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ABSTRACT

Existing collaborative self-supervised learning (SSL) schemes are not suitable for
cross-client applications because of their expensive computation and large local
data requirements. To address these issues, we propose MocoSFL, a collabora-
tive SSL framework based on Split Federated Learning (SFL) and Momentum
Contrast (MoCo). In MocoSFL, the large backbone model is split into a small
client-side model and a large server-side model, and only the small client-side
model is processed locally on the client’s local devices. MocoSFL has three key
components: (i) vector concatenation which enables the use of small batch size
and reduces computation and memory requirements by orders of magnitude; (ii)
feature sharing that helps achieve high accuracy regardless of the quality and vol-
ume of local data; (iii) frequent synchronization that helps achieve better non-IID
performance because of smaller local model divergence. For a 1,000-client case
with non-IID data (each client only has data from 2 random classes of CIFAR-10),
MocoSFL can achieve over 84% accuracy with ResNet-18 model. Next we present
TAResSFL module that significantly improves the resistance to privacy threats and
communication overhead with small sacrifice in accuracy for a MocoSFL system.
On a Raspberry Pi 4B device, the MocoSFL-based scheme requires less than 1MB
of memory and less than 40MB of communication, and consumes less than 5W
power. The code is available at https://github.com/SonyAI/MocoSFL.

1 INTRODUCTION

Collaborative learning schemes have become increasingly popular, as clients can train their own
local models without sharing their private local data. Current collaborative learning applications
mostly focus on supervised learning applications where labels are available (Hard et al., 2018; Roth
et al., 2020). However, availability of fully-labeled data may not be practical since labeling requires
expertise and can be difficult to execute, especially for the average client.

Federated learning (FL) (McMahan et al., 2017) is the most popular collaborative learning framework.
One representative algorithm is “FedAvg”, where clients send their local copies of the model to the
server and the server performs a weighted average operation (weight depends on the amount of data)
to get a new global model. FL has achieved great success in supervised learning, and has been used
successfully in a wide range of applications, such as next word prediction McMahan et al. (2017),
visual object detection for safety Liu et al. (2020), recommendation Wu et al. (2022a;b), graph-based
analysis Chen et al. (2022); Wu et al. (2022c), etc.

For collaborative learning on unlabeled data, prior works (Zhang et al., 2020; Zhuang et al., 2021;
2022) combine FL scheme with classic self-supervised learning (SSL) methods such as BYOL (Grill
et al., 2020) and Moco (He et al., 2020). These methods can all achieve good performance when
clients’ data is Independent and Identically Distributed (IID) but suffer from poor performance
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Figure 1: Challenges in FL-SSL schemes. (a) A large batch size is necessary to achieve good
performance (KNN validation accuracy (Wu et al., 2018)) (b) Accuracy reduces with an increasing
number of clients since the amount of local data is now smaller. (c) Hard negative keys are essential
for the success of contrastive learning.

in non-IID cases. Recently, Zhuang et al. (2022) mitigated the non-IID performance drop with
divergence-aware aggregation technique and provided state-of-the-art (SoTA) accuracy performance
using a combination of FL and different SSL methods.

However, these SoTA FL-SSL schemes are not practical for cross-client applications. First, FL-
SSL imposes a significant computation overhead and large memory requirement on clients. This is
because SSL requires a large backbone architecture (Chen et al., 2020a) together with a large batch
size to ensure good performance. As shown in Fig. 1(a), accuracy drops dramatically when batch
size is low for both FL-SSL methods. Second, FL-SSL schemes fail to maintain a good accuracy
when the number of clients is large (cross-client cases), as shown in Fig. 1(b). For a dataset with
fixed size, when the number of clients increases, data per client decreases, resulting in accuracy
degradation. The drop in accuracy is mainly because of the failure to meet data size requirement in
performing contrastive learning. Zhang et al. (2020); Wu et al. (2021) attempt to address this issue in
FL-SSL with remote feature sharing. However, this introduces a high communication overhead due
to client-to-client feature memory synchronization; for a 100-client system, it costs around 2.46GB
per synchronization per client.

To solve these challenges, we propose MocoSFL, a scheme based on Split Federated Learn-
ing (SFL) Thapa et al. (2020) that incorporates the feature memory bank and momentum model
designs of MoCo (He et al., 2020). We adopt the SFL scheme for three reasons: (i) SFL utilizes
a smaller client-side model and so reduces the computation overhead and has lower memory con-
sumption and model parameters; (ii) SFL’s latent vector concatenation enables a large equivalent
batch size for the centralized server-side model, making micro-batch training possible for clients
and thus reducing client’s local memory; (iii) When combined with MoCo’s key-storing mechanism,
SFL’s shared server-side model enables effective feature sharing, which removes the requirement of
large amount of local data and makes the scheme possible for cross-client applications. As a result,
MocoSFL achieves good accuracy with ultra-low memory requirements and computation overhead,
and can support a very large number of clients. MocoSFL shows better non-IID performance since
local model divergence is smaller. However, the use of SFL brings extra communication overhead
as well as data privacy concerns. Thus, we present target-aware ResSFL (TAResSFL) module as an
effective solution to mitigate these issues with small accuracy drop.

Our main contributions are:

• We identify two major challenges in deriving high accuracy in FL-SSL schemes for cross-
client applications. These are availability of a large amount of data that is required for
contrastive learning and the ability to process them in clients who may not have sufficient
hardware resources.

• We propose MocoSFL, an SFL-based scheme to address the two challenges. MocoSFL uses
a small client-side model, latent vector concatenation, and feature sharing. For cross-client
case, MocoSFL is the only viable and practical solution. For cross-silo case, MocoSFL can
achieve even better performance than SoTA FL-SSL schemes under non-IID setting because
of smaller model divergence.
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• To address communication overhead and privacy issues that are inherent to SFL-based
schemes, we propose target-domain-aware ResSFL (TAResSFL) that effectively reduces the
communication cost and mitigates model inversion attacks.

2 BACKGROUND

2.1 SELF-SUPERVISED LEARNING

To learn from unlabeled data, SSL schemes based on contrastive learning such as SimCLR Chen et al.
(2020a), BYOL Grill et al. (2020), Simsiam Chen and He (2021) and MoCo He et al. (2020) have
achieved great performance on popular benchmarks. Unlike other schemes (BYOL, SimCLR, etc.)
that use other samples in the current data-batch as negative keys, MoCo uses previously computed
positive keys as negative keys, and stores current positive keys in the feature memory for future
iterations. The key-storing mechanism results in a relatively smaller batch size requirement that is
beneficial for reducing device memory and also makes it easy for feature sharing implementations for
our proposed scheme. For the loss function, MoCo relies on InfoNCE loss Oord et al. (2018) as the
contrastive mechanism to update its model parameters:

LQ,K,N = −log exp(Q ·K+/τ)

exp(Q ·K+/τ) +
∑

N∈M exp(Q ·N/τ)
(1)

where query key Q and positive key K+ are the output vectors of server-side momentum model and
the momentum model, respectively, obtained by processing two augmented views of the image. N
denotes all negative keys in the feature memory of size M . Importantly, the success of MoCo scheme
highly depends on the “hardness” of its negative keys (Kalantidis et al., 2020; Robinson et al., 2020).
The “hardness” of a negative key N in the feature memory bank, can be determined by the similarity
(inner-product) between Qt (at step t) and N ; the smaller the similarity, the better the “hardness”. We
notice the “hardness” of negative key N reduces quickly because model updates are in the direction
of minimizing the InfoNCE loss in Eq. (1). As a result, MoCo adopts a slow-changing momentum
model to produce consistent negative keys to add to the feature memory at the end of every training
step and thereby maintains their hardness.

2.2 SPLIT FEDERATED LEARNING

Split Federated Learning (SFL) Thapa et al. (2020) is a recent collaborative learning scheme that
focuses on high computation efficiency at the client side. It splits the original model architecture
into two parts, the client-side model that contains all layers upto the “cut-layer” and the server-side
model that contains the remaining layers. We distribute copies of client-side model Ci to client-i’s
local devices and instantiate the server-side model S in a cloud server. To complete each training
step, clients need to send the latent vectors (the output of client-side model) to the server, and the
server processes latent vectors, computes the loss, performs backward propagation and returns the
corresponding gradients to clients. Thapa et al. (2020) present two possible ways for server to process
latent vectors sent by clients. In this paper, we use SFL-V1 where the server concatenates all clients’
latent vectors and processes them altogether, which makes the equivalent batch size larger at the
server and benefits contrastive learning. In contrast, in SFL-V2, client’s latent vectors are processed
sequentially in a first-come-first-serve manner and thus does not benefit from the “large batch”. We
provide details of SFL-V1 in Appendix A.2.

3 MOTIVATION

As mentioned in Section 1, the two challenges in extending FL-SSL to cross-client applications are
high computing resource requirement and large data requirement.

3.1 HIGH COMPUTING RESOURCE REQUIREMENT

The first challenge is the computing resource requirement of training an SSL model locally. Using
a compact backbone model may be accurate for supervised learning, but is not suitable for SSL as
it has a much higher requirement on the model capacity. (Shi et al., 2021; Fang et al., 2021) show
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that compact architectures like Mobilenet-V3 (Howard et al., 2019), EfficientNet Tan and Le (2019)
suffer from over 10% accuracy degradation compared to a larger ResNet-18 architecture, while an
even larger ResNet-50 model has over 15% better accuracy compared to ResNet-18 on ImageNet
dataset (Deng et al., 2009). This means memory requirement for training an SSL model with high
accuracy is very high. Using a smaller batch size reduces accuracy dramatically, as shown in Fig. 1(a),
and is thus not an option. A FL-SSL scheme (ResNet-18 with a batch size of 128) costs 590.6
MFLOPs per image and over 1100MB of memory per client, which is not practical.

3.2 LARGE DATA REQUIREMENT

The other major difficulty for FL-SSL to generalize to the cross-client case is the large data require-
ment. For cross-client applications, the amount of data available to each client can be very limited.
For example, in a cross-silo medical application, a client can be a hospital with tons of data. In
comparison, in a cross-client application, a client can be a patient who has limited amount of data.

The root of the problem lies in the difficulty to find hard negative samples when clients do not have
enough local data. When the amount of data is larger, the chance for hard negative samples to be
present becomes much higher. As a result, existing FL-SSL can only be successful for cross-silo
applications where clients have large amount of data and can perform effective contrastive learning
locally. As demonstrated in Fig. 1(b), we observe high accuracy when clients have 10K samples of
data, while the accuracy drops quickly to around 30% when clients have only 500 samples.

Unfortunately, remote feature sharing Zhang et al. (2020); Wu et al. (2021; 2022d) in FL-SSL
schemes cannot solve the large data requirement. These schemes update the shared feature memory
less frequently because of significant communication overhead with each update. Since clients must
synchronize their local copies of the shared feature memory each time a minor change happens,
in Zhang et al. (2020); Wu et al. (2022d), new negative keys are added to the feature memory
only once per epoch. Even so, the total communication overhead of remote feature sharing scales
quadratically with the number of clients makes it not practical for cross-client case.

4 METHOD

4.1 PROPOSED MOCOSFL

Our proposed MocoSFL is an innovative combination of SFL-V1 and MoCo-V2 (Chen et al., 2020b)
as shown in Fig. 2. There are three key components. First, in each training step, the latent vectors
sent by all clients are concatenated before being processed by the server-side model. This helps
achieve a large equivalent batch size in order to support mini-batch training. Second, we use a shared
feature memory which is updated by positive keys contributed by all clients in every training step.
Third, we improve the non-IID performance by using a higher synchronization frequency.

Next, we will elaborate on how these three components in the proposed MocoSFL address the two
challenges in Section 4.2 and Section 4.3. Section 4.4 describes how MocoSFL achieves better non-
IID performance and Section 4.5 addresses the privacy and communication issues of the proposed
scheme.

4.2 REDUCE HARDWARE RESOURCE REQUIREMENT

Choice of SFL helps reduce computational overhead and memory consumption at the client-end
because of the much smaller client-side model. For example, on a CIFAR-10 ResNet-18 model with
a batch size of 128, a client-side model with 3 layers only costs 13.7% of the FLOPs compared to the
entire model, and its memory cost is 227MB, merely one fourth of the entire model. Furthermore, we
reduce the batch size to 1 (also known as “micro-batch”), to further reduce the memory consumption.
The use of micro-batch in local model training is only possible thanks to the latent vector concatenation
mechanism which basically aggregates latent vectors sent by all clients into a big batch before sending
it to the server. In addition, in a micro-batch setting, we replace the batch normalization layer by
group normalization Wu and He (2018) and weight standardization (Qiao et al., 2019) to gain better
accuracy performance. In Fig. 3(b), we compare the computation and memory consumption of
the proposed MocoSFL with the FL-SSL scheme. MocoSFL with cut-layer of 3 achieves ∼ 288×

4



Published as a conference paper at ICLR 2023

Wireless communication

Server momentum

InfoNCE
Loss

MocoSFL Scheme

Server online

𝑲+

𝑸

Shared Feature Memory

𝑵

DeQueue

EnQueue

𝑲+

Server

Client 𝑗 momentum

𝑨𝒌+,𝒋

Client 𝑗 online

𝑿𝒌+,𝒋

𝑿𝒒,𝒋

Client 𝒋

Augmentation

𝑨𝒒,𝒋

𝑨𝒌+

𝑨𝒒

Frequent Sync

Concatenate

Concatenate

Client 𝑖 momentum

𝑨𝒌+,𝒊

Client 𝑖 online

𝑿𝒌+,𝒊

𝑿𝒒,𝒊

Client 𝒊

𝑿𝒊 Augmentation

𝑨𝒒,𝒊

𝑿𝒋

❷

❶
…avg

❸

Figure 2: MocoSFL scheme. Three highlighted components are (1) latent vector concatenation, (2)
shared feature memory, and (3) frequent synchronization.

reduction in memory consumption than FL-SSL and has 2%-10% higher accuracy. Details of accuracy
evaluation are included in Section 5.1.

4.3 MITIGATE LARGE DATA REQUIREMENT

As indicated by (Kalantidis et al., 2020; Robinson et al., 2020), the “hardness” of a negative key N
heavily depends on its similarity with the current query key Q, given that N and Q have different
ground-truth labels. To evaluate the hardness of negative key N0 residing in the feature memory, we
use the similarity measure (inner-product) between N0 and Qt, a freshly calculated query key at time
t. In FL-SSL with feature sharing, the negative key is only updated after a long period of time to
reduce communication overhead. As a result, the hardness diminishes quickly. In contrast, MocoSFL
frequently updates its feature memory to maintain a good hardness. At every training step, a freshly
calculated positive key K+ is added to the tail of the queue, and the oldest one is popped out.

However, frequent updates of feature memory is not enough to ensure a high level of hardness. We
also find it is necessary to use a large batch size and a large feature memory. This finding agrees
with the study in Bulat et al. (2021) and also explains the accuracy drop for a small batch size in
FL-MocoV2 in Fig. 1(a). To illustrate this, we consider the total similarity measure at time t and
make the following assumptions: For the newest batch of negative keys Nt = Kt−1 of size B in the
feature memory at time t, we assume the similarity measure between Nt and Qt is a constant η for
all t. We also assume similarity of every batch of negative keys in feature memory gets reduced by
a constant factor γ (γ < 1) after each model update to represent the degradation caused by model
updates. Thus, for a freshly computed query Qt, its total similarity measure with negative keys in the
feature memory can be represented as:

hardness = Bηγ +Bηγ2 + ...+Bηγ⌊M/B⌋ (2)

= Bηγ × (
1− γ⌊M/B⌋

1− γ
) (3)

where B is the batch size and M is the feature memory size. We see that using a large batch size
B is beneficial as it helps bring more fresh negative keys and maintain better hardness. Also, using
a larger feature memory (increasing M ) can keep enough negative keys and contribute to a better
total hardness. In the cross-client case, FL-SSL schemes can hardly meet these two requirements
because of the small clients’ memory. Nonetheless, MocoSFL can easily fulfill them because (1)
latent vector concatenation enables a large equivalent batch size, and (2) feature memory hosted by
the cloud server can be much larger.

4.4 IMPROVING NON-IID PERFORMANCE

We found that use of SFL results in fewer model parameters at the client side and hence smaller model
divergence. Furthermore, introducing frequent synchronization in MocoSFL provides additional
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Figure 3: (a) Proposed MocoSFL reduces model divergence. (b) Computation overhead (FLOP
counts of inference per image of the online model at client-end) comparison between FL-SSL scheme
and MocoSFL schemes. MocoSFL-L: client-side model has L layers.

reduction in model divergence and greatly improves the non-IID performance. According to Zhang
et al. (2020); Zhuang et al. (2021; 2022), the model divergence between two models is calculated
as the L2 norm of the weight difference. Following the same idea, the total divergence measure of
a cross-client system can be measured as the average weight divergence of local models w.r.t. the
global model during training:

divergence =
1

ENC

E∑
e=1

NC∑
i=1

L∑
l=1

||W i
e,l −W ∗

e,l||2 (4)

where L denotes the number of layers in the client-side model, E denotes the total number of
synchronizations, NC denotes the number of clients, and l, e, i are the respective indices for L,E,NC .
W ∗ is the average of all client models W i. MocoSFL reduces the model divergence with two
orthogonal mechanisms. The first mechanism is the reduction of client-side model size, which
directly results in a lower model divergence. As shown in Fig. 3(a), compared to FL-SSL scheme,
MocoSFL has a much lower model divergence when the client-side model has less than 5 layers.
The other mechanism is frequent model synchronization which helps reduce the model divergence.
This is only possible in SFL because of communication overhead of sending weights in a smaller
client-side model, is smaller. Fig. 3(a) also illustrates how model divergence further reduces as we
increase the synchronization frequency.

4.5 IMPROVING PRIVACY AND COMMUNICATION OVERHEAD OF MOCOSFL

The proposed MocoSFL scheme is based on SFL and suffers from two issues – high overall commu-
nication overhead due to transmitting and receiving latent vectors and vulnerability to Model Inver-
sion Attack (MIA) Fredrikson et al. (2015), in which the server can reconstruct clients’ raw inputs
from latent vectors, making clients’ data privacy questionable. (We leave the details of its threat
model and working mechanism in Appendix A.3) To address the privacy and communication issues
in MocoSFL, we propose Target-Aware-ResSFL (TAResSFL). TAResSFL extends ResSFL Li et al.
(2022) for self-supervised learning through: (1) target-data-aware self-supervised pre-training, and
(2) freezing feature extractor during SFL training. TAResSFL also utilizes the bottleneck layer design
from ResSFL to reduce the communication overhead.

In ResSFL Li et al. (2022), the server performs pretraining to build up the resistance to MIA using
data from a different domain since it does not have access to clients’ data. Next, the pretrained
resistant client-side model is transferred to the clients and gets fine-tuned using SFL. TAResSFL
improves the pretraining step by assuming that the server can get access to a small subset (<1%)
of training data, together with large amount of data from another domain, and perform pre-training
using self-supervised learning. Such a pretrained client-side model has better transferability, and can
thus stay frozen during SFL process, thereby avoiding the expensive fine-tuning. As shown in Fig. 4,
we blend the source dataset Xs with a tiny subset of target dataset Xt during the feature extractor
training. The attacker-aware training has the min-max form:

min
WC ,WS

max
WG

L(S(WS ;C(WC ; [xq,xk+]))︸ ︷︷ ︸
Contrastive Loss

+λR(G(WG;C(WC ;xq)),xq)︸ ︷︷ ︸
Inversion Score

(5)
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where R in the inner maximization denotes a similarity measure, for which we use the structural
similarity index (SSIM) score Zhao et al. (2016). The inner maximization is used to train the
simulated attack model G, whose function is reconstructing the activation back to a raw input state
that is similar with ground-truth Xq. The outer minimization step goes in the direction of lowering
contrastive loss, where the regularization term makes the model accurate as well as resistant to attack.
These two steps are done alternatively to make the feature extractor resistant, and also be able to
achieve good accuracy on the target dataset.

Fig. 4 presents the Target-aware ResSFL scheme. We use the resistant feature extractor to initialize
client-side models during transfer step, as shown by the pink arrow in Fig. 4. Unlike ResSFL, here
we freeze its parameter completely to maintain the resistance since any parameter change can cause
resistance drop. However, freezing brings a noticeable accuracy drop of larger than 3%, even with
the use of CIFAR-100 as source dataset if we perform pre-training by only using the source dataset
(see Table 4). But if we blend the source data with a small portion of target data during pre-training,
the accuracy can be greatly improved. Since the model accuracy validation is done by the server
for monitoring purpose (Bhagoji et al., 2019), we believe that the server can separate out a small
proportion of validation data to meet the target data availability assumption.

The freezing also greatly benefits hardware resource requirement since: (1) clients only need to
transmit the latent vectors to the server and do not need to perform backward propagation using
gradients from the server; (2) client-side model synchronization is not needed. As a result, MocoSFL
with TAResSFL component achieves a ∼ 128× (=5001.4/39.1) overall communication reduction
compared to the original MocoSFL, as shown in Table 1. Here MocoSFL methods undergo 200
model synchronizations for 200 epochs while FL-SSL methods need 100 synchronizations (using the
same setting in Zhuang et al. (2022)).
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Communication
Overhead

Weights
(MB)

Latent
Vectors (MB)

Total (Relative
(MB) Ratio)

FL-SSL methods
Zhuang et al. (2022) 8269.2 0.0 8269.2 (1.000x)

MocoSFL-1 1.4 5000 5001.4 (0.605x)

MocoSFL-3 57.9 5000 5057.9 (0.612x)

MocoSFL-1+TAResSFL 0.0 39.1 39.1 (0.005x)

MocoSFL-3+TAResSFL 0.0 39.1 39.1 (0.005x)

Table 1: Communication overhead per client. FL-
SSL: 100 times of synchronization; MocoSFL:
200 times of synchronization.

5 EXPERIMENTAL RESULT

Experimental Setting. We simulate the multi-client MocoSFL scheme on a Linux machine, where
we use different CPU threads to simulate different clients and a single RTX-3090 GPU to simulate the
cloud server. We use ResNet-18 (He et al., 2016) for the majority of the experiments to better compare
with existing SoTA (Zhuang et al., 2022). We use CIFAR-10 as the main dataset and also present
results on CIFAR-100 and ImageNet 12-class subset as in Li et al. (2021). For the IID case, we
assume the entire dataset is divided randomly and equally among all clients. For non-IID experiments,
we mainly consider the pathological (aka. class-wise) non-IID distribution as in McMahan et al.
(2017); Zhuang et al. (2022) where we assign 2 classes of CIFAR-10/ImageNet-12 data or 20 classes
of CIFAR-100 data randomly to each client. We perform MocoSFL training for a total of 200 epochs,
using SGD as the optimizer with an initial learning rate of 0.06. For accuracy performance evaluation,
we adopt similar linear probe methods as in Grill et al. (2020); Zhuang et al. (2022), where we train a
new linear classifier on the outputs generated by the MocoSFL backbone model. We include details
of hyper-parameter choices and evaluations in Appendix A.1.

5.1 ACCURACY PERFORMANCE

Improved non-IID performance. Fig. 5 shows how the increased synchronization frequency can
significantly improve the non-IID accuracy. We present results for the cut-layer choices of 1 and
3 convolutional layers in the client-side model, represented by “MocoSFL-1” and “MocoSFL-3”,
respectively. We attribute the improved accuracy to the reduction in model divergence.
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Comparison with FL-SSL. When synchronization frequency of the MocoSFL is set to 10 (per
epoch) for the 5-client cases, MocoSFL achieves significantly better non-IID accuracy performance
than Zhuang et al. (2022) on CIFAR-10 dataset due to lower model divergence (see Table 2). On
CIFAR-100 dataset, with NC = 5, we observe our method has lower accuracy than FL-SSL methods.
We hypothesize that the performance of MocoSFL is more sensitive to the model complexity, and
thus has limited performance for a more complex task like CIFAR-100. When model complexity
is high enough, for instance, on a larger ResNet-50 model, accuracy of our method is ∼4% higher
than Zhuang et al. (2022) as shown in Appendix B.7. Furthermore, our methods outperform FL-SSL
methods by a large margin in 20-client cases thanks to the feature sharing aspect.
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Figure 5: Effect of increasing
synchronization

Method CIFAR-10 CIFAR-100
NC = 5 NC = 20 NC = 5 NC = 20

FL-BYOL (Zhuang et al., 2022) 83.34 75.77 61.78 52.78
MocoSFL-1 (ours) 87.81 85.84 58.78 57.80
MocoSFL-3 (ours) 87.29 85.32 57.70 57.52

Table 2: Non-IID performance comparison (linear probe accuracy)

Cross-client Performance. Our proposed MocoSFL can generalize from a cross-silo application
(with upto 20 clients) to a cross-client application with 100, 200, and 1000 clients. Note that none of
the previous FL-SSL methods can scale to such a large number of clients. For the hyper-parameter
choices, we follow two principles introduced in Appendix A.1 – we let each client use a batch size of
1 and use the synchronization frequency of fS = (1000/NC)/epoch, and we set the client sampling
ratio to 100/NC to keep the same equivalent batch size at the server end. The results are shown
in Table 3. Note that each client has only 50 data samples in the 1000-client case. MocoSFL’s
accuracy for IID case is high when NC increases from 100 to 1,000, though its accuracy drop by
1% for non-IID case. This small drop is because model divergence scales with number of clients as
described in Section 4.4.

Table 3: MocoSFL cross-client accuracy performance (linear probe accuracy) of ResNet-18 model
on CIFAR-10, CIFAR-100 and Imagenet-12 datasets with different number of clients NC .

Method Dataset IID non-IID

NC = 100 NC = 200 NC = 1000 NC = 100 NC = 200 NC = 1000

MocoSFL-1
CIFAR-10 87.29 87.38 87.51 87.71 87.39 86.46
CIFAR-100 58.91 59.15 58.85 59.22 58.90 56.75
ImageNet-12 92.02 91.73 91.76 92.24 91.44 91.28

MocoSFL-3
CIFAR-10 87.29 87.15 87.25 87.10 85.22 84.75
CIFAR-100 58.41 58.30 58.80 58.69 58.59 56.88
ImageNet-12 92.08 92.24 92.02 92.60 91.83 91.28

5.2 PRIVACY EVALUATION

Method Metric Target Data
0.0% 0.5% 1.0%

MocoSFL-1 Accuracy (%) 81.14±0.47 80.78±1.34 79.96±2.96
Attack MSE 0.039±0.005 0.033±0.014 0.039±0.002

MocoSFL-3 Accuracy (%) 81.19±2.32 80.51±1.49 83.13±2.40
Attack MSE 0.045±0.003 0.035±0.003 0.039±0.002

Table 4: Accuracy and MIA resistance performance (Attack
MSE) of MocoSFL+TAResSFL. (Averaging 3 random seeds)
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Figure 6: Visualization of MIA recon-
structed images using TAResSFL.

We use G to perform MIA attack; the architecture information of G is given in Appendix A.3. We
assume the real-time attacker also uses an attack model with the same architecture as G. For the
pre-training step, we use a fixed hyper-parameter choice of λ = 2.0 and a target SSIM level of 0.6 to
limit the strength of regularization. We assume 0.0%, 0.5% and 1.0% of the target dataset CIFAR-10
is accessible, and we use CIFAR-100 dataset as source dataset to assist the pre-training. We set the
cut-layer choices to 1 and 3 and set the #clients to 100 for the training process.
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Successful mitigation of MIA. As shown in Table 4, applying TAResSFL can achieve good accuracy
performance (>81%) as well as high enough MIA resistance (>0.020) for most cases. Fig. 6 shows
the visualization of MocoSFL-3 when 1.0% target data is available. We observe the reconstructed
images are much more noisy and blurry such that the subject can be successfully hidden.

Larger cut-layer allows a better resistance-accuracy tradeoff. Using a smaller cut-layer of 1
seems a better choice in terms of accuracy and hardware requirement. However, as shown in Table 4,
the accuracy and resistance tradeoff seems much better by using a cut-layer of 3. We believe that
the extra client-side model complexity helps in the optimization of both accuracy and resistance
objectives. So, applying TAResSFL with a larger cut-layer is a more favorable option.

5.3 HARDWARE DEMONSTRATION

Finally, we compare the total hardware resource cost of the proposed MocoSFL and “Mo-
coSFL+TAResSFL” with synchronization frequency of 1/epoch for 200 epochs, and FL-SSL (Zhuang
et al., 2022) with 500 local epochs per client and synchronization frequency set to 1 per 5 local epochs
(original setting). For MocoSFL, we use 1,000 clients with batch size of 1, and cut-layer of 3. For
FL-SSL, to achieve similar accuracy, we use 5 clients with batch size of 128. And we assume the data
follows the default 2-class non-IID setting. To evaluate overhead, we use commonly-used libraries
such as ‘fvcore’ for FLOPs and ‘torch.cuda.memory allocated’ for memory (please see Appendix A.5
for detail.) For power measurement, we use a Raspberry Pi 4B equipped with 1GB memory as one
real client and simulate all other clients on the PC.
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Figure 8: Raspberry Pi setup. The Raspberry connects to the output
via a measurement tool, and communicates wirelessly with the server
using websocket (TCP).

As shown in Fig. 7, FL-SSL requires 7,949 TFLOPs for the entire training session as each client needs
to perform 500 local epochs on 10K data and a memory consumption of 921 MB. The communication
overhead due to synchronization has a high cost of around 8,269 MB. Thus, FL-SSL is only suitable
for cross-silo situation. For “MocoSFL+TAResSFL”, hardware requirements are reasonable since
computation is only 734 GFLOPs and communication is around 39 MB in total. The memory
consumption is a tiny 0.8 MB mostly due to the weight parameters since TAResSFL does not require
local training. As shown in Fig. 8, our measurement using a USB multimeter shows the proposed
MocoSFL running on the Raspberry Pi only draws power of 2.26W, in average, and consumes around
9,100 mAh on a 5V battery.

6 CONCLUSION

We propose MocoSFL, a collaborative SSL framework based on SFL. The proposed framework
addresses hardware resource requirement at client-side by enabling small batch size training and
computation offloading. It also relieves the large data requirement of local contrastive learning by
enabling effective feature sharing. The proposed scheme is the only one that can support a large
number of clients. In combination with a ResSFL-based module, it addresses privacy concerns
of MocoSFL. Finally, it achieves even better IID/non-IID performance with much lower hardware
requirement than the SoTA FL-based SSL methods.
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7 ETHICS STATEMENT

In this work, we address two practical issues of hardware (compute and memory) resources and large
data requirement in collaborative SSL by using a SFL-based scheme. Compared to the conventional
approaches, the resulting MocoSFL scheme has significant advantages in affordability and is much
easier to deploy. Apart from being environmental-friendly, MocoSFL makes it possible to reach more
clients, especially for those in poverty or under-represented minorities, and thus eliminate potential
human-bias and unfairness issues of the ML service.

We address the privacy issues in the proposed MocoSFL by proposing TAResSFL module to use in
sensitive applications. Fig. 6 shows that the subject of the raw image can be successfully hidden.

More discussion on the privacy of “MocoSFL+TAResSFL”. We notice a line of works known
as instance encoding (Huang et al., 2020; Yala et al., 2021), which try to protect users’ data by
transforming the original dataset to a distorted version such that they cannot be recognized by humans
while an arbitrary deep learning model can still learn useful information from it (i.e. achieve high
accuracy on a classification task). MocoSFL, especially with the TAResSFL, where the client-side
model is frozen, have some similarities since the frozen client-side model can be seen as a transfor-
mation, and the collection of latent vectors can be regarded as the transformed dataset. However,
“MocoSFL+TAResSFL” scheme has two favorable properties that make it distinct from instance
encoding methods. Domain dependency. First, SFL only finds a transformation method for a given
task. Since the transformation method itself (the client-side model) heavily depends on the target
domain information (as we need access to the target domain data to train the client-side model), it
cannot work on data from another domain. As the output of the “client-side model transformation”,
latent vectors are only useful for current problem without any transferability guarantee. However,
instance encoding methods intend to derive a general transformation method that can work across
domains, targeting a harder problem. Risk Control. Instance encoding methods publish the trans-
formed dataset to the wide public which is risky. As pointed out by Carlini et al. (2021): all the raw
data will be leaked if a successful decryption method is invented in the future even if it does not exist
now. While in our proposed scheme, the latent vectors from clients will only be accessible to the
server party, thereby reducing the risk. Since we already provide TAResSFL to mitigate the MIA
attack that can be possibly launched from the honest-but-curious server, the risk is minimized. To
eliminate possibility of future advanced attack, we can introduce a protocol that requests the server
party to regularly delete1 these latent vectors immediately after the training is done.

8 REPRODUCIBILITY STATEMENT

To make it easier for readers to reproduce the results in this work, we open-source our code at
https://github.com/SonyAI/MocoSFL. We also provide detailed explanation on the Mo-
coSFL training and evaluation hyperparameters, collaborative learning system hyperparameters in
Appendix A.1, and TAResSFL module hyperparameters in Appendix A.4.
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