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Abstract

Language models have demonstrated remarkable
capabilities in reasoning tasks through test-time
scaling techniques like best-of-N sampling and
tree search. However, these approaches often de-
mand substantial computational resources, cre-
ating a critical trade-off between performance
and efficiency. We introduce STAND (STochastic
Adaptive N-gram Drafting), a novel model-free
speculative decoding approach that leverages the
inherent redundancy in reasoning trajectories to
achieve significant acceleration without compro-
mising accuracy. Our analysis reveals that rea-
soning paths frequently reuse similar reasoning
patterns, enabling efficient model-free token pre-
diction without requiring separate draft models.
By introducing stochastic drafting and preserv-
ing probabilistic information through a memory-
efficient logit-based N-gram module, combined
with optimized Gumbel-Top-K sampling and data-
driven tree construction, STAND significantly im-
proves token acceptance rates. Extensive eval-
uations across multiple models and reasoning
tasks (AIME-2024, GPQA-Diamond, and Live-
CodeBench) demonstrate that STAND reduces in-
ference latency by 60-65% compared to standard
autoregressive decoding while maintaining accu-
racy. Furthermore, STAND outperforms state-of-
the-art speculative decoding methods by 14-28%
in throughput and shows strong performance even
in single-trajectory scenarios, reducing inference
latency by 48-58%. As a model-free approach,
STAND can be applied to any existing language
model without additional training, being a pow-
erful plug-and-play solution for accelerating lan-
guage model reasoning.
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AGI 2KAIST. Correspondence to: Sravan Babu Bodapati <sra-
vanb@amazon.com>.

3rd Workshop on Efficient Systems for Foundation Models (ES-
FoMo III) at ICML, Vancouver, Canada. 2025.

1. Introduction
Test-time scaling has emerged as a prominent paradigm
for enhancing the performance of language models by al-
locating additional computational resources during infer-
ence (Snell et al., 2024). This includes generating long
sequences of thoughts though Large Reasoning Models
(LRMs) (Muennighoff et al., 2025), multi-sampling ap-
proaches like best-of-N sampling and majority voting that
generate multiple independent outputs to select the most
promising one (Wang et al., 2022), as well as iterative meth-
ods like tree search and sequential refinement that allow
models to progressively improve their reasoning (Uesato
et al., 2022). While these methods demonstrate the potential
for significant accuracy improvements, they often demand
substantial computational resources due to the large number
of tokens that need to be generated.

Recent research has focused on reducing the high computa-
tional costs of test-time scaling and reasoning approaches
(Sui et al., 2025). Some work has explored training with
length-based rewards to generate more concise outputs (Ag-
garwal & Welleck, 2025; Qu et al., 2025), while other ap-
proaches use combinations of small and large models to
distribute the workload efficiently (Liao et al., 2025; Yang
et al., 2025). However, these efficiency-focused methods
typically face a fundamental trade-off. While they reduce
computational costs, they tend to sacrifice some accuracy
compared to more exhaustive approaches, as using fewer
samples or cutting short the exploration process often leads
to lower performance. This raises a crucial question:

How can we improve the efficiency
of test-time scaling and reasoning approaches

without compromising their accuracy?

To address this challenge, we turn our attention to specula-
tive decoding (SD), which offers a promising solution for
lossless acceleration of language model inference. Spec-
ulative decoding accelerates language model inference by
using a smaller "draft" model to predict tokens, which are
then verified by the larger target model (Leviathan et al.,
2023). With appropriate verification strategies like specu-
lative sampling (Chen et al., 2023a), SD can speed up the
auto-regressive decoding process of large language models
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Figure 1. Scaling curve with speculative decoding. We report the scaling curve describing how the task performance improves with
respect to the total decoding time. Keeping simple auto-regressive decoding total time as 1, we also report the scaling curves for different
model-free SD methods. We report the reward-weighted majority voting accuracy for AIME-2024 and GPQA-Diamond, and pass@k for
LiveCodeBench, where k is the total number of generated sequences generated at a given point. All measurements are made on a single
A100 GPU with DeepSeek-R1-Distill-Qwen-7B.

while preserving their original output distribution.

A key observation in LRMs is the significant repetition of
token sequences across different reasoning paths. When
models are performing chain-of-thought reasoning (Snell
et al., 2024) or exploring multiple solutions (Wang et al.,
2022; Xie et al., 2024), they frequently reuse similar expres-
sions, logical deductions, and reasoning patterns.

This redundancy presents an opportunity for model-free
speculative decoding (Saxena, 2023; Ou et al., 2024). Un-
like model-based approaches that rely on neural networks
as drafters (Li et al., 2024c; Cai et al., 2024), model-free
methods can leverage patterns from previous generations to
construct drafts. This makes them particularly well-suited
for exploiting cross-trajectory information. Our experiments
confirm this approach’s effectiveness, demonstrating im-
proved efficiency as the number of reasoning trajectories
increases.

To fully leverage the power of model-free speculative decod-
ing for reasoning tasks, we propose STAND (STochastic
Adaptive N-gram Drafting). Our approach is motivated by
two key observations: First, existing model-free approaches
have primarily focused on greedy decoding, leaving the
potential benefits of sampling largely unexplored. Second,
our experimental analysis demonstrates that stochastic draft-
ing (i.e. sampling draft tokens from the draft probability
distribution) significantly improves token acceptance rates.
Building on these insights, STAND introduces three key
innovations: (1) a memory-efficient logit-based N-gram
module that preserves probabilistic information for better
stochastic drafting, (2) an optimized sampling strategy us-
ing Gumbel-Top-K for efficient token selection, and (3) a
data-driven approach to draft tree construction that balances
efficiency with effectiveness. Combined, these techniques

significantly enhance the speculative decoding performance
in the context of test-time scaling, where sampling and di-
verse trajectory exploration are crucial.

Our extensive evaluations demonstrate STAND’s effective-
ness in various reasoning tasks (math, science and coding)
and different model scales. As highlighted in Figure 1,
our results show that STAND’s benefits become more pro-
nounced as the number of reasoning trajectories increases.
When using best-of-16 sampling to achieve optimal accu-
racy, STAND reduces inference latency by 60-65% com-
pared to standard autoregressive decoding while maintain-
ing the same performance level. Moreover, STAND out-
performs state-of-the-art speculative decoding methods by
14-28% in throughput, establishing an efficient drafting
strategy for reasoning tasks.

Furthermore, we observe that STAND also shows the best
throughput in single-trajectory evaluations, reducing the
inference latency by 48-58% compared to standard autore-
gressive decoding, although it was primarily designed to
leverage information across multiple reasoning trajectories.
As a model-free speculative decoding approach, STAND
accomplishes all these achievements without requiring any
additional drafter model, or fine-tuning the target model, be-
ing able to be used in plug-and-play manner to any existing
LRMs.

2. STAND
In this section, we present the details of STAND. In Sec-
tion 2.1, we propose a memory- and compute-efficient ap-
proach to construct the logit-based N-gram module. Then
in Section 2.2, we illustrate how to use the N-gram module
as a drafter for stochastic sampling, together with several
optimization techniques that further improve performance.
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Drafting with Logit-Based Adaptive N-Gram Module Data-Driven Draft Tree Optimization
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Figure 2. Overview of STAND. (Left) The N-gram module of STAND stores logits instead of discrete tokens, enabling stochastic drafting.
When the language model generates “I am Bob”, we store the probability distribution over the next token rather than just the sampled
token. (Right) Data-driven draft tree optimization: We start with an initial large draft tree, measure node-wise acceptance rates during
speculative decoding on real data, and prune to retain the most successful paths.

2.1. Logit-based adaptive N-gram module

Traditional N-gram modules for speculative decoding typi-
cally store pairs of N-grams and their corresponding next to-
kens (Ou et al., 2024). We improve this approach by instead
storing the logit distribution from which the next token is
sampled. This modification preserves the rich probabilistic
information of potential next tokens, enabling more sophisti-
cated stochastic drafting strategies. While existing methods
like Token Recycle partially utilize logit information by
storing top-k token IDs, they discard valuable probability
information that are crucial for stochastic drafting. Like pre-
vious works (Saxena, 2023; Ou et al., 2024), we maintain
separate lookup tables from unigrams to 4-grams.

Efficient logit approximation. To address the memory
overhead associated with storing full logit distributions, par-
ticularly for models with large vocabularies, we implement a
compressed representation scheme. Our approach maintains
only the top-k indices and their corresponding probabilities.
When encountering repeated n-grams, we merge distribu-
tions by treating non-stored indices as having zero probabil-
ity and computing a weighted average: for an n-gram seen k
times previously, the existing distribution (representing the
mean of k occurrences) is weighted by k/(k+1) and the new
distribution by 1/(k+1). The resulting averaged distribution
is then truncated to retain only the top-10 most probable to-
kens, ensuring constant memory usage while preserving the
most relevant probability information for future speculation.

2.2. Drafting with STAND

Stochastic tree drafting. For each position in the draft
tree, we predict the next tokens using a multi-level N-gram

approach. Following previous works (Saxena, 2023; Ou
et al., 2024), we search for matching N-grams in decreasing
order of length, from 4-grams down to unigrams, using
the first successful match. This lookup returns the top-10
candidate tokens and their corresponding probabilities from
our stored distributions. Based on the number of children
required at each tree node, we sample k tokens without
replacement from these candidates. These sampled tokens
then undergo standard speculative sampling verification to
ensure draft quality.

Gumbel-Top-K sampling. For efficient stochastic draft-
ing, we replace sequential sampling with a parallel sampling
approach based on the Gumbel-Top-K trick (Kool et al.,
2019). For each candidate token’s log probability ϕi, we
add Gumbel noise to create a perturbed distribution:

ϕ′
i = ϕi − log(− logUi), Ui ∼ Uniform(0, 1)

Taking the top-k indices from these perturbed values ϕ′
i

effectively samples k tokens without replacement in par-
allel, significantly reducing sampling latency compared to
sequential methods.

To further optimize performance, we pre-compute and cache
the Gumbel noise terms rather than generating them during
drafting. This cached noise is periodically refreshed when
depleted, effectively separating the sampling overhead from
drafting. These optimizations further enhance the perfor-
mance of our stochastic drafting approach.

Draft tree optimization. Tree-based speculative decod-
ing typically uses either dynamic trees constructed during
inference or static trees built using heuristics. While dy-
namic trees offer context-adaptability, they add computa-
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Table 1. Speculative decoding performance in multi-trajectory reasoning. We report the average throughput (T) and acceptance length
(A) for multi-trajectory test-time scaling scenarios, with different number of reasoning trajectories per problem. We evaluate each model
on AIME-2024 (AIME), GPQA-Diamond (GPQA), and LiveCodeBench (LCB). The best values are highlighted in bold.

4 Trajectories 8 Trajectories 16 Trajectories

AIME GPQA LCB AIME GPQA LCB AIME GPQA LCB

DeepSeek-R1-Distill-Qwen-7B

Plain T 26.63 31.34 27.75 26.63 31.34 27.75 26.63 31.34 27.75

Eagle-2 T 29.91 31.69 27.61 29.91 31.69 27.61 29.91 31.69 27.61
A 2.21 1.99 2.13 2.21 1.99 2.13 2.21 1.99 2.13

PLD T 43.93 50.49 44.01 44.95 53.04 45.08 46.60 53.47 46.02
A 1.78 1.81 1.73 1.84 1.89 1.79 1.89 1.96 1.85

ANPD T 45.52 57.39 46.30 46.40 58.97 47.86 47.06 60.25 48.81
A 1.89 1.97 1.88 1.92 2.03 1.91 1.96 2.11 1.96

SAM T 44.35 53.21 45.63 45.64 55.47 47.24 47.64 57.53 48.92
A 1.81 1.87 1.85 1.89 1.96 1.89 1.97 2.03 1.95

Recycle T 61.38 71.51 60.62 61.70 71.55 60.93 60.86 71.23 61.36
A 2.76 2.73 2.73 2.77 2.73 2.73 2.77 2.73 2.74

STAND (Ours) T 64.99 83.47 69.70 66.88 87.02 71.83 69.15 91.17 74.14
A 3.21 3.48 3.30 3.35 3.70 3.47 3.46 3.90 3.64

tional overhead. Conversely, static trees are computation-
ally efficient but may underperform if constructed through
heuristics alone.

We address this limitation through a data-driven approach
to static tree construction. Our method begins by initializ-
ing a large tree with 625 nodes and performing speculative
decoding on 30 samples from the AIME-2024 dataset. Dur-
ing this process, we track which nodes are frequently part
of successful speculation paths. We then select the top-80
most effective nodes and reorganize them into a compact
tree structure. This empirical approach maintains the com-
putational efficiency of static trees while ensuring the tree
structure is optimized based on real-world performance data.

3. Experiments
In this section, we highlight the effectiveness of STAND
through extensive evaluations. Specifically, we evaluate
STAND’s performance in multi-trajectory inference in Fig-
ure 1 and Table 1, where we generate multiple candidate
answers by sequentially producing k independent reasoning
traces and then aggregate the results.

As shown in Figure 1, STAND significantly improves de-
coding efficiency, achieving equivalent performance to plain
decoding in less than 40% the time. Table 1 provides de-
tailed throughput and acceptance length comparisons across
methods. STAND not only achieves the highest throughput
but also maintains longer acceptance lengths compared to
baselines. Importantly, both metrics improve as we increase
the number of trajectories, making STAND’s speedup ad-

vantage more pronounced with increased compute scaling.

Notably, Token Recycle’s performance does not improve
with more trajectories, unlike other model-free approaches.
This limitation likely comes from its lookup table update
strategy, which replaces rather than aggregates informa-
tion from new trajectories. While this approach may of-
fer drafting speed benefits, STAND’s superior and scaling-
dependent performance suggests that aggregating historical
information is beneficial for test-time scaling.

We provide further experiments and analysis in Appendix C.
Specifically, in Appendix C.1, we further extend the results
in Table 1 with more baseline and models, further showcas-
ing the effectiveness of STAND in multi-trajectory reason-
ing. In Appendix C.2, we showcase that STAND is also
effective for single-trajectory reasoning, where we generate
only a single reasoning chain. Finally in Appendix C.3, we
provide additional ablations and analysis to showcase the
effectiveness of individual components of STAND.

4. Conclusion
In this work, we introduced STAND, a model-free specu-
lative decoding approach that accelerates language model
reasoning while maintaining accuracy. By utilizing reason-
ing trajectory redundancy and historical logit information,
STAND significantly improves throughput over standard
auto-regressive decoding. Our method outperforms exist-
ing alternatives, offering an efficient solution for scaling AI
reasoning systems.
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A. Related Works
Test-time scaling and efficiency. Test-Time Scaling (TTS) has emerged as a prominent strategy to enhance problem-
solving capabilities during inference without model retraining (Snell et al., 2024; Muennighoff et al., 2025; Wang et al., 2022;
Uesato et al., 2022; Xie et al., 2024). Generating long chain-of-thoughts or sampling multiple sequences have consistently
showcased higher accuracy in many complex tasks like math, science and coding (Wei et al., 2022; Cobbe et al., 2021; Chen
et al., 2023b). However, the computational cost of TTS remains a critical bottleneck for their practical use. Recent work has
explored optimizing inference using adaptive thinking lengths, cascading models of different sizes, length penalties during
training, and budget-constrained decoding (Aggarwal & Welleck, 2025; Qu et al., 2025; Liao et al., 2025; Li et al., 2024d;
Wan et al., 2024), yet the fundamental trade-off between accuracy gains and costs persists. Our method aims to accelerate
reasoning while ensuring no performance degradation.

Speculative decoding. SD have been shown to accelerate Large Language Model (LLM) inference without any loss
in the accuracy (Leviathan et al., 2023). The approach typically involves a smaller "draft" model proposing candidate
token sequences for parallel verification by the larger "target" model. If the tokens align with the target model’s output
distribution, they are "accepted", resulting in more than one token being produced in a single forward pass of the LLM.
Various compute-efficient drafting strategies have been proposed in the literature to increase the chances of acceptance.
Neural draft architectures have evolved from simple, smaller LMs to sophisticated self-drafting approaches e.g., Medusa
(Cai et al., 2024), Eagle (Li et al., 2024b), and ReDrafter (Cheng et al., 2024)). Although the use of light-weight model-free
drafters based on n-grams (Li et al., 2024a; Somasundaram et al., 2024; Hu et al., 2024; Oliaro et al., 2024; Geva et al., 2023;
Ou et al., 2024; Saxena, 2023) has been explored previously for generic tasks, we revisit them in the context of LRMs. While
these approaches limit themselves to deterministic n-gram based lookups as draft sequences, we highlight the significance
of stochastic drafting with logit information of previously generated n-grams for reasoning in our proposed method. To
further boost SD performance, tree drafting was proposed where multiple draft token predictions are organized in a tree
structure, enabling efficient parallel verification through a specialized tree attention mask (Miao et al., 2023; Li et al., 2024b).
Methods like Eagle-2 (Li et al., 2024c) even used dynamic tree layout choices for SD. Extending these existing methods, we
additionally propose a computationally efficient data-driven offline tree optimization method for our lightweight model-free
drafting method for LRMs.

Other approaches in literature that tie SD with LRMs include Speculative Thinking (Hu et al., 2025), SpecReason (Pan
et al., 2025), Reward-guided SD (Liao et al., 2025). However, they do not maintain the lossless nature of SD and hence
can also be used in combination with our work. A contemporary work (Li et al., 2025) have explored the importance of
model-free n-gram based drafting for multi-sample inference, but did not showcase any practical speedup. We extend their
findings with our novel model-free stochastic drafting, and showcase a comparative analysis with existing methods through
our extensive experimentation.
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B. Motivation
In this section, we highlight the motivation behind each design component of STAND. In Appendix B.1, we analyze the
N-gram overlaps across different reasoning trajectories. The high overlap motivates the use of model-free drafters, which
can easily incorporate information from different trajectories. In Appendix B.2, we analyze the effectiveness of of stochastic
drafting, compared to the widely-used deterministic drafting strategy. This motivates the sampling-specific components of
STAND, including the use of logit-based N-grams, and the Gumbel-Top-K optimization used for speeding up stochastic
drafting.

B.1. N-gram overlap analysis
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Figure 3. N-gram overlaps across reasoning trajec-
tories. We report the N-gram overlaps across dif-
ferent number of reasoning trajectories, generated by
DeepSeek-R1-Distill-Qwen-7B on AIME-2024. The
overlap is defined as the percentage of the N-grams
that appear twice or more in k reasoning trajectories,
counting duplicates multiple times.

To assess the degree of redundancy in reasoning trajectories, we
conducted a comprehensive analysis of n-gram overlap patterns across
multiple solutions generated by the DeepSeek-R1-Distill-Qwen-7B
model on the AIME-2024 dataset. Figure 3 illustrates our findings,
depicting the overlap rates for n-grams ranging from bigrams to 5-
grams across varying numbers of reasoning trajectories.

The results reveal a substantial level of repetition in token sequences.
Notably, we observed that up to 97% of bigrams and 80% of 4-grams
recur across 16 distinct reasoning trajectories. Even when considering
only two trajectories, over 90% of bigrams are repeated. This high
degree of overlap suggests a significant probability that any given
n-gram generated by the model has likely appeared in a previous
trajectory.

These findings present a compelling opportunity for the development
of an efficient drafting strategy. By leveraging this inherent redun-
dancy, we can implement a straightforward approach where previously
generated n-grams are proposed as draft sequences, potentially lead-
ing to significant improvements in computational efficiency without
compromising the chance of acceptance of the generated draft. This
presents a key motivation for our proposed method STAND.

B.2. Effectiveness of stochastic drafting
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Figure 4. Deterministic vs. stochastic drafting. We
report the acceptance probability of a token, given a
draft tree with depth 1 and width 3. Measurements are
done using DeepSeek-R1-Distill-Qwen-7B model, and
the draft tree is constructed using the N-gram module
in STAND.

In contrast to traditional generation approaches that rely on greedy
decoding, LRMs typically employ sampling-based generation strate-
gies to produce multiple diverse solution trajectories, making the
choice of drafting strategy particularly crucial. In speculative sam-
pling (Chen et al., 2023a), given a target distribution p(x) and
draft distribution q(x), the speculative sampling procedure oper-
ates by first sampling x ∼ q(x). The sampled token is accepted
if q(x) ≤ p(x). Otherwise, when q(x) > p(x), the token is rejected
with probability 1− p(x)

q(x) and resampled from an adjusted distribution
p′(x) = norm(max(0, p(x)− q(x))). This procedure guarantees that
the final output distribution matches the target distribution p(x), for
any drafting distribution q(x).

One can choose the drafting strategy to be deterministic or stochastic.
In the former, q(x) is treated as a one-hot vector where q(xdraft) = 1
for the drafted token xdraft and q(x) = 0 for all other x. For speculative
sampling, this means the drafted token is accepted with p(xdraft),
which can be particularly low when the target model is uncertain
about its prediction. In contrast, stochastic drafting generates drafts through sampling from a probability distribution.
Aligning this draft distribution with the target can significantly boost the chances of acceptance.
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In generic greedy decoding setups where this choice does not matter, existing model-free SD methods (Ou et al., 2024; Hu
et al., 2024; Saxena, 2023) do not store any probability distribution with the n-gram lookup-based drafters. Eagle-2 (Li
et al., 2024c) also uses deterministic drafting for better compatibility with their dynamic tree construction logic. However,
for LRMs where sampling plays a key role in generation, we showcase that this choice plays a pivotal role in acceptance
probability of the draft sequence. As shown in Figure 4, this fundamental difference leads to 5%, 7% and 8% higher
acceptance probabilities for stochastic drafting compared to deterministic drafting across different reasoning tasks i.e. AIME,
GPQA and LiveCodeBench respectively. These experimental findings motivated us to find effective ways to compute
draft model probabilities in STAND, that aligns well with the probability distributions of LRMs from which the multiple
trajectories are sampled.

C. Experimental Details and Additional Results
Experimental setup and baselines. Throughout the experiments, we evaluate the effectiveness of our approach on diverse
tasks, including math reasoning (AIME-2024), STEM QA (GPQA-Diamond), and coding (LiveCodeBench). We perform
evaluations across different model scales, including DeepSeek-R1-Distill-Qwen-7B and 14B. For all tasks, we generate
maximum 32k tokens for the 7B model, and 24k tokens for the 14B model. All sampling is done with temperature 0.6. All
measurements are done on a single A100 GPU, with 30 samples per task for efficient experiments.

For model-free baselines, we compare STAND against Prompt Lookup Decoding (PLD, (Saxena, 2023)), Adaptive N-gram
Parallel Decoding (ANPD, (Ou et al., 2024)), Token Recycle (Recycle, (Luo et al., 2024)), SAM-Decoding (SAM, (Hu
et al., 2024)) and a combination of SAM decoding and Token Recycle, also proposed in the SAM paper. For Static SAM
(which is a component of SAM that uses a pre-constructed suffix automation from a datastore), we construct the datastore
using 4k samples from the OpenThoughts-114k (Team, 2025) dataset. We also compare against Eagle-2, as a representative
model-based baseline. To enable long context inference, we trained all Eagle models using OpenThoughts-114k dataset,
where long samples exceeding 32k tokens were truncated.

Evaluation metrics. We adopt throughput and acceptance length as the main evaluation metrics. Throughput is obtained
by dividing the total drafting time with the number of generated tokens. Acceptance length describes how many tokens were
accepted per speculation step. Higher values are better for both metrics.

C.1. Extended main table

In Table 2, we present the extended main table with additional baselines and extended model scale. STAND consistently
outperforms all baselines, both in throughput and acceptance lengths.
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Table 2. Speculative decoding performance in multi-trajectory reasoning. We report the average throughput (T) and acceptance length
(A) for multi-trajectory test-time scaling scenarios, with different number of reasoning trajectories per problem. We evaluate each model
on AIME-2024 (AIME), GPQA-Diamond (GPQA), and LiveCodeBench (LCB). The best values are highlighted in bold.

4 Trajectories 8 Trajectories 16 Trajectories

AIME GPQA LCB AIME GPQA LCB AIME GPQA LCB

DeepSeek-R1-Distill-Qwen-7B

Plain T 26.63 31.34 27.75 26.63 31.34 27.75 26.63 31.34 27.75

Eagle-2 T 29.91 31.69 27.61 29.91 31.69 27.61 29.91 31.69 27.61
A 2.21 1.99 2.13 2.21 1.99 2.13 2.21 1.99 2.13

PLD T 43.93 50.49 44.01 44.95 53.04 45.08 46.60 53.47 46.02
A 1.78 1.81 1.73 1.84 1.89 1.79 1.89 1.96 1.85

ANPD T 45.52 57.39 46.30 46.40 58.97 47.86 47.06 60.25 48.81
A 1.89 1.97 1.88 1.92 2.03 1.91 1.96 2.11 1.96

SAM T 44.35 53.21 45.63 45.64 55.47 47.24 47.64 57.53 48.92
A 1.81 1.87 1.85 1.89 1.96 1.89 1.97 2.03 1.95

Recycle T 61.38 71.51 60.62 61.70 71.55 60.93 60.86 71.23 61.36
A 2.76 2.73 2.73 2.77 2.73 2.73 2.77 2.73 2.74

SAM + Recycle T 61.11 70.43 62.20 60.66 69.98 63.41 60.63 69.85 63.39
A 2.71 2.73 2.68 2.69 2.74 2.69 2.68 2.71 2.67

STAND (Ours) T 64.99 83.47 69.70 66.88 87.02 71.83 69.15 91.17 74.14
A 3.21 3.48 3.30 3.35 3.70 3.47 3.46 3.90 3.64

DeepSeek-R1-Distill-Qwen-14B

Plain T 17.76 18.16 17.43 17.76 18.16 17.43 17.76 18.16 17.43

Eagle-2 T 25.38 24.86 21.89 25.38 24.86 21.89 25.38 24.86 21.89
A 2.72 2.44 2.51 2.72 2.44 2.51 2.72 2.44 2.51

PLD T 24.37 26.60 23.36 25.44 27.36 23.96 26.35 28.43 24.97
A 1.74 1.82 1.74 1.84 1.91 1.81 1.92 2.00 1.88

ANPD T 25.74 28.21 24.78 26.12 29.51 25.63 26.49 30.62 26.32
A 1.87 1.97 1.87 1.91 2.04 1.93 1.96 2.13 1.99

SAM T 25.22 28.03 24.41 26.11 29.39 25.37 27.25 30.59 26.67
A 1.78 1.85 1.79 1.88 1.95 1.87 1.98 2.06 1.96

Recycle T 34.97 38.99 34.05 35.06 38.89 33.98 35.31 38.81 33.96
A 2.78 2.73 2.72 2.77 2.73 2.72 2.77 2.74 2.72

SAM + Recycle T 34.81 38.24 34.15 35.16 38.57 34.19 35.53 38.99 34.31
A 2.70 2.71 2.65 2.71 2.71 2.66 2.72 2.71 2.65

STAND (Ours) T 37.56 43.71 38.71 39.13 46.81 40.45 40.76 49.11 42.72
A 3.16 3.42 3.29 3.28 3.63 3.47 3.42 3.86 3.65
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C.2. Evaluation on single-trajectory decoding

Table 3. Single-trajectory evaluations. We report the throughput (T) and acceptance length (A) for generating a single sequence with
DeepSeek-R1-Distill-Qwen-7B and 14B. The best values are highlighted in bold, and the runner-up is underlined.

AIME GPQA LCB
T A T A T A

DeepSeek-R1-Distill-Qwen-7B

Plain 26.63 x 31.34 x 27.75 x
Eagle-2 29.91 2.21 31.69 1.99 27.61 2.13
PLD 44.34 1.72 42.84 1.64 43.40 1.59
ANPD 46.18 1.88 54.05 1.82 44.79 1.80
SAM 40.85 1.69 48.45 1.69 42.92 1.80
Recycle 60.61 2.73 71.00 2.71 60.12 2.73
SAM + Recycle 61.15 2.70 71.51 2.81 62.78 2.69
Ours 61.79 3.07 75.39 3.05 66.41 3.01

DeepSeek-R1-Distill-Qwen-14B

Plain 17.76 x 18.16 x 17.43 x
Eagle-2 25.38 2.72 24.86 2.44 21.89 2.51
PLD 21.82 1.61 24.97 1.64 21.76 1.58
ANPD 25.60 1.76 26.40 1.79 23.16 1.76
SAM 23.26 1.63 25.38 1.65 22.36 1.63
Recycle 33.71 2.77 38.91 2.73 33.85 2.71
SAM + Recycle 34.35 2.67 37.53 2.72 34.45 2.70
Ours 34.52 2.91 38.71 3.00 34.86 2.93

While STAND is primarily designed to leverage information across multiple reasoning trajectories, we also evaluate its
performance on single-trajectory generation, where the model only produces one long reasoning chain. As shown in Table 3,
STAND achieves both the highest acceptance length and throughput in most scenarios, demonstrating its effectiveness even
when generating individual solutions.

C.3. Ablations and analysis

We evaluate key components of STAND through ablation studies and further analysis. Our ablation studies examine the
impact of stochastic drafting and the Gumbel-Top-K optimization trick, followed by an investigation of our tree optimization
approach. We then analyze the structural characteristics of the optimized trees to better understand the patterns that emerge
from our method.

Effect of stochastic drafting. In Table 4, we compare three drafting approaches: deterministic drafting, basic stochastic
drafting (using PyTorch’s multinomial sampling), and our optimized stochastic drafting with Gumbel-Top-K. For fair
comparison, we separately perform tree optimization for determinisic drafting and stochastic drafting. Stochastic drafting
consistently achieves higher acceptance lengths across all tasks, resulting in improved throughput compared to deterministic
drafting. Our Gumbel-Top-K optimization further improves performance by maintaining similar acceptance lengths while
significantly reducing latency, leading to even higher throughput.

Table 4. Effect of Stochastic Drafting. We report the throughput for generating 4 sequences with DeepSeek-R1-Distill-Qwen-7B, on
AIME-2024.

AIME GPQA LCB
T A T A T A

Deterministic 62.13 2.94 73.67 2.98 63.44 2.90
Stochastic 63.44 3.24 81.20 3.56 65.90 3.29
+ Gumbel-Top-K 64.99 3.21 83.47 3.48 69.70 3.30

Effect of tree optimization. In Table 5, we showcase the effectiveness of our tree optimization technique. Specifically,
we compare the performance of a heuristic tree originally used by Token Recycle (Luo et al., 2024) with our tree, optimized
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on the AIME-2024 dataset. The results demonstrates that the optimized tree improves performance on both AIME-2024 and
GPQA-Diamond, showcasing that the optimization not only works for the dataset in the same domain, but also generatlizes
to out-of-domain (OOD) tasks.

Table 5. Effect of tree optimization. Comparison of mean acceptance lengths when generating 4 sequences with DeepSeek-R1-Distill-
Qwen-7B on two datasets: AIME-2024 and GPQA-Diamond. We compare two types of static trees: the heuristic trees from Token
Recycle and our data-optimized trees (optimized on AIME-2024). AIME-2024 represents in-domain (IND) performance since it was used
for tree optimization, while GPQA-Diamond tests out-of-domain (OOD) generalization. The best values are highlighted in bold.

AIME (IND) GPQA (OOD)
Heuristic Optimized Heuristic Optimized

Throughput 59.96 64.99 77.32 83.47
Acc. Lens 3.17 3.21 3.35 3.48

Tree structure analysis. We analyze how different drafting approaches lead to different optimal tree structures by
comparing trees optimized for STAND versus Token Recycle. As shown in Figure 5a, the tree optimized for STAND reaches
greater depths, extending to 13 levels compared to 7 levels in the Token Recycle-optimized tree. This difference likely stems
from STAND’s higher acceptance rate, which favors deeper, narrower tree structures under the same tree size budget.

A distinctive feature of STAND’s optimized tree is its long tail structure, with single nodes at depths 8 through 13. This
pattern suggests the presence of occasional long, deterministic sequences, possibly arising from consistent patterns found
across multiple reasoning trajectories.
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(a) Structure of the optimized tree.
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(b) Structure of the initial big tree.

Figure 5. Tree structure analysis. (Left) We report the number of nodes at specific tree depths for draft trees optimized for each Token
Recycle and STAND. Both trees are optimized on AIME-2024 dataset with DeepSeek-R1-Distill-Qwen-7B. (Right) We report the number
of nodes at specific tree depths for the initial tree used for tree optimization.
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