝi 6=si

eEΘ(s)−EΘ(ŝi,s/i)

 (16)

The sum in this expression can be computed efficiently, using q evaluations of E. This means that
including the sum over i and replacing the sum over m with a sum over a mini-batch of B in a
stochastic gradient descent (SGD) setting, we need q ·N ·B evaluations of E for a single gradient
step, corresponding to q ·N forward passes.

In the case of binary strings with si ∈ {±1} and a pairwise model EΘ(s) = −
∑

i<j Jijsksj with
parameters Θ ≡ J , we can simplify further by noticing that

E(s)− E(ŝi, s/i) = (ŝi − si)
∑
j 6=i

Jijsj , (17)

where we identified Jij = Jji for convenience. Since in Eq. equation 16 we sum only over ŝi 6= si
and in this case ŝi − si = −2si, this leads to

log pΘ(si|s/i) = − log
(

1 + e−2siFi(J,s/i)
)
, (18)

where Fi(J, s/i) =
∑
j 6=i

Jijsj . This means that in this model class, we do not need to evaluate the full

energy, which contains Θ(N2) terms, but only the part of the energy involving the variable si, which
contains only Θ(N) terms. The quantities Fi

(
J, s/i

)
can be obtained for a whole batch of sequences

using matrix multiplication, which is very efficient on modern GPUs.
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E ABSORBING PAIRWISE INTERACTIONS FROM THE NEURAL NETWORK

During training, we did not enforce a division of labour between the two parts of the hybrid models,
which means that the neural network is not discouraged in any way from fitting also pairwise
interactions. While extracting the pairwise coefficients from the entire hybrid model and constructing
an effective pairwise model is a way of solving this after training, it would be more satisfactory to
include this also in the training procedure. The cleanest way of ensuring only higher-order interactions
in the neural network would be to constrain the optimization of the neural network to the part of
parameters space where it does not contain pairwise interactions. In practice, Eq. equation 6 could be
used to create a regularization term penalizing all pairwise interactions:

1

N2

∑
ij

(Es sisj Enn(s))
2

= Es,s′ Enn(s)Enn(s′) q2(s, s′), (19)

where the expectation is over uniformly sampled Ising configurations and q(s, s′) = 1
N

∑
i sis

′
i is the

overlap between two configurations. This expression can be approximately evaluated by Monte Carlo
sampling. While this approach seems promising, we did not pursue it in this exploratory analysis.

A different approach instead is to counter the pairwise interactions in the neural network by using an
additional pairwise model. To this end, we define a new energy

E(s) = Epw(s) + Enn(s)− Êpw(s). (20)

Here, Epw and Enn are the same as in the hybrid models of the preceding sections. The new term
Êpw is another pairwise model, but it is excluded from the gradient descent step and we set its
couplings explicitly every k epochs. The values of these couplings are the pairwise interactions
extracted from Enn using Eq equation 6. The idea is to estimate the pairwise terms in the expansion
of the neural network energy Enn and absorb these interactions in the additional Êpw, which we
therefore call an absorber model. After setting the couplings of this absorber, the last two terms on
the right hand side of Eq. equation 20 should contain approximately no pairwise interactions, i.e.

∑
s

sisj

(
Enn(s)− Êpw(s)

)
≈ 0 (21)

for all i, j. This leaves the term Epw as the only one with significant pairwise interactions. While
we could do this in principle after every epoch or even after every gradient step, this would make
the computations unfeasibly slow since at every step we estimate the pairwise interactions in Enn

using 106 samples. We therefore restrict ourselves to doing the estimate less frequently, every k = 5
epochs in our experiments.

In Fig. 5 it can be seen that using these additional absorbers improves the training of the couplings
significantly. We used the same training samples as for Fig 4 and also left the other training charac-
teristics the same. The results are very similar to what would have been obtained by reconstructing
the couplings at every step (compare also Fig. 4). While this also means that there was no strong
improvement over approach of reconstructing the couplings after the training has ended, we think it
still noteworthy that enforcing that the pairwise model Epw should be the one solely responsible for
fitting pairwise interactions is possible during training.
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Figure 5: Reconstruction error with 64 higher-order (3 to 10) in generator for γ = 1.5 and trained
with M = 5 · 104 samples. The training samples in this figure are the same as in Fig. 4. Left panel:
Reconstruction error for 20 independent runs using only a pairwise model for training. The training
samples corresponding to the colored lines were further used as a training set for the hybrid and
absorber models shown in the 3 right panels. Right 3 panels: Reconstruction error for trained models
containing only pairwise terms (solid lines), reconstruction error for hybrid models (dashed lines)
and reconstruction error for hybrid models with absorber terms (dotted lines)

F ADDITIONAL FIGURES

Figure 6: Representation of the basic idea of this work: Given a generative distribution that contains
a strong pairwise part but also higher-order interactions, we fit an energy-based model including a
pairwise part and a neural network. The hope is that the neural network captures the higher-order
interactions, while the pairwise parts match up after training.
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Figure 7: Pairwise reconstruction errors with higher-order (size 3 to 10) interactions in generator
for varying number of hidden neurons in the trained model and 3 different values of γ. The number
of these interactions is equal to N . Training was done with M = 104 samples for N = 16 and
M = 5 · 104 samples for N = 64. Shown are means and standard deviation over 5 runs. The
reconstruction error is defined in Eq. equation 10. The blue line corresponds to reconstruction error
calculated using the couplings of the pairwise part of the hybrid model, the red line to the pairwise
interactions reconstructed from the complete hybrid model using Eq. equation 7

.
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Figure 8: Inferred versus true interactions for system size N = 16. The generator included N
triplet interactions and γ was set to 1.0 and the hybrid model had a single hidden layer with 128
hidden units. The left panel shows all interactions color coded by their order: blue points refer to
pairwise interactions, orange points to triplet interactions and green to all other orders. The middle
and right panel show the relation of the energies between the submodels of the generator (pairwise
and higher-order) and the trained model (pairwise and neural network). The color is proportional to
pairs of energy values that fall in the corresponding quadrant. All interactions were recovered using
Eq. equation 6 using all possible sequences and should be exact. The energies in the middle and right
panel also correspond to all possible sequences.
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