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ABSTRACT

We introduce a novel neural network-based partial differential equations solver
for forward and inverse problems. The solver is grid free, mesh free and shape
free, and the solution is approximated by a neural network. We employ an unsu-
pervised approach such that the input to the network is a points set in an arbitrary
domain, and the output is the set of the corresponding function values. The net-
work is trained to minimize deviations of the learned function from the strong
PDE solution and satisfy the boundary conditions. The resulting solution in turn
is an explicit smooth differentiable function with a known analytical form.
Unlike other numerical methods such as finite differences and finite elements, the
derivatives of the desired function can be analytically calculated to any order. This
framework therefore, enables the solution of high order non-linear PDEs. The
proposed algorithm is a unified formulation of both forward and inverse problems
where the optimized loss function consists of few elements: fidelity terms of L2

and L∞ norms that unlike previous methods promote a strong solution. Robust
boundary conditions constraints and additional regularizers are included as well.
This setting is flexible in the sense that regularizers can be tailored to specific
problems. We demonstrate our method on several free shape 2D second order
systems with application to Electrical Impedance Tomography (EIT).

1 INTRODUCTION

Partial differential equations are fundamental in science and mathematics with wide applications
in medical imaging, signal processing, computer vision, remote sensing, electromagnetism, eco-
nomics and more. Classical methods such as finite differences, finite volume and finite elements are
numerical discretization-based methods where the domain is divided into a uniform grid or polygon
mesh. The differential equation is then reduced to a system of algebraic equations. These methods
may have some limitations: the solution is numeric and may suffer from high condition number,
highly dependent on the discretization and even the second derivative is sensitive to noise. In the
last few years, deep learning and neural network-based algorithms are extensively used in pattern
recognition, image processing, computer vision and more.

Recently, the deep learning approach had been adopted to the field of PDEs as well by converting the
problem into a machine learning one. In Supervised learning, the network maps an input to an output
based on example input-output pairs. This strategy is used in inverse problems, where the input to the
network is a set of observations/measurements (e.g. x-ray tomography, ultrasound) and the output
is the set of parameters of interest (tissue density etc.) Feigin et al. (2018); Lucas et al. (2018);
McCann et al. (2017); Seo et al. (2019). Unsupervised learning on the other hand is a self-learning
mechanism where the natural structure present within a set of data points is inferred. Algorithms
for forward and inverse problems in partial differential equations via unsupervised learning were
recently introduced. The indirect approach utilizes a neural network as a component in the solution
e.g. Li et al. (2018); Khoo & Ying (2018); Han et al. (2018). Direct algorithms solve the forward
and inverse problem PDEs by directly approximating the solution with a deep neural network. The
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network parameters are determined by the optimization of a cost function such that the optimal
solution satisfies the PDE, boundary conditions and initial conditions Chiaramonte & Kiener (2017);
Li et al. (2019); Sirignano & Spiliopoulos (2017); Raissi et al. (2017); Xu & Darve (2019).

In this work we address the forward and inverse PDE problems via a direct unsupervised method.
Our key contributions are four fold: (1) inverse problems can be solved in the same framework as
the forward problems. (2) In both forward and inverse problems we extend the standard L2-based
fidelity term in the cost function by adding L∞-like norm. Moreover, (3) some regularization terms
which impose a-priori knowledge on the solution can be easily incorporated. (4) Our construction
exemplifies the ability to handle free-form domain in a mesh free manner. Point (1) is essential
for full tomography-like solutions. The extension of the loss function by the L∞-like norm is fun-
damental. The L2 term, used in recent studies, aims only for weak solutions of the PDE since it
minimizes the error in the average sense. The L∞-like norm pushes towards a pointwise or strong
solution since it handles possible outliers of the error. This is not a merely theoretical issue but
strongly affects the quality of the result as we empirically demonstrate. In unsupervised learning of
ill-posed problems regularization is crucial. Choosing the right regularizer and the ability to incor-
porate it in the formulation is of prime importance. Our formalism integrates such regularizations
in a natural way. We demonstrate our algorithm by a second order elliptic equation, in particular the
Electrical Impedance Tomography (EIT) application on a circular and three other arbitrary domains.

2 MATHEMATICAL FORMULATION

Let Ω be a bounded open and connected subset of Rd where d is the dimension. A differential
operator L acting on a function u(x) : Rd → R is defined as

Lu(x) :=
(
an(x) · Dn + an−1(x) · Dn−1 + . . .+ a1(x) · D + a0(x)

)
u(x), (1)

where Dn is the nth order d-dimensional derivative and a0(x), . . . , an(x) are the coefficients. Con-
sider the partial differential problem with Dirichlet boundary conditions

Lu(x) = f(x), x ∈ Ω ⊂ Rd

u(x) = u0(x), x ∈ ∂Ω,
(2)

where f(x) : Rd → R is a given function. The forward problem solves u(x) given the coefficients
θ := {a0(x), . . . , an(x)} while the inverse problem determines the coefficients set θ given u(x).

The proposed algorithm approximates the solutions in both problems by neural networks u(x;wu),
{aj(x;waj )} such that the networks are parameterized by wu, {waj}, and the input to the network
is x ∈ Rd. The network consists of few fully connected layers with tanh activation and linear sum
in the last layer. The network is trained to satisfy the PDE with boundary conditions by minimizing
a cost function. In the forward problem

F(u) = λ‖Lu− f‖22 + µ‖Lu− f‖∞ + ‖u− u0‖1,∂Ω +RF (u), (3)

and in the inverse problem

I(θ) = λ‖Lu− f‖22 + µ‖Lu− f‖∞ + ‖θ − θ0‖1,∂Ω +RI(θ). (4)

The first two terms enforce the solution to satisfy the equation. The first term minimizes the error in
the L2 sense while the second term minimizes the maximal error.

Ideally, the solution to the PDE has to be satisfied at every point x. This is considered as a strong
solution. In the deep learning framework the optimization is carried out on mini batches of points.
The first term minimizes the equation in the integral or average sense and is therefore insensitive
to a point jump in the value of the integrand. It therefore yields a weak solution. The L∞ term
promotes a strong solution since it handles possible discontinuous points in Lu − f . Practically,
we use a relaxed version of the L∞ norm where we take the top-K errors. Then, at every mini
batch the training procedure minimizes the equation at K different points having the largest errors.
The third term imposes boundary conditions where u0 and θ0 are the boundary values of u(x) and
θ(x). We use the L1 norm on the boundary so that the solution is robust to measurements noise.
The last term is a regularizer which can be tailored to the application. There are few advantages
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of this setting. First, the solution is a network and therefore an explicit function. It is a smooth
analytic function and is therefore analytically differentiable. In addition, the proposed framework
enables setting a prior physical knowledge on the solution by designing the regularizersRF andRI .
Moreover, the training procedure is mesh free. Unlike finite differences or finite elements methods,
we use random points in the domain and its boundary in the course of the optimization of equation 3
and equation 4. This means that the solution does not depend upon a coordinate mesh and we can
also define an arbitrary regular domain Ω.

3 APPLICATION TO ELECTRICAL IMPEDANCE TOMOGRAPHY

Consider the following elliptic equation which is a special case of equation 1,

∇ ·
(
σ(x)∇u(x)

)
= 0, x ∈ Ω ⊂ R2

u(x) = u0(x), x ∈ ∂Ω,
(5)

where ∇ := (∂/∂x, ∂/∂y). We assume that 0 < σ(x) ∈ C1(Ω), which guarantees existence and
uniqueness of a solution u ∈ C2(Ω) Evans (2010).

The elliptical system equation 5 was addressed by Siltanen et al. (2000) in the context of Electrical
Impedance Tomography (EIT) which is a reconstruction method for the inverse conductivity prob-
lem. The function σ indicates the electrical conductivity density, and u is the electrical potential.
An electrical current

ψn,ϕ = σ
∂un
∂ν

∣∣∣
∂Ω

=
1√
2π

cos(nκ+ ϕ), n ∈ Z (6)

is applied on electrodes on the surface ∂Ω, where κ is the angle in polar coordinate system along the
domain boundary, n is the current frequency, ϕ is the phase and ν is the normal unit. The resulting
voltage u|∂Ω = u0 is measured through the electrodes. The conductivity σ is determined from the
knowledge of the Dirichlet-to-Neumann map or voltage-to-current map

Λγ : u|∂Ω → σ
∂un
∂ν

∣∣∣
∂Ω
,

Mueller & Siltanen (2012); Alsaker & Mueller (2018); Fan & Ying (2019).

We demonstrate our framework by solving the forward and inverse problem of equation 5 which is a
first step towards a full tomography. Following Mueller & Siltanen (2012), we simulate the voltage
measurement u|∂Ω by the Finite Elements Method (FEM) given three variants of a conductivity
phantom σ(x). We calculate the FEM solution with different triangle mesh densities and select
as ground truth the one such that finer meshes do not improve the numerical solution. With our
suggested method, the forward problem determines the electrical potential u in the whole domain Ω
given σ, while the inverse problem uses the approximated u and calculates the conductivity σ given
that σ|∂Ω = σ0.

3.1 FORWARD PROBLEM

In the forward problem the conductivity σ(xi) and boundary conditions u0(xb) are given for random
points set {xi} ∈ Ω ⊂ R2, {xb} ∈ ∂Ω ⊂ R2 with sets size of Ns and Nb respectively. A neural
network approximates u(x). Let

Li := ∇ ·
(
σ(xi)∇u(xi)

)
. (7)

The cost function equation 3 is then rewritten as

F
(
u(x;wu)

)
=
λ

Ns

Ns∑
i=1

|Li|2 +
µ

K

∑
k∈topK(|Li|)

|Lk|

+
1

Nb

Nb∑
b=1

∣∣∣u(xb)− u0(xb)
∣∣∣+ α‖wu‖22.

(8)
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The first term is the L2 norm of the differential operator, the second term is a relaxed version of the
infinity norm where we take the mean value of the top-K values of |Li|. The third term imposes the
boundary conditions and the last term serves as a regularizer of the network parameters.

Figure 1 shows the forward problem results for current ψ with n = 1 and ϕ = π/8. The left column
is the FEM solution which is referred to as ground truth, where the top row indicates the solution
u(x) and the bottom row the derivative of u(x) with respect to the first coordinate x calculated
as the finite difference approximation of the FEM result. The middle column depicts the outcome
of the proposed method where ∂u/∂x is an analytical derivative of our result. The right column
shows the outcome of the DGM method Sirignano & Spiliopoulos (2017) which is a special case of
equation 8 with λ = 1, µ = 0, and α = 0. Clearly, the proposed method outperforms the DGM
method since the weighting parameters, the relaxed L∞ norm and network weights regularization
play a significant role in the loss function.

(a) u: FEM (b) u: ours, psnr=40.6 (c) u: DGM, psnr=14.9

(d) ux: FEM (e) ux: ours, psnr=40.55 (f) ux: DGM, psnr=19.27

Figure 1: Forward problem results of u(x) and ux := ∂u(x)/∂x for current frequency n = 1
and phase ϕ = π/8. Left column: ground truth (FEM). Middle column: proposed method. Right
column: DGM method.

3.2 GENERALIZED INVERSE PROBLEM

In the inverse problem, the electrical potential u(x) is known while σ(x) is unknown. Since we have
a network which approximates u(x), we can evaluate it at any point x. A physical a priori knowledge
regarding σ is exploited in this application. The conductivity is assumed to have well defined sub-
regions. We therefore design the regularization term to have sparse edges via total variation (p = 1
in the last term of equation 9). The objective function (equation 4) then takes the form

I
(
σ(x;wσ)

)
=
λ

Ns

Ns∑
i=1

|Li|2 +
µ

K

∑
k∈topK(|Li|)

|Lk|

+
1

Nb

Nb∑
b=1

∣∣∣σ(xb)− σ0(xb)
∣∣∣+ α‖wσ‖22 +

β

Ns

Ns∑
i=1

|∇σ(xi)|p.

(9)

Additional generalization exploits multiple voltage functions associated to a currents set {ψj}. The
σ calculation thus, simultaneously relies on all {uj}, resulting a more stable solution. Let

Lij := ∇ ·
(
σ(xi)∇uj(xi)

)
, (10)
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then equation 9 is generalized to

Jj
(
σ(x;wσ)

)
=
λ

Ns

Ns∑
i=1

|Lij |2 +
µ

K

∑
k∈topK(|Lij |)

|Lkj |, (11)

and

I
(
σ(x;wσ

)
=
∑
j

Jj
(
σ(x;wσ)

)
+

1

Nb

Nb∑
b=1

∣∣∣σ(xb)− σ0(xb)
∣∣∣

+ α‖wσ‖22 +
β

Ns

Ns∑
i=1

|∇σ(xi)|p.

(12)

The results are shown in Figure 2. In both phantoms we used four current combinations ψn,ϕ where
{n, ϕ}= (1, 0), (1, π/4), (2, 0), (2, π/4), and σ0 = 1.

Figure 2: Generalized inverse problem results. Top left: ground truth of phantom 1. Top right: re-
constructed σ(x), PSNR=27.9. Bottom left: ground truth of phantom 2. Bottom right: reconstructed
σ(x), PSNR=40.44.

Next, we applied the proposed method to three arbitrary domains. The random sample points within
the domain and along its boundary can be easily obtained. The outcome of the generalized inverse
problem is shown in Figure 3

Figure 3: Reconstructed σ(x) applied on different domains. PSNR=(33.67, 36.27, 33.51).
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